]>
git.saurik.com Git - bison.git/blob - src/LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of Bison, the GNU Compiler Compiler.
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
40 typedef struct state_list_s
42 struct state_list_s
*next
;
46 static state_list_t
*first_state
= NULL
;
47 static state_list_t
*last_state
= NULL
;
50 state_list_append (state_t
*state
)
52 state_list_t
*node
= XMALLOC (state_list_t
, 1);
59 last_state
->next
= node
;
64 static symbol_number_t
*shift_symbol
= NULL
;
66 static short *redset
= NULL
;
67 static state_number_t
*shiftset
= NULL
;
69 static item_number_t
**kernel_base
= NULL
;
70 static int *kernel_size
= NULL
;
71 static item_number_t
*kernel_items
= NULL
;
75 allocate_itemsets (void)
81 /* Count the number of occurrences of all the symbols in RITEMS.
82 Note that useless productions (hence useless nonterminals) are
83 browsed too, hence we need to allocate room for _all_ the
86 short *symbol_count
= XCALLOC (short, nsyms
+ nuseless_nonterminals
);
88 for (r
= 1; r
< nrules
+ 1; ++r
)
89 for (rhsp
= rules
[r
].rhs
; *rhsp
>= 0; ++rhsp
)
92 symbol_count
[*rhsp
]++;
95 /* See comments before new_itemsets. All the vectors of items
96 live inside KERNEL_ITEMS. The number of active items after
97 some symbol cannot be more than the number of times that symbol
98 appears as an item, which is SYMBOL_COUNT[SYMBOL].
99 We allocate that much space for each symbol. */
101 kernel_base
= XCALLOC (item_number_t
*, nsyms
);
103 kernel_items
= XCALLOC (item_number_t
, count
);
106 for (i
= 0; i
< nsyms
; i
++)
108 kernel_base
[i
] = kernel_items
+ count
;
109 count
+= symbol_count
[i
];
113 kernel_size
= XCALLOC (int, nsyms
);
118 allocate_storage (void)
120 allocate_itemsets ();
122 shiftset
= XCALLOC (state_number_t
, nsyms
);
123 redset
= XCALLOC (short, nrules
+ 1);
125 shift_symbol
= XCALLOC (symbol_number_t
, nsyms
);
137 XFREE (kernel_items
);
144 /*---------------------------------------------------------------.
145 | Find which symbols can be shifted in STATE, and for each one |
146 | record which items would be active after that shift. Uses the |
147 | contents of itemset. |
149 | shift_symbol is set to a vector of the symbols that can be |
150 | shifted. For each symbol in the grammar, kernel_base[symbol] |
151 | points to a vector of item numbers activated if that symbol is |
152 | shifted, and kernel_size[symbol] is their numbers. |
153 `---------------------------------------------------------------*/
156 new_itemsets (state_t
*state
)
161 fprintf (stderr
, "Entering new_itemsets, state = %d\n",
164 for (i
= 0; i
< nsyms
; i
++)
169 for (i
= 0; i
< nritemset
; ++i
)
170 if (ritem
[itemset
[i
]] >= 0)
172 symbol_number_t symbol
173 = item_number_as_symbol_number (ritem
[itemset
[i
]]);
174 if (!kernel_size
[symbol
])
176 shift_symbol
[nshifts
] = symbol
;
180 kernel_base
[symbol
][kernel_size
[symbol
]] = itemset
[i
] + 1;
181 kernel_size
[symbol
]++;
187 /*-----------------------------------------------------------------.
188 | Subroutine of get_state. Create a new state for those items, if |
190 `-----------------------------------------------------------------*/
193 new_state (symbol_number_t symbol
, size_t core_size
, item_number_t
*core
)
198 fprintf (stderr
, "Entering new_state, state = %d, symbol = %d (%s)\n",
199 nstates
, symbol
, symbol_tag_get (symbols
[symbol
]));
201 res
= state_new (symbol
, core_size
, core
);
202 state_hash_insert (res
);
204 /* If this is the eoftoken, and this is not the initial state, then
205 this is the final state. */
206 if (symbol
== 0 && first_state
)
209 state_list_append (res
);
214 /*--------------------------------------------------------------.
215 | Find the state number for the state we would get to (from the |
216 | current state) by shifting symbol. Create a new state if no |
217 | equivalent one exists already. Used by append_states. |
218 `--------------------------------------------------------------*/
220 static state_number_t
221 get_state (symbol_number_t symbol
, size_t core_size
, item_number_t
*core
)
226 fprintf (stderr
, "Entering get_state, symbol = %d (%s)\n",
227 symbol
, symbol_tag_get (symbols
[symbol
]));
229 sp
= state_hash_lookup (core_size
, core
);
231 sp
= new_state (symbol
, core_size
, core
);
234 fprintf (stderr
, "Exiting get_state => %d\n", sp
->number
);
239 /*------------------------------------------------------------------.
240 | Use the information computed by new_itemsets to find the state |
241 | numbers reached by each shift transition from STATE. |
243 | SHIFTSET is set up as a vector of state numbers of those states. |
244 `------------------------------------------------------------------*/
247 append_states (state_t
*state
)
251 symbol_number_t symbol
;
254 fprintf (stderr
, "Entering append_states, state = %d\n",
257 /* first sort shift_symbol into increasing order */
259 for (i
= 1; i
< nshifts
; i
++)
261 symbol
= shift_symbol
[i
];
263 while (j
> 0 && shift_symbol
[j
- 1] > symbol
)
265 shift_symbol
[j
] = shift_symbol
[j
- 1];
268 shift_symbol
[j
] = symbol
;
271 for (i
= 0; i
< nshifts
; i
++)
273 symbol
= shift_symbol
[i
];
274 shiftset
[i
] = get_state (symbol
,
275 kernel_size
[symbol
], kernel_base
[symbol
]);
283 /* The 0 at the lhs is the index of the item of this initial rule. */
284 kernel_base
[0][0] = 0;
286 state_list_append (new_state (0, kernel_size
[0], kernel_base
[0]));
291 /*----------------------------------------------------------------.
292 | Find which rules can be used for reduction transitions from the |
293 | current state and make a reductions structure for the state to |
294 | record their rule numbers. |
295 `----------------------------------------------------------------*/
298 save_reductions (state_t
*state
)
303 /* If this is the final state, we want it to have no reductions at
304 all, although it has one for `START_SYMBOL EOF .'. */
305 if (final_state
&& state
->number
== final_state
->number
)
308 /* Find and count the active items that represent ends of rules. */
309 for (i
= 0; i
< nritemset
; ++i
)
311 int item
= ritem
[itemset
[i
]];
313 redset
[count
++] = -item
;
316 /* Make a reductions structure and copy the data into it. */
317 state_reductions_set (state
, count
, redset
);
328 states
= XCALLOC (state_t
*, nstates
);
332 state_list_t
*this = first_state
;
334 /* Pessimization, but simplification of the code: make sure all
335 the states have a shifts, errs, and reductions, even if
337 state_t
*state
= this->state
;
339 state_shifts_set (state
, 0, 0);
341 state
->errs
= errs_new (0);
342 if (!state
->reductions
)
343 state_reductions_set (state
, 0, 0);
345 states
[state
->number
] = state
;
347 first_state
= this->next
;
355 /*-------------------------------------------------------------------.
356 | Compute the nondeterministic finite state machine (see state.h for |
357 | details) from the grammar. |
358 `-------------------------------------------------------------------*/
361 generate_states (void)
363 state_list_t
*list
= NULL
;
365 new_closure (nritems
);
371 state_t
*state
= list
->state
;
373 fprintf (stderr
, "Processing state %d (reached by %s)\n",
375 symbol_tag_get (symbols
[state
->accessing_symbol
]));
376 /* Set up ruleset and itemset for the transitions out of this
377 state. ruleset gets a 1 bit for each rule that could reduce
378 now. itemset gets a vector of all the items that could be
380 closure (state
->items
, state
->nitems
);
381 /* Record the reductions allowed out of this state. */
382 save_reductions (state
);
383 /* Find the itemsets of the states that shifts can reach. */
384 new_itemsets (state
);
385 /* Find or create the core structures for those states. */
386 append_states (state
);
388 /* Create the shifts structures for the shifts to those states,
389 now that the state numbers transitioning to are known. */
390 state_shifts_set (state
, nshifts
, shiftset
);
392 /* States are queued when they are created; process them all.
397 /* discard various storage */