]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/lalr.c (traverse, digraph, matrix_print, transpose): Move
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "bitset.h"
27 #include "quotearg.h"
28 #include "symtab.h"
29 #include "gram.h"
30 #include "getargs.h"
31 #include "reader.h"
32 #include "gram.h"
33 #include "state.h"
34 #include "complain.h"
35 #include "closure.h"
36 #include "LR0.h"
37 #include "lalr.h"
38 #include "reduce.h"
39
40 typedef struct state_list_s
41 {
42 struct state_list_s *next;
43 state_t *state;
44 } state_list_t;
45
46 static state_list_t *first_state = NULL;
47 static state_list_t *last_state = NULL;
48
49 static void
50 state_list_append (state_t *state)
51 {
52 state_list_t *node = XMALLOC (state_list_t, 1);
53 node->next = NULL;
54 node->state = state;
55
56 if (!first_state)
57 first_state = node;
58 if (last_state)
59 last_state->next = node;
60 last_state = node;
61 }
62
63 static int nshifts;
64 static symbol_number_t *shift_symbol = NULL;
65
66 static short *redset = NULL;
67 static state_number_t *shiftset = NULL;
68
69 static item_number_t **kernel_base = NULL;
70 static int *kernel_size = NULL;
71 static item_number_t *kernel_items = NULL;
72
73 \f
74 static void
75 allocate_itemsets (void)
76 {
77 symbol_number_t i;
78 rule_number_t r;
79 item_number_t *rhsp;
80
81 /* Count the number of occurrences of all the symbols in RITEMS.
82 Note that useless productions (hence useless nonterminals) are
83 browsed too, hence we need to allocate room for _all_ the
84 symbols. */
85 int count = 0;
86 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
87
88 for (r = 1; r < nrules + 1; ++r)
89 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
90 {
91 count++;
92 symbol_count[*rhsp]++;
93 }
94
95 /* See comments before new_itemsets. All the vectors of items
96 live inside KERNEL_ITEMS. The number of active items after
97 some symbol cannot be more than the number of times that symbol
98 appears as an item, which is SYMBOL_COUNT[SYMBOL].
99 We allocate that much space for each symbol. */
100
101 kernel_base = XCALLOC (item_number_t *, nsyms);
102 if (count)
103 kernel_items = XCALLOC (item_number_t, count);
104
105 count = 0;
106 for (i = 0; i < nsyms; i++)
107 {
108 kernel_base[i] = kernel_items + count;
109 count += symbol_count[i];
110 }
111
112 free (symbol_count);
113 kernel_size = XCALLOC (int, nsyms);
114 }
115
116
117 static void
118 allocate_storage (void)
119 {
120 allocate_itemsets ();
121
122 shiftset = XCALLOC (state_number_t, nsyms);
123 redset = XCALLOC (short, nrules + 1);
124 state_hash_new ();
125 shift_symbol = XCALLOC (symbol_number_t, nsyms);
126 }
127
128
129 static void
130 free_storage (void)
131 {
132 free (shift_symbol);
133 free (redset);
134 free (shiftset);
135 free (kernel_base);
136 free (kernel_size);
137 XFREE (kernel_items);
138 state_hash_free ();
139 }
140
141
142
143
144 /*---------------------------------------------------------------.
145 | Find which symbols can be shifted in STATE, and for each one |
146 | record which items would be active after that shift. Uses the |
147 | contents of itemset. |
148 | |
149 | shift_symbol is set to a vector of the symbols that can be |
150 | shifted. For each symbol in the grammar, kernel_base[symbol] |
151 | points to a vector of item numbers activated if that symbol is |
152 | shifted, and kernel_size[symbol] is their numbers. |
153 `---------------------------------------------------------------*/
154
155 static void
156 new_itemsets (state_t *state)
157 {
158 int i;
159
160 if (trace_flag)
161 fprintf (stderr, "Entering new_itemsets, state = %d\n",
162 state->number);
163
164 for (i = 0; i < nsyms; i++)
165 kernel_size[i] = 0;
166
167 nshifts = 0;
168
169 for (i = 0; i < nritemset; ++i)
170 if (ritem[itemset[i]] >= 0)
171 {
172 symbol_number_t symbol
173 = item_number_as_symbol_number (ritem[itemset[i]]);
174 if (!kernel_size[symbol])
175 {
176 shift_symbol[nshifts] = symbol;
177 nshifts++;
178 }
179
180 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
181 kernel_size[symbol]++;
182 }
183 }
184
185
186
187 /*-----------------------------------------------------------------.
188 | Subroutine of get_state. Create a new state for those items, if |
189 | necessary. |
190 `-----------------------------------------------------------------*/
191
192 static state_t *
193 new_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
194 {
195 state_t *res;
196
197 if (trace_flag)
198 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
199 nstates, symbol, symbol_tag_get (symbols[symbol]));
200
201 res = state_new (symbol, core_size, core);
202 state_hash_insert (res);
203
204 /* If this is the eoftoken, and this is not the initial state, then
205 this is the final state. */
206 if (symbol == 0 && first_state)
207 final_state = res;
208
209 state_list_append (res);
210 return res;
211 }
212
213
214 /*--------------------------------------------------------------.
215 | Find the state number for the state we would get to (from the |
216 | current state) by shifting symbol. Create a new state if no |
217 | equivalent one exists already. Used by append_states. |
218 `--------------------------------------------------------------*/
219
220 static state_number_t
221 get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
222 {
223 state_t *sp;
224
225 if (trace_flag)
226 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
227 symbol, symbol_tag_get (symbols[symbol]));
228
229 sp = state_hash_lookup (core_size, core);
230 if (!sp)
231 sp = new_state (symbol, core_size, core);
232
233 if (trace_flag)
234 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
235
236 return sp->number;
237 }
238
239 /*------------------------------------------------------------------.
240 | Use the information computed by new_itemsets to find the state |
241 | numbers reached by each shift transition from STATE. |
242 | |
243 | SHIFTSET is set up as a vector of state numbers of those states. |
244 `------------------------------------------------------------------*/
245
246 static void
247 append_states (state_t *state)
248 {
249 int i;
250 int j;
251 symbol_number_t symbol;
252
253 if (trace_flag)
254 fprintf (stderr, "Entering append_states, state = %d\n",
255 state->number);
256
257 /* first sort shift_symbol into increasing order */
258
259 for (i = 1; i < nshifts; i++)
260 {
261 symbol = shift_symbol[i];
262 j = i;
263 while (j > 0 && shift_symbol[j - 1] > symbol)
264 {
265 shift_symbol[j] = shift_symbol[j - 1];
266 j--;
267 }
268 shift_symbol[j] = symbol;
269 }
270
271 for (i = 0; i < nshifts; i++)
272 {
273 symbol = shift_symbol[i];
274 shiftset[i] = get_state (symbol,
275 kernel_size[symbol], kernel_base[symbol]);
276 }
277 }
278
279
280 static void
281 new_states (void)
282 {
283 /* The 0 at the lhs is the index of the item of this initial rule. */
284 kernel_base[0][0] = 0;
285 kernel_size[0] = 1;
286 state_list_append (new_state (0, kernel_size[0], kernel_base[0]));
287 }
288
289
290
291 /*----------------------------------------------------------------.
292 | Find which rules can be used for reduction transitions from the |
293 | current state and make a reductions structure for the state to |
294 | record their rule numbers. |
295 `----------------------------------------------------------------*/
296
297 static void
298 save_reductions (state_t *state)
299 {
300 int count = 0;
301 int i;
302
303 /* If this is the final state, we want it to have no reductions at
304 all, although it has one for `START_SYMBOL EOF .'. */
305 if (final_state && state->number == final_state->number)
306 return;
307
308 /* Find and count the active items that represent ends of rules. */
309 for (i = 0; i < nritemset; ++i)
310 {
311 int item = ritem[itemset[i]];
312 if (item < 0)
313 redset[count++] = -item;
314 }
315
316 /* Make a reductions structure and copy the data into it. */
317 state_reductions_set (state, count, redset);
318 }
319
320 \f
321 /*---------------.
322 | Build STATES. |
323 `---------------*/
324
325 static void
326 set_states (void)
327 {
328 states = XCALLOC (state_t *, nstates);
329
330 while (first_state)
331 {
332 state_list_t *this = first_state;
333
334 /* Pessimization, but simplification of the code: make sure all
335 the states have a shifts, errs, and reductions, even if
336 reduced to 0. */
337 state_t *state = this->state;
338 if (!state->shifts)
339 state_shifts_set (state, 0, 0);
340 if (!state->errs)
341 state->errs = errs_new (0);
342 if (!state->reductions)
343 state_reductions_set (state, 0, 0);
344
345 states[state->number] = state;
346
347 first_state = this->next;
348 free (this);
349 }
350 first_state = NULL;
351 last_state = NULL;
352 }
353
354
355 /*-------------------------------------------------------------------.
356 | Compute the nondeterministic finite state machine (see state.h for |
357 | details) from the grammar. |
358 `-------------------------------------------------------------------*/
359
360 void
361 generate_states (void)
362 {
363 state_list_t *list = NULL;
364 allocate_storage ();
365 new_closure (nritems);
366 new_states ();
367 list = first_state;
368
369 while (list)
370 {
371 state_t *state = list->state;
372 if (trace_flag)
373 fprintf (stderr, "Processing state %d (reached by %s)\n",
374 state->number,
375 symbol_tag_get (symbols[state->accessing_symbol]));
376 /* Set up ruleset and itemset for the transitions out of this
377 state. ruleset gets a 1 bit for each rule that could reduce
378 now. itemset gets a vector of all the items that could be
379 accepted next. */
380 closure (state->items, state->nitems);
381 /* Record the reductions allowed out of this state. */
382 save_reductions (state);
383 /* Find the itemsets of the states that shifts can reach. */
384 new_itemsets (state);
385 /* Find or create the core structures for those states. */
386 append_states (state);
387
388 /* Create the shifts structures for the shifts to those states,
389 now that the state numbers transitioning to are known. */
390 state_shifts_set (state, nshifts, shiftset);
391
392 /* States are queued when they are created; process them all.
393 */
394 list = list->next;
395 }
396
397 /* discard various storage */
398 free_closure ();
399 free_storage ();
400
401 /* Set up STATES. */
402 set_states ();
403 }