]> git.saurik.com Git - bison.git/blob - src/LR0.c
In some (weird) cases, the final state number is incorrect.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005 Free
4 Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 /* See comments in state.h for the data structures that represent it.
25 The entry point is generate_states. */
26
27 #include "system.h"
28
29 #include <bitset.h>
30 #include <quotearg.h>
31
32 #include "LR0.h"
33 #include "closure.h"
34 #include "complain.h"
35 #include "getargs.h"
36 #include "gram.h"
37 #include "gram.h"
38 #include "lalr.h"
39 #include "reader.h"
40 #include "reduce.h"
41 #include "state.h"
42 #include "symtab.h"
43
44 typedef struct state_list
45 {
46 struct state_list *next;
47 state *state;
48 } state_list;
49
50 static state_list *first_state = NULL;
51 static state_list *last_state = NULL;
52
53
54 /*------------------------------------------------------------------.
55 | A state was just discovered from another state. Queue it for |
56 | later examination, in order to find its transitions. Return it. |
57 `------------------------------------------------------------------*/
58
59 static state *
60 state_list_append (symbol_number sym, size_t core_size, item_number *core)
61 {
62 state_list *node = xmalloc (sizeof *node);
63 state *s = state_new (sym, core_size, core);
64
65 if (trace_flag & trace_automaton)
66 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
67 nstates, sym, symbols[sym]->tag);
68
69 node->next = NULL;
70 node->state = s;
71
72 if (!first_state)
73 first_state = node;
74 if (last_state)
75 last_state->next = node;
76 last_state = node;
77
78 return s;
79 }
80
81 static int nshifts;
82 static symbol_number *shift_symbol;
83
84 static rule **redset;
85 static state **shiftset;
86
87 static item_number **kernel_base;
88 static int *kernel_size;
89 static item_number *kernel_items;
90
91 \f
92 static void
93 allocate_itemsets (void)
94 {
95 symbol_number i;
96 rule_number r;
97 item_number *rhsp;
98
99 /* Count the number of occurrences of all the symbols in RITEMS.
100 Note that useless productions (hence useless nonterminals) are
101 browsed too, hence we need to allocate room for _all_ the
102 symbols. */
103 size_t count = 0;
104 size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
105 sizeof *symbol_count);
106
107 for (r = 0; r < nrules; ++r)
108 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
109 {
110 count++;
111 symbol_count[*rhsp]++;
112 }
113
114 /* See comments before new_itemsets. All the vectors of items
115 live inside KERNEL_ITEMS. The number of active items after
116 some symbol S cannot be more than the number of times that S
117 appears as an item, which is SYMBOL_COUNT[S].
118 We allocate that much space for each symbol. */
119
120 kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
121 kernel_items = xnmalloc (count, sizeof *kernel_items);
122
123 count = 0;
124 for (i = 0; i < nsyms; i++)
125 {
126 kernel_base[i] = kernel_items + count;
127 count += symbol_count[i];
128 }
129
130 free (symbol_count);
131 kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
132 }
133
134
135 static void
136 allocate_storage (void)
137 {
138 allocate_itemsets ();
139
140 shiftset = xnmalloc (nsyms, sizeof *shiftset);
141 redset = xnmalloc (nrules, sizeof *redset);
142 state_hash_new ();
143 shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
144 }
145
146
147 static void
148 free_storage (void)
149 {
150 free (shift_symbol);
151 free (redset);
152 free (shiftset);
153 free (kernel_base);
154 free (kernel_size);
155 free (kernel_items);
156 state_hash_free ();
157 }
158
159
160
161
162 /*---------------------------------------------------------------.
163 | Find which symbols can be shifted in S, and for each one |
164 | record which items would be active after that shift. Uses the |
165 | contents of itemset. |
166 | |
167 | shift_symbol is set to a vector of the symbols that can be |
168 | shifted. For each symbol in the grammar, kernel_base[symbol] |
169 | points to a vector of item numbers activated if that symbol is |
170 | shifted, and kernel_size[symbol] is their numbers. |
171 `---------------------------------------------------------------*/
172
173 static void
174 new_itemsets (state *s)
175 {
176 size_t i;
177
178 if (trace_flag & trace_automaton)
179 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
180
181 memset (kernel_size, 0, nsyms * sizeof *kernel_size);
182
183 nshifts = 0;
184
185 for (i = 0; i < nritemset; ++i)
186 if (ritem[itemset[i]] >= 0)
187 {
188 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
189 if (!kernel_size[sym])
190 {
191 shift_symbol[nshifts] = sym;
192 nshifts++;
193 }
194
195 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
196 kernel_size[sym]++;
197 }
198 }
199
200
201
202 /*--------------------------------------------------------------.
203 | Find the state we would get to (from the current state) by |
204 | shifting SYM. Create a new state if no equivalent one exists |
205 | already. Used by append_states. |
206 `--------------------------------------------------------------*/
207
208 static state *
209 get_state (symbol_number sym, size_t core_size, item_number *core)
210 {
211 state *s;
212
213 if (trace_flag & trace_automaton)
214 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
215 sym, symbols[sym]->tag);
216
217 s = state_hash_lookup (core_size, core);
218 if (!s)
219 s = state_list_append (sym, core_size, core);
220
221 if (trace_flag & trace_automaton)
222 fprintf (stderr, "Exiting get_state => %d\n", s->number);
223
224 return s;
225 }
226
227 /*---------------------------------------------------------------.
228 | Use the information computed by new_itemsets to find the state |
229 | numbers reached by each shift transition from S. |
230 | |
231 | SHIFTSET is set up as a vector of those states. |
232 `---------------------------------------------------------------*/
233
234 static void
235 append_states (state *s)
236 {
237 int i;
238
239 if (trace_flag & trace_automaton)
240 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
241
242 /* First sort shift_symbol into increasing order. */
243
244 for (i = 1; i < nshifts; i++)
245 {
246 symbol_number sym = shift_symbol[i];
247 int j;
248 for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
249 shift_symbol[j] = shift_symbol[j - 1];
250 shift_symbol[j] = sym;
251 }
252
253 for (i = 0; i < nshifts; i++)
254 {
255 symbol_number sym = shift_symbol[i];
256 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
257 }
258 }
259
260
261 /*----------------------------------------------------------------.
262 | Find which rules can be used for reduction transitions from the |
263 | current state and make a reductions structure for the state to |
264 | record their rule numbers. |
265 `----------------------------------------------------------------*/
266
267 static void
268 save_reductions (state *s)
269 {
270 int count = 0;
271 size_t i;
272
273 /* Find and count the active items that represent ends of rules. */
274 for (i = 0; i < nritemset; ++i)
275 {
276 item_number item = ritem[itemset[i]];
277 if (item_number_is_rule_number (item))
278 {
279 rule_number r = item_number_as_rule_number (item);
280 redset[count++] = &rules[r];
281 if (r == 0)
282 {
283 /* This is "reduce 0", i.e., accept. */
284 assert (!final_state);
285 final_state = s;
286 }
287 }
288 }
289
290 /* Make a reductions structure and copy the data into it. */
291 state_reductions_set (s, count, redset);
292 }
293
294 \f
295 /*---------------.
296 | Build STATES. |
297 `---------------*/
298
299 static void
300 set_states (void)
301 {
302 states = xcalloc (nstates, sizeof *states);
303
304 while (first_state)
305 {
306 state_list *this = first_state;
307
308 /* Pessimization, but simplification of the code: make sure all
309 the states have valid transitions and reductions members,
310 even if reduced to 0. It is too soon for errs, which are
311 computed later, but set_conflicts. */
312 state *s = this->state;
313 if (!s->transitions)
314 state_transitions_set (s, 0, 0);
315 if (!s->reductions)
316 state_reductions_set (s, 0, 0);
317
318 states[s->number] = s;
319
320 first_state = this->next;
321 free (this);
322 }
323 first_state = NULL;
324 last_state = NULL;
325 }
326
327
328 /*-------------------------------------------------------------------.
329 | Compute the nondeterministic finite state machine (see state.h for |
330 | details) from the grammar. |
331 `-------------------------------------------------------------------*/
332
333 void
334 generate_states (void)
335 {
336 item_number initial_core = 0;
337 state_list *list = NULL;
338 allocate_storage ();
339 new_closure (nritems);
340
341 /* Create the initial state. The 0 at the lhs is the index of the
342 item of this initial rule. */
343 state_list_append (0, 1, &initial_core);
344
345 /* States are queued when they are created; process them all. */
346 for (list = first_state; list; list = list->next)
347 {
348 state *s = list->state;
349 if (trace_flag & trace_automaton)
350 fprintf (stderr, "Processing state %d (reached by %s)\n",
351 s->number,
352 symbols[s->accessing_symbol]->tag);
353 /* Set up ruleset and itemset for the transitions out of this
354 state. ruleset gets a 1 bit for each rule that could reduce
355 now. itemset gets a vector of all the items that could be
356 accepted next. */
357 closure (s->items, s->nitems);
358 /* Record the reductions allowed out of this state. */
359 save_reductions (s);
360 /* Find the itemsets of the states that shifts can reach. */
361 new_itemsets (s);
362 /* Find or create the core structures for those states. */
363 append_states (s);
364
365 /* Create the shifts structures for the shifts to those states,
366 now that the state numbers transitioning to are known. */
367 state_transitions_set (s, nshifts, shiftset);
368 }
369
370 /* discard various storage */
371 free_closure ();
372 free_storage ();
373
374 /* Set up STATES. */
375 set_states ();
376 }