]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/commpage/commpage.c
xnu-1228.15.4.tar.gz
[apple/xnu.git] / osfmk / i386 / commpage / commpage.c
1 /*
2 * Copyright (c) 2003-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Here's what to do if you want to add a new routine to the comm page:
31 *
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
34 *
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
40 *
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
44 *
45 * 4. Write the code in Libc to use the new routine.
46 */
47
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <i386/machine_routines.h>
52 #include <i386/misc_protos.h>
53 #include <i386/tsc.h>
54 #include <i386/cpu_data.h>
55 #include <machine/cpu_capabilities.h>
56 #include <machine/commpage.h>
57 #include <machine/pmap.h>
58 #include <vm/vm_kern.h>
59 #include <vm/vm_map.h>
60 #include <ipc/ipc_port.h>
61
62 #include <kern/page_decrypt.h>
63
64 /* the lists of commpage routines are in commpage_asm.s */
65 extern commpage_descriptor* commpage_32_routines[];
66 extern commpage_descriptor* commpage_64_routines[];
67
68 /* translated commpage descriptors from commpage_sigs.c */
69 extern commpage_descriptor sigdata_descriptor;
70 extern commpage_descriptor *ba_descriptors[];
71
72 extern vm_map_t commpage32_map; // the shared submap, set up in vm init
73 extern vm_map_t commpage64_map; // the shared submap, set up in vm init
74
75 char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
76 char *commPagePtr64 = NULL; // ...and of 64-bit commpage
77 int _cpu_capabilities = 0; // define the capability vector
78
79 int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
80
81 static uintptr_t next; // next available byte in comm page
82 static int cur_routine; // comm page address of "current" routine
83 static int matched; // true if we've found a match for "current" routine
84
85 static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
86 static size_t commPageBaseOffset; // add to 32-bit runtime address to get offset in commpage
87
88 static commpage_time_data *time_data32 = NULL;
89 static commpage_time_data *time_data64 = NULL;
90
91 /* Allocate the commpage and add to the shared submap created by vm:
92 * 1. allocate a page in the kernel map (RW)
93 * 2. wire it down
94 * 3. make a memory entry out of it
95 * 4. map that entry into the shared comm region map (R-only)
96 */
97
98 static void*
99 commpage_allocate(
100 vm_map_t submap, // commpage32_map or commpage_map64
101 size_t area_used ) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
102 {
103 vm_offset_t kernel_addr = 0; // address of commpage in kernel map
104 vm_offset_t zero = 0;
105 vm_size_t size = area_used; // size actually populated
106 vm_map_entry_t entry;
107 ipc_port_t handle;
108
109 if (submap == NULL)
110 panic("commpage submap is null");
111
112 if (vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE))
113 panic("cannot allocate commpage");
114
115 if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE))
116 panic("cannot wire commpage");
117
118 /*
119 * Now that the object is created and wired into the kernel map, mark it so that no delay
120 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
121 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
122 * that would be a real disaster.
123 *
124 * JMM - What we really need is a way to create it like this in the first place.
125 */
126 if (!vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map)
127 panic("cannot find commpage entry");
128 entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
129
130 if (mach_make_memory_entry( kernel_map, // target map
131 &size, // size
132 kernel_addr, // offset (address in kernel map)
133 VM_PROT_ALL, // map it RWX
134 &handle, // this is the object handle we get
135 NULL )) // parent_entry (what is this?)
136 panic("cannot make entry for commpage");
137
138 if (vm_map_64( submap, // target map (shared submap)
139 &zero, // address (map into 1st page in submap)
140 area_used, // size
141 0, // mask
142 VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
143 handle, // port is the memory entry we just made
144 0, // offset (map 1st page in memory entry)
145 FALSE, // copy
146 VM_PROT_READ|VM_PROT_EXECUTE, // cur_protection (R-only in user map)
147 VM_PROT_READ|VM_PROT_EXECUTE, // max_protection
148 VM_INHERIT_SHARE )) // inheritance
149 panic("cannot map commpage");
150
151 ipc_port_release(handle);
152
153 return (void*) kernel_addr; // return address in kernel map
154 }
155
156 /* Get address (in kernel map) of a commpage field. */
157
158 static void*
159 commpage_addr_of(
160 int addr_at_runtime )
161 {
162 return (void*) ((uintptr_t)commPagePtr + addr_at_runtime - commPageBaseOffset);
163 }
164
165 /* Determine number of CPUs on this system. We cannot rely on
166 * machine_info.max_cpus this early in the boot.
167 */
168 static int
169 commpage_cpus( void )
170 {
171 int cpus;
172
173 cpus = ml_get_max_cpus(); // NB: this call can block
174
175 if (cpus == 0)
176 panic("commpage cpus==0");
177 if (cpus > 0xFF)
178 cpus = 0xFF;
179
180 return cpus;
181 }
182
183 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
184
185 static void
186 commpage_init_cpu_capabilities( void )
187 {
188 int bits;
189 int cpus;
190 ml_cpu_info_t cpu_info;
191
192 bits = 0;
193 ml_cpu_get_info(&cpu_info);
194
195 switch (cpu_info.vector_unit) {
196 case 8:
197 bits |= kHasSSE4_2;
198 /* fall thru */
199 case 7:
200 bits |= kHasSSE4_1;
201 /* fall thru */
202 case 6:
203 bits |= kHasSupplementalSSE3;
204 /* fall thru */
205 case 5:
206 bits |= kHasSSE3;
207 /* fall thru */
208 case 4:
209 bits |= kHasSSE2;
210 /* fall thru */
211 case 3:
212 bits |= kHasSSE;
213 /* fall thru */
214 case 2:
215 bits |= kHasMMX;
216 default:
217 break;
218 }
219 switch (cpu_info.cache_line_size) {
220 case 128:
221 bits |= kCache128;
222 break;
223 case 64:
224 bits |= kCache64;
225 break;
226 case 32:
227 bits |= kCache32;
228 break;
229 default:
230 break;
231 }
232 cpus = commpage_cpus(); // how many CPUs do we have
233
234 if (cpus == 1)
235 bits |= kUP;
236
237 bits |= (cpus << kNumCPUsShift);
238
239 bits |= kFastThreadLocalStorage; // we use %gs for TLS
240
241 if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
242 bits |= k64Bit;
243
244 if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */
245 bits |= kSlow;
246
247 _cpu_capabilities = bits; // set kernel version for use by drivers etc
248 }
249
250 int
251 _get_cpu_capabilities(void)
252 {
253 return _cpu_capabilities;
254 }
255
256 /* Copy data into commpage. */
257
258 static void
259 commpage_stuff(
260 int address,
261 const void *source,
262 int length )
263 {
264 void *dest = commpage_addr_of(address);
265
266 if ((uintptr_t)dest < next)
267 panic("commpage overlap at address 0x%x, %p < 0x%lx", address, dest, next);
268
269 bcopy(source,dest,length);
270
271 next = ((uintptr_t)dest + length);
272 }
273
274 static void
275 commpage_stuff_swap(
276 int address,
277 void *source,
278 int length,
279 int legacy )
280 {
281 if ( legacy ) {
282 void *dest = commpage_addr_of(address);
283 dest = (void *)((uintptr_t) dest + _COMM_PAGE_SIGS_OFFSET);
284 switch (length) {
285 case 2:
286 OSWriteSwapInt16(dest, 0, *(uint16_t *)source);
287 break;
288 case 4:
289 OSWriteSwapInt32(dest, 0, *(uint32_t *)source);
290 break;
291 case 8:
292 OSWriteSwapInt64(dest, 0, *(uint64_t *)source);
293 break;
294 }
295 }
296 }
297
298 static void
299 commpage_stuff2(
300 int address,
301 void *source,
302 int length,
303 int legacy )
304 {
305 commpage_stuff_swap(address, source, length, legacy);
306 commpage_stuff(address, source, length);
307 }
308
309 /* Copy a routine into comm page if it matches running machine.
310 */
311 static void
312 commpage_stuff_routine(
313 commpage_descriptor *rd )
314 {
315 int must,cant;
316
317 if (rd->commpage_address != cur_routine) {
318 if ((cur_routine!=0) && (matched==0))
319 panic("commpage no match for last, next address %08lx", rd->commpage_address);
320 cur_routine = rd->commpage_address;
321 matched = 0;
322 }
323
324 must = _cpu_capabilities & rd->musthave;
325 cant = _cpu_capabilities & rd->canthave;
326
327 if ((must == rd->musthave) && (cant == 0)) {
328 if (matched)
329 panic("commpage multiple matches for address %08lx", rd->commpage_address);
330 matched = 1;
331
332 commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
333 }
334 }
335
336 /* Fill in the 32- or 64-bit commpage. Called once for each.
337 * The 32-bit ("legacy") commpage has a bunch of stuff added to it
338 * for translated processes, some of which is byte-swapped.
339 */
340
341 static void
342 commpage_populate_one(
343 vm_map_t submap, // commpage32_map or compage64_map
344 char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
345 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
346 size_t base_offset, // will become commPageBaseOffset
347 commpage_descriptor** commpage_routines, // list of routine ptrs for this commpage
348 boolean_t legacy, // true if 32-bit commpage
349 commpage_time_data** time_data, // &time_data32 or &time_data64
350 const char* signature ) // "commpage 32-bit" or "commpage 64-bit"
351 {
352 short c2;
353 static double two52 = 1048576.0 * 1048576.0 * 4096.0; // 2**52
354 static double ten6 = 1000000.0; // 10**6
355 commpage_descriptor **rd;
356 short version = _COMM_PAGE_THIS_VERSION;
357 int swapcaps;
358
359 next = (uintptr_t) NULL;
360 cur_routine = 0;
361 commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used );
362 *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
363 commPageBaseOffset = base_offset;
364
365 *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
366
367 /* Stuff in the constants. We move things into the comm page in strictly
368 * ascending order, so we can check for overlap and panic if so.
369 */
370 commpage_stuff(_COMM_PAGE_SIGNATURE,signature,strlen(signature));
371 commpage_stuff2(_COMM_PAGE_VERSION,&version,sizeof(short),legacy);
372 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(int));
373
374 /* excuse our magic constants, we cannot include ppc/cpu_capabilities.h */
375 /* always set kCache32 and kDcbaAvailable */
376 swapcaps = 0x44;
377 if ( _cpu_capabilities & kUP )
378 swapcaps |= (kUP + (1 << kNumCPUsShift));
379 else
380 swapcaps |= 2 << kNumCPUsShift; /* limit #cpus to 2 */
381 if ( ! noVMX ) /* if rosetta will be emulating altivec... */
382 swapcaps |= 0x101; /* ...then set kHasAltivec and kDataStreamsAvailable too */
383 commpage_stuff_swap(_COMM_PAGE_CPU_CAPABILITIES, &swapcaps, sizeof(int), legacy);
384 c2 = 32;
385 commpage_stuff_swap(_COMM_PAGE_CACHE_LINESIZE,&c2,2,legacy);
386
387 if (_cpu_capabilities & kCache32)
388 c2 = 32;
389 else if (_cpu_capabilities & kCache64)
390 c2 = 64;
391 else if (_cpu_capabilities & kCache128)
392 c2 = 128;
393 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
394
395 if ( legacy ) {
396 commpage_stuff2(_COMM_PAGE_2_TO_52,&two52,8,legacy);
397 commpage_stuff2(_COMM_PAGE_10_TO_6,&ten6,8,legacy);
398 }
399
400 for( rd = commpage_routines; *rd != NULL ; rd++ )
401 commpage_stuff_routine(*rd);
402
403 if (!matched)
404 panic("commpage no match on last routine");
405
406 if (next > (uintptr_t)_COMM_PAGE_END)
407 panic("commpage overflow: next = 0x%08lx, commPagePtr = 0x%08lx", next, (uintptr_t)commPagePtr);
408
409 if ( legacy ) {
410 next = (uintptr_t) NULL;
411 for( rd = ba_descriptors; *rd != NULL ; rd++ )
412 commpage_stuff_routine(*rd);
413
414 next = (uintptr_t) NULL;
415 commpage_stuff_routine(&sigdata_descriptor);
416 }
417 }
418
419
420 /* Fill in commpages: called once, during kernel initialization, from the
421 * startup thread before user-mode code is running.
422 *
423 * See the top of this file for a list of what you have to do to add
424 * a new routine to the commpage.
425 */
426
427 void
428 commpage_populate( void )
429 {
430 commpage_init_cpu_capabilities();
431
432 commpage_populate_one( commpage32_map,
433 &commPagePtr32,
434 _COMM_PAGE32_AREA_USED,
435 _COMM_PAGE32_BASE_ADDRESS,
436 commpage_32_routines,
437 TRUE, /* legacy (32-bit) commpage */
438 &time_data32,
439 "commpage 32-bit");
440 pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
441 _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
442
443 time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
444
445 if (_cpu_capabilities & k64Bit) {
446 commpage_populate_one( commpage64_map,
447 &commPagePtr64,
448 _COMM_PAGE64_AREA_USED,
449 _COMM_PAGE32_START_ADDRESS, /* because kernel is built 32-bit */
450 commpage_64_routines,
451 FALSE, /* not a legacy commpage */
452 &time_data64,
453 "commpage 64-bit");
454 pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
455 _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
456 }
457
458 rtc_nanotime_init_commpage();
459 }
460
461
462 /* Update commpage nanotime information. Note that we interleave
463 * setting the 32- and 64-bit commpages, in order to keep nanotime more
464 * nearly in sync between the two environments.
465 *
466 * This routine must be serialized by some external means, ie a lock.
467 */
468
469 void
470 commpage_set_nanotime(
471 uint64_t tsc_base,
472 uint64_t ns_base,
473 uint32_t scale,
474 uint32_t shift )
475 {
476 commpage_time_data *p32 = time_data32;
477 commpage_time_data *p64 = time_data64;
478 static uint32_t generation = 0;
479 uint32_t next_gen;
480
481 if (p32 == NULL) /* have commpages been allocated yet? */
482 return;
483
484 if ( generation != p32->nt_generation )
485 panic("nanotime trouble 1"); /* possibly not serialized */
486 if ( ns_base < p32->nt_ns_base )
487 panic("nanotime trouble 2");
488 if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) )
489 panic("nanotime trouble 3");
490
491 next_gen = ++generation;
492 if (next_gen == 0)
493 next_gen = ++generation;
494
495 p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
496 p64->nt_generation = 0;
497
498 p32->nt_tsc_base = tsc_base;
499 p64->nt_tsc_base = tsc_base;
500
501 p32->nt_ns_base = ns_base;
502 p64->nt_ns_base = ns_base;
503
504 p32->nt_scale = scale;
505 p64->nt_scale = scale;
506
507 p32->nt_shift = shift;
508 p64->nt_shift = shift;
509
510 p32->nt_generation = next_gen; /* mark data as valid */
511 p64->nt_generation = next_gen;
512 }
513
514
515 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
516
517 void
518 commpage_disable_timestamp( void )
519 {
520 time_data32->gtod_generation = 0;
521 time_data64->gtod_generation = 0;
522 }
523
524
525 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
526 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
527 * between the two environments.
528 *
529 * This routine must be serializeed by some external means, ie a lock.
530 */
531
532 void
533 commpage_set_timestamp(
534 uint64_t abstime,
535 uint64_t secs )
536 {
537 commpage_time_data *p32 = time_data32;
538 commpage_time_data *p64 = time_data64;
539 static uint32_t generation = 0;
540 uint32_t next_gen;
541
542 next_gen = ++generation;
543 if (next_gen == 0)
544 next_gen = ++generation;
545
546 p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
547 p64->gtod_generation = 0;
548
549 p32->gtod_ns_base = abstime;
550 p64->gtod_ns_base = abstime;
551
552 p32->gtod_sec_base = secs;
553 p64->gtod_sec_base = secs;
554
555 p32->gtod_generation = next_gen; /* mark data as valid */
556 p64->gtod_generation = next_gen;
557 }