]>
git.saurik.com Git - bison.git/blob - src/LR0.c
   1 /* Generate the nondeterministic finite state machine for Bison. 
   3    Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002 Free Software 
   6    This file is part of Bison, the GNU Compiler Compiler. 
   8    Bison is free software; you can redistribute it and/or modify 
   9    it under the terms of the GNU General Public License as published by 
  10    the Free Software Foundation; either version 2, or (at your option) 
  13    Bison is distributed in the hope that it will be useful, 
  14    but WITHOUT ANY WARRANTY; without even the implied warranty of 
  15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  16    GNU General Public License for more details. 
  18    You should have received a copy of the GNU General Public License 
  19    along with Bison; see the file COPYING.  If not, write to 
  20    the Free Software Foundation, Inc., 59 Temple Place - Suite 330, 
  21    Boston, MA 02111-1307, USA.  */ 
  24 /* See comments in state.h for the data structures that represent it. 
  25    The entry point is generate_states.  */ 
  44 typedef struct state_list
 
  46   struct state_list 
*next
; 
  50 static state_list 
*first_state 
= NULL
; 
  51 static state_list 
*last_state 
= NULL
; 
  54 /*------------------------------------------------------------------. 
  55 | A state was just discovered from another state.  Queue it for     | 
  56 | later examination, in order to find its transitions.  Return it.  | 
  57 `------------------------------------------------------------------*/ 
  60 state_list_append (symbol_number sym
, size_t core_size
, item_number 
*core
) 
  62   state_list 
*node 
= MALLOC (node
, 1); 
  63   state 
*s 
= state_new (sym
, core_size
, core
); 
  65   if (trace_flag 
& trace_automaton
) 
  66     fprintf (stderr
, "state_list_append (state = %d, symbol = %d (%s))\n", 
  67              nstates
, sym
, symbols
[sym
]->tag
); 
  69   /* If this is the endtoken, and this is not the initial state, then 
  70      this is the final state.  */ 
  71   if (sym 
== 0 && first_state
) 
  80     last_state
->next 
= node
; 
  87 static symbol_number 
*shift_symbol 
= NULL
; 
  89 static rule 
**redset 
= NULL
; 
  90 static state 
**shiftset 
= NULL
; 
  92 static item_number 
**kernel_base 
= NULL
; 
  93 static int *kernel_size 
= NULL
; 
  94 static item_number 
*kernel_items 
= NULL
; 
  98 allocate_itemsets (void) 
 104   /* Count the number of occurrences of all the symbols in RITEMS. 
 105      Note that useless productions (hence useless nonterminals) are 
 106      browsed too, hence we need to allocate room for _all_ the 
 109   short *symbol_count 
= CALLOC (symbol_count
, nsyms 
+ nuseless_nonterminals
); 
 111   for (r 
= 0; r 
< nrules
; ++r
) 
 112     for (rhsp 
= rules
[r
].rhs
; *rhsp 
>= 0; ++rhsp
) 
 115         symbol_count
[*rhsp
]++; 
 118   /* See comments before new_itemsets.  All the vectors of items 
 119      live inside KERNEL_ITEMS.  The number of active items after 
 120      some symbol S cannot be more than the number of times that S 
 121      appears as an item, which is SYMBOL_COUNT[S]. 
 122      We allocate that much space for each symbol.  */ 
 124   CALLOC (kernel_base
, nsyms
); 
 126     CALLOC (kernel_items
, count
); 
 129   for (i 
= 0; i 
< nsyms
; i
++) 
 131       kernel_base
[i
] = kernel_items 
+ count
; 
 132       count 
+= symbol_count
[i
]; 
 136   CALLOC (kernel_size
, nsyms
); 
 141 allocate_storage (void) 
 143   allocate_itemsets (); 
 145   CALLOC (shiftset
, nsyms
); 
 146   CALLOC (redset
, nrules
); 
 148   CALLOC (shift_symbol
, nsyms
); 
 160   XFREE (kernel_items
); 
 167 /*---------------------------------------------------------------. 
 168 | Find which symbols can be shifted in S, and for each one       | 
 169 | record which items would be active after that shift.  Uses the | 
 170 | contents of itemset.                                           | 
 172 | shift_symbol is set to a vector of the symbols that can be     | 
 173 | shifted.  For each symbol in the grammar, kernel_base[symbol]  | 
 174 | points to a vector of item numbers activated if that symbol is | 
 175 | shifted, and kernel_size[symbol] is their numbers.             | 
 176 `---------------------------------------------------------------*/ 
 179 new_itemsets (state 
*s
) 
 183   if (trace_flag 
& trace_automaton
) 
 184     fprintf (stderr
, "Entering new_itemsets, state = %d\n", s
->number
); 
 186   for (i 
= 0; i 
< nsyms
; i
++) 
 191   for (i 
= 0; i 
< nritemset
; ++i
) 
 192     if (ritem
[itemset
[i
]] >= 0) 
 194         symbol_number sym 
= item_number_as_symbol_number (ritem
[itemset
[i
]]); 
 195         if (!kernel_size
[sym
]) 
 197             shift_symbol
[nshifts
] = sym
; 
 201         kernel_base
[sym
][kernel_size
[sym
]] = itemset
[i
] + 1; 
 208 /*--------------------------------------------------------------. 
 209 | Find the state we would get to (from the current state) by    | 
 210 | shifting SYM.  Create a new state if no equivalent one exists | 
 211 | already.  Used by append_states.                              | 
 212 `--------------------------------------------------------------*/ 
 215 get_state (symbol_number sym
, size_t core_size
, item_number 
*core
) 
 219   if (trace_flag 
& trace_automaton
) 
 220     fprintf (stderr
, "Entering get_state, symbol = %d (%s)\n", 
 221              sym
, symbols
[sym
]->tag
); 
 223   sp 
= state_hash_lookup (core_size
, core
); 
 225     sp 
= state_list_append (sym
, core_size
, core
); 
 227   if (trace_flag 
& trace_automaton
) 
 228     fprintf (stderr
, "Exiting get_state => %d\n", sp
->number
); 
 233 /*---------------------------------------------------------------. 
 234 | Use the information computed by new_itemsets to find the state | 
 235 | numbers reached by each shift transition from S.               | 
 237 | SHIFTSET is set up as a vector of those states.                | 
 238 `---------------------------------------------------------------*/ 
 241 append_states (state 
*s
) 
 245   if (trace_flag 
& trace_automaton
) 
 246     fprintf (stderr
, "Entering append_states, state = %d\n", s
->number
); 
 248   /* First sort shift_symbol into increasing order.  */ 
 250   for (i 
= 1; i 
< nshifts
; i
++) 
 252       symbol_number sym 
= shift_symbol
[i
]; 
 254       for (j 
= i
; 0 < j 
&& sym 
< shift_symbol 
[j 
- 1]; j
--) 
 255         shift_symbol
[j
] = shift_symbol
[j 
- 1]; 
 256       shift_symbol
[j
] = sym
; 
 259   for (i 
= 0; i 
< nshifts
; i
++) 
 261       symbol_number sym 
= shift_symbol
[i
]; 
 262       shiftset
[i
] = get_state (sym
, kernel_size
[sym
], kernel_base
[sym
]); 
 267 /*----------------------------------------------------------------. 
 268 | Find which rules can be used for reduction transitions from the | 
 269 | current state and make a reductions structure for the state to  | 
 270 | record their rule numbers.                                      | 
 271 `----------------------------------------------------------------*/ 
 274 save_reductions (state 
*s
) 
 279   /* Find and count the active items that represent ends of rules. */ 
 280   for (i 
= 0; i 
< nritemset
; ++i
) 
 282       int item 
= ritem
[itemset
[i
]]; 
 284         redset
[count
++] = &rules
[item_number_as_rule_number (item
)]; 
 287   /* Make a reductions structure and copy the data into it.  */ 
 288   state_reductions_set (s
, count
, redset
); 
 299   CALLOC (states
, nstates
); 
 303       state_list 
*this = first_state
; 
 305       /* Pessimization, but simplification of the code: make sure all 
 306          the states have valid transitions and reductions members, 
 307          even if reduced to 0.  It is too soon for errs, which are 
 308          computed later, but set_conflicts.  */ 
 309       state 
*s 
= this->state
; 
 311         state_transitions_set (s
, 0, 0); 
 313         state_reductions_set (s
, 0, 0); 
 315       states
[s
->number
] = s
; 
 317       first_state 
= this->next
; 
 325 /*-------------------------------------------------------------------. 
 326 | Compute the nondeterministic finite state machine (see state.h for | 
 327 | details) from the grammar.                                         | 
 328 `-------------------------------------------------------------------*/ 
 331 generate_states (void) 
 333   state_list 
*list 
= NULL
; 
 335   new_closure (nritems
); 
 337   /* Create the initial state.  The 0 at the lhs is the index of the 
 338      item of this initial rule.  */ 
 339   kernel_base
[0][0] = 0; 
 341   state_list_append (0, kernel_size
[0], kernel_base
[0]); 
 347       state 
*s 
= list
->state
; 
 348       if (trace_flag 
& trace_automaton
) 
 349         fprintf (stderr
, "Processing state %d (reached by %s)\n", 
 351                  symbols
[s
->accessing_symbol
]->tag
); 
 352       /* Set up ruleset and itemset for the transitions out of this 
 353          state.  ruleset gets a 1 bit for each rule that could reduce 
 354          now.  itemset gets a vector of all the items that could be 
 356       closure (s
->items
, s
->nitems
); 
 357       /* Record the reductions allowed out of this state.  */ 
 359       /* Find the itemsets of the states that shifts can reach.  */ 
 361       /* Find or create the core structures for those states.  */ 
 364       /* Create the shifts structures for the shifts to those states, 
 365          now that the state numbers transitioning to are known.  */ 
 366       state_transitions_set (s
, nshifts
, shiftset
); 
 368       /* states are queued when they are created; process them all. 
 373   /* discard various storage */