]> git.saurik.com Git - bison.git/blob - src/LR0.c
muscle: let -D/-F support the three kinds of %define variable values
[bison.git] / src / LR0.c
1 /* Generate the LR(0) parser states for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include <config.h>
26 #include "system.h"
27
28 #include <bitset.h>
29
30 #include "LR0.h"
31 #include "closure.h"
32 #include "complain.h"
33 #include "getargs.h"
34 #include "gram.h"
35 #include "lalr.h"
36 #include "reader.h"
37 #include "reduce.h"
38 #include "state.h"
39 #include "symtab.h"
40
41 typedef struct state_list
42 {
43 struct state_list *next;
44 state *state;
45 } state_list;
46
47 static state_list *first_state = NULL;
48 static state_list *last_state = NULL;
49
50
51 /*------------------------------------------------------------------.
52 | A state was just discovered from another state. Queue it for |
53 | later examination, in order to find its transitions. Return it. |
54 `------------------------------------------------------------------*/
55
56 static state *
57 state_list_append (symbol_number sym, size_t core_size, item_number *core)
58 {
59 state_list *node = xmalloc (sizeof *node);
60 state *s = state_new (sym, core_size, core);
61
62 if (trace_flag & trace_automaton)
63 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
64 nstates, sym, symbols[sym]->tag);
65
66 node->next = NULL;
67 node->state = s;
68
69 if (!first_state)
70 first_state = node;
71 if (last_state)
72 last_state->next = node;
73 last_state = node;
74
75 return s;
76 }
77
78 static int nshifts;
79 static symbol_number *shift_symbol;
80
81 static rule **redset;
82 static state **shiftset;
83
84 static item_number **kernel_base;
85 static int *kernel_size;
86 static item_number *kernel_items;
87
88 \f
89 static void
90 allocate_itemsets (void)
91 {
92 symbol_number i;
93 rule_number r;
94 item_number *rhsp;
95
96 /* Count the number of occurrences of all the symbols in RITEMS.
97 Note that useless productions (hence useless nonterminals) are
98 browsed too, hence we need to allocate room for _all_ the
99 symbols. */
100 size_t count = 0;
101 size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
102 sizeof *symbol_count);
103
104 for (r = 0; r < nrules; ++r)
105 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
106 {
107 count++;
108 symbol_count[*rhsp]++;
109 }
110
111 /* See comments before new_itemsets. All the vectors of items
112 live inside KERNEL_ITEMS. The number of active items after
113 some symbol S cannot be more than the number of times that S
114 appears as an item, which is SYMBOL_COUNT[S].
115 We allocate that much space for each symbol. */
116
117 kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
118 kernel_items = xnmalloc (count, sizeof *kernel_items);
119
120 count = 0;
121 for (i = 0; i < nsyms; i++)
122 {
123 kernel_base[i] = kernel_items + count;
124 count += symbol_count[i];
125 }
126
127 free (symbol_count);
128 kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
129 }
130
131
132 static void
133 allocate_storage (void)
134 {
135 allocate_itemsets ();
136
137 shiftset = xnmalloc (nsyms, sizeof *shiftset);
138 redset = xnmalloc (nrules, sizeof *redset);
139 state_hash_new ();
140 shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
141 }
142
143
144 static void
145 free_storage (void)
146 {
147 free (shift_symbol);
148 free (redset);
149 free (shiftset);
150 free (kernel_base);
151 free (kernel_size);
152 free (kernel_items);
153 state_hash_free ();
154 }
155
156
157
158
159 /*---------------------------------------------------------------.
160 | Find which symbols can be shifted in S, and for each one |
161 | record which items would be active after that shift. Uses the |
162 | contents of itemset. |
163 | |
164 | shift_symbol is set to a vector of the symbols that can be |
165 | shifted. For each symbol in the grammar, kernel_base[symbol] |
166 | points to a vector of item numbers activated if that symbol is |
167 | shifted, and kernel_size[symbol] is their numbers. |
168 | |
169 | itemset is sorted on item index in ritem, which is sorted on |
170 | rule number. Compute each kernel_base[symbol] with the same |
171 | sort. |
172 `---------------------------------------------------------------*/
173
174 static void
175 new_itemsets (state *s)
176 {
177 size_t i;
178
179 if (trace_flag & trace_automaton)
180 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
181
182 memset (kernel_size, 0, nsyms * sizeof *kernel_size);
183
184 nshifts = 0;
185
186 for (i = 0; i < nitemset; ++i)
187 if (item_number_is_symbol_number (ritem[itemset[i]]))
188 {
189 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
190 if (!kernel_size[sym])
191 {
192 shift_symbol[nshifts] = sym;
193 nshifts++;
194 }
195
196 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
197 kernel_size[sym]++;
198 }
199 }
200
201
202
203 /*--------------------------------------------------------------.
204 | Find the state we would get to (from the current state) by |
205 | shifting SYM. Create a new state if no equivalent one exists |
206 | already. Used by append_states. |
207 `--------------------------------------------------------------*/
208
209 static state *
210 get_state (symbol_number sym, size_t core_size, item_number *core)
211 {
212 state *s;
213
214 if (trace_flag & trace_automaton)
215 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
216 sym, symbols[sym]->tag);
217
218 s = state_hash_lookup (core_size, core);
219 if (!s)
220 s = state_list_append (sym, core_size, core);
221
222 if (trace_flag & trace_automaton)
223 fprintf (stderr, "Exiting get_state => %d\n", s->number);
224
225 return s;
226 }
227
228 /*---------------------------------------------------------------.
229 | Use the information computed by new_itemsets to find the state |
230 | numbers reached by each shift transition from S. |
231 | |
232 | SHIFTSET is set up as a vector of those states. |
233 `---------------------------------------------------------------*/
234
235 static void
236 append_states (state *s)
237 {
238 int i;
239
240 if (trace_flag & trace_automaton)
241 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
242
243 /* First sort shift_symbol into increasing order. */
244
245 for (i = 1; i < nshifts; i++)
246 {
247 symbol_number sym = shift_symbol[i];
248 int j;
249 for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
250 shift_symbol[j] = shift_symbol[j - 1];
251 shift_symbol[j] = sym;
252 }
253
254 for (i = 0; i < nshifts; i++)
255 {
256 symbol_number sym = shift_symbol[i];
257 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
258 }
259 }
260
261
262 /*----------------------------------------------------------------.
263 | Find which rules can be used for reduction transitions from the |
264 | current state and make a reductions structure for the state to |
265 | record their rule numbers. |
266 `----------------------------------------------------------------*/
267
268 static void
269 save_reductions (state *s)
270 {
271 int count = 0;
272 size_t i;
273
274 /* Find and count the active items that represent ends of rules. */
275 for (i = 0; i < nitemset; ++i)
276 {
277 item_number item = ritem[itemset[i]];
278 if (item_number_is_rule_number (item))
279 {
280 rule_number r = item_number_as_rule_number (item);
281 redset[count++] = &rules[r];
282 if (r == 0)
283 {
284 /* This is "reduce 0", i.e., accept. */
285 aver (!final_state);
286 final_state = s;
287 }
288 }
289 }
290
291 /* Make a reductions structure and copy the data into it. */
292 state_reductions_set (s, count, redset);
293 }
294
295 \f
296 /*---------------.
297 | Build STATES. |
298 `---------------*/
299
300 static void
301 set_states (void)
302 {
303 states = xcalloc (nstates, sizeof *states);
304
305 while (first_state)
306 {
307 state_list *this = first_state;
308
309 /* Pessimization, but simplification of the code: make sure all
310 the states have valid transitions and reductions members,
311 even if reduced to 0. It is too soon for errs, which are
312 computed later, but set_conflicts. */
313 state *s = this->state;
314 if (!s->transitions)
315 state_transitions_set (s, 0, 0);
316 if (!s->reductions)
317 state_reductions_set (s, 0, 0);
318
319 states[s->number] = s;
320
321 first_state = this->next;
322 free (this);
323 }
324 first_state = NULL;
325 last_state = NULL;
326 }
327
328
329 /*-------------------------------------------------------------------.
330 | Compute the LR(0) parser states (see state.h for details) from the |
331 | grammar. |
332 `-------------------------------------------------------------------*/
333
334 void
335 generate_states (void)
336 {
337 item_number initial_core = 0;
338 state_list *list = NULL;
339 allocate_storage ();
340 new_closure (nritems);
341
342 /* Create the initial state. The 0 at the lhs is the index of the
343 item of this initial rule. */
344 state_list_append (0, 1, &initial_core);
345
346 /* States are queued when they are created; process them all. */
347 for (list = first_state; list; list = list->next)
348 {
349 state *s = list->state;
350 if (trace_flag & trace_automaton)
351 fprintf (stderr, "Processing state %d (reached by %s)\n",
352 s->number,
353 symbols[s->accessing_symbol]->tag);
354 /* Set up itemset for the transitions out of this state. itemset gets a
355 vector of all the items that could be accepted next. */
356 closure (s->items, s->nitems);
357 /* Record the reductions allowed out of this state. */
358 save_reductions (s);
359 /* Find the itemsets of the states that shifts can reach. */
360 new_itemsets (s);
361 /* Find or create the core structures for those states. */
362 append_states (s);
363
364 /* Create the shifts structures for the shifts to those states,
365 now that the state numbers transitioning to are known. */
366 state_transitions_set (s, nshifts, shiftset);
367 }
368
369 /* discard various storage */
370 free_closure ();
371 free_storage ();
372
373 /* Set up STATES. */
374 set_states ();
375 }