]>
Commit | Line | Data |
---|---|---|
40675e7c | 1 | /* Generate the nondeterministic finite state machine for bison, |
97db7bd4 | 2 | Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc. |
40675e7c | 3 | |
2fa6973e | 4 | This file is part of Bison, the GNU Compiler Compiler. |
40675e7c | 5 | |
2fa6973e AD |
6 | Bison is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
40675e7c | 10 | |
2fa6973e AD |
11 | Bison is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
40675e7c | 15 | |
2fa6973e AD |
16 | You should have received a copy of the GNU General Public License |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
40675e7c DM |
20 | |
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
40675e7c | 25 | #include "system.h" |
9bfe901c | 26 | #include "getargs.h" |
c87d4863 | 27 | #include "reader.h" |
40675e7c DM |
28 | #include "gram.h" |
29 | #include "state.h" | |
a0f6b076 | 30 | #include "complain.h" |
2fa6973e | 31 | #include "closure.h" |
403b315b | 32 | #include "LR0.h" |
49701457 | 33 | #include "lalr.h" |
630e182b | 34 | #include "reduce.h" |
40675e7c | 35 | |
40675e7c DM |
36 | int nstates; |
37 | int final_state; | |
6a164e0c | 38 | static state_t *first_state = NULL; |
40675e7c | 39 | |
f693ad14 AD |
40 | static state_t *this_state = NULL; |
41 | static state_t *last_state = NULL; | |
40675e7c DM |
42 | |
43 | static int nshifts; | |
342b8b6e | 44 | static short *shift_symbol = NULL; |
40675e7c | 45 | |
342b8b6e AD |
46 | static short *redset = NULL; |
47 | static short *shiftset = NULL; | |
40675e7c | 48 | |
342b8b6e | 49 | static short **kernel_base = NULL; |
6255b435 | 50 | static int *kernel_size = NULL; |
342b8b6e | 51 | static short *kernel_items = NULL; |
40675e7c DM |
52 | |
53 | /* hash table for states, to recognize equivalent ones. */ | |
54 | ||
f693ad14 AD |
55 | #define STATE_HASH_SIZE 1009 |
56 | static state_t **state_hash = NULL; | |
40675e7c | 57 | |
2fa6973e | 58 | \f |
4a120d45 | 59 | static void |
d2729d44 | 60 | allocate_itemsets (void) |
40675e7c | 61 | { |
2fa6973e | 62 | int i; |
40675e7c | 63 | |
630e182b AD |
64 | /* Count the number of occurrences of all the symbols in RITEMS. |
65 | Note that useless productions (hence useless nonterminals) are | |
66 | browsed too, hence we need to allocate room for _all_ the | |
67 | symbols. */ | |
68 | int count = 0; | |
69 | short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals); | |
40675e7c | 70 | |
c87d4863 AD |
71 | for (i = 0; ritem[i]; ++i) |
72 | if (ritem[i] > 0) | |
73 | { | |
74 | count++; | |
75 | symbol_count[ritem[i]]++; | |
76 | } | |
40675e7c | 77 | |
2fa6973e AD |
78 | /* See comments before new_itemsets. All the vectors of items |
79 | live inside KERNEL_ITEMS. The number of active items after | |
40675e7c DM |
80 | some symbol cannot be more than the number of times that symbol |
81 | appears as an item, which is symbol_count[symbol]. | |
82 | We allocate that much space for each symbol. */ | |
83 | ||
d7913476 | 84 | kernel_base = XCALLOC (short *, nsyms); |
342b8b6e AD |
85 | if (count) |
86 | kernel_items = XCALLOC (short, count); | |
40675e7c DM |
87 | |
88 | count = 0; | |
89 | for (i = 0; i < nsyms; i++) | |
90 | { | |
91 | kernel_base[i] = kernel_items + count; | |
92 | count += symbol_count[i]; | |
93 | } | |
94 | ||
630e182b | 95 | free (symbol_count); |
0e41b407 | 96 | kernel_size = XCALLOC (int, nsyms); |
40675e7c DM |
97 | } |
98 | ||
99 | ||
4a120d45 | 100 | static void |
d2729d44 | 101 | allocate_storage (void) |
40675e7c | 102 | { |
2fa6973e | 103 | allocate_itemsets (); |
40675e7c | 104 | |
d7913476 AD |
105 | shiftset = XCALLOC (short, nsyms); |
106 | redset = XCALLOC (short, nrules + 1); | |
f693ad14 | 107 | state_hash = XCALLOC (state_t *, STATE_HASH_SIZE); |
40675e7c DM |
108 | } |
109 | ||
110 | ||
4a120d45 | 111 | static void |
d2729d44 | 112 | free_storage (void) |
40675e7c | 113 | { |
630e182b AD |
114 | free (shift_symbol); |
115 | free (redset); | |
116 | free (shiftset); | |
117 | free (kernel_base); | |
118 | free (kernel_size); | |
d7913476 | 119 | XFREE (kernel_items); |
f693ad14 | 120 | free (state_hash); |
40675e7c DM |
121 | } |
122 | ||
123 | ||
124 | ||
40675e7c | 125 | |
2fa6973e AD |
126 | /*----------------------------------------------------------------. |
127 | | Find which symbols can be shifted in the current state, and for | | |
128 | | each one record which items would be active after that shift. | | |
129 | | Uses the contents of itemset. | | |
130 | | | | |
131 | | shift_symbol is set to a vector of the symbols that can be | | |
132 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
133 | | points to a vector of item numbers activated if that symbol is | | |
125ecb56 | 134 | | shifted, and kernel_size[symbol] is their numbers. | |
2fa6973e | 135 | `----------------------------------------------------------------*/ |
40675e7c | 136 | |
4a120d45 | 137 | static void |
d2729d44 | 138 | new_itemsets (void) |
40675e7c | 139 | { |
2fa6973e | 140 | int i; |
2fa6973e | 141 | |
9bfe901c | 142 | if (trace_flag) |
c87d4863 AD |
143 | fprintf (stderr, "Entering new_itemsets, state = %d\n", |
144 | this_state->number); | |
40675e7c DM |
145 | |
146 | for (i = 0; i < nsyms; i++) | |
125ecb56 | 147 | kernel_size[i] = 0; |
40675e7c | 148 | |
630e182b | 149 | shift_symbol = XCALLOC (short, nsyms); |
b2872512 | 150 | nshifts = 0; |
40675e7c | 151 | |
b2872512 | 152 | for (i = 0; i < nitemset; ++i) |
40675e7c | 153 | { |
97db7bd4 | 154 | int symbol = ritem[itemset[i]]; |
40675e7c DM |
155 | if (symbol > 0) |
156 | { | |
125ecb56 | 157 | if (!kernel_size[symbol]) |
40675e7c | 158 | { |
b2872512 AD |
159 | shift_symbol[nshifts] = symbol; |
160 | nshifts++; | |
40675e7c DM |
161 | } |
162 | ||
125ecb56 AD |
163 | kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1; |
164 | kernel_size[symbol]++; | |
40675e7c DM |
165 | } |
166 | } | |
40675e7c DM |
167 | } |
168 | ||
169 | ||
170 | ||
2fa6973e AD |
171 | /*-----------------------------------------------------------------. |
172 | | Subroutine of get_state. Create a new state for those items, if | | |
173 | | necessary. | | |
174 | `-----------------------------------------------------------------*/ | |
40675e7c | 175 | |
f693ad14 | 176 | static state_t * |
2fa6973e | 177 | new_state (int symbol) |
40675e7c | 178 | { |
f693ad14 | 179 | state_t *p; |
40675e7c | 180 | |
9bfe901c | 181 | if (trace_flag) |
c87d4863 AD |
182 | fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n", |
183 | this_state->number, symbol, tags[symbol]); | |
40675e7c | 184 | |
2fa6973e AD |
185 | if (nstates >= MAXSHORT) |
186 | fatal (_("too many states (max %d)"), MAXSHORT); | |
40675e7c | 187 | |
f693ad14 | 188 | p = STATE_ALLOC (kernel_size[symbol]); |
2fa6973e AD |
189 | p->accessing_symbol = symbol; |
190 | p->number = nstates; | |
125ecb56 | 191 | p->nitems = kernel_size[symbol]; |
2fa6973e | 192 | |
125ecb56 | 193 | shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]); |
2fa6973e AD |
194 | |
195 | last_state->next = p; | |
196 | last_state = p; | |
2fa6973e | 197 | nstates++; |
40675e7c | 198 | |
2fa6973e AD |
199 | return p; |
200 | } | |
40675e7c | 201 | |
2fa6973e AD |
202 | |
203 | /*--------------------------------------------------------------. | |
204 | | Find the state number for the state we would get to (from the | | |
205 | | current state) by shifting symbol. Create a new state if no | | |
97db7bd4 | 206 | | equivalent one exists already. Used by append_states. | |
2fa6973e | 207 | `--------------------------------------------------------------*/ |
40675e7c | 208 | |
4a120d45 | 209 | static int |
d2729d44 | 210 | get_state (int symbol) |
40675e7c | 211 | { |
2fa6973e | 212 | int key; |
97db7bd4 | 213 | int i; |
f693ad14 | 214 | state_t *sp; |
40675e7c | 215 | |
9bfe901c | 216 | if (trace_flag) |
c87d4863 AD |
217 | fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n", |
218 | this_state->number, symbol, tags[symbol]); | |
40675e7c | 219 | |
97db7bd4 AD |
220 | /* Add up the target state's active item numbers to get a hash key. |
221 | */ | |
40675e7c | 222 | key = 0; |
125ecb56 | 223 | for (i = 0; i < kernel_size[symbol]; ++i) |
97db7bd4 | 224 | key += kernel_base[symbol][i]; |
f693ad14 AD |
225 | key = key % STATE_HASH_SIZE; |
226 | sp = state_hash[key]; | |
40675e7c DM |
227 | |
228 | if (sp) | |
229 | { | |
97db7bd4 | 230 | int found = 0; |
40675e7c DM |
231 | while (!found) |
232 | { | |
125ecb56 | 233 | if (sp->nitems == kernel_size[symbol]) |
40675e7c DM |
234 | { |
235 | found = 1; | |
125ecb56 | 236 | for (i = 0; i < kernel_size[symbol]; ++i) |
97db7bd4 AD |
237 | if (kernel_base[symbol][i] != sp->items[i]) |
238 | found = 0; | |
40675e7c DM |
239 | } |
240 | ||
241 | if (!found) | |
242 | { | |
243 | if (sp->link) | |
244 | { | |
245 | sp = sp->link; | |
246 | } | |
2fa6973e | 247 | else /* bucket exhausted and no match */ |
40675e7c | 248 | { |
2fa6973e | 249 | sp = sp->link = new_state (symbol); |
40675e7c DM |
250 | found = 1; |
251 | } | |
252 | } | |
253 | } | |
254 | } | |
2fa6973e | 255 | else /* bucket is empty */ |
40675e7c | 256 | { |
f693ad14 | 257 | state_hash[key] = sp = new_state (symbol); |
40675e7c DM |
258 | } |
259 | ||
c87d4863 AD |
260 | if (trace_flag) |
261 | fprintf (stderr, "Exiting get_state => %d\n", sp->number); | |
262 | ||
36281465 | 263 | return sp->number; |
40675e7c DM |
264 | } |
265 | ||
2fa6973e AD |
266 | /*------------------------------------------------------------------. |
267 | | Use the information computed by new_itemsets to find the state | | |
268 | | numbers reached by each shift transition from the current state. | | |
269 | | | | |
270 | | shiftset is set up as a vector of state numbers of those states. | | |
271 | `------------------------------------------------------------------*/ | |
40675e7c | 272 | |
2fa6973e AD |
273 | static void |
274 | append_states (void) | |
40675e7c | 275 | { |
2fa6973e AD |
276 | int i; |
277 | int j; | |
278 | int symbol; | |
40675e7c | 279 | |
9bfe901c | 280 | if (trace_flag) |
c87d4863 AD |
281 | fprintf (stderr, "Entering append_states, state = %d\n", |
282 | this_state->number); | |
40675e7c | 283 | |
2fa6973e | 284 | /* first sort shift_symbol into increasing order */ |
40675e7c | 285 | |
2fa6973e AD |
286 | for (i = 1; i < nshifts; i++) |
287 | { | |
288 | symbol = shift_symbol[i]; | |
289 | j = i; | |
290 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
291 | { | |
292 | shift_symbol[j] = shift_symbol[j - 1]; | |
293 | j--; | |
294 | } | |
295 | shift_symbol[j] = symbol; | |
296 | } | |
40675e7c | 297 | |
2fa6973e | 298 | for (i = 0; i < nshifts; i++) |
97db7bd4 | 299 | shiftset[i] = get_state (shift_symbol[i]); |
40675e7c DM |
300 | } |
301 | ||
302 | ||
4a120d45 | 303 | static void |
2fa6973e | 304 | new_states (void) |
40675e7c | 305 | { |
f693ad14 | 306 | first_state = last_state = this_state = STATE_ALLOC (0); |
40675e7c DM |
307 | nstates = 1; |
308 | } | |
309 | ||
310 | ||
4a38e613 AD |
311 | /*------------------------------------------------------------. |
312 | | Save the NSHIFTS of SHIFTSET into the current linked list. | | |
313 | `------------------------------------------------------------*/ | |
314 | ||
4a120d45 | 315 | static void |
d2729d44 | 316 | save_shifts (void) |
40675e7c | 317 | { |
4a38e613 | 318 | shifts *p = shifts_new (nshifts); |
300f275f | 319 | shortcpy (p->shifts, shiftset, nshifts); |
80e25d4d | 320 | this_state->shifts = p; |
40675e7c DM |
321 | } |
322 | ||
323 | ||
2fa6973e AD |
324 | /*------------------------------------------------------------------. |
325 | | Subroutine of augment_automaton. Create the next-to-final state, | | |
326 | | to which a shift has already been made in the initial state. | | |
0ab3728b AD |
327 | | | |
328 | | The task of this state consists in shifting (actually, it's a | | |
329 | | goto, but shifts and gotos are both stored in SHIFTS) the start | | |
330 | | symbols, hence the name. | | |
2fa6973e | 331 | `------------------------------------------------------------------*/ |
40675e7c | 332 | |
4a120d45 | 333 | static void |
0ab3728b | 334 | insert_start_shifting_state (void) |
40675e7c | 335 | { |
f693ad14 | 336 | state_t *statep; |
2fa6973e | 337 | shifts *sp; |
40675e7c | 338 | |
f693ad14 | 339 | statep = STATE_ALLOC (0); |
0279f8e9 | 340 | statep->number = nstates++; |
0ab3728b AD |
341 | |
342 | /* The distinctive feature of this state from the | |
343 | eof_shifting_state, is that it is labeled as post-start-symbol | |
344 | shifting. I fail to understand why this state, and the | |
345 | post-start-start can't be merged into one. But it does fail if | |
346 | you try. --akim */ | |
2fa6973e | 347 | statep->accessing_symbol = start_symbol; |
40675e7c | 348 | |
2fa6973e AD |
349 | last_state->next = statep; |
350 | last_state = statep; | |
40675e7c | 351 | |
2fa6973e | 352 | /* Make a shift from this state to (what will be) the final state. */ |
4a38e613 | 353 | sp = shifts_new (1); |
80e25d4d | 354 | statep->shifts = sp; |
2fa6973e | 355 | sp->shifts[0] = nstates; |
40675e7c DM |
356 | } |
357 | ||
358 | ||
0ab3728b AD |
359 | /*-----------------------------------------------------------------. |
360 | | Subroutine of augment_automaton. Create the final state, which | | |
361 | | shifts `0', the end of file. The initial state shifts the start | | |
362 | | symbol, and goes to here. | | |
363 | `-----------------------------------------------------------------*/ | |
364 | ||
365 | static void | |
366 | insert_eof_shifting_state (void) | |
367 | { | |
368 | state_t *statep; | |
369 | shifts *sp; | |
370 | ||
371 | /* Make the final state--the one that follows a shift from the | |
372 | next-to-final state. | |
373 | The symbol for that shift is 0 (end-of-file). */ | |
374 | statep = STATE_ALLOC (0); | |
0279f8e9 | 375 | statep->number = nstates++; |
0ab3728b AD |
376 | |
377 | last_state->next = statep; | |
378 | last_state = statep; | |
379 | ||
380 | /* Make the shift from the final state to the termination state. */ | |
381 | sp = shifts_new (1); | |
80e25d4d | 382 | statep->shifts = sp; |
0ab3728b | 383 | sp->shifts[0] = nstates; |
0ab3728b AD |
384 | } |
385 | ||
386 | ||
387 | /*---------------------------------------------------------------. | |
388 | | Subroutine of augment_automaton. Create the accepting state. | | |
389 | `---------------------------------------------------------------*/ | |
390 | ||
391 | static void | |
392 | insert_accepting_state (void) | |
393 | { | |
394 | state_t *statep; | |
395 | ||
396 | /* Note that the variable `final_state' refers to what we sometimes | |
397 | call the termination state. */ | |
398 | final_state = nstates; | |
399 | ||
400 | /* Make the termination state. */ | |
401 | statep = STATE_ALLOC (0); | |
402 | statep->number = nstates++; | |
403 | last_state->next = statep; | |
404 | last_state = statep; | |
405 | } | |
406 | ||
407 | ||
408 | ||
409 | ||
410 | ||
2fa6973e AD |
411 | /*------------------------------------------------------------------. |
412 | | Make sure that the initial state has a shift that accepts the | | |
413 | | grammar's start symbol and goes to the next-to-final state, which | | |
414 | | has a shift going to the final state, which has a shift to the | | |
415 | | termination state. Create such states and shifts if they don't | | |
416 | | happen to exist already. | | |
417 | `------------------------------------------------------------------*/ | |
40675e7c | 418 | |
4a120d45 | 419 | static void |
d2729d44 | 420 | augment_automaton (void) |
40675e7c | 421 | { |
37c82725 | 422 | if (!first_state->shifts->nshifts) |
40675e7c | 423 | { |
37c82725 | 424 | /* The first state has no shifts. Make one shift, from the |
b178c8cc | 425 | initial state to the next-to-final state. */ |
40675e7c | 426 | |
0ab3728b | 427 | shifts *sp = shifts_new (1); |
80e25d4d | 428 | first_state->shifts = sp; |
b178c8cc | 429 | sp->shifts[0] = nstates; |
40675e7c | 430 | |
b178c8cc AD |
431 | /* Create the next-to-final state, with shift to |
432 | what will be the final state. */ | |
0ab3728b | 433 | insert_start_shifting_state (); |
b178c8cc | 434 | } |
37c82725 | 435 | else |
b178c8cc | 436 | { |
0ab3728b | 437 | state_t *statep = first_state->next; |
b178c8cc | 438 | /* The states reached by shifts from FIRST_STATE are numbered |
74392f6a AD |
439 | 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL. |
440 | This is typical of `start: start ... ;': there is a state | |
441 | with the item `start: start . ...'. We want to add a `shift | |
442 | on EOF to eof-shifting state here. */ | |
0ab3728b | 443 | while (statep->accessing_symbol != start_symbol |
2a73b93d | 444 | && statep->number < first_state->shifts->nshifts) |
b178c8cc | 445 | statep = statep->next; |
40675e7c | 446 | |
b178c8cc AD |
447 | if (statep->accessing_symbol == start_symbol) |
448 | { | |
2a73b93d | 449 | /* We already have STATEP, a next-to-final state for `start: |
74392f6a AD |
450 | start . ...'. Make sure it has a shift to what will be |
451 | the final state. */ | |
2a73b93d AD |
452 | int i; |
453 | ||
190c4f5f AD |
454 | /* Find the shift of the inital state that leads to STATEP. */ |
455 | shifts *sp = statep->shifts; | |
40675e7c | 456 | |
190c4f5f | 457 | shifts *sp1 = shifts_new (sp->nshifts + 1); |
190c4f5f AD |
458 | statep->shifts = sp1; |
459 | sp1->shifts[0] = nstates; | |
2a73b93d | 460 | for (i = sp->nshifts; i > 0; i--) |
190c4f5f AD |
461 | sp1->shifts[i] = sp->shifts[i - 1]; |
462 | ||
2a73b93d AD |
463 | XFREE (sp); |
464 | ||
74392f6a | 465 | insert_eof_shifting_state (); |
40675e7c DM |
466 | } |
467 | else | |
468 | { | |
74392f6a | 469 | /* There is no state for `start: start . ...'. */ |
b178c8cc | 470 | int i, k; |
2a73b93d | 471 | shifts *sp = first_state->shifts; |
190c4f5f | 472 | shifts *sp1 = NULL; |
40675e7c | 473 | |
190c4f5f AD |
474 | /* Add one more shift to the initial state, going to the |
475 | next-to-final state (yet to be made). */ | |
476 | sp1 = shifts_new (sp->nshifts + 1); | |
477 | first_state->shifts = sp1; | |
b178c8cc AD |
478 | /* Stick this shift into the vector at the proper place. */ |
479 | statep = first_state->next; | |
480 | for (k = 0, i = 0; i < sp->nshifts; k++, i++) | |
481 | { | |
482 | if (statep->accessing_symbol > start_symbol && i == k) | |
190c4f5f AD |
483 | sp1->shifts[k++] = nstates; |
484 | sp1->shifts[k] = sp->shifts[i]; | |
b178c8cc AD |
485 | statep = statep->next; |
486 | } | |
487 | if (i == k) | |
190c4f5f | 488 | sp1->shifts[k++] = nstates; |
b178c8cc AD |
489 | |
490 | XFREE (sp); | |
40675e7c | 491 | |
74392f6a AD |
492 | /* Create the next-to-final state, with shift to what will |
493 | be the final state. Corresponds to `start: start . ...'. */ | |
0ab3728b | 494 | insert_start_shifting_state (); |
40675e7c DM |
495 | } |
496 | } | |
40675e7c | 497 | |
0ab3728b | 498 | insert_accepting_state (); |
40675e7c DM |
499 | } |
500 | ||
501 | ||
2fa6973e AD |
502 | /*----------------------------------------------------------------. |
503 | | Find which rules can be used for reduction transitions from the | | |
504 | | current state and make a reductions structure for the state to | | |
505 | | record their rule numbers. | | |
506 | `----------------------------------------------------------------*/ | |
507 | ||
4a120d45 | 508 | static void |
2fa6973e | 509 | save_reductions (void) |
40675e7c | 510 | { |
2fa6973e | 511 | int count; |
fb908786 | 512 | int i; |
40675e7c | 513 | |
2fa6973e | 514 | /* Find and count the active items that represent ends of rules. */ |
40675e7c | 515 | |
2fa6973e | 516 | count = 0; |
b2872512 | 517 | for (i = 0; i < nitemset; ++i) |
2fa6973e | 518 | { |
fb908786 | 519 | int item = ritem[itemset[i]]; |
2fa6973e AD |
520 | if (item < 0) |
521 | redset[count++] = -item; | |
522 | } | |
40675e7c | 523 | |
2fa6973e AD |
524 | /* Make a reductions structure and copy the data into it. */ |
525 | ||
526 | if (count) | |
527 | { | |
fb908786 | 528 | reductions *p = REDUCTIONS_ALLOC (count); |
2fa6973e | 529 | p->nreds = count; |
300f275f | 530 | shortcpy (p->rules, redset, count); |
2fa6973e | 531 | |
49701457 | 532 | this_state->reductions = p; |
2fa6973e AD |
533 | } |
534 | } | |
535 | ||
536 | \f | |
6a164e0c AD |
537 | /*--------------------. |
538 | | Build STATE_TABLE. | | |
539 | `--------------------*/ | |
540 | ||
541 | static void | |
542 | set_state_table (void) | |
543 | { | |
544 | /* NSTATES + 1 because lookahead for the pseudo state number NSTATES | |
545 | might be used (see conflicts.c). It is too opaque for me to | |
546 | provide a probably less hacky implementation. --akim */ | |
547 | state_table = XCALLOC (state_t *, nstates + 1); | |
548 | ||
549 | { | |
550 | state_t *sp; | |
551 | for (sp = first_state; sp; sp = sp->next) | |
552 | state_table[sp->number] = sp; | |
553 | } | |
554 | ||
555 | /* Pessimization, but simplification of the code: make sure all the | |
556 | states have a shifts, even if reduced to 0 shifts. */ | |
557 | { | |
558 | int i; | |
559 | for (i = 0; i < nstates; i++) | |
560 | if (!state_table[i]->shifts) | |
561 | state_table[i]->shifts = shifts_new (0); | |
562 | } | |
6a164e0c AD |
563 | } |
564 | ||
2fa6973e AD |
565 | /*-------------------------------------------------------------------. |
566 | | Compute the nondeterministic finite state machine (see state.h for | | |
567 | | details) from the grammar. | | |
568 | `-------------------------------------------------------------------*/ | |
569 | ||
570 | void | |
571 | generate_states (void) | |
572 | { | |
573 | allocate_storage (); | |
574 | new_closure (nitems); | |
575 | new_states (); | |
576 | ||
577 | while (this_state) | |
578 | { | |
23cbcc6c AD |
579 | if (trace_flag) |
580 | fprintf (stderr, "Processing state %d (reached by %s)\n", | |
581 | this_state->number, tags[this_state->accessing_symbol]); | |
2fa6973e AD |
582 | /* Set up ruleset and itemset for the transitions out of this |
583 | state. ruleset gets a 1 bit for each rule that could reduce | |
584 | now. itemset gets a vector of all the items that could be | |
585 | accepted next. */ | |
586 | closure (this_state->items, this_state->nitems); | |
587 | /* record the reductions allowed out of this state */ | |
588 | save_reductions (); | |
589 | /* find the itemsets of the states that shifts can reach */ | |
590 | new_itemsets (); | |
591 | /* find or create the core structures for those states */ | |
592 | append_states (); | |
593 | ||
594 | /* create the shifts structures for the shifts to those states, | |
595 | now that the state numbers transitioning to are known */ | |
d954473d | 596 | save_shifts (); |
2fa6973e AD |
597 | |
598 | /* states are queued when they are created; process them all */ | |
599 | this_state = this_state->next; | |
600 | } | |
601 | ||
602 | /* discard various storage */ | |
603 | free_closure (); | |
604 | free_storage (); | |
605 | ||
606 | /* set up initial and final states as parser wants them */ | |
607 | augment_automaton (); | |
6a164e0c AD |
608 | |
609 | /* Set up STATE_TABLE. */ | |
610 | set_state_table (); | |
40675e7c | 611 | } |