]>
git.saurik.com Git - bison.git/blob - src/LR0.c
   1 /* Generate the nondeterministic finite state machine for Bison. 
   3    Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005 Free 
   4    Software Foundation, Inc. 
   6    This file is part of Bison, the GNU Compiler Compiler. 
   8    Bison is free software; you can redistribute it and/or modify 
   9    it under the terms of the GNU General Public License as published by 
  10    the Free Software Foundation; either version 2, or (at your option) 
  13    Bison is distributed in the hope that it will be useful, 
  14    but WITHOUT ANY WARRANTY; without even the implied warranty of 
  15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  16    GNU General Public License for more details. 
  18    You should have received a copy of the GNU General Public License 
  19    along with Bison; see the file COPYING.  If not, write to 
  20    the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, 
  21    Boston, MA 02110-1301, USA.  */ 
  24 /* See comments in state.h for the data structures that represent it. 
  25    The entry point is generate_states.  */ 
  45 typedef struct state_list
 
  47   struct state_list 
*next
; 
  51 static state_list 
*first_state 
= NULL
; 
  52 static state_list 
*last_state 
= NULL
; 
  55 /*------------------------------------------------------------------. 
  56 | A state was just discovered from another state.  Queue it for     | 
  57 | later examination, in order to find its transitions.  Return it.  | 
  58 `------------------------------------------------------------------*/ 
  61 state_list_append (symbol_number sym
, size_t core_size
, item_number 
*core
) 
  63   state_list 
*node 
= xmalloc (sizeof *node
); 
  64   state 
*s 
= state_new (sym
, core_size
, core
); 
  66   if (trace_flag 
& trace_automaton
) 
  67     fprintf (stderr
, "state_list_append (state = %d, symbol = %d (%s))\n", 
  68              nstates
, sym
, symbols
[sym
]->tag
); 
  76     last_state
->next 
= node
; 
  83 static symbol_number 
*shift_symbol
; 
  86 static state 
**shiftset
; 
  88 static item_number 
**kernel_base
; 
  89 static int *kernel_size
; 
  90 static item_number 
*kernel_items
; 
  94 allocate_itemsets (void) 
 100   /* Count the number of occurrences of all the symbols in RITEMS. 
 101      Note that useless productions (hence useless nonterminals) are 
 102      browsed too, hence we need to allocate room for _all_ the 
 105   size_t *symbol_count 
= xcalloc (nsyms 
+ nuseless_nonterminals
, 
 106                                   sizeof *symbol_count
); 
 108   for (r 
= 0; r 
< nrules
; ++r
) 
 109     for (rhsp 
= rules
[r
].rhs
; *rhsp 
>= 0; ++rhsp
) 
 112         symbol_count
[*rhsp
]++; 
 115   /* See comments before new_itemsets.  All the vectors of items 
 116      live inside KERNEL_ITEMS.  The number of active items after 
 117      some symbol S cannot be more than the number of times that S 
 118      appears as an item, which is SYMBOL_COUNT[S]. 
 119      We allocate that much space for each symbol.  */ 
 121   kernel_base 
= xnmalloc (nsyms
, sizeof *kernel_base
); 
 122   kernel_items 
= xnmalloc (count
, sizeof *kernel_items
); 
 125   for (i 
= 0; i 
< nsyms
; i
++) 
 127       kernel_base
[i
] = kernel_items 
+ count
; 
 128       count 
+= symbol_count
[i
]; 
 132   kernel_size 
= xnmalloc (nsyms
, sizeof *kernel_size
); 
 137 allocate_storage (void) 
 139   allocate_itemsets (); 
 141   shiftset 
= xnmalloc (nsyms
, sizeof *shiftset
); 
 142   redset 
= xnmalloc (nrules
, sizeof *redset
); 
 144   shift_symbol 
= xnmalloc (nsyms
, sizeof *shift_symbol
); 
 163 /*---------------------------------------------------------------. 
 164 | Find which symbols can be shifted in S, and for each one       | 
 165 | record which items would be active after that shift.  Uses the | 
 166 | contents of itemset.                                           | 
 168 | shift_symbol is set to a vector of the symbols that can be     | 
 169 | shifted.  For each symbol in the grammar, kernel_base[symbol]  | 
 170 | points to a vector of item numbers activated if that symbol is | 
 171 | shifted, and kernel_size[symbol] is their numbers.             | 
 172 `---------------------------------------------------------------*/ 
 175 new_itemsets (state 
*s
) 
 179   if (trace_flag 
& trace_automaton
) 
 180     fprintf (stderr
, "Entering new_itemsets, state = %d\n", s
->number
); 
 182   memset (kernel_size
, 0, nsyms 
* sizeof *kernel_size
); 
 186   for (i 
= 0; i 
< nritemset
; ++i
) 
 187     if (ritem
[itemset
[i
]] >= 0) 
 189         symbol_number sym 
= item_number_as_symbol_number (ritem
[itemset
[i
]]); 
 190         if (!kernel_size
[sym
]) 
 192             shift_symbol
[nshifts
] = sym
; 
 196         kernel_base
[sym
][kernel_size
[sym
]] = itemset
[i
] + 1; 
 203 /*--------------------------------------------------------------. 
 204 | Find the state we would get to (from the current state) by    | 
 205 | shifting SYM.  Create a new state if no equivalent one exists | 
 206 | already.  Used by append_states.                              | 
 207 `--------------------------------------------------------------*/ 
 210 get_state (symbol_number sym
, size_t core_size
, item_number 
*core
) 
 214   if (trace_flag 
& trace_automaton
) 
 215     fprintf (stderr
, "Entering get_state, symbol = %d (%s)\n", 
 216              sym
, symbols
[sym
]->tag
); 
 218   s 
= state_hash_lookup (core_size
, core
); 
 220     s 
= state_list_append (sym
, core_size
, core
); 
 222   if (trace_flag 
& trace_automaton
) 
 223     fprintf (stderr
, "Exiting get_state => %d\n", s
->number
); 
 228 /*---------------------------------------------------------------. 
 229 | Use the information computed by new_itemsets to find the state | 
 230 | numbers reached by each shift transition from S.               | 
 232 | SHIFTSET is set up as a vector of those states.                | 
 233 `---------------------------------------------------------------*/ 
 236 append_states (state 
*s
) 
 240   if (trace_flag 
& trace_automaton
) 
 241     fprintf (stderr
, "Entering append_states, state = %d\n", s
->number
); 
 243   /* First sort shift_symbol into increasing order.  */ 
 245   for (i 
= 1; i 
< nshifts
; i
++) 
 247       symbol_number sym 
= shift_symbol
[i
]; 
 249       for (j 
= i
; 0 < j 
&& sym 
< shift_symbol
[j 
- 1]; j
--) 
 250         shift_symbol
[j
] = shift_symbol
[j 
- 1]; 
 251       shift_symbol
[j
] = sym
; 
 254   for (i 
= 0; i 
< nshifts
; i
++) 
 256       symbol_number sym 
= shift_symbol
[i
]; 
 257       shiftset
[i
] = get_state (sym
, kernel_size
[sym
], kernel_base
[sym
]); 
 262 /*----------------------------------------------------------------. 
 263 | Find which rules can be used for reduction transitions from the | 
 264 | current state and make a reductions structure for the state to  | 
 265 | record their rule numbers.                                      | 
 266 `----------------------------------------------------------------*/ 
 269 save_reductions (state 
*s
) 
 274   /* Find and count the active items that represent ends of rules. */ 
 275   for (i 
= 0; i 
< nritemset
; ++i
) 
 277       item_number item 
= ritem
[itemset
[i
]]; 
 278       if (item_number_is_rule_number (item
)) 
 280           rule_number r 
= item_number_as_rule_number (item
); 
 281           redset
[count
++] = &rules
[r
]; 
 284               /* This is "reduce 0", i.e., accept. */ 
 285               assert (!final_state
); 
 291   /* Make a reductions structure and copy the data into it.  */ 
 292   state_reductions_set (s
, count
, redset
); 
 303   states 
= xcalloc (nstates
, sizeof *states
); 
 307       state_list 
*this = first_state
; 
 309       /* Pessimization, but simplification of the code: make sure all 
 310          the states have valid transitions and reductions members, 
 311          even if reduced to 0.  It is too soon for errs, which are 
 312          computed later, but set_conflicts.  */ 
 313       state 
*s 
= this->state
; 
 315         state_transitions_set (s
, 0, 0); 
 317         state_reductions_set (s
, 0, 0); 
 319       states
[s
->number
] = s
; 
 321       first_state 
= this->next
; 
 329 /*-------------------------------------------------------------------. 
 330 | Compute the nondeterministic finite state machine (see state.h for | 
 331 | details) from the grammar.                                         | 
 332 `-------------------------------------------------------------------*/ 
 335 generate_states (void) 
 337   item_number initial_core 
= 0; 
 338   state_list 
*list 
= NULL
; 
 340   new_closure (nritems
); 
 342   /* Create the initial state.  The 0 at the lhs is the index of the 
 343      item of this initial rule.  */ 
 344   state_list_append (0, 1, &initial_core
); 
 346   /* States are queued when they are created; process them all.  */ 
 347   for (list 
= first_state
; list
; list 
= list
->next
) 
 349       state 
*s 
= list
->state
; 
 350       if (trace_flag 
& trace_automaton
) 
 351         fprintf (stderr
, "Processing state %d (reached by %s)\n", 
 353                  symbols
[s
->accessing_symbol
]->tag
); 
 354       /* Set up ruleset and itemset for the transitions out of this 
 355          state.  ruleset gets a 1 bit for each rule that could reduce 
 356          now.  itemset gets a vector of all the items that could be 
 358       closure (s
->items
, s
->nitems
); 
 359       /* Record the reductions allowed out of this state.  */ 
 361       /* Find the itemsets of the states that shifts can reach.  */ 
 363       /* Find or create the core structures for those states.  */ 
 366       /* Create the shifts structures for the shifts to those states, 
 367          now that the state numbers transitioning to are known.  */ 
 368       state_transitions_set (s
, nshifts
, shiftset
); 
 371   /* discard various storage */