]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * FILE: sha2.c | |
3 | * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ | |
4 | * | |
5 | * Copyright (c) 2000-2001, Aaron D. Gifford | |
6 | * All rights reserved. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. Neither the name of the copyright holder nor the names of contributors | |
17 | * may be used to endorse or promote products derived from this software | |
18 | * without specific prior written permission. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND | |
21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE | |
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
30 | * SUCH DAMAGE. | |
31 | * | |
32 | * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ | |
33 | */ | |
34 | #include <config.h> | |
35 | ||
36 | #include <endian.h> | |
37 | #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ | |
38 | #include <assert.h> /* assert() */ | |
39 | #include "sha2_internal.h" | |
40 | ||
41 | /* | |
42 | * ASSERT NOTE: | |
43 | * Some sanity checking code is included using assert(). On my FreeBSD | |
44 | * system, this additional code can be removed by compiling with NDEBUG | |
45 | * defined. Check your own systems manpage on assert() to see how to | |
46 | * compile WITHOUT the sanity checking code on your system. | |
47 | * | |
48 | * UNROLLED TRANSFORM LOOP NOTE: | |
49 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform | |
50 | * loop version for the hash transform rounds (defined using macros | |
51 | * later in this file). Either define on the command line, for example: | |
52 | * | |
53 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c | |
54 | * | |
55 | * or define below: | |
56 | * | |
57 | * #define SHA2_UNROLL_TRANSFORM | |
58 | * | |
59 | */ | |
60 | ||
61 | ||
62 | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ | |
63 | /* | |
64 | * BYTE_ORDER NOTE: | |
65 | * | |
66 | * Please make sure that your system defines BYTE_ORDER. If your | |
67 | * architecture is little-endian, make sure it also defines | |
68 | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are | |
69 | * equivalent. | |
70 | * | |
71 | * If your system does not define the above, then you can do so by | |
72 | * hand like this: | |
73 | * | |
74 | * #define LITTLE_ENDIAN 1234 | |
75 | * #define BIG_ENDIAN 4321 | |
76 | * | |
77 | * And for little-endian machines, add: | |
78 | * | |
79 | * #define BYTE_ORDER LITTLE_ENDIAN | |
80 | * | |
81 | * Or for big-endian machines: | |
82 | * | |
83 | * #define BYTE_ORDER BIG_ENDIAN | |
84 | * | |
85 | * The FreeBSD machine this was written on defines BYTE_ORDER | |
86 | * appropriately by including <sys/types.h> (which in turn includes | |
87 | * <machine/endian.h> where the appropriate definitions are actually | |
88 | * made). | |
89 | */ | |
90 | #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) | |
91 | #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN | |
92 | #endif | |
93 | ||
94 | /* | |
95 | * Define the followingsha2_* types to types of the correct length on | |
96 | * the native archtecture. Most BSD systems and Linux define u_intXX_t | |
97 | * types. Machines with very recent ANSI C headers, can use the | |
98 | * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H | |
99 | * during compile or in the sha.h header file. | |
100 | * | |
101 | * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t | |
102 | * will need to define these three typedefs below (and the appropriate | |
103 | * ones in sha.h too) by hand according to their system architecture. | |
104 | * | |
105 | * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t | |
106 | * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. | |
107 | */ | |
108 | #ifdef SHA2_USE_INTTYPES_H | |
109 | ||
110 | typedef uint8_t sha2_byte; /* Exactly 1 byte */ | |
111 | typedef uint32_t sha2_word32; /* Exactly 4 bytes */ | |
112 | typedef uint64_t sha2_word64; /* Exactly 8 bytes */ | |
113 | ||
114 | #else /* SHA2_USE_INTTYPES_H */ | |
115 | ||
116 | typedef u_int8_t sha2_byte; /* Exactly 1 byte */ | |
117 | typedef u_int32_t sha2_word32; /* Exactly 4 bytes */ | |
118 | typedef u_int64_t sha2_word64; /* Exactly 8 bytes */ | |
119 | ||
120 | #endif /* SHA2_USE_INTTYPES_H */ | |
121 | ||
122 | ||
123 | /*** SHA-256/384/512 Various Length Definitions ***********************/ | |
124 | /* NOTE: Most of these are in sha2.h */ | |
125 | #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) | |
126 | #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) | |
127 | #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) | |
128 | ||
129 | ||
130 | /*** ENDIAN REVERSAL MACROS *******************************************/ | |
131 | #if BYTE_ORDER == LITTLE_ENDIAN | |
132 | #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) | |
133 | #define REVERSE32(w,x) { \ | |
134 | (x) = __builtin_bswap32(w); \ | |
135 | } | |
136 | #define REVERSE64(w,x) { \ | |
137 | (x) = __builtin_bswap64(w); \ | |
138 | } | |
139 | #else | |
140 | #define REVERSE32(w,x) { \ | |
141 | sha2_word32 tmp = (w); \ | |
142 | tmp = (tmp >> 16) | (tmp << 16); \ | |
143 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ | |
144 | } | |
145 | #define REVERSE64(w,x) { \ | |
146 | sha2_word64 tmp = (w); \ | |
147 | tmp = (tmp >> 32) | (tmp << 32); \ | |
148 | tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ | |
149 | ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ | |
150 | (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ | |
151 | ((tmp & 0x0000ffff0000ffffULL) << 16); \ | |
152 | } | |
153 | #endif | |
154 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
155 | ||
156 | /* | |
157 | * Macro for incrementally adding the unsigned 64-bit integer n to the | |
158 | * unsigned 128-bit integer (represented using a two-element array of | |
159 | * 64-bit words): | |
160 | */ | |
161 | #define ADDINC128(w,n) { \ | |
162 | (w)[0] += (sha2_word64)(n); \ | |
163 | if ((w)[0] < (n)) { \ | |
164 | (w)[1]++; \ | |
165 | } \ | |
166 | } | |
167 | ||
168 | /* | |
169 | * Macros for copying blocks of memory and for zeroing out ranges | |
170 | * of memory. Using these macros makes it easy to switch from | |
171 | * using memset()/memcpy() and using bzero()/bcopy(). | |
172 | * | |
173 | * Please define either SHA2_USE_MEMSET_MEMCPY or define | |
174 | * SHA2_USE_BZERO_BCOPY depending on which function set you | |
175 | * choose to use: | |
176 | */ | |
177 | #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) | |
178 | /* Default to memset()/memcpy() if no option is specified */ | |
179 | #define SHA2_USE_MEMSET_MEMCPY 1 | |
180 | #endif | |
181 | #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) | |
182 | /* Abort with an error if BOTH options are defined */ | |
183 | #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! | |
184 | #endif | |
185 | ||
186 | #ifdef SHA2_USE_MEMSET_MEMCPY | |
187 | #define MEMSET_BZERO(p,l) memset((p), 0, (l)) | |
188 | #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) | |
189 | #endif | |
190 | #ifdef SHA2_USE_BZERO_BCOPY | |
191 | #define MEMSET_BZERO(p,l) bzero((p), (l)) | |
192 | #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) | |
193 | #endif | |
194 | ||
195 | ||
196 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ | |
197 | /* | |
198 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: | |
199 | * | |
200 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and | |
201 | * S is a ROTATION) because the SHA-256/384/512 description document | |
202 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this | |
203 | * same "backwards" definition. | |
204 | */ | |
205 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ | |
206 | #define R(b,x) ((x) >> (b)) | |
207 | /* 32-bit Rotate-right (used in SHA-256): */ | |
208 | #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) | |
209 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ | |
210 | #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) | |
211 | ||
212 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ | |
213 | #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) | |
214 | #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | |
215 | ||
216 | /* Four of six logical functions used in SHA-256: */ | |
217 | #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) | |
218 | #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) | |
219 | #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) | |
220 | #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) | |
221 | ||
222 | /* Four of six logical functions used in SHA-384 and SHA-512: */ | |
223 | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) | |
224 | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) | |
225 | #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) | |
226 | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) | |
227 | ||
228 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ | |
229 | /* NOTE: These should not be accessed directly from outside this | |
230 | * library -- they are intended for private internal visibility/use | |
231 | * only. | |
232 | */ | |
233 | static void SHA512_Last(SHA512_CTX*); | |
234 | static void SHA256_Transform(SHA256_CTX*, const sha2_word32*); | |
235 | static void SHA512_Transform(SHA512_CTX*, const sha2_word64*); | |
236 | ||
237 | ||
238 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ | |
239 | /* Hash constant words K for SHA-256: */ | |
240 | const static sha2_word32 K256[64] = { | |
241 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, | |
242 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, | |
243 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, | |
244 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, | |
245 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | |
246 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, | |
247 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, | |
248 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, | |
249 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, | |
250 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | |
251 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, | |
252 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, | |
253 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, | |
254 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, | |
255 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | |
256 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL | |
257 | }; | |
258 | ||
259 | /* Initial hash value H for SHA-256: */ | |
260 | const static sha2_word32 sha256_initial_hash_value[8] = { | |
261 | 0x6a09e667UL, | |
262 | 0xbb67ae85UL, | |
263 | 0x3c6ef372UL, | |
264 | 0xa54ff53aUL, | |
265 | 0x510e527fUL, | |
266 | 0x9b05688cUL, | |
267 | 0x1f83d9abUL, | |
268 | 0x5be0cd19UL | |
269 | }; | |
270 | ||
271 | /* Hash constant words K for SHA-384 and SHA-512: */ | |
272 | const static sha2_word64 K512[80] = { | |
273 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, | |
274 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, | |
275 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, | |
276 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, | |
277 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, | |
278 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, | |
279 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, | |
280 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, | |
281 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, | |
282 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, | |
283 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, | |
284 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, | |
285 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, | |
286 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, | |
287 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, | |
288 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, | |
289 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, | |
290 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, | |
291 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, | |
292 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, | |
293 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, | |
294 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, | |
295 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, | |
296 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, | |
297 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, | |
298 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, | |
299 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, | |
300 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, | |
301 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, | |
302 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, | |
303 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, | |
304 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, | |
305 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, | |
306 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, | |
307 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, | |
308 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, | |
309 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, | |
310 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, | |
311 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, | |
312 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL | |
313 | }; | |
314 | ||
315 | /* Initial hash value H for SHA-384 */ | |
316 | const static sha2_word64 sha384_initial_hash_value[8] = { | |
317 | 0xcbbb9d5dc1059ed8ULL, | |
318 | 0x629a292a367cd507ULL, | |
319 | 0x9159015a3070dd17ULL, | |
320 | 0x152fecd8f70e5939ULL, | |
321 | 0x67332667ffc00b31ULL, | |
322 | 0x8eb44a8768581511ULL, | |
323 | 0xdb0c2e0d64f98fa7ULL, | |
324 | 0x47b5481dbefa4fa4ULL | |
325 | }; | |
326 | ||
327 | /* Initial hash value H for SHA-512 */ | |
328 | const static sha2_word64 sha512_initial_hash_value[8] = { | |
329 | 0x6a09e667f3bcc908ULL, | |
330 | 0xbb67ae8584caa73bULL, | |
331 | 0x3c6ef372fe94f82bULL, | |
332 | 0xa54ff53a5f1d36f1ULL, | |
333 | 0x510e527fade682d1ULL, | |
334 | 0x9b05688c2b3e6c1fULL, | |
335 | 0x1f83d9abfb41bd6bULL, | |
336 | 0x5be0cd19137e2179ULL | |
337 | }; | |
338 | ||
339 | /* | |
340 | * Constant used by SHA256/384/512_End() functions for converting the | |
341 | * digest to a readable hexadecimal character string: | |
342 | */ | |
343 | static const char *sha2_hex_digits = "0123456789abcdef"; | |
344 | ||
345 | ||
346 | /*** SHA-256: *********************************************************/ | |
347 | void SHA256_Init(SHA256_CTX* context) { | |
348 | if (context == (SHA256_CTX*)0) { | |
349 | return; | |
350 | } | |
351 | MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); | |
352 | MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH); | |
353 | context->bitcount = 0; | |
354 | } | |
355 | ||
356 | #ifdef SHA2_UNROLL_TRANSFORM | |
357 | ||
358 | /* Unrolled SHA-256 round macros: */ | |
359 | ||
360 | #if BYTE_ORDER == LITTLE_ENDIAN | |
361 | ||
362 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ | |
363 | REVERSE32(*data++, W256[j]); \ | |
364 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ | |
365 | K256[j] + W256[j]; \ | |
366 | (d) += T1; \ | |
367 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ | |
368 | j++ | |
369 | ||
370 | ||
371 | #else /* BYTE_ORDER == LITTLE_ENDIAN */ | |
372 | ||
373 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ | |
374 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ | |
375 | K256[j] + (W256[j] = *data++); \ | |
376 | (d) += T1; \ | |
377 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ | |
378 | j++ | |
379 | ||
380 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
381 | ||
382 | #define ROUND256(a,b,c,d,e,f,g,h) \ | |
383 | s0 = W256[(j+1)&0x0f]; \ | |
384 | s0 = sigma0_256(s0); \ | |
385 | s1 = W256[(j+14)&0x0f]; \ | |
386 | s1 = sigma1_256(s1); \ | |
387 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ | |
388 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ | |
389 | (d) += T1; \ | |
390 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ | |
391 | j++ | |
392 | ||
393 | static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { | |
394 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; | |
395 | sha2_word32 T1, *W256; | |
396 | int j; | |
397 | ||
398 | W256 = (sha2_word32*)context->buffer; | |
399 | ||
400 | /* Initialize registers with the prev. intermediate value */ | |
401 | a = context->state[0]; | |
402 | b = context->state[1]; | |
403 | c = context->state[2]; | |
404 | d = context->state[3]; | |
405 | e = context->state[4]; | |
406 | f = context->state[5]; | |
407 | g = context->state[6]; | |
408 | h = context->state[7]; | |
409 | ||
410 | j = 0; | |
411 | do { | |
412 | /* Rounds 0 to 15 (unrolled): */ | |
413 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); | |
414 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); | |
415 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); | |
416 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); | |
417 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); | |
418 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); | |
419 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); | |
420 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); | |
421 | } while (j < 16); | |
422 | ||
423 | /* Now for the remaining rounds to 64: */ | |
424 | do { | |
425 | ROUND256(a,b,c,d,e,f,g,h); | |
426 | ROUND256(h,a,b,c,d,e,f,g); | |
427 | ROUND256(g,h,a,b,c,d,e,f); | |
428 | ROUND256(f,g,h,a,b,c,d,e); | |
429 | ROUND256(e,f,g,h,a,b,c,d); | |
430 | ROUND256(d,e,f,g,h,a,b,c); | |
431 | ROUND256(c,d,e,f,g,h,a,b); | |
432 | ROUND256(b,c,d,e,f,g,h,a); | |
433 | } while (j < 64); | |
434 | ||
435 | /* Compute the current intermediate hash value */ | |
436 | context->state[0] += a; | |
437 | context->state[1] += b; | |
438 | context->state[2] += c; | |
439 | context->state[3] += d; | |
440 | context->state[4] += e; | |
441 | context->state[5] += f; | |
442 | context->state[6] += g; | |
443 | context->state[7] += h; | |
444 | ||
445 | /* Clean up */ | |
446 | a = b = c = d = e = f = g = h = T1 = 0; | |
447 | } | |
448 | ||
449 | #else /* SHA2_UNROLL_TRANSFORM */ | |
450 | ||
451 | static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { | |
452 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; | |
453 | sha2_word32 T1, T2, *W256; | |
454 | int j; | |
455 | ||
456 | W256 = (sha2_word32*)context->buffer; | |
457 | ||
458 | /* Initialize registers with the prev. intermediate value */ | |
459 | a = context->state[0]; | |
460 | b = context->state[1]; | |
461 | c = context->state[2]; | |
462 | d = context->state[3]; | |
463 | e = context->state[4]; | |
464 | f = context->state[5]; | |
465 | g = context->state[6]; | |
466 | h = context->state[7]; | |
467 | ||
468 | j = 0; | |
469 | do { | |
470 | #if BYTE_ORDER == LITTLE_ENDIAN | |
471 | /* Copy data while converting to host byte order */ | |
472 | REVERSE32(*data++,W256[j]); | |
473 | /* Apply the SHA-256 compression function to update a..h */ | |
474 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; | |
475 | #else /* BYTE_ORDER == LITTLE_ENDIAN */ | |
476 | /* Apply the SHA-256 compression function to update a..h with copy */ | |
477 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); | |
478 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
479 | T2 = Sigma0_256(a) + Maj(a, b, c); | |
480 | h = g; | |
481 | g = f; | |
482 | f = e; | |
483 | e = d + T1; | |
484 | d = c; | |
485 | c = b; | |
486 | b = a; | |
487 | a = T1 + T2; | |
488 | ||
489 | j++; | |
490 | } while (j < 16); | |
491 | ||
492 | do { | |
493 | /* Part of the message block expansion: */ | |
494 | s0 = W256[(j+1)&0x0f]; | |
495 | s0 = sigma0_256(s0); | |
496 | s1 = W256[(j+14)&0x0f]; | |
497 | s1 = sigma1_256(s1); | |
498 | ||
499 | /* Apply the SHA-256 compression function to update a..h */ | |
500 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + | |
501 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); | |
502 | T2 = Sigma0_256(a) + Maj(a, b, c); | |
503 | h = g; | |
504 | g = f; | |
505 | f = e; | |
506 | e = d + T1; | |
507 | d = c; | |
508 | c = b; | |
509 | b = a; | |
510 | a = T1 + T2; | |
511 | ||
512 | j++; | |
513 | } while (j < 64); | |
514 | ||
515 | /* Compute the current intermediate hash value */ | |
516 | context->state[0] += a; | |
517 | context->state[1] += b; | |
518 | context->state[2] += c; | |
519 | context->state[3] += d; | |
520 | context->state[4] += e; | |
521 | context->state[5] += f; | |
522 | context->state[6] += g; | |
523 | context->state[7] += h; | |
524 | ||
525 | /* Clean up */ | |
526 | a = b = c = d = e = f = g = h = T1 = T2 = 0; | |
527 | } | |
528 | ||
529 | #endif /* SHA2_UNROLL_TRANSFORM */ | |
530 | ||
531 | void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { | |
532 | unsigned int freespace, usedspace; | |
533 | ||
534 | if (len == 0) { | |
535 | /* Calling with no data is valid - we do nothing */ | |
536 | return; | |
537 | } | |
538 | ||
539 | /* Sanity check: */ | |
540 | assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); | |
541 | ||
542 | usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; | |
543 | if (usedspace > 0) { | |
544 | /* Calculate how much free space is available in the buffer */ | |
545 | freespace = SHA256_BLOCK_LENGTH - usedspace; | |
546 | ||
547 | if (len >= freespace) { | |
548 | /* Fill the buffer completely and process it */ | |
549 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); | |
550 | context->bitcount += freespace << 3; | |
551 | len -= freespace; | |
552 | data += freespace; | |
553 | SHA256_Transform(context, (sha2_word32*)context->buffer); | |
554 | } else { | |
555 | /* The buffer is not yet full */ | |
556 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len); | |
557 | context->bitcount += len << 3; | |
558 | /* Clean up: */ | |
559 | usedspace = freespace = 0; | |
560 | return; | |
561 | } | |
562 | } | |
563 | while (len >= SHA256_BLOCK_LENGTH) { | |
564 | /* Process as many complete blocks as we can */ | |
565 | sha2_byte buffer[SHA256_BLOCK_LENGTH]; | |
566 | MEMCPY_BCOPY(buffer, data, SHA256_BLOCK_LENGTH); | |
567 | SHA256_Transform(context, (sha2_word32*)buffer); | |
568 | context->bitcount += SHA256_BLOCK_LENGTH << 3; | |
569 | len -= SHA256_BLOCK_LENGTH; | |
570 | data += SHA256_BLOCK_LENGTH; | |
571 | } | |
572 | if (len > 0) { | |
573 | /* There's left-overs, so save 'em */ | |
574 | MEMCPY_BCOPY(context->buffer, data, len); | |
575 | context->bitcount += len << 3; | |
576 | } | |
577 | /* Clean up: */ | |
578 | usedspace = freespace = 0; | |
579 | } | |
580 | ||
581 | void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { | |
582 | sha2_word32 *d = (sha2_word32*)digest; | |
583 | unsigned int usedspace; | |
584 | ||
585 | /* Sanity check: */ | |
586 | assert(context != (SHA256_CTX*)0); | |
587 | ||
588 | /* If no digest buffer is passed, we don't bother doing this: */ | |
589 | if (digest != (sha2_byte*)0) { | |
590 | usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; | |
591 | #if BYTE_ORDER == LITTLE_ENDIAN | |
592 | /* Convert FROM host byte order */ | |
593 | REVERSE64(context->bitcount,context->bitcount); | |
594 | #endif | |
595 | if (usedspace > 0) { | |
596 | /* Begin padding with a 1 bit: */ | |
597 | context->buffer[usedspace++] = 0x80; | |
598 | ||
599 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { | |
600 | /* Set-up for the last transform: */ | |
601 | MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); | |
602 | } else { | |
603 | if (usedspace < SHA256_BLOCK_LENGTH) { | |
604 | MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); | |
605 | } | |
606 | /* Do second-to-last transform: */ | |
607 | SHA256_Transform(context, (sha2_word32*)context->buffer); | |
608 | ||
609 | /* And set-up for the last transform: */ | |
610 | MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); | |
611 | } | |
612 | } else { | |
613 | /* Set-up for the last transform: */ | |
614 | MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); | |
615 | ||
616 | /* Begin padding with a 1 bit: */ | |
617 | *context->buffer = 0x80; | |
618 | } | |
619 | /* Set the bit count: */ | |
620 | union { | |
621 | sha2_byte* c; | |
622 | sha2_word64* l; | |
623 | } bitcount; | |
624 | bitcount.c = &context->buffer[SHA256_SHORT_BLOCK_LENGTH]; | |
625 | *(bitcount.l) = context->bitcount; | |
626 | ||
627 | /* Final transform: */ | |
628 | SHA256_Transform(context, (sha2_word32*)context->buffer); | |
629 | ||
630 | #if BYTE_ORDER == LITTLE_ENDIAN | |
631 | { | |
632 | /* Convert TO host byte order */ | |
633 | int j; | |
634 | for (j = 0; j < 8; j++) { | |
635 | REVERSE32(context->state[j],context->state[j]); | |
636 | *d++ = context->state[j]; | |
637 | } | |
638 | } | |
639 | #else | |
640 | MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH); | |
641 | #endif | |
642 | } | |
643 | ||
644 | /* Clean up state data: */ | |
645 | MEMSET_BZERO(context, sizeof(*context)); | |
646 | usedspace = 0; | |
647 | } | |
648 | ||
649 | char *SHA256_End(SHA256_CTX* context, char buffer[]) { | |
650 | sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; | |
651 | int i; | |
652 | ||
653 | /* Sanity check: */ | |
654 | assert(context != (SHA256_CTX*)0); | |
655 | ||
656 | if (buffer != (char*)0) { | |
657 | SHA256_Final(digest, context); | |
658 | ||
659 | for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { | |
660 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; | |
661 | *buffer++ = sha2_hex_digits[*d & 0x0f]; | |
662 | d++; | |
663 | } | |
664 | *buffer = (char)0; | |
665 | } else { | |
666 | MEMSET_BZERO(context, sizeof(*context)); | |
667 | } | |
668 | MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); | |
669 | return buffer; | |
670 | } | |
671 | ||
672 | char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { | |
673 | SHA256_CTX context; | |
674 | ||
675 | SHA256_Init(&context); | |
676 | SHA256_Update(&context, data, len); | |
677 | return SHA256_End(&context, digest); | |
678 | } | |
679 | ||
680 | ||
681 | /*** SHA-512: *********************************************************/ | |
682 | void SHA512_Init(SHA512_CTX* context) { | |
683 | if (context == (SHA512_CTX*)0) { | |
684 | return; | |
685 | } | |
686 | MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); | |
687 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH); | |
688 | context->bitcount[0] = context->bitcount[1] = 0; | |
689 | } | |
690 | ||
691 | #ifdef SHA2_UNROLL_TRANSFORM | |
692 | ||
693 | /* Unrolled SHA-512 round macros: */ | |
694 | #if BYTE_ORDER == LITTLE_ENDIAN | |
695 | ||
696 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ | |
697 | REVERSE64(*data++, W512[j]); \ | |
698 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ | |
699 | K512[j] + W512[j]; \ | |
700 | (d) += T1, \ | |
701 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ | |
702 | j++ | |
703 | ||
704 | ||
705 | #else /* BYTE_ORDER == LITTLE_ENDIAN */ | |
706 | ||
707 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ | |
708 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ | |
709 | K512[j] + (W512[j] = *data++); \ | |
710 | (d) += T1; \ | |
711 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ | |
712 | j++ | |
713 | ||
714 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
715 | ||
716 | #define ROUND512(a,b,c,d,e,f,g,h) \ | |
717 | s0 = W512[(j+1)&0x0f]; \ | |
718 | s0 = sigma0_512(s0); \ | |
719 | s1 = W512[(j+14)&0x0f]; \ | |
720 | s1 = sigma1_512(s1); \ | |
721 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ | |
722 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ | |
723 | (d) += T1; \ | |
724 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ | |
725 | j++ | |
726 | ||
727 | static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { | |
728 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; | |
729 | sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; | |
730 | int j; | |
731 | ||
732 | /* Initialize registers with the prev. intermediate value */ | |
733 | a = context->state[0]; | |
734 | b = context->state[1]; | |
735 | c = context->state[2]; | |
736 | d = context->state[3]; | |
737 | e = context->state[4]; | |
738 | f = context->state[5]; | |
739 | g = context->state[6]; | |
740 | h = context->state[7]; | |
741 | ||
742 | j = 0; | |
743 | do { | |
744 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); | |
745 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); | |
746 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); | |
747 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); | |
748 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); | |
749 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); | |
750 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); | |
751 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); | |
752 | } while (j < 16); | |
753 | ||
754 | /* Now for the remaining rounds up to 79: */ | |
755 | do { | |
756 | ROUND512(a,b,c,d,e,f,g,h); | |
757 | ROUND512(h,a,b,c,d,e,f,g); | |
758 | ROUND512(g,h,a,b,c,d,e,f); | |
759 | ROUND512(f,g,h,a,b,c,d,e); | |
760 | ROUND512(e,f,g,h,a,b,c,d); | |
761 | ROUND512(d,e,f,g,h,a,b,c); | |
762 | ROUND512(c,d,e,f,g,h,a,b); | |
763 | ROUND512(b,c,d,e,f,g,h,a); | |
764 | } while (j < 80); | |
765 | ||
766 | /* Compute the current intermediate hash value */ | |
767 | context->state[0] += a; | |
768 | context->state[1] += b; | |
769 | context->state[2] += c; | |
770 | context->state[3] += d; | |
771 | context->state[4] += e; | |
772 | context->state[5] += f; | |
773 | context->state[6] += g; | |
774 | context->state[7] += h; | |
775 | ||
776 | /* Clean up */ | |
777 | a = b = c = d = e = f = g = h = T1 = 0; | |
778 | } | |
779 | ||
780 | #else /* SHA2_UNROLL_TRANSFORM */ | |
781 | ||
782 | static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { | |
783 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; | |
784 | sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; | |
785 | int j; | |
786 | ||
787 | /* Initialize registers with the prev. intermediate value */ | |
788 | a = context->state[0]; | |
789 | b = context->state[1]; | |
790 | c = context->state[2]; | |
791 | d = context->state[3]; | |
792 | e = context->state[4]; | |
793 | f = context->state[5]; | |
794 | g = context->state[6]; | |
795 | h = context->state[7]; | |
796 | ||
797 | j = 0; | |
798 | do { | |
799 | #if BYTE_ORDER == LITTLE_ENDIAN | |
800 | /* Convert TO host byte order */ | |
801 | REVERSE64(*data++, W512[j]); | |
802 | /* Apply the SHA-512 compression function to update a..h */ | |
803 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; | |
804 | #else /* BYTE_ORDER == LITTLE_ENDIAN */ | |
805 | /* Apply the SHA-512 compression function to update a..h with copy */ | |
806 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); | |
807 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
808 | T2 = Sigma0_512(a) + Maj(a, b, c); | |
809 | h = g; | |
810 | g = f; | |
811 | f = e; | |
812 | e = d + T1; | |
813 | d = c; | |
814 | c = b; | |
815 | b = a; | |
816 | a = T1 + T2; | |
817 | ||
818 | j++; | |
819 | } while (j < 16); | |
820 | ||
821 | do { | |
822 | /* Part of the message block expansion: */ | |
823 | s0 = W512[(j+1)&0x0f]; | |
824 | s0 = sigma0_512(s0); | |
825 | s1 = W512[(j+14)&0x0f]; | |
826 | s1 = sigma1_512(s1); | |
827 | ||
828 | /* Apply the SHA-512 compression function to update a..h */ | |
829 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + | |
830 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); | |
831 | T2 = Sigma0_512(a) + Maj(a, b, c); | |
832 | h = g; | |
833 | g = f; | |
834 | f = e; | |
835 | e = d + T1; | |
836 | d = c; | |
837 | c = b; | |
838 | b = a; | |
839 | a = T1 + T2; | |
840 | ||
841 | j++; | |
842 | } while (j < 80); | |
843 | ||
844 | /* Compute the current intermediate hash value */ | |
845 | context->state[0] += a; | |
846 | context->state[1] += b; | |
847 | context->state[2] += c; | |
848 | context->state[3] += d; | |
849 | context->state[4] += e; | |
850 | context->state[5] += f; | |
851 | context->state[6] += g; | |
852 | context->state[7] += h; | |
853 | ||
854 | /* Clean up */ | |
855 | a = b = c = d = e = f = g = h = T1 = T2 = 0; | |
856 | } | |
857 | ||
858 | #endif /* SHA2_UNROLL_TRANSFORM */ | |
859 | ||
860 | void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { | |
861 | unsigned int freespace, usedspace; | |
862 | ||
863 | if (len == 0) { | |
864 | /* Calling with no data is valid - we do nothing */ | |
865 | return; | |
866 | } | |
867 | ||
868 | /* Sanity check: */ | |
869 | assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); | |
870 | ||
871 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; | |
872 | if (usedspace > 0) { | |
873 | /* Calculate how much free space is available in the buffer */ | |
874 | freespace = SHA512_BLOCK_LENGTH - usedspace; | |
875 | ||
876 | if (len >= freespace) { | |
877 | /* Fill the buffer completely and process it */ | |
878 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); | |
879 | ADDINC128(context->bitcount, freespace << 3); | |
880 | len -= freespace; | |
881 | data += freespace; | |
882 | SHA512_Transform(context, (sha2_word64*)context->buffer); | |
883 | } else { | |
884 | /* The buffer is not yet full */ | |
885 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len); | |
886 | ADDINC128(context->bitcount, len << 3); | |
887 | /* Clean up: */ | |
888 | usedspace = freespace = 0; | |
889 | return; | |
890 | } | |
891 | } | |
892 | while (len >= SHA512_BLOCK_LENGTH) { | |
893 | /* Process as many complete blocks as we can */ | |
894 | sha2_byte buffer[SHA512_BLOCK_LENGTH]; | |
895 | MEMCPY_BCOPY(buffer, data, SHA512_BLOCK_LENGTH); | |
896 | SHA512_Transform(context, (sha2_word64*)buffer); | |
897 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); | |
898 | len -= SHA512_BLOCK_LENGTH; | |
899 | data += SHA512_BLOCK_LENGTH; | |
900 | } | |
901 | if (len > 0) { | |
902 | /* There's left-overs, so save 'em */ | |
903 | MEMCPY_BCOPY(context->buffer, data, len); | |
904 | ADDINC128(context->bitcount, len << 3); | |
905 | } | |
906 | /* Clean up: */ | |
907 | usedspace = freespace = 0; | |
908 | } | |
909 | ||
910 | static void SHA512_Last(SHA512_CTX* context) { | |
911 | unsigned int usedspace; | |
912 | ||
913 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; | |
914 | #if BYTE_ORDER == LITTLE_ENDIAN | |
915 | /* Convert FROM host byte order */ | |
916 | REVERSE64(context->bitcount[0],context->bitcount[0]); | |
917 | REVERSE64(context->bitcount[1],context->bitcount[1]); | |
918 | #endif | |
919 | if (usedspace > 0) { | |
920 | /* Begin padding with a 1 bit: */ | |
921 | context->buffer[usedspace++] = 0x80; | |
922 | ||
923 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { | |
924 | /* Set-up for the last transform: */ | |
925 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); | |
926 | } else { | |
927 | if (usedspace < SHA512_BLOCK_LENGTH) { | |
928 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); | |
929 | } | |
930 | /* Do second-to-last transform: */ | |
931 | SHA512_Transform(context, (sha2_word64*)context->buffer); | |
932 | ||
933 | /* And set-up for the last transform: */ | |
934 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2); | |
935 | } | |
936 | } else { | |
937 | /* Prepare for final transform: */ | |
938 | MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH); | |
939 | ||
940 | /* Begin padding with a 1 bit: */ | |
941 | *context->buffer = 0x80; | |
942 | } | |
943 | /* Store the length of input data (in bits): */ | |
944 | union { | |
945 | sha2_byte* c; | |
946 | sha2_word64* l; | |
947 | } bitcount; | |
948 | bitcount.c = &context->buffer[SHA512_SHORT_BLOCK_LENGTH]; | |
949 | bitcount.l[0] = context->bitcount[1]; | |
950 | bitcount.l[1] = context->bitcount[0]; | |
951 | ||
952 | /* Final transform: */ | |
953 | SHA512_Transform(context, (sha2_word64*)context->buffer); | |
954 | } | |
955 | ||
956 | void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { | |
957 | sha2_word64 *d = (sha2_word64*)digest; | |
958 | ||
959 | /* Sanity check: */ | |
960 | assert(context != (SHA512_CTX*)0); | |
961 | ||
962 | /* If no digest buffer is passed, we don't bother doing this: */ | |
963 | if (digest != (sha2_byte*)0) { | |
964 | SHA512_Last(context); | |
965 | ||
966 | /* Save the hash data for output: */ | |
967 | #if BYTE_ORDER == LITTLE_ENDIAN | |
968 | { | |
969 | /* Convert TO host byte order */ | |
970 | int j; | |
971 | for (j = 0; j < 8; j++) { | |
972 | REVERSE64(context->state[j],context->state[j]); | |
973 | *d++ = context->state[j]; | |
974 | } | |
975 | } | |
976 | #else | |
977 | MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH); | |
978 | #endif | |
979 | } | |
980 | ||
981 | /* Zero out state data */ | |
982 | MEMSET_BZERO(context, sizeof(*context)); | |
983 | } | |
984 | ||
985 | char *SHA512_End(SHA512_CTX* context, char buffer[]) { | |
986 | sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest; | |
987 | int i; | |
988 | ||
989 | /* Sanity check: */ | |
990 | assert(context != (SHA512_CTX*)0); | |
991 | ||
992 | if (buffer != (char*)0) { | |
993 | SHA512_Final(digest, context); | |
994 | ||
995 | for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { | |
996 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; | |
997 | *buffer++ = sha2_hex_digits[*d & 0x0f]; | |
998 | d++; | |
999 | } | |
1000 | *buffer = (char)0; | |
1001 | } else { | |
1002 | MEMSET_BZERO(context, sizeof(*context)); | |
1003 | } | |
1004 | MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); | |
1005 | return buffer; | |
1006 | } | |
1007 | ||
1008 | char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { | |
1009 | SHA512_CTX context; | |
1010 | ||
1011 | SHA512_Init(&context); | |
1012 | SHA512_Update(&context, data, len); | |
1013 | return SHA512_End(&context, digest); | |
1014 | } | |
1015 | ||
1016 | ||
1017 | /*** SHA-384: *********************************************************/ | |
1018 | void SHA384_Init(SHA384_CTX* context) { | |
1019 | if (context == (SHA384_CTX*)0) { | |
1020 | return; | |
1021 | } | |
1022 | MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); | |
1023 | MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH); | |
1024 | context->bitcount[0] = context->bitcount[1] = 0; | |
1025 | } | |
1026 | ||
1027 | void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { | |
1028 | SHA512_Update((SHA512_CTX*)context, data, len); | |
1029 | } | |
1030 | ||
1031 | void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { | |
1032 | sha2_word64 *d = (sha2_word64*)digest; | |
1033 | ||
1034 | /* Sanity check: */ | |
1035 | assert(context != (SHA384_CTX*)0); | |
1036 | ||
1037 | /* If no digest buffer is passed, we don't bother doing this: */ | |
1038 | if (digest != (sha2_byte*)0) { | |
1039 | SHA512_Last((SHA512_CTX*)context); | |
1040 | ||
1041 | /* Save the hash data for output: */ | |
1042 | #if BYTE_ORDER == LITTLE_ENDIAN | |
1043 | { | |
1044 | /* Convert TO host byte order */ | |
1045 | int j; | |
1046 | for (j = 0; j < 6; j++) { | |
1047 | REVERSE64(context->state[j],context->state[j]); | |
1048 | *d++ = context->state[j]; | |
1049 | } | |
1050 | } | |
1051 | #else | |
1052 | MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH); | |
1053 | #endif | |
1054 | } | |
1055 | ||
1056 | /* Zero out state data */ | |
1057 | MEMSET_BZERO(context, sizeof(*context)); | |
1058 | } | |
1059 | ||
1060 | char *SHA384_End(SHA384_CTX* context, char buffer[]) { | |
1061 | sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest; | |
1062 | int i; | |
1063 | ||
1064 | /* Sanity check: */ | |
1065 | assert(context != (SHA384_CTX*)0); | |
1066 | ||
1067 | if (buffer != (char*)0) { | |
1068 | SHA384_Final(digest, context); | |
1069 | ||
1070 | for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { | |
1071 | *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; | |
1072 | *buffer++ = sha2_hex_digits[*d & 0x0f]; | |
1073 | d++; | |
1074 | } | |
1075 | *buffer = (char)0; | |
1076 | } else { | |
1077 | MEMSET_BZERO(context, sizeof(*context)); | |
1078 | } | |
1079 | MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); | |
1080 | return buffer; | |
1081 | } | |
1082 | ||
1083 | char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { | |
1084 | SHA384_CTX context; | |
1085 | ||
1086 | SHA384_Init(&context); | |
1087 | SHA384_Update(&context, data, len); | |
1088 | return SHA384_End(&context, digest); | |
1089 | } | |
1090 |