]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/nullable.c (nullable_print): New.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "getargs.h"
27 #include "reader.h"
28 #include "gram.h"
29 #include "state.h"
30 #include "complain.h"
31 #include "closure.h"
32 #include "LR0.h"
33
34
35 int nstates;
36 int final_state;
37 core *first_state = NULL;
38 shifts *first_shift = NULL;
39 reductions *first_reduction = NULL;
40
41 static core *this_state = NULL;
42 static core *last_state = NULL;
43 static shifts *last_shift = NULL;
44 static reductions *last_reduction = NULL;
45
46 static int nshifts;
47 static short *shift_symbol = NULL;
48
49 static short *redset = NULL;
50 static short *shiftset = NULL;
51
52 static short **kernel_base = NULL;
53 static size_t *kernel_size = NULL;
54 static short *kernel_items = NULL;
55
56 /* hash table for states, to recognize equivalent ones. */
57
58 #define STATE_TABLE_SIZE 1009
59 static core **state_table = NULL;
60
61 \f
62 static void
63 allocate_itemsets (void)
64 {
65 int i;
66 int count;
67 short *symbol_count = NULL;
68
69 count = 0;
70 symbol_count = XCALLOC (short, nsyms);
71
72 for (i = 0; ritem[i]; ++i)
73 if (ritem[i] > 0)
74 {
75 count++;
76 symbol_count[ritem[i]]++;
77 }
78
79 /* See comments before new_itemsets. All the vectors of items
80 live inside KERNEL_ITEMS. The number of active items after
81 some symbol cannot be more than the number of times that symbol
82 appears as an item, which is symbol_count[symbol].
83 We allocate that much space for each symbol. */
84
85 kernel_base = XCALLOC (short *, nsyms);
86 if (count)
87 kernel_items = XCALLOC (short, count);
88
89 count = 0;
90 for (i = 0; i < nsyms; i++)
91 {
92 kernel_base[i] = kernel_items + count;
93 count += symbol_count[i];
94 }
95
96 shift_symbol = symbol_count;
97 kernel_size = XCALLOC (size_t, nsyms);
98 }
99
100
101 static void
102 allocate_storage (void)
103 {
104 allocate_itemsets ();
105
106 shiftset = XCALLOC (short, nsyms);
107 redset = XCALLOC (short, nrules + 1);
108 state_table = XCALLOC (core *, STATE_TABLE_SIZE);
109 }
110
111
112 static void
113 free_storage (void)
114 {
115 XFREE (shift_symbol);
116 XFREE (redset);
117 XFREE (shiftset);
118 XFREE (kernel_base);
119 XFREE (kernel_size);
120 XFREE (kernel_items);
121 XFREE (state_table);
122 }
123
124
125
126
127 /*----------------------------------------------------------------.
128 | Find which symbols can be shifted in the current state, and for |
129 | each one record which items would be active after that shift. |
130 | Uses the contents of itemset. |
131 | |
132 | shift_symbol is set to a vector of the symbols that can be |
133 | shifted. For each symbol in the grammar, kernel_base[symbol] |
134 | points to a vector of item numbers activated if that symbol is |
135 | shifted, and kernel_size[symbol] is their numbers. |
136 `----------------------------------------------------------------*/
137
138 static void
139 new_itemsets (void)
140 {
141 int i;
142 int shiftcount;
143
144 if (trace_flag)
145 fprintf (stderr, "Entering new_itemsets, state = %d\n",
146 this_state->number);
147
148 for (i = 0; i < nsyms; i++)
149 kernel_size[i] = 0;
150
151 shiftcount = 0;
152
153 for (i = 0; i < itemsetsize; ++i)
154 {
155 int symbol = ritem[itemset[i]];
156 if (symbol > 0)
157 {
158 if (!kernel_size[symbol])
159 {
160 shift_symbol[shiftcount] = symbol;
161 shiftcount++;
162 }
163
164 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
165 kernel_size[symbol]++;
166 }
167 }
168
169 nshifts = shiftcount;
170 }
171
172
173
174 /*-----------------------------------------------------------------.
175 | Subroutine of get_state. Create a new state for those items, if |
176 | necessary. |
177 `-----------------------------------------------------------------*/
178
179 static core *
180 new_state (int symbol)
181 {
182 core *p;
183
184 if (trace_flag)
185 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
186 this_state->number, symbol, tags[symbol]);
187
188 if (nstates >= MAXSHORT)
189 fatal (_("too many states (max %d)"), MAXSHORT);
190
191 p = CORE_ALLOC (kernel_size[symbol]);
192 p->accessing_symbol = symbol;
193 p->number = nstates;
194 p->nitems = kernel_size[symbol];
195
196 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
197
198 last_state->next = p;
199 last_state = p;
200 nstates++;
201
202 return p;
203 }
204
205
206 /*--------------------------------------------------------------.
207 | Find the state number for the state we would get to (from the |
208 | current state) by shifting symbol. Create a new state if no |
209 | equivalent one exists already. Used by append_states. |
210 `--------------------------------------------------------------*/
211
212 static int
213 get_state (int symbol)
214 {
215 int key;
216 short *isp2;
217 int i;
218 core *sp;
219
220 if (trace_flag)
221 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
222 this_state->number, symbol, tags[symbol]);
223
224 /* Add up the target state's active item numbers to get a hash key.
225 */
226 key = 0;
227 for (i = 0; i < kernel_size[symbol]; ++i)
228 key += kernel_base[symbol][i];
229 key = key % STATE_TABLE_SIZE;
230 sp = state_table[key];
231
232 if (sp)
233 {
234 int found = 0;
235 while (!found)
236 {
237 if (sp->nitems == kernel_size[symbol])
238 {
239 int i;
240 found = 1;
241 for (i = 0; i < kernel_size[symbol]; ++i)
242 if (kernel_base[symbol][i] != sp->items[i])
243 found = 0;
244 }
245
246 if (!found)
247 {
248 if (sp->link)
249 {
250 sp = sp->link;
251 }
252 else /* bucket exhausted and no match */
253 {
254 sp = sp->link = new_state (symbol);
255 found = 1;
256 }
257 }
258 }
259 }
260 else /* bucket is empty */
261 {
262 state_table[key] = sp = new_state (symbol);
263 }
264
265 if (trace_flag)
266 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
267
268 return sp->number;
269 }
270
271 /*------------------------------------------------------------------.
272 | Use the information computed by new_itemsets to find the state |
273 | numbers reached by each shift transition from the current state. |
274 | |
275 | shiftset is set up as a vector of state numbers of those states. |
276 `------------------------------------------------------------------*/
277
278 static void
279 append_states (void)
280 {
281 int i;
282 int j;
283 int symbol;
284
285 if (trace_flag)
286 fprintf (stderr, "Entering append_states, state = %d\n",
287 this_state->number);
288
289 /* first sort shift_symbol into increasing order */
290
291 for (i = 1; i < nshifts; i++)
292 {
293 symbol = shift_symbol[i];
294 j = i;
295 while (j > 0 && shift_symbol[j - 1] > symbol)
296 {
297 shift_symbol[j] = shift_symbol[j - 1];
298 j--;
299 }
300 shift_symbol[j] = symbol;
301 }
302
303 for (i = 0; i < nshifts; i++)
304 shiftset[i] = get_state (shift_symbol[i]);
305 }
306
307
308 static void
309 new_states (void)
310 {
311 first_state = last_state = this_state = CORE_ALLOC (0);
312 nstates = 1;
313 }
314
315
316 static void
317 save_shifts (void)
318 {
319 shifts *p = SHIFTS_ALLOC (nshifts);
320
321 p->number = this_state->number;
322 p->nshifts = nshifts;
323
324 shortcpy (p->shifts, shiftset, nshifts);
325
326 if (last_shift)
327 last_shift->next = p;
328 else
329 first_shift = p;
330 last_shift = p;
331 }
332
333
334 /*------------------------------------------------------------------.
335 | Subroutine of augment_automaton. Create the next-to-final state, |
336 | to which a shift has already been made in the initial state. |
337 `------------------------------------------------------------------*/
338
339 static void
340 insert_start_shift (void)
341 {
342 core *statep;
343 shifts *sp;
344
345 statep = CORE_ALLOC (0);
346 statep->number = nstates;
347 statep->accessing_symbol = start_symbol;
348
349 last_state->next = statep;
350 last_state = statep;
351
352 /* Make a shift from this state to (what will be) the final state. */
353 sp = SHIFTS_ALLOC (1);
354 sp->number = nstates++;
355 sp->nshifts = 1;
356 sp->shifts[0] = nstates;
357
358 last_shift->next = sp;
359 last_shift = sp;
360 }
361
362
363 /*------------------------------------------------------------------.
364 | Make sure that the initial state has a shift that accepts the |
365 | grammar's start symbol and goes to the next-to-final state, which |
366 | has a shift going to the final state, which has a shift to the |
367 | termination state. Create such states and shifts if they don't |
368 | happen to exist already. |
369 `------------------------------------------------------------------*/
370
371 static void
372 augment_automaton (void)
373 {
374 int i;
375 int k;
376 core *statep;
377 shifts *sp;
378 shifts *sp2;
379 shifts *sp1 = NULL;
380
381 sp = first_shift;
382
383 if (sp)
384 {
385 if (sp->number == 0)
386 {
387 k = sp->nshifts;
388 statep = first_state->next;
389
390 /* The states reached by shifts from first_state are numbered 1...K.
391 Look for one reached by start_symbol. */
392 while (statep->accessing_symbol < start_symbol
393 && statep->number < k)
394 statep = statep->next;
395
396 if (statep->accessing_symbol == start_symbol)
397 {
398 /* We already have a next-to-final state.
399 Make sure it has a shift to what will be the final state. */
400 k = statep->number;
401
402 while (sp && sp->number < k)
403 {
404 sp1 = sp;
405 sp = sp->next;
406 }
407
408 if (sp && sp->number == k)
409 {
410 sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
411 sp2->number = k;
412 sp2->nshifts = sp->nshifts + 1;
413 sp2->shifts[0] = nstates;
414 for (i = sp->nshifts; i > 0; i--)
415 sp2->shifts[i] = sp->shifts[i - 1];
416
417 /* Patch sp2 into the chain of shifts in place of sp,
418 following sp1. */
419 sp2->next = sp->next;
420 sp1->next = sp2;
421 if (sp == last_shift)
422 last_shift = sp2;
423 XFREE (sp);
424 }
425 else
426 {
427 sp2 = SHIFTS_ALLOC (1);
428 sp2->number = k;
429 sp2->nshifts = 1;
430 sp2->shifts[0] = nstates;
431
432 /* Patch sp2 into the chain of shifts between sp1 and sp. */
433 sp2->next = sp;
434 sp1->next = sp2;
435 if (sp == 0)
436 last_shift = sp2;
437 }
438 }
439 else
440 {
441 /* There is no next-to-final state as yet. */
442 /* Add one more shift in first_shift,
443 going to the next-to-final state (yet to be made). */
444 sp = first_shift;
445
446 sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
447 sp2->nshifts = sp->nshifts + 1;
448
449 /* Stick this shift into the vector at the proper place. */
450 statep = first_state->next;
451 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
452 {
453 if (statep->accessing_symbol > start_symbol && i == k)
454 sp2->shifts[k++] = nstates;
455 sp2->shifts[k] = sp->shifts[i];
456 statep = statep->next;
457 }
458 if (i == k)
459 sp2->shifts[k++] = nstates;
460
461 /* Patch sp2 into the chain of shifts
462 in place of sp, at the beginning. */
463 sp2->next = sp->next;
464 first_shift = sp2;
465 if (last_shift == sp)
466 last_shift = sp2;
467
468 XFREE (sp);
469
470 /* Create the next-to-final state, with shift to
471 what will be the final state. */
472 insert_start_shift ();
473 }
474 }
475 else
476 {
477 /* The initial state didn't even have any shifts.
478 Give it one shift, to the next-to-final state. */
479 sp = SHIFTS_ALLOC (1);
480 sp->nshifts = 1;
481 sp->shifts[0] = nstates;
482
483 /* Patch sp into the chain of shifts at the beginning. */
484 sp->next = first_shift;
485 first_shift = sp;
486
487 /* Create the next-to-final state, with shift to
488 what will be the final state. */
489 insert_start_shift ();
490 }
491 }
492 else
493 {
494 /* There are no shifts for any state.
495 Make one shift, from the initial state to the next-to-final state. */
496
497 sp = SHIFTS_ALLOC (1);
498 sp->nshifts = 1;
499 sp->shifts[0] = nstates;
500
501 /* Initialize the chain of shifts with sp. */
502 first_shift = sp;
503 last_shift = sp;
504
505 /* Create the next-to-final state, with shift to
506 what will be the final state. */
507 insert_start_shift ();
508 }
509
510 /* Make the final state--the one that follows a shift from the
511 next-to-final state.
512 The symbol for that shift is 0 (end-of-file). */
513 statep = CORE_ALLOC (0);
514 statep->number = nstates;
515 last_state->next = statep;
516 last_state = statep;
517
518 /* Make the shift from the final state to the termination state. */
519 sp = SHIFTS_ALLOC (1);
520 sp->number = nstates++;
521 sp->nshifts = 1;
522 sp->shifts[0] = nstates;
523 last_shift->next = sp;
524 last_shift = sp;
525
526 /* Note that the variable `final_state' refers to what we sometimes call
527 the termination state. */
528 final_state = nstates;
529
530 /* Make the termination state. */
531 statep = CORE_ALLOC (0);
532 statep->number = nstates++;
533 last_state->next = statep;
534 last_state = statep;
535 }
536
537
538 /*----------------------------------------------------------------.
539 | Find which rules can be used for reduction transitions from the |
540 | current state and make a reductions structure for the state to |
541 | record their rule numbers. |
542 `----------------------------------------------------------------*/
543
544 static void
545 save_reductions (void)
546 {
547 int count;
548 int i;
549
550 /* Find and count the active items that represent ends of rules. */
551
552 count = 0;
553 for (i = 0; i < itemsetsize; ++i)
554 {
555 int item = ritem[itemset[i]];
556 if (item < 0)
557 redset[count++] = -item;
558 }
559
560 /* Make a reductions structure and copy the data into it. */
561
562 if (count)
563 {
564 reductions *p = REDUCTIONS_ALLOC (count);
565
566 p->number = this_state->number;
567 p->nreds = count;
568
569 shortcpy (p->rules, redset, count);
570
571 if (last_reduction)
572 last_reduction->next = p;
573 else
574 first_reduction = p;
575 last_reduction = p;
576 }
577 }
578
579 \f
580 /*-------------------------------------------------------------------.
581 | Compute the nondeterministic finite state machine (see state.h for |
582 | details) from the grammar. |
583 `-------------------------------------------------------------------*/
584
585 void
586 generate_states (void)
587 {
588 allocate_storage ();
589 new_closure (nitems);
590 new_states ();
591
592 while (this_state)
593 {
594 /* Set up ruleset and itemset for the transitions out of this
595 state. ruleset gets a 1 bit for each rule that could reduce
596 now. itemset gets a vector of all the items that could be
597 accepted next. */
598 closure (this_state->items, this_state->nitems);
599 /* record the reductions allowed out of this state */
600 save_reductions ();
601 /* find the itemsets of the states that shifts can reach */
602 new_itemsets ();
603 /* find or create the core structures for those states */
604 append_states ();
605
606 /* create the shifts structures for the shifts to those states,
607 now that the state numbers transitioning to are known */
608 if (nshifts > 0)
609 save_shifts ();
610
611 /* states are queued when they are created; process them all */
612 this_state = this_state->next;
613 }
614
615 /* discard various storage */
616 free_closure ();
617 free_storage ();
618
619 /* set up initial and final states as parser wants them */
620 augment_automaton ();
621 }