]>
Commit | Line | Data |
---|---|---|
40675e7c DM |
1 | /* Generate the nondeterministic finite state machine for bison, |
2 | Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of Bison, the GNU Compiler Compiler. | |
5 | ||
6 | Bison is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | Bison is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with Bison; see the file COPYING. If not, write to | |
c49a8e71 JT |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
40675e7c DM |
20 | |
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
25 | #include <stdio.h> | |
26 | #include "system.h" | |
27 | #include "machine.h" | |
7612000c | 28 | #include "alloc.h" |
40675e7c DM |
29 | #include "gram.h" |
30 | #include "state.h" | |
31 | ||
32 | ||
33 | extern char *nullable; | |
34 | extern short *itemset; | |
35 | extern short *itemsetend; | |
36 | ||
37 | ||
38 | int nstates; | |
39 | int final_state; | |
40 | core *first_state; | |
41 | shifts *first_shift; | |
42 | reductions *first_reduction; | |
43 | ||
d2729d44 JT |
44 | int get_state PARAMS((int)); |
45 | core *new_state PARAMS((int)); | |
46 | ||
47 | void allocate_itemsets PARAMS((void)); | |
48 | void allocate_storage PARAMS((void)); | |
49 | void free_storage PARAMS((void)); | |
50 | void generate_states PARAMS((void)); | |
51 | void new_itemsets PARAMS((void)); | |
52 | void append_states PARAMS((void)); | |
53 | void initialize_states PARAMS((void)); | |
54 | void save_shifts PARAMS((void)); | |
55 | void save_reductions PARAMS((void)); | |
56 | void augment_automaton PARAMS((void)); | |
57 | void insert_start_shift PARAMS((void)); | |
58 | extern void initialize_closure PARAMS((int)); | |
59 | extern void closure PARAMS((short *, int)); | |
60 | extern void finalize_closure PARAMS((void)); | |
61 | extern void toomany PARAMS((char *)); | |
40675e7c DM |
62 | |
63 | static core *this_state; | |
64 | static core *last_state; | |
65 | static shifts *last_shift; | |
66 | static reductions *last_reduction; | |
67 | ||
68 | static int nshifts; | |
69 | static short *shift_symbol; | |
70 | ||
71 | static short *redset; | |
72 | static short *shiftset; | |
73 | ||
74 | static short **kernel_base; | |
75 | static short **kernel_end; | |
76 | static short *kernel_items; | |
77 | ||
78 | /* hash table for states, to recognize equivalent ones. */ | |
79 | ||
80 | #define STATE_TABLE_SIZE 1009 | |
81 | static core **state_table; | |
82 | ||
83 | ||
84 | ||
85 | void | |
d2729d44 | 86 | allocate_itemsets (void) |
40675e7c DM |
87 | { |
88 | register short *itemp; | |
89 | register int symbol; | |
90 | register int i; | |
91 | register int count; | |
92 | register short *symbol_count; | |
93 | ||
94 | count = 0; | |
95 | symbol_count = NEW2(nsyms, short); | |
96 | ||
97 | itemp = ritem; | |
98 | symbol = *itemp++; | |
99 | while (symbol) | |
100 | { | |
101 | if (symbol > 0) | |
102 | { | |
103 | count++; | |
104 | symbol_count[symbol]++; | |
105 | } | |
106 | symbol = *itemp++; | |
107 | } | |
108 | ||
109 | /* see comments before new_itemsets. All the vectors of items | |
110 | live inside kernel_items. The number of active items after | |
111 | some symbol cannot be more than the number of times that symbol | |
112 | appears as an item, which is symbol_count[symbol]. | |
113 | We allocate that much space for each symbol. */ | |
114 | ||
115 | kernel_base = NEW2(nsyms, short *); | |
116 | kernel_items = NEW2(count, short); | |
117 | ||
118 | count = 0; | |
119 | for (i = 0; i < nsyms; i++) | |
120 | { | |
121 | kernel_base[i] = kernel_items + count; | |
122 | count += symbol_count[i]; | |
123 | } | |
124 | ||
125 | shift_symbol = symbol_count; | |
126 | kernel_end = NEW2(nsyms, short *); | |
127 | } | |
128 | ||
129 | ||
130 | void | |
d2729d44 | 131 | allocate_storage (void) |
40675e7c DM |
132 | { |
133 | allocate_itemsets(); | |
134 | ||
135 | shiftset = NEW2(nsyms, short); | |
136 | redset = NEW2(nrules + 1, short); | |
137 | state_table = NEW2(STATE_TABLE_SIZE, core *); | |
138 | } | |
139 | ||
140 | ||
141 | void | |
d2729d44 | 142 | free_storage (void) |
40675e7c DM |
143 | { |
144 | FREE(shift_symbol); | |
145 | FREE(redset); | |
146 | FREE(shiftset); | |
147 | FREE(kernel_base); | |
148 | FREE(kernel_end); | |
149 | FREE(kernel_items); | |
150 | FREE(state_table); | |
151 | } | |
152 | ||
153 | ||
154 | ||
155 | /* compute the nondeterministic finite state machine (see state.h for details) | |
156 | from the grammar. */ | |
157 | void | |
d2729d44 | 158 | generate_states (void) |
40675e7c DM |
159 | { |
160 | allocate_storage(); | |
161 | initialize_closure(nitems); | |
162 | initialize_states(); | |
163 | ||
164 | while (this_state) | |
165 | { | |
166 | /* Set up ruleset and itemset for the transitions out of this state. | |
167 | ruleset gets a 1 bit for each rule that could reduce now. | |
168 | itemset gets a vector of all the items that could be accepted next. */ | |
169 | closure(this_state->items, this_state->nitems); | |
170 | /* record the reductions allowed out of this state */ | |
171 | save_reductions(); | |
172 | /* find the itemsets of the states that shifts can reach */ | |
173 | new_itemsets(); | |
174 | /* find or create the core structures for those states */ | |
175 | append_states(); | |
176 | ||
177 | /* create the shifts structures for the shifts to those states, | |
178 | now that the state numbers transitioning to are known */ | |
179 | if (nshifts > 0) | |
180 | save_shifts(); | |
181 | ||
182 | /* states are queued when they are created; process them all */ | |
183 | this_state = this_state->next; | |
184 | } | |
185 | ||
186 | /* discard various storage */ | |
187 | finalize_closure(); | |
188 | free_storage(); | |
189 | ||
190 | /* set up initial and final states as parser wants them */ | |
191 | augment_automaton(); | |
192 | } | |
193 | ||
194 | ||
195 | ||
196 | /* Find which symbols can be shifted in the current state, | |
197 | and for each one record which items would be active after that shift. | |
198 | Uses the contents of itemset. | |
199 | shift_symbol is set to a vector of the symbols that can be shifted. | |
200 | For each symbol in the grammar, kernel_base[symbol] points to | |
201 | a vector of item numbers activated if that symbol is shifted, | |
202 | and kernel_end[symbol] points after the end of that vector. */ | |
203 | void | |
d2729d44 | 204 | new_itemsets (void) |
40675e7c DM |
205 | { |
206 | register int i; | |
207 | register int shiftcount; | |
208 | register short *isp; | |
209 | register short *ksp; | |
210 | register int symbol; | |
211 | ||
212 | #ifdef TRACE | |
213 | fprintf(stderr, "Entering new_itemsets\n"); | |
214 | #endif | |
215 | ||
216 | for (i = 0; i < nsyms; i++) | |
217 | kernel_end[i] = NULL; | |
218 | ||
219 | shiftcount = 0; | |
220 | ||
221 | isp = itemset; | |
222 | ||
223 | while (isp < itemsetend) | |
224 | { | |
225 | i = *isp++; | |
226 | symbol = ritem[i]; | |
227 | if (symbol > 0) | |
228 | { | |
229 | ksp = kernel_end[symbol]; | |
230 | ||
231 | if (!ksp) | |
232 | { | |
233 | shift_symbol[shiftcount++] = symbol; | |
234 | ksp = kernel_base[symbol]; | |
235 | } | |
236 | ||
237 | *ksp++ = i + 1; | |
238 | kernel_end[symbol] = ksp; | |
239 | } | |
240 | } | |
241 | ||
242 | nshifts = shiftcount; | |
243 | } | |
244 | ||
245 | ||
246 | ||
247 | /* Use the information computed by new_itemsets to find the state numbers | |
248 | reached by each shift transition from the current state. | |
249 | ||
250 | shiftset is set up as a vector of state numbers of those states. */ | |
251 | void | |
d2729d44 | 252 | append_states (void) |
40675e7c DM |
253 | { |
254 | register int i; | |
255 | register int j; | |
256 | register int symbol; | |
257 | ||
258 | #ifdef TRACE | |
259 | fprintf(stderr, "Entering append_states\n"); | |
260 | #endif | |
261 | ||
262 | /* first sort shift_symbol into increasing order */ | |
263 | ||
264 | for (i = 1; i < nshifts; i++) | |
265 | { | |
266 | symbol = shift_symbol[i]; | |
267 | j = i; | |
268 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
269 | { | |
270 | shift_symbol[j] = shift_symbol[j - 1]; | |
271 | j--; | |
272 | } | |
273 | shift_symbol[j] = symbol; | |
274 | } | |
275 | ||
276 | for (i = 0; i < nshifts; i++) | |
277 | { | |
278 | symbol = shift_symbol[i]; | |
279 | shiftset[i] = get_state(symbol); | |
280 | } | |
281 | } | |
282 | ||
283 | ||
284 | ||
285 | /* find the state number for the state we would get to | |
286 | (from the current state) by shifting symbol. | |
287 | Create a new state if no equivalent one exists already. | |
288 | Used by append_states */ | |
289 | ||
290 | int | |
d2729d44 | 291 | get_state (int symbol) |
40675e7c DM |
292 | { |
293 | register int key; | |
294 | register short *isp1; | |
295 | register short *isp2; | |
296 | register short *iend; | |
297 | register core *sp; | |
298 | register int found; | |
299 | ||
300 | int n; | |
301 | ||
302 | #ifdef TRACE | |
303 | fprintf(stderr, "Entering get_state, symbol = %d\n", symbol); | |
304 | #endif | |
305 | ||
306 | isp1 = kernel_base[symbol]; | |
307 | iend = kernel_end[symbol]; | |
308 | n = iend - isp1; | |
309 | ||
310 | /* add up the target state's active item numbers to get a hash key */ | |
311 | key = 0; | |
312 | while (isp1 < iend) | |
313 | key += *isp1++; | |
314 | ||
315 | key = key % STATE_TABLE_SIZE; | |
316 | ||
317 | sp = state_table[key]; | |
318 | ||
319 | if (sp) | |
320 | { | |
321 | found = 0; | |
322 | while (!found) | |
323 | { | |
324 | if (sp->nitems == n) | |
325 | { | |
326 | found = 1; | |
327 | isp1 = kernel_base[symbol]; | |
328 | isp2 = sp->items; | |
329 | ||
330 | while (found && isp1 < iend) | |
331 | { | |
332 | if (*isp1++ != *isp2++) | |
333 | found = 0; | |
334 | } | |
335 | } | |
336 | ||
337 | if (!found) | |
338 | { | |
339 | if (sp->link) | |
340 | { | |
341 | sp = sp->link; | |
342 | } | |
343 | else /* bucket exhausted and no match */ | |
344 | { | |
345 | sp = sp->link = new_state(symbol); | |
346 | found = 1; | |
347 | } | |
348 | } | |
349 | } | |
350 | } | |
351 | else /* bucket is empty */ | |
352 | { | |
353 | state_table[key] = sp = new_state(symbol); | |
354 | } | |
355 | ||
356 | return (sp->number); | |
357 | } | |
358 | ||
359 | ||
360 | ||
361 | /* subroutine of get_state. create a new state for those items, if necessary. */ | |
362 | ||
363 | core * | |
d2729d44 | 364 | new_state (int symbol) |
40675e7c DM |
365 | { |
366 | register int n; | |
367 | register core *p; | |
368 | register short *isp1; | |
369 | register short *isp2; | |
370 | register short *iend; | |
371 | ||
372 | #ifdef TRACE | |
373 | fprintf(stderr, "Entering new_state, symbol = %d\n", symbol); | |
374 | #endif | |
375 | ||
376 | if (nstates >= MAXSHORT) | |
377 | toomany("states"); | |
378 | ||
379 | isp1 = kernel_base[symbol]; | |
380 | iend = kernel_end[symbol]; | |
381 | n = iend - isp1; | |
382 | ||
383 | p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short))); | |
384 | p->accessing_symbol = symbol; | |
385 | p->number = nstates; | |
386 | p->nitems = n; | |
387 | ||
388 | isp2 = p->items; | |
389 | while (isp1 < iend) | |
390 | *isp2++ = *isp1++; | |
391 | ||
392 | last_state->next = p; | |
393 | last_state = p; | |
394 | ||
395 | nstates++; | |
396 | ||
397 | return (p); | |
398 | } | |
399 | ||
400 | ||
401 | void | |
d2729d44 | 402 | initialize_states (void) |
40675e7c DM |
403 | { |
404 | register core *p; | |
405 | /* register unsigned *rp1; JF unused */ | |
406 | /* register unsigned *rp2; JF unused */ | |
407 | /* register unsigned *rend; JF unused */ | |
408 | ||
409 | p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
410 | first_state = last_state = this_state = p; | |
411 | nstates = 1; | |
412 | } | |
413 | ||
414 | ||
415 | void | |
d2729d44 | 416 | save_shifts (void) |
40675e7c DM |
417 | { |
418 | register shifts *p; | |
419 | register short *sp1; | |
420 | register short *sp2; | |
421 | register short *send; | |
422 | ||
423 | p = (shifts *) xmalloc((unsigned) (sizeof(shifts) + | |
d2729d44 | 424 | (nshifts - 1) * sizeof(short))); |
40675e7c DM |
425 | |
426 | p->number = this_state->number; | |
427 | p->nshifts = nshifts; | |
428 | ||
429 | sp1 = shiftset; | |
430 | sp2 = p->shifts; | |
431 | send = shiftset + nshifts; | |
432 | ||
433 | while (sp1 < send) | |
434 | *sp2++ = *sp1++; | |
435 | ||
436 | if (last_shift) | |
437 | { | |
438 | last_shift->next = p; | |
439 | last_shift = p; | |
440 | } | |
441 | else | |
442 | { | |
443 | first_shift = p; | |
444 | last_shift = p; | |
445 | } | |
446 | } | |
447 | ||
448 | ||
449 | ||
450 | /* find which rules can be used for reduction transitions from the current state | |
451 | and make a reductions structure for the state to record their rule numbers. */ | |
452 | void | |
d2729d44 | 453 | save_reductions (void) |
40675e7c DM |
454 | { |
455 | register short *isp; | |
456 | register short *rp1; | |
457 | register short *rp2; | |
458 | register int item; | |
459 | register int count; | |
460 | register reductions *p; | |
461 | ||
462 | short *rend; | |
463 | ||
464 | /* find and count the active items that represent ends of rules */ | |
465 | ||
466 | count = 0; | |
467 | for (isp = itemset; isp < itemsetend; isp++) | |
468 | { | |
469 | item = ritem[*isp]; | |
470 | if (item < 0) | |
471 | { | |
472 | redset[count++] = -item; | |
473 | } | |
474 | } | |
475 | ||
476 | /* make a reductions structure and copy the data into it. */ | |
477 | ||
478 | if (count) | |
479 | { | |
480 | p = (reductions *) xmalloc((unsigned) (sizeof(reductions) + | |
d2729d44 | 481 | (count - 1) * sizeof(short))); |
40675e7c DM |
482 | |
483 | p->number = this_state->number; | |
484 | p->nreds = count; | |
485 | ||
486 | rp1 = redset; | |
487 | rp2 = p->rules; | |
488 | rend = rp1 + count; | |
489 | ||
490 | while (rp1 < rend) | |
491 | *rp2++ = *rp1++; | |
492 | ||
493 | if (last_reduction) | |
494 | { | |
495 | last_reduction->next = p; | |
496 | last_reduction = p; | |
497 | } | |
498 | else | |
499 | { | |
500 | first_reduction = p; | |
501 | last_reduction = p; | |
502 | } | |
503 | } | |
504 | } | |
505 | ||
506 | ||
507 | ||
508 | /* Make sure that the initial state has a shift that accepts the | |
509 | grammar's start symbol and goes to the next-to-final state, | |
510 | which has a shift going to the final state, which has a shift | |
511 | to the termination state. | |
512 | Create such states and shifts if they don't happen to exist already. */ | |
513 | void | |
d2729d44 | 514 | augment_automaton (void) |
40675e7c DM |
515 | { |
516 | register int i; | |
517 | register int k; | |
518 | /* register int found; JF unused */ | |
519 | register core *statep; | |
520 | register shifts *sp; | |
521 | register shifts *sp2; | |
2686a6e7 | 522 | register shifts *sp1 = NULL; |
40675e7c DM |
523 | |
524 | sp = first_shift; | |
525 | ||
526 | if (sp) | |
527 | { | |
528 | if (sp->number == 0) | |
529 | { | |
530 | k = sp->nshifts; | |
531 | statep = first_state->next; | |
532 | ||
533 | /* The states reached by shifts from first_state are numbered 1...K. | |
534 | Look for one reached by start_symbol. */ | |
535 | while (statep->accessing_symbol < start_symbol | |
536 | && statep->number < k) | |
537 | statep = statep->next; | |
538 | ||
539 | if (statep->accessing_symbol == start_symbol) | |
540 | { | |
541 | /* We already have a next-to-final state. | |
542 | Make sure it has a shift to what will be the final state. */ | |
543 | k = statep->number; | |
544 | ||
545 | while (sp && sp->number < k) | |
546 | { | |
547 | sp1 = sp; | |
548 | sp = sp->next; | |
549 | } | |
550 | ||
551 | if (sp && sp->number == k) | |
552 | { | |
553 | sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts) | |
d2729d44 | 554 | + sp->nshifts * sizeof(short))); |
40675e7c DM |
555 | sp2->number = k; |
556 | sp2->nshifts = sp->nshifts + 1; | |
557 | sp2->shifts[0] = nstates; | |
558 | for (i = sp->nshifts; i > 0; i--) | |
559 | sp2->shifts[i] = sp->shifts[i - 1]; | |
560 | ||
561 | /* Patch sp2 into the chain of shifts in place of sp, | |
562 | following sp1. */ | |
563 | sp2->next = sp->next; | |
564 | sp1->next = sp2; | |
565 | if (sp == last_shift) | |
566 | last_shift = sp2; | |
567 | FREE(sp); | |
568 | } | |
569 | else | |
570 | { | |
571 | sp2 = NEW(shifts); | |
572 | sp2->number = k; | |
573 | sp2->nshifts = 1; | |
574 | sp2->shifts[0] = nstates; | |
575 | ||
576 | /* Patch sp2 into the chain of shifts between sp1 and sp. */ | |
577 | sp2->next = sp; | |
578 | sp1->next = sp2; | |
579 | if (sp == 0) | |
580 | last_shift = sp2; | |
581 | } | |
582 | } | |
583 | else | |
584 | { | |
585 | /* There is no next-to-final state as yet. */ | |
586 | /* Add one more shift in first_shift, | |
587 | going to the next-to-final state (yet to be made). */ | |
588 | sp = first_shift; | |
589 | ||
590 | sp2 = (shifts *) xmalloc(sizeof(shifts) | |
591 | + sp->nshifts * sizeof(short)); | |
592 | sp2->nshifts = sp->nshifts + 1; | |
593 | ||
594 | /* Stick this shift into the vector at the proper place. */ | |
595 | statep = first_state->next; | |
596 | for (k = 0, i = 0; i < sp->nshifts; k++, i++) | |
597 | { | |
598 | if (statep->accessing_symbol > start_symbol && i == k) | |
599 | sp2->shifts[k++] = nstates; | |
600 | sp2->shifts[k] = sp->shifts[i]; | |
601 | statep = statep->next; | |
602 | } | |
603 | if (i == k) | |
604 | sp2->shifts[k++] = nstates; | |
605 | ||
606 | /* Patch sp2 into the chain of shifts | |
607 | in place of sp, at the beginning. */ | |
608 | sp2->next = sp->next; | |
609 | first_shift = sp2; | |
610 | if (last_shift == sp) | |
611 | last_shift = sp2; | |
612 | ||
613 | FREE(sp); | |
614 | ||
615 | /* Create the next-to-final state, with shift to | |
616 | what will be the final state. */ | |
617 | insert_start_shift(); | |
618 | } | |
619 | } | |
620 | else | |
621 | { | |
622 | /* The initial state didn't even have any shifts. | |
623 | Give it one shift, to the next-to-final state. */ | |
624 | sp = NEW(shifts); | |
625 | sp->nshifts = 1; | |
626 | sp->shifts[0] = nstates; | |
627 | ||
628 | /* Patch sp into the chain of shifts at the beginning. */ | |
629 | sp->next = first_shift; | |
630 | first_shift = sp; | |
631 | ||
632 | /* Create the next-to-final state, with shift to | |
633 | what will be the final state. */ | |
634 | insert_start_shift(); | |
635 | } | |
636 | } | |
637 | else | |
638 | { | |
639 | /* There are no shifts for any state. | |
640 | Make one shift, from the initial state to the next-to-final state. */ | |
641 | ||
642 | sp = NEW(shifts); | |
643 | sp->nshifts = 1; | |
644 | sp->shifts[0] = nstates; | |
645 | ||
646 | /* Initialize the chain of shifts with sp. */ | |
647 | first_shift = sp; | |
648 | last_shift = sp; | |
649 | ||
650 | /* Create the next-to-final state, with shift to | |
651 | what will be the final state. */ | |
652 | insert_start_shift(); | |
653 | } | |
654 | ||
655 | /* Make the final state--the one that follows a shift from the | |
656 | next-to-final state. | |
657 | The symbol for that shift is 0 (end-of-file). */ | |
658 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
659 | statep->number = nstates; | |
660 | last_state->next = statep; | |
661 | last_state = statep; | |
662 | ||
663 | /* Make the shift from the final state to the termination state. */ | |
664 | sp = NEW(shifts); | |
665 | sp->number = nstates++; | |
666 | sp->nshifts = 1; | |
667 | sp->shifts[0] = nstates; | |
668 | last_shift->next = sp; | |
669 | last_shift = sp; | |
670 | ||
671 | /* Note that the variable `final_state' refers to what we sometimes call | |
672 | the termination state. */ | |
673 | final_state = nstates; | |
674 | ||
675 | /* Make the termination state. */ | |
676 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
677 | statep->number = nstates++; | |
678 | last_state->next = statep; | |
679 | last_state = statep; | |
680 | } | |
681 | ||
682 | ||
683 | /* subroutine of augment_automaton. | |
684 | Create the next-to-final state, to which a shift has already been made in | |
685 | the initial state. */ | |
686 | void | |
d2729d44 | 687 | insert_start_shift (void) |
40675e7c DM |
688 | { |
689 | register core *statep; | |
690 | register shifts *sp; | |
691 | ||
692 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
693 | statep->number = nstates; | |
694 | statep->accessing_symbol = start_symbol; | |
695 | ||
696 | last_state->next = statep; | |
697 | last_state = statep; | |
698 | ||
699 | /* Make a shift from this state to (what will be) the final state. */ | |
700 | sp = NEW(shifts); | |
701 | sp->number = nstates++; | |
702 | sp->nshifts = 1; | |
703 | sp->shifts[0] = nstates; | |
704 | ||
705 | last_shift->next = sp; | |
706 | last_shift = sp; | |
707 | } |