]>
Commit | Line | Data |
---|---|---|
1dd15b6e | 1 | /* Generate the nondeterministic finite state machine for Bison. |
6fc82eaf | 2 | |
401b73af JD |
3 | Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005, 2006, |
4 | 2007, 2008-2009 Free Software Foundation, Inc. | |
40675e7c | 5 | |
2fa6973e | 6 | This file is part of Bison, the GNU Compiler Compiler. |
40675e7c | 7 | |
f16b0819 | 8 | This program is free software: you can redistribute it and/or modify |
2fa6973e | 9 | it under the terms of the GNU General Public License as published by |
f16b0819 PE |
10 | the Free Software Foundation, either version 3 of the License, or |
11 | (at your option) any later version. | |
40675e7c | 12 | |
f16b0819 | 13 | This program is distributed in the hope that it will be useful, |
2fa6973e AD |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
40675e7c | 17 | |
2fa6973e | 18 | You should have received a copy of the GNU General Public License |
f16b0819 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
40675e7c DM |
20 | |
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
2cec9080 | 25 | #include <config.h> |
40675e7c | 26 | #include "system.h" |
add6614e PE |
27 | |
28 | #include <bitset.h> | |
29 | #include <quotearg.h> | |
30 | ||
31 | #include "LR0.h" | |
32 | #include "closure.h" | |
33 | #include "complain.h" | |
9bfe901c | 34 | #include "getargs.h" |
40675e7c | 35 | #include "gram.h" |
49701457 | 36 | #include "lalr.h" |
add6614e | 37 | #include "reader.h" |
630e182b | 38 | #include "reduce.h" |
add6614e PE |
39 | #include "state.h" |
40 | #include "symtab.h" | |
40675e7c | 41 | |
add6614e | 42 | typedef struct state_list |
32e1e0a4 | 43 | { |
add6614e PE |
44 | struct state_list *next; |
45 | state *state; | |
46 | } state_list; | |
32e1e0a4 | 47 | |
add6614e PE |
48 | static state_list *first_state = NULL; |
49 | static state_list *last_state = NULL; | |
32e1e0a4 | 50 | |
8b752b00 AD |
51 | |
52 | /*------------------------------------------------------------------. | |
53 | | A state was just discovered from another state. Queue it for | | |
54 | | later examination, in order to find its transitions. Return it. | | |
55 | `------------------------------------------------------------------*/ | |
56 | ||
add6614e PE |
57 | static state * |
58 | state_list_append (symbol_number sym, size_t core_size, item_number *core) | |
32e1e0a4 | 59 | { |
86a54ab1 | 60 | state_list *node = xmalloc (sizeof *node); |
add6614e | 61 | state *s = state_new (sym, core_size, core); |
8b752b00 | 62 | |
273a74fa | 63 | if (trace_flag & trace_automaton) |
427c0dda | 64 | fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n", |
add6614e | 65 | nstates, sym, symbols[sym]->tag); |
8b752b00 | 66 | |
32e1e0a4 | 67 | node->next = NULL; |
add6614e | 68 | node->state = s; |
40675e7c | 69 | |
32e1e0a4 AD |
70 | if (!first_state) |
71 | first_state = node; | |
72 | if (last_state) | |
73 | last_state->next = node; | |
74 | last_state = node; | |
8b752b00 | 75 | |
add6614e | 76 | return s; |
32e1e0a4 | 77 | } |
40675e7c DM |
78 | |
79 | static int nshifts; | |
86a54ab1 | 80 | static symbol_number *shift_symbol; |
40675e7c | 81 | |
86a54ab1 PE |
82 | static rule **redset; |
83 | static state **shiftset; | |
40675e7c | 84 | |
86a54ab1 PE |
85 | static item_number **kernel_base; |
86 | static int *kernel_size; | |
87 | static item_number *kernel_items; | |
40675e7c | 88 | |
2fa6973e | 89 | \f |
4a120d45 | 90 | static void |
d2729d44 | 91 | allocate_itemsets (void) |
40675e7c | 92 | { |
add6614e PE |
93 | symbol_number i; |
94 | rule_number r; | |
95 | item_number *rhsp; | |
40675e7c | 96 | |
630e182b AD |
97 | /* Count the number of occurrences of all the symbols in RITEMS. |
98 | Note that useless productions (hence useless nonterminals) are | |
99 | browsed too, hence we need to allocate room for _all_ the | |
100 | symbols. */ | |
f6fbd3da PE |
101 | size_t count = 0; |
102 | size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals, | |
103 | sizeof *symbol_count); | |
40675e7c | 104 | |
4b3d3a8e | 105 | for (r = 0; r < nrules; ++r) |
b4c4ccc2 | 106 | for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp) |
c87d4863 AD |
107 | { |
108 | count++; | |
b4c4ccc2 | 109 | symbol_count[*rhsp]++; |
c87d4863 | 110 | } |
40675e7c | 111 | |
2fa6973e AD |
112 | /* See comments before new_itemsets. All the vectors of items |
113 | live inside KERNEL_ITEMS. The number of active items after | |
add6614e PE |
114 | some symbol S cannot be more than the number of times that S |
115 | appears as an item, which is SYMBOL_COUNT[S]. | |
40675e7c DM |
116 | We allocate that much space for each symbol. */ |
117 | ||
86a54ab1 PE |
118 | kernel_base = xnmalloc (nsyms, sizeof *kernel_base); |
119 | kernel_items = xnmalloc (count, sizeof *kernel_items); | |
40675e7c DM |
120 | |
121 | count = 0; | |
122 | for (i = 0; i < nsyms; i++) | |
123 | { | |
124 | kernel_base[i] = kernel_items + count; | |
125 | count += symbol_count[i]; | |
126 | } | |
127 | ||
630e182b | 128 | free (symbol_count); |
86a54ab1 | 129 | kernel_size = xnmalloc (nsyms, sizeof *kernel_size); |
40675e7c DM |
130 | } |
131 | ||
132 | ||
4a120d45 | 133 | static void |
d2729d44 | 134 | allocate_storage (void) |
40675e7c | 135 | { |
2fa6973e | 136 | allocate_itemsets (); |
40675e7c | 137 | |
86a54ab1 PE |
138 | shiftset = xnmalloc (nsyms, sizeof *shiftset); |
139 | redset = xnmalloc (nrules, sizeof *redset); | |
c7ca99d4 | 140 | state_hash_new (); |
86a54ab1 | 141 | shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol); |
40675e7c DM |
142 | } |
143 | ||
144 | ||
4a120d45 | 145 | static void |
d2729d44 | 146 | free_storage (void) |
40675e7c | 147 | { |
630e182b AD |
148 | free (shift_symbol); |
149 | free (redset); | |
150 | free (shiftset); | |
151 | free (kernel_base); | |
152 | free (kernel_size); | |
afbb696d | 153 | free (kernel_items); |
c7ca99d4 | 154 | state_hash_free (); |
40675e7c DM |
155 | } |
156 | ||
157 | ||
158 | ||
40675e7c | 159 | |
32e1e0a4 | 160 | /*---------------------------------------------------------------. |
add6614e | 161 | | Find which symbols can be shifted in S, and for each one | |
32e1e0a4 AD |
162 | | record which items would be active after that shift. Uses the | |
163 | | contents of itemset. | | |
164 | | | | |
165 | | shift_symbol is set to a vector of the symbols that can be | | |
166 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
167 | | points to a vector of item numbers activated if that symbol is | | |
168 | | shifted, and kernel_size[symbol] is their numbers. | | |
71b61d4d | 169 | | | |
6ce2d93a JD |
170 | | itemset is sorted on item index in ritem, which is sorted on | |
171 | | rule number. Compute each kernel_base[symbol] with the same | | |
172 | | sort. | | |
32e1e0a4 | 173 | `---------------------------------------------------------------*/ |
40675e7c | 174 | |
4a120d45 | 175 | static void |
add6614e | 176 | new_itemsets (state *s) |
40675e7c | 177 | { |
f6fbd3da | 178 | size_t i; |
2fa6973e | 179 | |
273a74fa | 180 | if (trace_flag & trace_automaton) |
add6614e | 181 | fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number); |
40675e7c | 182 | |
55a91a82 | 183 | memset (kernel_size, 0, nsyms * sizeof *kernel_size); |
40675e7c | 184 | |
b2872512 | 185 | nshifts = 0; |
40675e7c | 186 | |
b09f4f48 JD |
187 | for (i = 0; i < nitemset; ++i) |
188 | if (item_number_is_symbol_number (ritem[itemset[i]])) | |
5fbb0954 | 189 | { |
add6614e PE |
190 | symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]); |
191 | if (!kernel_size[sym]) | |
5fbb0954 | 192 | { |
add6614e | 193 | shift_symbol[nshifts] = sym; |
5fbb0954 AD |
194 | nshifts++; |
195 | } | |
196 | ||
add6614e PE |
197 | kernel_base[sym][kernel_size[sym]] = itemset[i] + 1; |
198 | kernel_size[sym]++; | |
5fbb0954 | 199 | } |
40675e7c DM |
200 | } |
201 | ||
202 | ||
203 | ||
add6614e PE |
204 | /*--------------------------------------------------------------. |
205 | | Find the state we would get to (from the current state) by | | |
206 | | shifting SYM. Create a new state if no equivalent one exists | | |
207 | | already. Used by append_states. | | |
208 | `--------------------------------------------------------------*/ | |
40675e7c | 209 | |
add6614e PE |
210 | static state * |
211 | get_state (symbol_number sym, size_t core_size, item_number *core) | |
40675e7c | 212 | { |
36b5e963 | 213 | state *s; |
40675e7c | 214 | |
273a74fa | 215 | if (trace_flag & trace_automaton) |
427c0dda | 216 | fprintf (stderr, "Entering get_state, symbol = %d (%s)\n", |
add6614e | 217 | sym, symbols[sym]->tag); |
40675e7c | 218 | |
36b5e963 AD |
219 | s = state_hash_lookup (core_size, core); |
220 | if (!s) | |
221 | s = state_list_append (sym, core_size, core); | |
40675e7c | 222 | |
273a74fa | 223 | if (trace_flag & trace_automaton) |
36b5e963 | 224 | fprintf (stderr, "Exiting get_state => %d\n", s->number); |
c87d4863 | 225 | |
36b5e963 | 226 | return s; |
40675e7c DM |
227 | } |
228 | ||
640748ee AD |
229 | /*---------------------------------------------------------------. |
230 | | Use the information computed by new_itemsets to find the state | | |
add6614e | 231 | | numbers reached by each shift transition from S. | |
640748ee AD |
232 | | | |
233 | | SHIFTSET is set up as a vector of those states. | | |
234 | `---------------------------------------------------------------*/ | |
40675e7c | 235 | |
2fa6973e | 236 | static void |
add6614e | 237 | append_states (state *s) |
40675e7c | 238 | { |
2fa6973e | 239 | int i; |
40675e7c | 240 | |
273a74fa | 241 | if (trace_flag & trace_automaton) |
add6614e | 242 | fprintf (stderr, "Entering append_states, state = %d\n", s->number); |
40675e7c | 243 | |
add6614e | 244 | /* First sort shift_symbol into increasing order. */ |
40675e7c | 245 | |
2fa6973e AD |
246 | for (i = 1; i < nshifts; i++) |
247 | { | |
add6614e PE |
248 | symbol_number sym = shift_symbol[i]; |
249 | int j; | |
86a54ab1 | 250 | for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--) |
add6614e PE |
251 | shift_symbol[j] = shift_symbol[j - 1]; |
252 | shift_symbol[j] = sym; | |
2fa6973e | 253 | } |
40675e7c | 254 | |
2fa6973e | 255 | for (i = 0; i < nshifts; i++) |
458be8e0 | 256 | { |
add6614e PE |
257 | symbol_number sym = shift_symbol[i]; |
258 | shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]); | |
458be8e0 | 259 | } |
40675e7c DM |
260 | } |
261 | ||
262 | ||
2fa6973e AD |
263 | /*----------------------------------------------------------------. |
264 | | Find which rules can be used for reduction transitions from the | | |
265 | | current state and make a reductions structure for the state to | | |
266 | | record their rule numbers. | | |
267 | `----------------------------------------------------------------*/ | |
268 | ||
4a120d45 | 269 | static void |
add6614e | 270 | save_reductions (state *s) |
40675e7c | 271 | { |
30171f79 | 272 | int count = 0; |
f6fbd3da | 273 | size_t i; |
40675e7c | 274 | |
30171f79 | 275 | /* Find and count the active items that represent ends of rules. */ |
b09f4f48 | 276 | for (i = 0; i < nitemset; ++i) |
2fa6973e | 277 | { |
36b5e963 AD |
278 | item_number item = ritem[itemset[i]]; |
279 | if (item_number_is_rule_number (item)) | |
280 | { | |
281 | rule_number r = item_number_as_rule_number (item); | |
282 | redset[count++] = &rules[r]; | |
283 | if (r == 0) | |
284 | { | |
285 | /* This is "reduce 0", i.e., accept. */ | |
4f82b42a | 286 | aver (!final_state); |
36b5e963 AD |
287 | final_state = s; |
288 | } | |
289 | } | |
2fa6973e | 290 | } |
40675e7c | 291 | |
2fa6973e | 292 | /* Make a reductions structure and copy the data into it. */ |
add6614e | 293 | state_reductions_set (s, count, redset); |
2fa6973e AD |
294 | } |
295 | ||
296 | \f | |
82841af7 | 297 | /*---------------. |
29e88316 | 298 | | Build STATES. | |
82841af7 | 299 | `---------------*/ |
6a164e0c AD |
300 | |
301 | static void | |
29e88316 | 302 | set_states (void) |
6a164e0c | 303 | { |
86a54ab1 | 304 | states = xcalloc (nstates, sizeof *states); |
6a164e0c | 305 | |
32e1e0a4 | 306 | while (first_state) |
2cec70b9 | 307 | { |
add6614e | 308 | state_list *this = first_state; |
32e1e0a4 | 309 | |
2cec70b9 | 310 | /* Pessimization, but simplification of the code: make sure all |
8b752b00 AD |
311 | the states have valid transitions and reductions members, |
312 | even if reduced to 0. It is too soon for errs, which are | |
313 | computed later, but set_conflicts. */ | |
add6614e PE |
314 | state *s = this->state; |
315 | if (!s->transitions) | |
316 | state_transitions_set (s, 0, 0); | |
317 | if (!s->reductions) | |
318 | state_reductions_set (s, 0, 0); | |
32e1e0a4 | 319 | |
add6614e | 320 | states[s->number] = s; |
32e1e0a4 AD |
321 | |
322 | first_state = this->next; | |
323 | free (this); | |
2cec70b9 | 324 | } |
32e1e0a4 AD |
325 | first_state = NULL; |
326 | last_state = NULL; | |
6a164e0c AD |
327 | } |
328 | ||
c7ca99d4 | 329 | |
2fa6973e AD |
330 | /*-------------------------------------------------------------------. |
331 | | Compute the nondeterministic finite state machine (see state.h for | | |
332 | | details) from the grammar. | | |
333 | `-------------------------------------------------------------------*/ | |
334 | ||
335 | void | |
336 | generate_states (void) | |
337 | { | |
86a54ab1 | 338 | item_number initial_core = 0; |
add6614e | 339 | state_list *list = NULL; |
2fa6973e | 340 | allocate_storage (); |
9e7f6bbd | 341 | new_closure (nritems); |
8b752b00 AD |
342 | |
343 | /* Create the initial state. The 0 at the lhs is the index of the | |
344 | item of this initial rule. */ | |
86a54ab1 | 345 | state_list_append (0, 1, &initial_core); |
8b752b00 | 346 | |
36b5e963 AD |
347 | /* States are queued when they are created; process them all. */ |
348 | for (list = first_state; list; list = list->next) | |
2fa6973e | 349 | { |
add6614e | 350 | state *s = list->state; |
273a74fa | 351 | if (trace_flag & trace_automaton) |
427c0dda | 352 | fprintf (stderr, "Processing state %d (reached by %s)\n", |
add6614e PE |
353 | s->number, |
354 | symbols[s->accessing_symbol]->tag); | |
71b61d4d JD |
355 | /* Set up itemset for the transitions out of this state. itemset gets a |
356 | vector of all the items that could be accepted next. */ | |
add6614e | 357 | closure (s->items, s->nitems); |
32e1e0a4 | 358 | /* Record the reductions allowed out of this state. */ |
add6614e | 359 | save_reductions (s); |
32e1e0a4 | 360 | /* Find the itemsets of the states that shifts can reach. */ |
add6614e | 361 | new_itemsets (s); |
32e1e0a4 | 362 | /* Find or create the core structures for those states. */ |
add6614e | 363 | append_states (s); |
32e1e0a4 AD |
364 | |
365 | /* Create the shifts structures for the shifts to those states, | |
366 | now that the state numbers transitioning to are known. */ | |
add6614e | 367 | state_transitions_set (s, nshifts, shiftset); |
2fa6973e AD |
368 | } |
369 | ||
370 | /* discard various storage */ | |
371 | free_closure (); | |
372 | free_storage (); | |
373 | ||
29e88316 AD |
374 | /* Set up STATES. */ |
375 | set_states (); | |
40675e7c | 376 | } |