2 * Copyright (c) 2003-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Here's what to do if you want to add a new routine to the comm page:
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
45 * 4. Write the code in Libc to use the new routine.
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
65 #include <stdatomic.h>
67 #include <ipc/ipc_port.h>
69 #include <kern/page_decrypt.h>
70 #include <kern/processor.h>
72 #include <sys/kdebug.h>
75 #include <atm/atm_internal.h>
78 /* the lists of commpage routines are in commpage_asm.s */
79 extern commpage_descriptor
* commpage_32_routines
[];
80 extern commpage_descriptor
* commpage_64_routines
[];
82 extern vm_map_t commpage32_map
; // the shared submap, set up in vm init
83 extern vm_map_t commpage64_map
; // the shared submap, set up in vm init
84 extern vm_map_t commpage_text32_map
; // the shared submap, set up in vm init
85 extern vm_map_t commpage_text64_map
; // the shared submap, set up in vm init
88 char *commPagePtr32
= NULL
; // virtual addr in kernel map of 32-bit commpage
89 char *commPagePtr64
= NULL
; // ...and of 64-bit commpage
90 char *commPageTextPtr32
= NULL
; // virtual addr in kernel map of 32-bit commpage
91 char *commPageTextPtr64
= NULL
; // ...and of 64-bit commpage
93 uint64_t _cpu_capabilities
= 0; // define the capability vector
95 typedef uint32_t commpage_address_t
;
97 static commpage_address_t next
; // next available address in comm page
99 static char *commPagePtr
; // virtual addr in kernel map of commpage we are working on
100 static commpage_address_t commPageBaseOffset
; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
102 static commpage_time_data
*time_data32
= NULL
;
103 static commpage_time_data
*time_data64
= NULL
;
104 static new_commpage_timeofday_data_t
*gtod_time_data32
= NULL
;
105 static new_commpage_timeofday_data_t
*gtod_time_data64
= NULL
;
108 decl_simple_lock_data(static, commpage_active_cpus_lock
);
110 /* Allocate the commpage and add to the shared submap created by vm:
111 * 1. allocate a page in the kernel map (RW)
113 * 3. make a memory entry out of it
114 * 4. map that entry into the shared comm region map (R-only)
119 vm_map_t submap
, // commpage32_map or commpage_map64
120 size_t area_used
, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
123 vm_offset_t kernel_addr
= 0; // address of commpage in kernel map
124 vm_offset_t zero
= 0;
125 vm_size_t size
= area_used
; // size actually populated
126 vm_map_entry_t entry
;
129 vm_map_kernel_flags_t vmk_flags
;
131 if (submap
== NULL
) {
132 panic("commpage submap is null");
135 kr
= vm_map_kernel(kernel_map
,
140 VM_MAP_KERNEL_FLAGS_NONE
,
141 VM_KERN_MEMORY_OSFMK
,
148 if (kr
!= KERN_SUCCESS
) {
149 panic("cannot allocate commpage %d", kr
);
152 if ((kr
= vm_map_wire_kernel(kernel_map
,
154 kernel_addr
+ area_used
,
155 VM_PROT_DEFAULT
, VM_KERN_MEMORY_OSFMK
,
157 panic("cannot wire commpage: %d", kr
);
161 * Now that the object is created and wired into the kernel map, mark it so that no delay
162 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
163 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
164 * that would be a real disaster.
166 * JMM - What we really need is a way to create it like this in the first place.
168 if (!(kr
= vm_map_lookup_entry( kernel_map
, vm_map_trunc_page(kernel_addr
, VM_MAP_PAGE_MASK(kernel_map
)), &entry
) || entry
->is_sub_map
)) {
169 panic("cannot find commpage entry %d", kr
);
171 VME_OBJECT(entry
)->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
173 if ((kr
= mach_make_memory_entry( kernel_map
, // target map
175 kernel_addr
, // offset (address in kernel map)
176 uperm
, // protections as specified
177 &handle
, // this is the object handle we get
178 NULL
))) { // parent_entry (what is this?)
179 panic("cannot make entry for commpage %d", kr
);
182 vmk_flags
= VM_MAP_KERNEL_FLAGS_NONE
;
183 if (uperm
== (VM_PROT_READ
| VM_PROT_EXECUTE
)) {
185 * Mark this unsigned executable mapping as "jit" to avoid
186 * code-signing violations when attempting to execute unsigned
189 vmk_flags
.vmkf_map_jit
= TRUE
;
192 kr
= vm_map_64_kernel(
193 submap
, // target map (shared submap)
194 &zero
, // address (map into 1st page in submap)
197 VM_FLAGS_FIXED
, // flags (it must be 1st page in submap)
200 handle
, // port is the memory entry we just made
201 0, // offset (map 1st page in memory entry)
203 uperm
, // cur_protection (R-only in user map)
204 uperm
, // max_protection
205 VM_INHERIT_SHARE
); // inheritance
206 if (kr
!= KERN_SUCCESS
) {
207 panic("cannot map commpage %d", kr
);
210 ipc_port_release(handle
);
211 /* Make the kernel mapping non-executable. This cannot be done
212 * at the time of map entry creation as mach_make_memory_entry
213 * cannot handle disjoint permissions at this time.
215 kr
= vm_protect(kernel_map
, kernel_addr
, area_used
, FALSE
, VM_PROT_READ
| VM_PROT_WRITE
);
216 assert(kr
== KERN_SUCCESS
);
218 return (void*)(intptr_t)kernel_addr
; // return address in kernel map
221 /* Get address (in kernel map) of a commpage field. */
225 commpage_address_t addr_at_runtime
)
227 return (void*) ((uintptr_t)commPagePtr
+ (addr_at_runtime
- commPageBaseOffset
));
231 * Calculate address of data within 32- and 64-bit commpages (not to be used with commpage
235 commpage_specific_addr_of(char *commPageBase
, commpage_address_t addr_at_runtime
)
238 * Note that the base address (_COMM_PAGE32_BASE_ADDRESS) is the same for
239 * 32- and 64-bit commpages
241 return (void*) ((uintptr_t)commPageBase
+ (addr_at_runtime
- _COMM_PAGE32_BASE_ADDRESS
));
244 /* Determine number of CPUs on this system. We cannot rely on
245 * machine_info.max_cpus this early in the boot.
248 commpage_cpus( void )
252 cpus
= ml_wait_max_cpus(); // NB: this call can block
255 panic("commpage cpus==0");
264 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
267 commpage_init_cpu_capabilities( void )
271 ml_cpu_info_t cpu_info
;
274 ml_cpu_get_info(&cpu_info
);
276 switch (cpu_info
.vector_unit
) {
287 bits
|= kHasSupplementalSSE3
;
304 switch (cpu_info
.cache_line_size
) {
317 cpus
= commpage_cpus(); // how many CPUs do we have
319 bits
|= (cpus
<< kNumCPUsShift
);
321 bits
|= kFastThreadLocalStorage
; // we use %gs for TLS
323 #define setif(_bits, _bit, _condition) \
324 if (_condition) _bits |= _bit
326 setif(bits
, kUP
, cpus
== 1);
327 setif(bits
, k64Bit
, cpu_mode_is64bit());
328 setif(bits
, kSlow
, tscFreq
<= SLOW_TSC_THRESHOLD
);
330 setif(bits
, kHasAES
, cpuid_features() &
332 setif(bits
, kHasF16C
, cpuid_features() &
334 setif(bits
, kHasRDRAND
, cpuid_features() &
335 CPUID_FEATURE_RDRAND
);
336 setif(bits
, kHasFMA
, cpuid_features() &
339 setif(bits
, kHasBMI1
, cpuid_leaf7_features() &
340 CPUID_LEAF7_FEATURE_BMI1
);
341 setif(bits
, kHasBMI2
, cpuid_leaf7_features() &
342 CPUID_LEAF7_FEATURE_BMI2
);
343 /* Do not advertise RTM and HLE if the TSX FORCE ABORT WA is required */
344 if (cpuid_wa_required(CPU_INTEL_TSXFA
) & CWA_OFF
) {
345 setif(bits
, kHasRTM
, cpuid_leaf7_features() &
346 CPUID_LEAF7_FEATURE_RTM
);
347 setif(bits
, kHasHLE
, cpuid_leaf7_features() &
348 CPUID_LEAF7_FEATURE_HLE
);
350 setif(bits
, kHasAVX2_0
, cpuid_leaf7_features() &
351 CPUID_LEAF7_FEATURE_AVX2
);
352 setif(bits
, kHasRDSEED
, cpuid_leaf7_features() &
353 CPUID_LEAF7_FEATURE_RDSEED
);
354 setif(bits
, kHasADX
, cpuid_leaf7_features() &
355 CPUID_LEAF7_FEATURE_ADX
);
357 #if 0 /* The kernel doesn't support MPX or SGX */
358 setif(bits
, kHasMPX
, cpuid_leaf7_features() &
359 CPUID_LEAF7_FEATURE_MPX
);
360 setif(bits
, kHasSGX
, cpuid_leaf7_features() &
361 CPUID_LEAF7_FEATURE_SGX
);
364 if (ml_fpu_avx512_enabled()) {
365 setif(bits
, kHasAVX512F
, cpuid_leaf7_features() &
366 CPUID_LEAF7_FEATURE_AVX512F
);
367 setif(bits
, kHasAVX512CD
, cpuid_leaf7_features() &
368 CPUID_LEAF7_FEATURE_AVX512CD
);
369 setif(bits
, kHasAVX512DQ
, cpuid_leaf7_features() &
370 CPUID_LEAF7_FEATURE_AVX512DQ
);
371 setif(bits
, kHasAVX512BW
, cpuid_leaf7_features() &
372 CPUID_LEAF7_FEATURE_AVX512BW
);
373 setif(bits
, kHasAVX512VL
, cpuid_leaf7_features() &
374 CPUID_LEAF7_FEATURE_AVX512VL
);
375 setif(bits
, kHasAVX512IFMA
, cpuid_leaf7_features() &
376 CPUID_LEAF7_FEATURE_AVX512IFMA
);
377 setif(bits
, kHasAVX512VBMI
, cpuid_leaf7_features() &
378 CPUID_LEAF7_FEATURE_AVX512VBMI
);
379 setif(bits
, kHasVAES
, cpuid_leaf7_features() &
380 CPUID_LEAF7_FEATURE_VAES
);
381 setif(bits
, kHasVPCLMULQDQ
, cpuid_leaf7_features() &
382 CPUID_LEAF7_FEATURE_VPCLMULQDQ
);
383 setif(bits
, kHasAVX512VNNI
, cpuid_leaf7_features() &
384 CPUID_LEAF7_FEATURE_AVX512VNNI
);
385 setif(bits
, kHasAVX512BITALG
, cpuid_leaf7_features() &
386 CPUID_LEAF7_FEATURE_AVX512BITALG
);
387 setif(bits
, kHasAVX512VPOPCNTDQ
, cpuid_leaf7_features() &
388 CPUID_LEAF7_FEATURE_AVX512VPCDQ
);
391 uint64_t misc_enable
= rdmsr64(MSR_IA32_MISC_ENABLE
);
392 setif(bits
, kHasENFSTRG
, (misc_enable
& 1ULL) &&
393 (cpuid_leaf7_features() &
394 CPUID_LEAF7_FEATURE_ERMS
));
396 _cpu_capabilities
= bits
; // set kernel version for use by drivers etc
399 /* initialize the approx_time_supported flag and set the approx time to 0.
400 * Called during initial commpage population.
403 commpage_mach_approximate_time_init(void)
405 char *cp
= commPagePtr32
;
408 #ifdef CONFIG_MACH_APPROXIMATE_TIME
414 cp
+= (_COMM_PAGE_APPROX_TIME_SUPPORTED
- _COMM_PAGE32_BASE_ADDRESS
);
415 *(boolean_t
*)cp
= supported
;
420 cp
+= (_COMM_PAGE_APPROX_TIME_SUPPORTED
- _COMM_PAGE32_START_ADDRESS
);
421 *(boolean_t
*)cp
= supported
;
423 commpage_update_mach_approximate_time(0);
427 commpage_mach_continuous_time_init(void)
429 commpage_update_mach_continuous_time(0);
433 commpage_boottime_init(void)
436 clock_usec_t microsecs
;
437 clock_get_boottime_microtime(&secs
, µsecs
);
438 commpage_update_boottime(secs
* USEC_PER_SEC
+ microsecs
);
442 _get_cpu_capabilities(void)
444 return _cpu_capabilities
;
447 /* Copy data into commpage. */
451 commpage_address_t address
,
455 void *dest
= commpage_addr_of(address
);
457 if (address
< next
) {
458 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest
, address
, next
);
461 bcopy(source
, dest
, length
);
463 next
= address
+ length
;
467 * Updates both the 32-bit and 64-bit commpages with the new data.
470 commpage_update(commpage_address_t address
, const void *source
, int length
)
472 void *dest
= commpage_specific_addr_of(commPagePtr32
, address
);
473 bcopy(source
, dest
, length
);
475 dest
= commpage_specific_addr_of(commPagePtr64
, address
);
476 bcopy(source
, dest
, length
);
480 commpage_post_ucode_update(void)
482 commpage_init_cpu_capabilities();
483 commpage_update(_COMM_PAGE_CPU_CAPABILITIES64
, &_cpu_capabilities
, sizeof(_cpu_capabilities
));
484 commpage_update(_COMM_PAGE_CPU_CAPABILITIES
, &_cpu_capabilities
, sizeof(uint32_t));
487 /* Copy a routine into comm page if it matches running machine.
490 commpage_stuff_routine(
491 commpage_descriptor
*rd
)
493 commpage_stuff(rd
->commpage_address
, rd
->code_address
, rd
->code_length
);
497 /* Fill in the 32- or 64-bit commpage. Called once for each.
501 commpage_populate_one(
502 vm_map_t submap
, // commpage32_map or compage64_map
503 char ** kernAddressPtr
, // &commPagePtr32 or &commPagePtr64
504 size_t area_used
, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
505 commpage_address_t base_offset
, // will become commPageBaseOffset
506 commpage_time_data
** time_data
, // &time_data32 or &time_data64
507 new_commpage_timeofday_data_t
** gtod_time_data
, // >od_time_data32 or >od_time_data64
508 const char* signature
, // "commpage 32-bit" or "commpage 64-bit"
515 short version
= _COMM_PAGE_THIS_VERSION
;
518 commPagePtr
= (char *)commpage_allocate( submap
, (vm_size_t
) area_used
, uperm
);
519 *kernAddressPtr
= commPagePtr
; // save address either in commPagePtr32 or 64
520 commPageBaseOffset
= base_offset
;
522 *time_data
= commpage_addr_of( _COMM_PAGE_TIME_DATA_START
);
523 *gtod_time_data
= commpage_addr_of( _COMM_PAGE_NEWTIMEOFDAY_DATA
);
525 /* Stuff in the constants. We move things into the comm page in strictly
526 * ascending order, so we can check for overlap and panic if so.
527 * Note: the 32-bit cpu_capabilities vector is retained in addition to
528 * the expanded 64-bit vector.
530 commpage_stuff(_COMM_PAGE_SIGNATURE
, signature
, (int)MIN(_COMM_PAGE_SIGNATURELEN
, strlen(signature
)));
531 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64
, &_cpu_capabilities
, sizeof(_cpu_capabilities
));
532 commpage_stuff(_COMM_PAGE_VERSION
, &version
, sizeof(short));
533 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES
, &_cpu_capabilities
, sizeof(uint32_t));
536 if (_cpu_capabilities
& kCache64
) {
538 } else if (_cpu_capabilities
& kCache128
) {
541 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE
, &c2
, 2);
543 /* machine_info valid after ml_wait_max_cpus() */
544 c1
= machine_info
.physical_cpu_max
;
545 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS
, &c1
, 1);
546 c1
= machine_info
.logical_cpu_max
;
547 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS
, &c1
, 1);
549 c8
= ml_cpu_cache_size(0);
550 commpage_stuff(_COMM_PAGE_MEMORY_SIZE
, &c8
, 8);
552 cfamily
= cpuid_info()->cpuid_cpufamily
;
553 commpage_stuff(_COMM_PAGE_CPUFAMILY
, &cfamily
, 4);
555 commpage_stuff(_COMM_PAGE_KERNEL_PAGE_SHIFT
, &c1
, 1);
556 commpage_stuff(_COMM_PAGE_USER_PAGE_SHIFT_64
, &c1
, 1);
558 if (next
> _COMM_PAGE_END
) {
559 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next
, commPagePtr
);
564 /* Fill in commpages: called once, during kernel initialization, from the
565 * startup thread before user-mode code is running.
567 * See the top of this file for a list of what you have to do to add
568 * a new routine to the commpage.
572 commpage_populate( void )
574 commpage_init_cpu_capabilities();
576 commpage_populate_one( commpage32_map
,
578 _COMM_PAGE32_AREA_USED
,
579 _COMM_PAGE32_BASE_ADDRESS
,
582 _COMM_PAGE32_SIGNATURE_STRING
,
585 pmap_commpage32_init((vm_offset_t
) commPagePtr32
, _COMM_PAGE32_BASE_ADDRESS
,
586 _COMM_PAGE32_AREA_USED
/ INTEL_PGBYTES
);
588 time_data64
= time_data32
; /* if no 64-bit commpage, point to 32-bit */
589 gtod_time_data64
= gtod_time_data32
;
591 if (_cpu_capabilities
& k64Bit
) {
592 commpage_populate_one( commpage64_map
,
594 _COMM_PAGE64_AREA_USED
,
595 _COMM_PAGE32_START_ADDRESS
, /* commpage address are relative to 32-bit commpage placement */
598 _COMM_PAGE64_SIGNATURE_STRING
,
601 pmap_commpage64_init((vm_offset_t
) commPagePtr64
, _COMM_PAGE64_BASE_ADDRESS
,
602 _COMM_PAGE64_AREA_USED
/ INTEL_PGBYTES
);
606 simple_lock_init(&commpage_active_cpus_lock
, 0);
608 commpage_update_active_cpus();
609 commpage_mach_approximate_time_init();
610 commpage_mach_continuous_time_init();
611 commpage_boottime_init();
612 rtc_nanotime_init_commpage();
613 commpage_update_kdebug_state();
615 commpage_update_atm_diagnostic_config(atm_get_diagnostic_config());
619 /* Fill in the common routines during kernel initialization.
620 * This is called before user-mode code is running.
623 commpage_text_populate( void )
625 commpage_descriptor
**rd
;
628 commPagePtr
= (char *) commpage_allocate(commpage_text32_map
, (vm_size_t
) _COMM_PAGE_TEXT_AREA_USED
, VM_PROT_READ
| VM_PROT_EXECUTE
);
629 commPageTextPtr32
= commPagePtr
;
631 char *cptr
= commPagePtr
;
633 for (; i
< _COMM_PAGE_TEXT_AREA_USED
; i
++) {
637 commPageBaseOffset
= _COMM_PAGE_TEXT_START
;
638 for (rd
= commpage_32_routines
; *rd
!= NULL
; rd
++) {
639 commpage_stuff_routine(*rd
);
643 pmap_commpage32_init((vm_offset_t
) commPageTextPtr32
, _COMM_PAGE_TEXT_START
,
644 _COMM_PAGE_TEXT_AREA_USED
/ INTEL_PGBYTES
);
647 if (_cpu_capabilities
& k64Bit
) {
649 commPagePtr
= (char *) commpage_allocate(commpage_text64_map
, (vm_size_t
) _COMM_PAGE_TEXT_AREA_USED
, VM_PROT_READ
| VM_PROT_EXECUTE
);
650 commPageTextPtr64
= commPagePtr
;
653 for (i
= 0; i
< _COMM_PAGE_TEXT_AREA_USED
; i
++) {
657 for (rd
= commpage_64_routines
; *rd
!= NULL
; rd
++) {
658 commpage_stuff_routine(*rd
);
662 pmap_commpage64_init((vm_offset_t
) commPageTextPtr64
, _COMM_PAGE_TEXT_START
,
663 _COMM_PAGE_TEXT_AREA_USED
/ INTEL_PGBYTES
);
667 if (next
> _COMM_PAGE_TEXT_END
) {
668 panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next
, commPagePtr
);
672 /* Update commpage nanotime information.
674 * This routine must be serialized by some external means, ie a lock.
678 commpage_set_nanotime(
684 commpage_time_data
*p32
= time_data32
;
685 commpage_time_data
*p64
= time_data64
;
686 static uint32_t generation
= 0;
689 if (p32
== NULL
) { /* have commpages been allocated yet? */
693 if (generation
!= p32
->nt_generation
) {
694 panic("nanotime trouble 1"); /* possibly not serialized */
696 if (ns_base
< p32
->nt_ns_base
) {
697 panic("nanotime trouble 2");
699 if ((shift
!= 0) && ((_cpu_capabilities
& kSlow
) == 0)) {
700 panic("nanotime trouble 3");
703 next_gen
= ++generation
;
705 next_gen
= ++generation
;
708 p32
->nt_generation
= 0; /* mark invalid, so commpage won't try to use it */
709 p64
->nt_generation
= 0;
711 p32
->nt_tsc_base
= tsc_base
;
712 p64
->nt_tsc_base
= tsc_base
;
714 p32
->nt_ns_base
= ns_base
;
715 p64
->nt_ns_base
= ns_base
;
717 p32
->nt_scale
= scale
;
718 p64
->nt_scale
= scale
;
720 p32
->nt_shift
= shift
;
721 p64
->nt_shift
= shift
;
723 p32
->nt_generation
= next_gen
; /* mark data as valid */
724 p64
->nt_generation
= next_gen
;
727 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
728 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
729 * between the two environments.
731 * This routine must be serializeed by some external means, ie a lock.
735 commpage_set_timestamp(
740 uint64_t tick_per_sec
)
742 new_commpage_timeofday_data_t
*p32
= gtod_time_data32
;
743 new_commpage_timeofday_data_t
*p64
= gtod_time_data64
;
745 p32
->TimeStamp_tick
= 0x0ULL
;
746 p64
->TimeStamp_tick
= 0x0ULL
;
748 p32
->TimeStamp_sec
= sec
;
749 p64
->TimeStamp_sec
= sec
;
751 p32
->TimeStamp_frac
= frac
;
752 p64
->TimeStamp_frac
= frac
;
754 p32
->Ticks_scale
= scale
;
755 p64
->Ticks_scale
= scale
;
757 p32
->Ticks_per_sec
= tick_per_sec
;
758 p64
->Ticks_per_sec
= tick_per_sec
;
760 p32
->TimeStamp_tick
= abstime
;
761 p64
->TimeStamp_tick
= abstime
;
764 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
767 commpage_set_memory_pressure(
768 unsigned int pressure
)
775 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_BASE_ADDRESS
);
776 ip
= (uint32_t*) (void *) cp
;
777 *ip
= (uint32_t) pressure
;
782 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_START_ADDRESS
);
783 ip
= (uint32_t*) (void *) cp
;
784 *ip
= (uint32_t) pressure
;
788 /* Updated every time a logical CPU goes offline/online */
790 commpage_update_active_cpus(void)
793 volatile uint8_t *ip
;
795 /* At least 32-bit commpage must be initialized */
796 if (!commPagePtr32
) {
800 simple_lock(&commpage_active_cpus_lock
, LCK_GRP_NULL
);
803 cp
+= (_COMM_PAGE_ACTIVE_CPUS
- _COMM_PAGE32_BASE_ADDRESS
);
804 ip
= (volatile uint8_t*) cp
;
805 *ip
= (uint8_t) processor_avail_count_user
;
809 cp
+= (_COMM_PAGE_ACTIVE_CPUS
- _COMM_PAGE32_START_ADDRESS
);
810 ip
= (volatile uint8_t*) cp
;
811 *ip
= (uint8_t) processor_avail_count_user
;
814 simple_unlock(&commpage_active_cpus_lock
);
818 * Update the commpage with current kdebug state. This currently has bits for
819 * global trace state, and typefilter enablement. It is likely additional state
820 * will be tracked in the future.
822 * INVARIANT: This value will always be 0 if global tracing is disabled. This
823 * allows simple guard tests of "if (*_COMM_PAGE_KDEBUG_ENABLE) { ... }"
826 commpage_update_kdebug_state(void)
828 volatile uint32_t *saved_data_ptr
;
833 cp
+= (_COMM_PAGE_KDEBUG_ENABLE
- _COMM_PAGE32_BASE_ADDRESS
);
834 saved_data_ptr
= (volatile uint32_t *)cp
;
835 *saved_data_ptr
= kdebug_commpage_state();
840 cp
+= (_COMM_PAGE_KDEBUG_ENABLE
- _COMM_PAGE32_START_ADDRESS
);
841 saved_data_ptr
= (volatile uint32_t *)cp
;
842 *saved_data_ptr
= kdebug_commpage_state();
846 /* Ditto for atm_diagnostic_config */
848 commpage_update_atm_diagnostic_config(uint32_t diagnostic_config
)
850 volatile uint32_t *saved_data_ptr
;
855 cp
+= (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG
- _COMM_PAGE32_BASE_ADDRESS
);
856 saved_data_ptr
= (volatile uint32_t *)cp
;
857 *saved_data_ptr
= diagnostic_config
;
862 cp
+= (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG
- _COMM_PAGE32_START_ADDRESS
);
863 saved_data_ptr
= (volatile uint32_t *)cp
;
864 *saved_data_ptr
= diagnostic_config
;
869 * update the commpage with if dtrace user land probes are enabled
872 commpage_update_dof(boolean_t enabled
)
879 cp
+= (_COMM_PAGE_DTRACE_DOF_ENABLED
- _COMM_PAGE32_BASE_ADDRESS
);
880 *cp
= (enabled
? 1 : 0);
885 cp
+= (_COMM_PAGE_DTRACE_DOF_ENABLED
- _COMM_PAGE32_START_ADDRESS
);
886 *cp
= (enabled
? 1 : 0);
895 * update the dyld global config flags
898 commpage_update_dyld_flags(uint64_t value
)
904 cp
+= (_COMM_PAGE_DYLD_FLAGS
- _COMM_PAGE32_BASE_ADDRESS
);
905 *(uint64_t *)cp
= value
;
910 cp
+= (_COMM_PAGE_DYLD_FLAGS
- _COMM_PAGE32_BASE_ADDRESS
);
911 *(uint64_t *)cp
= value
;
917 * update the commpage data for last known value of mach_absolute_time()
921 commpage_update_mach_approximate_time(uint64_t abstime
)
923 #ifdef CONFIG_MACH_APPROXIMATE_TIME
929 cp
+= (_COMM_PAGE_APPROX_TIME
- _COMM_PAGE32_BASE_ADDRESS
);
930 saved_data
= atomic_load_explicit((_Atomic
uint64_t *)(uintptr_t)cp
, memory_order_relaxed
);
931 if (saved_data
< abstime
) {
932 /* ignoring the success/fail return value assuming that
933 * if the value has been updated since we last read it,
934 * "someone" has a newer timestamp than us and ours is
936 atomic_compare_exchange_strong_explicit((_Atomic
uint64_t *)(uintptr_t)cp
,
937 &saved_data
, abstime
, memory_order_relaxed
, memory_order_relaxed
);
942 cp
+= (_COMM_PAGE_APPROX_TIME
- _COMM_PAGE32_START_ADDRESS
);
943 saved_data
= atomic_load_explicit((_Atomic
uint64_t *)(uintptr_t)cp
, memory_order_relaxed
);
944 if (saved_data
< abstime
) {
945 /* ignoring the success/fail return value assuming that
946 * if the value has been updated since we last read it,
947 * "someone" has a newer timestamp than us and ours is
949 atomic_compare_exchange_strong_explicit((_Atomic
uint64_t *)(uintptr_t)cp
,
950 &saved_data
, abstime
, memory_order_relaxed
, memory_order_relaxed
);
954 #pragma unused (abstime)
959 commpage_update_mach_continuous_time(uint64_t sleeptime
)
964 cp
+= (_COMM_PAGE_CONT_TIMEBASE
- _COMM_PAGE32_START_ADDRESS
);
965 *(uint64_t *)cp
= sleeptime
;
970 cp
+= (_COMM_PAGE_CONT_TIMEBASE
- _COMM_PAGE32_START_ADDRESS
);
971 *(uint64_t *)cp
= sleeptime
;
976 commpage_update_boottime(uint64_t boottime
)
981 cp
+= (_COMM_PAGE_BOOTTIME_USEC
- _COMM_PAGE32_START_ADDRESS
);
982 *(uint64_t *)cp
= boottime
;
987 cp
+= (_COMM_PAGE_BOOTTIME_USEC
- _COMM_PAGE32_START_ADDRESS
);
988 *(uint64_t *)cp
= boottime
;
993 extern user32_addr_t commpage_text32_location
;
994 extern user64_addr_t commpage_text64_location
;
996 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
999 commpage_is_in_pfz32(uint32_t addr32
)
1001 if ((addr32
>= (commpage_text32_location
+ _COMM_TEXT_PFZ_START_OFFSET
))
1002 && (addr32
< (commpage_text32_location
+ _COMM_TEXT_PFZ_END_OFFSET
))) {
1010 commpage_is_in_pfz64(addr64_t addr64
)
1012 if ((addr64
>= (commpage_text64_location
+ _COMM_TEXT_PFZ_START_OFFSET
))
1013 && (addr64
< (commpage_text64_location
+ _COMM_TEXT_PFZ_END_OFFSET
))) {