]>
Commit | Line | Data |
---|---|---|
40675e7c DM |
1 | /* Generate the nondeterministic finite state machine for bison, |
2 | Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of Bison, the GNU Compiler Compiler. | |
5 | ||
6 | Bison is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | Bison is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | /* See comments in state.h for the data structures that represent it. | |
22 | The entry point is generate_states. */ | |
23 | ||
24 | #include <stdio.h> | |
25 | #include "system.h" | |
26 | #include "machine.h" | |
7612000c | 27 | #include "alloc.h" |
40675e7c DM |
28 | #include "gram.h" |
29 | #include "state.h" | |
30 | ||
31 | ||
32 | extern char *nullable; | |
33 | extern short *itemset; | |
34 | extern short *itemsetend; | |
35 | ||
36 | ||
37 | int nstates; | |
38 | int final_state; | |
39 | core *first_state; | |
40 | shifts *first_shift; | |
41 | reductions *first_reduction; | |
42 | ||
d2729d44 JT |
43 | int get_state PARAMS((int)); |
44 | core *new_state PARAMS((int)); | |
45 | ||
46 | void allocate_itemsets PARAMS((void)); | |
47 | void allocate_storage PARAMS((void)); | |
48 | void free_storage PARAMS((void)); | |
49 | void generate_states PARAMS((void)); | |
50 | void new_itemsets PARAMS((void)); | |
51 | void append_states PARAMS((void)); | |
52 | void initialize_states PARAMS((void)); | |
53 | void save_shifts PARAMS((void)); | |
54 | void save_reductions PARAMS((void)); | |
55 | void augment_automaton PARAMS((void)); | |
56 | void insert_start_shift PARAMS((void)); | |
57 | extern void initialize_closure PARAMS((int)); | |
58 | extern void closure PARAMS((short *, int)); | |
59 | extern void finalize_closure PARAMS((void)); | |
60 | extern void toomany PARAMS((char *)); | |
40675e7c DM |
61 | |
62 | static core *this_state; | |
63 | static core *last_state; | |
64 | static shifts *last_shift; | |
65 | static reductions *last_reduction; | |
66 | ||
67 | static int nshifts; | |
68 | static short *shift_symbol; | |
69 | ||
70 | static short *redset; | |
71 | static short *shiftset; | |
72 | ||
73 | static short **kernel_base; | |
74 | static short **kernel_end; | |
75 | static short *kernel_items; | |
76 | ||
77 | /* hash table for states, to recognize equivalent ones. */ | |
78 | ||
79 | #define STATE_TABLE_SIZE 1009 | |
80 | static core **state_table; | |
81 | ||
82 | ||
83 | ||
84 | void | |
d2729d44 | 85 | allocate_itemsets (void) |
40675e7c DM |
86 | { |
87 | register short *itemp; | |
88 | register int symbol; | |
89 | register int i; | |
90 | register int count; | |
91 | register short *symbol_count; | |
92 | ||
93 | count = 0; | |
94 | symbol_count = NEW2(nsyms, short); | |
95 | ||
96 | itemp = ritem; | |
97 | symbol = *itemp++; | |
98 | while (symbol) | |
99 | { | |
100 | if (symbol > 0) | |
101 | { | |
102 | count++; | |
103 | symbol_count[symbol]++; | |
104 | } | |
105 | symbol = *itemp++; | |
106 | } | |
107 | ||
108 | /* see comments before new_itemsets. All the vectors of items | |
109 | live inside kernel_items. The number of active items after | |
110 | some symbol cannot be more than the number of times that symbol | |
111 | appears as an item, which is symbol_count[symbol]. | |
112 | We allocate that much space for each symbol. */ | |
113 | ||
114 | kernel_base = NEW2(nsyms, short *); | |
115 | kernel_items = NEW2(count, short); | |
116 | ||
117 | count = 0; | |
118 | for (i = 0; i < nsyms; i++) | |
119 | { | |
120 | kernel_base[i] = kernel_items + count; | |
121 | count += symbol_count[i]; | |
122 | } | |
123 | ||
124 | shift_symbol = symbol_count; | |
125 | kernel_end = NEW2(nsyms, short *); | |
126 | } | |
127 | ||
128 | ||
129 | void | |
d2729d44 | 130 | allocate_storage (void) |
40675e7c DM |
131 | { |
132 | allocate_itemsets(); | |
133 | ||
134 | shiftset = NEW2(nsyms, short); | |
135 | redset = NEW2(nrules + 1, short); | |
136 | state_table = NEW2(STATE_TABLE_SIZE, core *); | |
137 | } | |
138 | ||
139 | ||
140 | void | |
d2729d44 | 141 | free_storage (void) |
40675e7c DM |
142 | { |
143 | FREE(shift_symbol); | |
144 | FREE(redset); | |
145 | FREE(shiftset); | |
146 | FREE(kernel_base); | |
147 | FREE(kernel_end); | |
148 | FREE(kernel_items); | |
149 | FREE(state_table); | |
150 | } | |
151 | ||
152 | ||
153 | ||
154 | /* compute the nondeterministic finite state machine (see state.h for details) | |
155 | from the grammar. */ | |
156 | void | |
d2729d44 | 157 | generate_states (void) |
40675e7c DM |
158 | { |
159 | allocate_storage(); | |
160 | initialize_closure(nitems); | |
161 | initialize_states(); | |
162 | ||
163 | while (this_state) | |
164 | { | |
165 | /* Set up ruleset and itemset for the transitions out of this state. | |
166 | ruleset gets a 1 bit for each rule that could reduce now. | |
167 | itemset gets a vector of all the items that could be accepted next. */ | |
168 | closure(this_state->items, this_state->nitems); | |
169 | /* record the reductions allowed out of this state */ | |
170 | save_reductions(); | |
171 | /* find the itemsets of the states that shifts can reach */ | |
172 | new_itemsets(); | |
173 | /* find or create the core structures for those states */ | |
174 | append_states(); | |
175 | ||
176 | /* create the shifts structures for the shifts to those states, | |
177 | now that the state numbers transitioning to are known */ | |
178 | if (nshifts > 0) | |
179 | save_shifts(); | |
180 | ||
181 | /* states are queued when they are created; process them all */ | |
182 | this_state = this_state->next; | |
183 | } | |
184 | ||
185 | /* discard various storage */ | |
186 | finalize_closure(); | |
187 | free_storage(); | |
188 | ||
189 | /* set up initial and final states as parser wants them */ | |
190 | augment_automaton(); | |
191 | } | |
192 | ||
193 | ||
194 | ||
195 | /* Find which symbols can be shifted in the current state, | |
196 | and for each one record which items would be active after that shift. | |
197 | Uses the contents of itemset. | |
198 | shift_symbol is set to a vector of the symbols that can be shifted. | |
199 | For each symbol in the grammar, kernel_base[symbol] points to | |
200 | a vector of item numbers activated if that symbol is shifted, | |
201 | and kernel_end[symbol] points after the end of that vector. */ | |
202 | void | |
d2729d44 | 203 | new_itemsets (void) |
40675e7c DM |
204 | { |
205 | register int i; | |
206 | register int shiftcount; | |
207 | register short *isp; | |
208 | register short *ksp; | |
209 | register int symbol; | |
210 | ||
211 | #ifdef TRACE | |
212 | fprintf(stderr, "Entering new_itemsets\n"); | |
213 | #endif | |
214 | ||
215 | for (i = 0; i < nsyms; i++) | |
216 | kernel_end[i] = NULL; | |
217 | ||
218 | shiftcount = 0; | |
219 | ||
220 | isp = itemset; | |
221 | ||
222 | while (isp < itemsetend) | |
223 | { | |
224 | i = *isp++; | |
225 | symbol = ritem[i]; | |
226 | if (symbol > 0) | |
227 | { | |
228 | ksp = kernel_end[symbol]; | |
229 | ||
230 | if (!ksp) | |
231 | { | |
232 | shift_symbol[shiftcount++] = symbol; | |
233 | ksp = kernel_base[symbol]; | |
234 | } | |
235 | ||
236 | *ksp++ = i + 1; | |
237 | kernel_end[symbol] = ksp; | |
238 | } | |
239 | } | |
240 | ||
241 | nshifts = shiftcount; | |
242 | } | |
243 | ||
244 | ||
245 | ||
246 | /* Use the information computed by new_itemsets to find the state numbers | |
247 | reached by each shift transition from the current state. | |
248 | ||
249 | shiftset is set up as a vector of state numbers of those states. */ | |
250 | void | |
d2729d44 | 251 | append_states (void) |
40675e7c DM |
252 | { |
253 | register int i; | |
254 | register int j; | |
255 | register int symbol; | |
256 | ||
257 | #ifdef TRACE | |
258 | fprintf(stderr, "Entering append_states\n"); | |
259 | #endif | |
260 | ||
261 | /* first sort shift_symbol into increasing order */ | |
262 | ||
263 | for (i = 1; i < nshifts; i++) | |
264 | { | |
265 | symbol = shift_symbol[i]; | |
266 | j = i; | |
267 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
268 | { | |
269 | shift_symbol[j] = shift_symbol[j - 1]; | |
270 | j--; | |
271 | } | |
272 | shift_symbol[j] = symbol; | |
273 | } | |
274 | ||
275 | for (i = 0; i < nshifts; i++) | |
276 | { | |
277 | symbol = shift_symbol[i]; | |
278 | shiftset[i] = get_state(symbol); | |
279 | } | |
280 | } | |
281 | ||
282 | ||
283 | ||
284 | /* find the state number for the state we would get to | |
285 | (from the current state) by shifting symbol. | |
286 | Create a new state if no equivalent one exists already. | |
287 | Used by append_states */ | |
288 | ||
289 | int | |
d2729d44 | 290 | get_state (int symbol) |
40675e7c DM |
291 | { |
292 | register int key; | |
293 | register short *isp1; | |
294 | register short *isp2; | |
295 | register short *iend; | |
296 | register core *sp; | |
297 | register int found; | |
298 | ||
299 | int n; | |
300 | ||
301 | #ifdef TRACE | |
302 | fprintf(stderr, "Entering get_state, symbol = %d\n", symbol); | |
303 | #endif | |
304 | ||
305 | isp1 = kernel_base[symbol]; | |
306 | iend = kernel_end[symbol]; | |
307 | n = iend - isp1; | |
308 | ||
309 | /* add up the target state's active item numbers to get a hash key */ | |
310 | key = 0; | |
311 | while (isp1 < iend) | |
312 | key += *isp1++; | |
313 | ||
314 | key = key % STATE_TABLE_SIZE; | |
315 | ||
316 | sp = state_table[key]; | |
317 | ||
318 | if (sp) | |
319 | { | |
320 | found = 0; | |
321 | while (!found) | |
322 | { | |
323 | if (sp->nitems == n) | |
324 | { | |
325 | found = 1; | |
326 | isp1 = kernel_base[symbol]; | |
327 | isp2 = sp->items; | |
328 | ||
329 | while (found && isp1 < iend) | |
330 | { | |
331 | if (*isp1++ != *isp2++) | |
332 | found = 0; | |
333 | } | |
334 | } | |
335 | ||
336 | if (!found) | |
337 | { | |
338 | if (sp->link) | |
339 | { | |
340 | sp = sp->link; | |
341 | } | |
342 | else /* bucket exhausted and no match */ | |
343 | { | |
344 | sp = sp->link = new_state(symbol); | |
345 | found = 1; | |
346 | } | |
347 | } | |
348 | } | |
349 | } | |
350 | else /* bucket is empty */ | |
351 | { | |
352 | state_table[key] = sp = new_state(symbol); | |
353 | } | |
354 | ||
355 | return (sp->number); | |
356 | } | |
357 | ||
358 | ||
359 | ||
360 | /* subroutine of get_state. create a new state for those items, if necessary. */ | |
361 | ||
362 | core * | |
d2729d44 | 363 | new_state (int symbol) |
40675e7c DM |
364 | { |
365 | register int n; | |
366 | register core *p; | |
367 | register short *isp1; | |
368 | register short *isp2; | |
369 | register short *iend; | |
370 | ||
371 | #ifdef TRACE | |
372 | fprintf(stderr, "Entering new_state, symbol = %d\n", symbol); | |
373 | #endif | |
374 | ||
375 | if (nstates >= MAXSHORT) | |
376 | toomany("states"); | |
377 | ||
378 | isp1 = kernel_base[symbol]; | |
379 | iend = kernel_end[symbol]; | |
380 | n = iend - isp1; | |
381 | ||
382 | p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short))); | |
383 | p->accessing_symbol = symbol; | |
384 | p->number = nstates; | |
385 | p->nitems = n; | |
386 | ||
387 | isp2 = p->items; | |
388 | while (isp1 < iend) | |
389 | *isp2++ = *isp1++; | |
390 | ||
391 | last_state->next = p; | |
392 | last_state = p; | |
393 | ||
394 | nstates++; | |
395 | ||
396 | return (p); | |
397 | } | |
398 | ||
399 | ||
400 | void | |
d2729d44 | 401 | initialize_states (void) |
40675e7c DM |
402 | { |
403 | register core *p; | |
404 | /* register unsigned *rp1; JF unused */ | |
405 | /* register unsigned *rp2; JF unused */ | |
406 | /* register unsigned *rend; JF unused */ | |
407 | ||
408 | p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
409 | first_state = last_state = this_state = p; | |
410 | nstates = 1; | |
411 | } | |
412 | ||
413 | ||
414 | void | |
d2729d44 | 415 | save_shifts (void) |
40675e7c DM |
416 | { |
417 | register shifts *p; | |
418 | register short *sp1; | |
419 | register short *sp2; | |
420 | register short *send; | |
421 | ||
422 | p = (shifts *) xmalloc((unsigned) (sizeof(shifts) + | |
d2729d44 | 423 | (nshifts - 1) * sizeof(short))); |
40675e7c DM |
424 | |
425 | p->number = this_state->number; | |
426 | p->nshifts = nshifts; | |
427 | ||
428 | sp1 = shiftset; | |
429 | sp2 = p->shifts; | |
430 | send = shiftset + nshifts; | |
431 | ||
432 | while (sp1 < send) | |
433 | *sp2++ = *sp1++; | |
434 | ||
435 | if (last_shift) | |
436 | { | |
437 | last_shift->next = p; | |
438 | last_shift = p; | |
439 | } | |
440 | else | |
441 | { | |
442 | first_shift = p; | |
443 | last_shift = p; | |
444 | } | |
445 | } | |
446 | ||
447 | ||
448 | ||
449 | /* find which rules can be used for reduction transitions from the current state | |
450 | and make a reductions structure for the state to record their rule numbers. */ | |
451 | void | |
d2729d44 | 452 | save_reductions (void) |
40675e7c DM |
453 | { |
454 | register short *isp; | |
455 | register short *rp1; | |
456 | register short *rp2; | |
457 | register int item; | |
458 | register int count; | |
459 | register reductions *p; | |
460 | ||
461 | short *rend; | |
462 | ||
463 | /* find and count the active items that represent ends of rules */ | |
464 | ||
465 | count = 0; | |
466 | for (isp = itemset; isp < itemsetend; isp++) | |
467 | { | |
468 | item = ritem[*isp]; | |
469 | if (item < 0) | |
470 | { | |
471 | redset[count++] = -item; | |
472 | } | |
473 | } | |
474 | ||
475 | /* make a reductions structure and copy the data into it. */ | |
476 | ||
477 | if (count) | |
478 | { | |
479 | p = (reductions *) xmalloc((unsigned) (sizeof(reductions) + | |
d2729d44 | 480 | (count - 1) * sizeof(short))); |
40675e7c DM |
481 | |
482 | p->number = this_state->number; | |
483 | p->nreds = count; | |
484 | ||
485 | rp1 = redset; | |
486 | rp2 = p->rules; | |
487 | rend = rp1 + count; | |
488 | ||
489 | while (rp1 < rend) | |
490 | *rp2++ = *rp1++; | |
491 | ||
492 | if (last_reduction) | |
493 | { | |
494 | last_reduction->next = p; | |
495 | last_reduction = p; | |
496 | } | |
497 | else | |
498 | { | |
499 | first_reduction = p; | |
500 | last_reduction = p; | |
501 | } | |
502 | } | |
503 | } | |
504 | ||
505 | ||
506 | ||
507 | /* Make sure that the initial state has a shift that accepts the | |
508 | grammar's start symbol and goes to the next-to-final state, | |
509 | which has a shift going to the final state, which has a shift | |
510 | to the termination state. | |
511 | Create such states and shifts if they don't happen to exist already. */ | |
512 | void | |
d2729d44 | 513 | augment_automaton (void) |
40675e7c DM |
514 | { |
515 | register int i; | |
516 | register int k; | |
517 | /* register int found; JF unused */ | |
518 | register core *statep; | |
519 | register shifts *sp; | |
520 | register shifts *sp2; | |
521 | register shifts *sp1; | |
522 | ||
523 | sp = first_shift; | |
524 | ||
525 | if (sp) | |
526 | { | |
527 | if (sp->number == 0) | |
528 | { | |
529 | k = sp->nshifts; | |
530 | statep = first_state->next; | |
531 | ||
532 | /* The states reached by shifts from first_state are numbered 1...K. | |
533 | Look for one reached by start_symbol. */ | |
534 | while (statep->accessing_symbol < start_symbol | |
535 | && statep->number < k) | |
536 | statep = statep->next; | |
537 | ||
538 | if (statep->accessing_symbol == start_symbol) | |
539 | { | |
540 | /* We already have a next-to-final state. | |
541 | Make sure it has a shift to what will be the final state. */ | |
542 | k = statep->number; | |
543 | ||
544 | while (sp && sp->number < k) | |
545 | { | |
546 | sp1 = sp; | |
547 | sp = sp->next; | |
548 | } | |
549 | ||
550 | if (sp && sp->number == k) | |
551 | { | |
552 | sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts) | |
d2729d44 | 553 | + sp->nshifts * sizeof(short))); |
40675e7c DM |
554 | sp2->number = k; |
555 | sp2->nshifts = sp->nshifts + 1; | |
556 | sp2->shifts[0] = nstates; | |
557 | for (i = sp->nshifts; i > 0; i--) | |
558 | sp2->shifts[i] = sp->shifts[i - 1]; | |
559 | ||
560 | /* Patch sp2 into the chain of shifts in place of sp, | |
561 | following sp1. */ | |
562 | sp2->next = sp->next; | |
563 | sp1->next = sp2; | |
564 | if (sp == last_shift) | |
565 | last_shift = sp2; | |
566 | FREE(sp); | |
567 | } | |
568 | else | |
569 | { | |
570 | sp2 = NEW(shifts); | |
571 | sp2->number = k; | |
572 | sp2->nshifts = 1; | |
573 | sp2->shifts[0] = nstates; | |
574 | ||
575 | /* Patch sp2 into the chain of shifts between sp1 and sp. */ | |
576 | sp2->next = sp; | |
577 | sp1->next = sp2; | |
578 | if (sp == 0) | |
579 | last_shift = sp2; | |
580 | } | |
581 | } | |
582 | else | |
583 | { | |
584 | /* There is no next-to-final state as yet. */ | |
585 | /* Add one more shift in first_shift, | |
586 | going to the next-to-final state (yet to be made). */ | |
587 | sp = first_shift; | |
588 | ||
589 | sp2 = (shifts *) xmalloc(sizeof(shifts) | |
590 | + sp->nshifts * sizeof(short)); | |
591 | sp2->nshifts = sp->nshifts + 1; | |
592 | ||
593 | /* Stick this shift into the vector at the proper place. */ | |
594 | statep = first_state->next; | |
595 | for (k = 0, i = 0; i < sp->nshifts; k++, i++) | |
596 | { | |
597 | if (statep->accessing_symbol > start_symbol && i == k) | |
598 | sp2->shifts[k++] = nstates; | |
599 | sp2->shifts[k] = sp->shifts[i]; | |
600 | statep = statep->next; | |
601 | } | |
602 | if (i == k) | |
603 | sp2->shifts[k++] = nstates; | |
604 | ||
605 | /* Patch sp2 into the chain of shifts | |
606 | in place of sp, at the beginning. */ | |
607 | sp2->next = sp->next; | |
608 | first_shift = sp2; | |
609 | if (last_shift == sp) | |
610 | last_shift = sp2; | |
611 | ||
612 | FREE(sp); | |
613 | ||
614 | /* Create the next-to-final state, with shift to | |
615 | what will be the final state. */ | |
616 | insert_start_shift(); | |
617 | } | |
618 | } | |
619 | else | |
620 | { | |
621 | /* The initial state didn't even have any shifts. | |
622 | Give it one shift, to the next-to-final state. */ | |
623 | sp = NEW(shifts); | |
624 | sp->nshifts = 1; | |
625 | sp->shifts[0] = nstates; | |
626 | ||
627 | /* Patch sp into the chain of shifts at the beginning. */ | |
628 | sp->next = first_shift; | |
629 | first_shift = sp; | |
630 | ||
631 | /* Create the next-to-final state, with shift to | |
632 | what will be the final state. */ | |
633 | insert_start_shift(); | |
634 | } | |
635 | } | |
636 | else | |
637 | { | |
638 | /* There are no shifts for any state. | |
639 | Make one shift, from the initial state to the next-to-final state. */ | |
640 | ||
641 | sp = NEW(shifts); | |
642 | sp->nshifts = 1; | |
643 | sp->shifts[0] = nstates; | |
644 | ||
645 | /* Initialize the chain of shifts with sp. */ | |
646 | first_shift = sp; | |
647 | last_shift = sp; | |
648 | ||
649 | /* Create the next-to-final state, with shift to | |
650 | what will be the final state. */ | |
651 | insert_start_shift(); | |
652 | } | |
653 | ||
654 | /* Make the final state--the one that follows a shift from the | |
655 | next-to-final state. | |
656 | The symbol for that shift is 0 (end-of-file). */ | |
657 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
658 | statep->number = nstates; | |
659 | last_state->next = statep; | |
660 | last_state = statep; | |
661 | ||
662 | /* Make the shift from the final state to the termination state. */ | |
663 | sp = NEW(shifts); | |
664 | sp->number = nstates++; | |
665 | sp->nshifts = 1; | |
666 | sp->shifts[0] = nstates; | |
667 | last_shift->next = sp; | |
668 | last_shift = sp; | |
669 | ||
670 | /* Note that the variable `final_state' refers to what we sometimes call | |
671 | the termination state. */ | |
672 | final_state = nstates; | |
673 | ||
674 | /* Make the termination state. */ | |
675 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
676 | statep->number = nstates++; | |
677 | last_state->next = statep; | |
678 | last_state = statep; | |
679 | } | |
680 | ||
681 | ||
682 | /* subroutine of augment_automaton. | |
683 | Create the next-to-final state, to which a shift has already been made in | |
684 | the initial state. */ | |
685 | void | |
d2729d44 | 686 | insert_start_shift (void) |
40675e7c DM |
687 | { |
688 | register core *statep; | |
689 | register shifts *sp; | |
690 | ||
691 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
692 | statep->number = nstates; | |
693 | statep->accessing_symbol = start_symbol; | |
694 | ||
695 | last_state->next = statep; | |
696 | last_state = statep; | |
697 | ||
698 | /* Make a shift from this state to (what will be) the final state. */ | |
699 | sp = NEW(shifts); | |
700 | sp->number = nstates++; | |
701 | sp->nshifts = 1; | |
702 | sp->shifts[0] = nstates; | |
703 | ||
704 | last_shift->next = sp; | |
705 | last_shift = sp; | |
706 | } |