]>
git.saurik.com Git - bison.git/blob - src/LR0.c
   1 /* Generate the LR(0) parser states for Bison. 
   3    Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2007, 2009-2012 Free 
   4    Software Foundation, Inc. 
   6    This file is part of Bison, the GNU Compiler Compiler. 
   8    This program is free software: you can redistribute it and/or modify 
   9    it under the terms of the GNU General Public License as published by 
  10    the Free Software Foundation, either version 3 of the License, or 
  11    (at your option) any later version. 
  13    This program is distributed in the hope that it will be useful, 
  14    but WITHOUT ANY WARRANTY; without even the implied warranty of 
  15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  16    GNU General Public License for more details. 
  18    You should have received a copy of the GNU General Public License 
  19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ 
  22 /* See comments in state.h for the data structures that represent it. 
  23    The entry point is generate_states.  */ 
  43 typedef struct state_list
 
  45   struct state_list 
*next
; 
  49 static state_list 
*first_state 
= NULL
; 
  50 static state_list 
*last_state 
= NULL
; 
  53 /*------------------------------------------------------------------. 
  54 | A state was just discovered from another state.  Queue it for     | 
  55 | later examination, in order to find its transitions.  Return it.  | 
  56 `------------------------------------------------------------------*/ 
  59 state_list_append (symbol_number sym
, size_t core_size
, item_number 
*core
) 
  61   state_list 
*node 
= xmalloc (sizeof *node
); 
  62   state 
*s 
= state_new (sym
, core_size
, core
); 
  64   if (trace_flag 
& trace_automaton
) 
  65     fprintf (stderr
, "state_list_append (state = %d, symbol = %d (%s))\n", 
  66              nstates
, sym
, symbols
[sym
]->tag
); 
  74     last_state
->next 
= node
; 
  81 static symbol_number 
*shift_symbol
; 
  84 static state 
**shiftset
; 
  86 static item_number 
**kernel_base
; 
  87 static int *kernel_size
; 
  88 static item_number 
*kernel_items
; 
  92 allocate_itemsets (void) 
  98   /* Count the number of occurrences of all the symbols in RITEMS. 
  99      Note that useless productions (hence useless nonterminals) are 
 100      browsed too, hence we need to allocate room for _all_ the 
 103   size_t *symbol_count 
= xcalloc (nsyms 
+ nuseless_nonterminals
, 
 104                                   sizeof *symbol_count
); 
 106   for (r 
= 0; r 
< nrules
; ++r
) 
 107     for (rhsp 
= rules
[r
].rhs
; *rhsp 
>= 0; ++rhsp
) 
 110         symbol_count
[*rhsp
]++; 
 113   /* See comments before new_itemsets.  All the vectors of items 
 114      live inside KERNEL_ITEMS.  The number of active items after 
 115      some symbol S cannot be more than the number of times that S 
 116      appears as an item, which is SYMBOL_COUNT[S]. 
 117      We allocate that much space for each symbol.  */ 
 119   kernel_base 
= xnmalloc (nsyms
, sizeof *kernel_base
); 
 120   kernel_items 
= xnmalloc (count
, sizeof *kernel_items
); 
 123   for (i 
= 0; i 
< nsyms
; i
++) 
 125       kernel_base
[i
] = kernel_items 
+ count
; 
 126       count 
+= symbol_count
[i
]; 
 130   kernel_size 
= xnmalloc (nsyms
, sizeof *kernel_size
); 
 135 allocate_storage (void) 
 137   allocate_itemsets (); 
 139   shiftset 
= xnmalloc (nsyms
, sizeof *shiftset
); 
 140   redset 
= xnmalloc (nrules
, sizeof *redset
); 
 142   shift_symbol 
= xnmalloc (nsyms
, sizeof *shift_symbol
); 
 161 /*---------------------------------------------------------------. 
 162 | Find which symbols can be shifted in S, and for each one       | 
 163 | record which items would be active after that shift.  Uses the | 
 164 | contents of itemset.                                           | 
 166 | shift_symbol is set to a vector of the symbols that can be     | 
 167 | shifted.  For each symbol in the grammar, kernel_base[symbol]  | 
 168 | points to a vector of item numbers activated if that symbol is | 
 169 | shifted, and kernel_size[symbol] is their numbers.             | 
 171 | itemset is sorted on item index in ritem, which is sorted on   | 
 172 | rule number.  Compute each kernel_base[symbol] with the same   | 
 174 `---------------------------------------------------------------*/ 
 177 new_itemsets (state 
*s
) 
 181   if (trace_flag 
& trace_automaton
) 
 182     fprintf (stderr
, "Entering new_itemsets, state = %d\n", s
->number
); 
 184   memset (kernel_size
, 0, nsyms 
* sizeof *kernel_size
); 
 188   for (i 
= 0; i 
< nitemset
; ++i
) 
 189     if (item_number_is_symbol_number (ritem
[itemset
[i
]])) 
 191         symbol_number sym 
= item_number_as_symbol_number (ritem
[itemset
[i
]]); 
 192         if (!kernel_size
[sym
]) 
 194             shift_symbol
[nshifts
] = sym
; 
 198         kernel_base
[sym
][kernel_size
[sym
]] = itemset
[i
] + 1; 
 205 /*--------------------------------------------------------------. 
 206 | Find the state we would get to (from the current state) by    | 
 207 | shifting SYM.  Create a new state if no equivalent one exists | 
 208 | already.  Used by append_states.                              | 
 209 `--------------------------------------------------------------*/ 
 212 get_state (symbol_number sym
, size_t core_size
, item_number 
*core
) 
 216   if (trace_flag 
& trace_automaton
) 
 217     fprintf (stderr
, "Entering get_state, symbol = %d (%s)\n", 
 218              sym
, symbols
[sym
]->tag
); 
 220   s 
= state_hash_lookup (core_size
, core
); 
 222     s 
= state_list_append (sym
, core_size
, core
); 
 224   if (trace_flag 
& trace_automaton
) 
 225     fprintf (stderr
, "Exiting get_state => %d\n", s
->number
); 
 230 /*---------------------------------------------------------------. 
 231 | Use the information computed by new_itemsets to find the state | 
 232 | numbers reached by each shift transition from S.               | 
 234 | SHIFTSET is set up as a vector of those states.                | 
 235 `---------------------------------------------------------------*/ 
 238 append_states (state 
*s
) 
 242   if (trace_flag 
& trace_automaton
) 
 243     fprintf (stderr
, "Entering append_states, state = %d\n", s
->number
); 
 245   /* First sort shift_symbol into increasing order.  */ 
 247   for (i 
= 1; i 
< nshifts
; i
++) 
 249       symbol_number sym 
= shift_symbol
[i
]; 
 251       for (j 
= i
; 0 < j 
&& sym 
< shift_symbol
[j 
- 1]; j
--) 
 252         shift_symbol
[j
] = shift_symbol
[j 
- 1]; 
 253       shift_symbol
[j
] = sym
; 
 256   for (i 
= 0; i 
< nshifts
; i
++) 
 258       symbol_number sym 
= shift_symbol
[i
]; 
 259       shiftset
[i
] = get_state (sym
, kernel_size
[sym
], kernel_base
[sym
]); 
 264 /*----------------------------------------------------------------. 
 265 | Find which rules can be used for reduction transitions from the | 
 266 | current state and make a reductions structure for the state to  | 
 267 | record their rule numbers.                                      | 
 268 `----------------------------------------------------------------*/ 
 271 save_reductions (state 
*s
) 
 276   /* Find and count the active items that represent ends of rules. */ 
 277   for (i 
= 0; i 
< nitemset
; ++i
) 
 279       item_number item 
= ritem
[itemset
[i
]]; 
 280       if (item_number_is_rule_number (item
)) 
 282           rule_number r 
= item_number_as_rule_number (item
); 
 283           redset
[count
++] = &rules
[r
]; 
 286               /* This is "reduce 0", i.e., accept. */ 
 293   /* Make a reductions structure and copy the data into it.  */ 
 294   state_reductions_set (s
, count
, redset
); 
 305   states 
= xcalloc (nstates
, sizeof *states
); 
 309       state_list 
*this = first_state
; 
 311       /* Pessimization, but simplification of the code: make sure all 
 312          the states have valid transitions and reductions members, 
 313          even if reduced to 0.  It is too soon for errs, which are 
 314          computed later, but set_conflicts.  */ 
 315       state 
*s 
= this->state
; 
 317         state_transitions_set (s
, 0, 0); 
 319         state_reductions_set (s
, 0, 0); 
 321       states
[s
->number
] = s
; 
 323       first_state 
= this->next
; 
 331 /*-------------------------------------------------------------------. 
 332 | Compute the LR(0) parser states (see state.h for details) from the | 
 334 `-------------------------------------------------------------------*/ 
 337 generate_states (void) 
 339   item_number initial_core 
= 0; 
 340   state_list 
*list 
= NULL
; 
 342   new_closure (nritems
); 
 344   /* Create the initial state.  The 0 at the lhs is the index of the 
 345      item of this initial rule.  */ 
 346   state_list_append (0, 1, &initial_core
); 
 348   /* States are queued when they are created; process them all.  */ 
 349   for (list 
= first_state
; list
; list 
= list
->next
) 
 351       state 
*s 
= list
->state
; 
 352       if (trace_flag 
& trace_automaton
) 
 353         fprintf (stderr
, "Processing state %d (reached by %s)\n", 
 355                  symbols
[s
->accessing_symbol
]->tag
); 
 356       /* Set up itemset for the transitions out of this state.  itemset gets a 
 357          vector of all the items that could be accepted next.  */ 
 358       closure (s
->items
, s
->nitems
); 
 359       /* Record the reductions allowed out of this state.  */ 
 361       /* Find the itemsets of the states that shifts can reach.  */ 
 363       /* Find or create the core structures for those states.  */ 
 366       /* Create the shifts structures for the shifts to those states, 
 367          now that the state numbers transitioning to are known.  */ 
 368       state_transitions_set (s
, nshifts
, shiftset
); 
 371   /* discard various storage */