]> git.saurik.com Git - bison.git/blob - src/LR0.c
portability: use va_start and va_end in the same function.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005, 2006,
4 2007, 2009 Free Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include <config.h>
26 #include "system.h"
27
28 #include <bitset.h>
29 #include <quotearg.h>
30
31 #include "LR0.h"
32 #include "closure.h"
33 #include "complain.h"
34 #include "getargs.h"
35 #include "gram.h"
36 #include "gram.h"
37 #include "lalr.h"
38 #include "reader.h"
39 #include "reduce.h"
40 #include "state.h"
41 #include "symtab.h"
42
43 typedef struct state_list
44 {
45 struct state_list *next;
46 state *state;
47 } state_list;
48
49 static state_list *first_state = NULL;
50 static state_list *last_state = NULL;
51
52
53 /*------------------------------------------------------------------.
54 | A state was just discovered from another state. Queue it for |
55 | later examination, in order to find its transitions. Return it. |
56 `------------------------------------------------------------------*/
57
58 static state *
59 state_list_append (symbol_number sym, size_t core_size, item_number *core)
60 {
61 state_list *node = xmalloc (sizeof *node);
62 state *s = state_new (sym, core_size, core);
63
64 if (trace_flag & trace_automaton)
65 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
66 nstates, sym, symbols[sym]->tag);
67
68 node->next = NULL;
69 node->state = s;
70
71 if (!first_state)
72 first_state = node;
73 if (last_state)
74 last_state->next = node;
75 last_state = node;
76
77 return s;
78 }
79
80 static int nshifts;
81 static symbol_number *shift_symbol;
82
83 static rule **redset;
84 static state **shiftset;
85
86 static item_number **kernel_base;
87 static int *kernel_size;
88 static item_number *kernel_items;
89
90 \f
91 static void
92 allocate_itemsets (void)
93 {
94 symbol_number i;
95 rule_number r;
96 item_number *rhsp;
97
98 /* Count the number of occurrences of all the symbols in RITEMS.
99 Note that useless productions (hence useless nonterminals) are
100 browsed too, hence we need to allocate room for _all_ the
101 symbols. */
102 size_t count = 0;
103 size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
104 sizeof *symbol_count);
105
106 for (r = 0; r < nrules; ++r)
107 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
108 {
109 count++;
110 symbol_count[*rhsp]++;
111 }
112
113 /* See comments before new_itemsets. All the vectors of items
114 live inside KERNEL_ITEMS. The number of active items after
115 some symbol S cannot be more than the number of times that S
116 appears as an item, which is SYMBOL_COUNT[S].
117 We allocate that much space for each symbol. */
118
119 kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
120 kernel_items = xnmalloc (count, sizeof *kernel_items);
121
122 count = 0;
123 for (i = 0; i < nsyms; i++)
124 {
125 kernel_base[i] = kernel_items + count;
126 count += symbol_count[i];
127 }
128
129 free (symbol_count);
130 kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
131 }
132
133
134 static void
135 allocate_storage (void)
136 {
137 allocate_itemsets ();
138
139 shiftset = xnmalloc (nsyms, sizeof *shiftset);
140 redset = xnmalloc (nrules, sizeof *redset);
141 state_hash_new ();
142 shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
143 }
144
145
146 static void
147 free_storage (void)
148 {
149 free (shift_symbol);
150 free (redset);
151 free (shiftset);
152 free (kernel_base);
153 free (kernel_size);
154 free (kernel_items);
155 state_hash_free ();
156 }
157
158
159
160
161 /*---------------------------------------------------------------.
162 | Find which symbols can be shifted in S, and for each one |
163 | record which items would be active after that shift. Uses the |
164 | contents of itemset. |
165 | |
166 | shift_symbol is set to a vector of the symbols that can be |
167 | shifted. For each symbol in the grammar, kernel_base[symbol] |
168 | points to a vector of item numbers activated if that symbol is |
169 | shifted, and kernel_size[symbol] is their numbers. |
170 | |
171 | itemset is sorted on item index in ritem, which is sorted on |
172 | rule number. Compute each kernel_base[symbol] with the same |
173 | sort. |
174 `---------------------------------------------------------------*/
175
176 static void
177 new_itemsets (state *s)
178 {
179 size_t i;
180
181 if (trace_flag & trace_automaton)
182 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
183
184 memset (kernel_size, 0, nsyms * sizeof *kernel_size);
185
186 nshifts = 0;
187
188 for (i = 0; i < nitemset; ++i)
189 if (item_number_is_symbol_number (ritem[itemset[i]]))
190 {
191 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
192 if (!kernel_size[sym])
193 {
194 shift_symbol[nshifts] = sym;
195 nshifts++;
196 }
197
198 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
199 kernel_size[sym]++;
200 }
201 }
202
203
204
205 /*--------------------------------------------------------------.
206 | Find the state we would get to (from the current state) by |
207 | shifting SYM. Create a new state if no equivalent one exists |
208 | already. Used by append_states. |
209 `--------------------------------------------------------------*/
210
211 static state *
212 get_state (symbol_number sym, size_t core_size, item_number *core)
213 {
214 state *s;
215
216 if (trace_flag & trace_automaton)
217 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
218 sym, symbols[sym]->tag);
219
220 s = state_hash_lookup (core_size, core);
221 if (!s)
222 s = state_list_append (sym, core_size, core);
223
224 if (trace_flag & trace_automaton)
225 fprintf (stderr, "Exiting get_state => %d\n", s->number);
226
227 return s;
228 }
229
230 /*---------------------------------------------------------------.
231 | Use the information computed by new_itemsets to find the state |
232 | numbers reached by each shift transition from S. |
233 | |
234 | SHIFTSET is set up as a vector of those states. |
235 `---------------------------------------------------------------*/
236
237 static void
238 append_states (state *s)
239 {
240 int i;
241
242 if (trace_flag & trace_automaton)
243 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
244
245 /* First sort shift_symbol into increasing order. */
246
247 for (i = 1; i < nshifts; i++)
248 {
249 symbol_number sym = shift_symbol[i];
250 int j;
251 for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
252 shift_symbol[j] = shift_symbol[j - 1];
253 shift_symbol[j] = sym;
254 }
255
256 for (i = 0; i < nshifts; i++)
257 {
258 symbol_number sym = shift_symbol[i];
259 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
260 }
261 }
262
263
264 /*----------------------------------------------------------------.
265 | Find which rules can be used for reduction transitions from the |
266 | current state and make a reductions structure for the state to |
267 | record their rule numbers. |
268 `----------------------------------------------------------------*/
269
270 static void
271 save_reductions (state *s)
272 {
273 int count = 0;
274 size_t i;
275
276 /* Find and count the active items that represent ends of rules. */
277 for (i = 0; i < nitemset; ++i)
278 {
279 item_number item = ritem[itemset[i]];
280 if (item_number_is_rule_number (item))
281 {
282 rule_number r = item_number_as_rule_number (item);
283 redset[count++] = &rules[r];
284 if (r == 0)
285 {
286 /* This is "reduce 0", i.e., accept. */
287 aver (!final_state);
288 final_state = s;
289 }
290 }
291 }
292
293 /* Make a reductions structure and copy the data into it. */
294 state_reductions_set (s, count, redset);
295 }
296
297 \f
298 /*---------------.
299 | Build STATES. |
300 `---------------*/
301
302 static void
303 set_states (void)
304 {
305 states = xcalloc (nstates, sizeof *states);
306
307 while (first_state)
308 {
309 state_list *this = first_state;
310
311 /* Pessimization, but simplification of the code: make sure all
312 the states have valid transitions and reductions members,
313 even if reduced to 0. It is too soon for errs, which are
314 computed later, but set_conflicts. */
315 state *s = this->state;
316 if (!s->transitions)
317 state_transitions_set (s, 0, 0);
318 if (!s->reductions)
319 state_reductions_set (s, 0, 0);
320
321 states[s->number] = s;
322
323 first_state = this->next;
324 free (this);
325 }
326 first_state = NULL;
327 last_state = NULL;
328 }
329
330
331 /*-------------------------------------------------------------------.
332 | Compute the nondeterministic finite state machine (see state.h for |
333 | details) from the grammar. |
334 `-------------------------------------------------------------------*/
335
336 void
337 generate_states (void)
338 {
339 item_number initial_core = 0;
340 state_list *list = NULL;
341 allocate_storage ();
342 new_closure (nritems);
343
344 /* Create the initial state. The 0 at the lhs is the index of the
345 item of this initial rule. */
346 state_list_append (0, 1, &initial_core);
347
348 /* States are queued when they are created; process them all. */
349 for (list = first_state; list; list = list->next)
350 {
351 state *s = list->state;
352 if (trace_flag & trace_automaton)
353 fprintf (stderr, "Processing state %d (reached by %s)\n",
354 s->number,
355 symbols[s->accessing_symbol]->tag);
356 /* Set up itemset for the transitions out of this state. itemset gets a
357 vector of all the items that could be accepted next. */
358 closure (s->items, s->nitems);
359 /* Record the reductions allowed out of this state. */
360 save_reductions (s);
361 /* Find the itemsets of the states that shifts can reach. */
362 new_itemsets (s);
363 /* Find or create the core structures for those states. */
364 append_states (s);
365
366 /* Create the shifts structures for the shifts to those states,
367 now that the state numbers transitioning to are known. */
368 state_transitions_set (s, nshifts, shiftset);
369 }
370
371 /* discard various storage */
372 free_closure ();
373 free_storage ();
374
375 /* Set up STATES. */
376 set_states ();
377 }