]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/commpage/commpage.c
xnu-2050.22.13.tar.gz
[apple/xnu.git] / osfmk / i386 / commpage / commpage.c
1 /*
2 * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Here's what to do if you want to add a new routine to the comm page:
31 *
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
34 *
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
40 *
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
44 *
45 * 4. Write the code in Libc to use the new routine.
46 */
47
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
54 #include <i386/tsc.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
65
66 #include <ipc/ipc_port.h>
67
68 #include <kern/page_decrypt.h>
69 #include <kern/processor.h>
70
71 /* the lists of commpage routines are in commpage_asm.s */
72 extern commpage_descriptor* commpage_32_routines[];
73 extern commpage_descriptor* commpage_64_routines[];
74
75 extern vm_map_t commpage32_map; // the shared submap, set up in vm init
76 extern vm_map_t commpage64_map; // the shared submap, set up in vm init
77 extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init
78 extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init
79
80
81 char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
82 char *commPagePtr64 = NULL; // ...and of 64-bit commpage
83 char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
84 char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage
85 uint32_t _cpu_capabilities = 0; // define the capability vector
86
87 int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
88
89 typedef uint32_t commpage_address_t;
90
91 static commpage_address_t next; // next available address in comm page
92 static commpage_address_t cur_routine; // comm page address of "current" routine
93 static boolean_t matched; // true if we've found a match for "current" routine
94
95 static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
96 static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
97
98 static commpage_time_data *time_data32 = NULL;
99 static commpage_time_data *time_data64 = NULL;
100
101 decl_simple_lock_data(static,commpage_active_cpus_lock);
102
103 /* Allocate the commpage and add to the shared submap created by vm:
104 * 1. allocate a page in the kernel map (RW)
105 * 2. wire it down
106 * 3. make a memory entry out of it
107 * 4. map that entry into the shared comm region map (R-only)
108 */
109
110 static void*
111 commpage_allocate(
112 vm_map_t submap, // commpage32_map or commpage_map64
113 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
114 vm_prot_t uperm)
115 {
116 vm_offset_t kernel_addr = 0; // address of commpage in kernel map
117 vm_offset_t zero = 0;
118 vm_size_t size = area_used; // size actually populated
119 vm_map_entry_t entry;
120 ipc_port_t handle;
121 kern_return_t kr;
122
123 if (submap == NULL)
124 panic("commpage submap is null");
125
126 if ((kr = vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE)))
127 panic("cannot allocate commpage %d", kr);
128
129 if ((kr = vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE)))
130 panic("cannot wire commpage: %d", kr);
131
132 /*
133 * Now that the object is created and wired into the kernel map, mark it so that no delay
134 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
135 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
136 * that would be a real disaster.
137 *
138 * JMM - What we really need is a way to create it like this in the first place.
139 */
140 if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map))
141 panic("cannot find commpage entry %d", kr);
142 entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
143
144 if ((kr = mach_make_memory_entry( kernel_map, // target map
145 &size, // size
146 kernel_addr, // offset (address in kernel map)
147 uperm, // protections as specified
148 &handle, // this is the object handle we get
149 NULL ))) // parent_entry (what is this?)
150 panic("cannot make entry for commpage %d", kr);
151
152 if ((kr = vm_map_64( submap, // target map (shared submap)
153 &zero, // address (map into 1st page in submap)
154 area_used, // size
155 0, // mask
156 VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
157 handle, // port is the memory entry we just made
158 0, // offset (map 1st page in memory entry)
159 FALSE, // copy
160 uperm, // cur_protection (R-only in user map)
161 uperm, // max_protection
162 VM_INHERIT_SHARE ))) // inheritance
163 panic("cannot map commpage %d", kr);
164
165 ipc_port_release(handle);
166 /* Make the kernel mapping non-executable. This cannot be done
167 * at the time of map entry creation as mach_make_memory_entry
168 * cannot handle disjoint permissions at this time.
169 */
170 kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE);
171 assert (kr == KERN_SUCCESS);
172
173 return (void*)(intptr_t)kernel_addr; // return address in kernel map
174 }
175
176 /* Get address (in kernel map) of a commpage field. */
177
178 static void*
179 commpage_addr_of(
180 commpage_address_t addr_at_runtime )
181 {
182 return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
183 }
184
185 /* Determine number of CPUs on this system. We cannot rely on
186 * machine_info.max_cpus this early in the boot.
187 */
188 static int
189 commpage_cpus( void )
190 {
191 int cpus;
192
193 cpus = ml_get_max_cpus(); // NB: this call can block
194
195 if (cpus == 0)
196 panic("commpage cpus==0");
197 if (cpus > 0xFF)
198 cpus = 0xFF;
199
200 return cpus;
201 }
202
203 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
204
205 static void
206 commpage_init_cpu_capabilities( void )
207 {
208 uint32_t bits;
209 int cpus;
210 ml_cpu_info_t cpu_info;
211
212 bits = 0;
213 ml_cpu_get_info(&cpu_info);
214
215 switch (cpu_info.vector_unit) {
216 case 9:
217 bits |= kHasAVX1_0;
218 /* fall thru */
219 case 8:
220 bits |= kHasSSE4_2;
221 /* fall thru */
222 case 7:
223 bits |= kHasSSE4_1;
224 /* fall thru */
225 case 6:
226 bits |= kHasSupplementalSSE3;
227 /* fall thru */
228 case 5:
229 bits |= kHasSSE3;
230 /* fall thru */
231 case 4:
232 bits |= kHasSSE2;
233 /* fall thru */
234 case 3:
235 bits |= kHasSSE;
236 /* fall thru */
237 case 2:
238 bits |= kHasMMX;
239 default:
240 break;
241 }
242 switch (cpu_info.cache_line_size) {
243 case 128:
244 bits |= kCache128;
245 break;
246 case 64:
247 bits |= kCache64;
248 break;
249 case 32:
250 bits |= kCache32;
251 break;
252 default:
253 break;
254 }
255 cpus = commpage_cpus(); // how many CPUs do we have
256
257 if (cpus == 1)
258 bits |= kUP;
259
260 bits |= (cpus << kNumCPUsShift);
261
262 bits |= kFastThreadLocalStorage; // we use %gs for TLS
263
264 if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
265 bits |= k64Bit;
266
267 if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */
268 bits |= kSlow;
269
270 bits |= (cpuid_features() & CPUID_FEATURE_AES) ? kHasAES : 0;
271
272 bits |= (cpuid_features() & CPUID_FEATURE_F16C) ? kHasF16C : 0;
273 bits |= (cpuid_features() & CPUID_FEATURE_RDRAND) ? kHasRDRAND : 0;
274 bits |= ((cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_ENFSTRG) &&
275 (rdmsr64(MSR_IA32_MISC_ENABLE) & 1ULL )) ? kHasENFSTRG : 0;
276
277 _cpu_capabilities = bits; // set kernel version for use by drivers etc
278 }
279
280 int
281 _get_cpu_capabilities(void)
282 {
283 return _cpu_capabilities;
284 }
285
286 /* Copy data into commpage. */
287
288 static void
289 commpage_stuff(
290 commpage_address_t address,
291 const void *source,
292 int length )
293 {
294 void *dest = commpage_addr_of(address);
295
296 if (address < next)
297 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
298
299 bcopy(source,dest,length);
300
301 next = address + length;
302 }
303
304 /* Copy a routine into comm page if it matches running machine.
305 */
306 static void
307 commpage_stuff_routine(
308 commpage_descriptor *rd )
309 {
310 uint32_t must,cant;
311
312 if (rd->commpage_address != cur_routine) {
313 if ((cur_routine!=0) && (matched==0))
314 panic("commpage no match for last, next address %08x", rd->commpage_address);
315 cur_routine = rd->commpage_address;
316 matched = 0;
317 }
318
319 must = _cpu_capabilities & rd->musthave;
320 cant = _cpu_capabilities & rd->canthave;
321
322 if ((must == rd->musthave) && (cant == 0)) {
323 if (matched)
324 panic("commpage multiple matches for address %08x", rd->commpage_address);
325 matched = 1;
326
327 commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
328 }
329 }
330
331 /* Fill in the 32- or 64-bit commpage. Called once for each.
332 */
333
334 static void
335 commpage_populate_one(
336 vm_map_t submap, // commpage32_map or compage64_map
337 char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
338 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
339 commpage_address_t base_offset, // will become commPageBaseOffset
340 commpage_time_data** time_data, // &time_data32 or &time_data64
341 const char* signature, // "commpage 32-bit" or "commpage 64-bit"
342 vm_prot_t uperm)
343 {
344 uint8_t c1;
345 short c2;
346 int c4;
347 uint64_t c8;
348 uint32_t cfamily;
349 short version = _COMM_PAGE_THIS_VERSION;
350
351 next = 0;
352 cur_routine = 0;
353 commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm );
354 *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
355 commPageBaseOffset = base_offset;
356
357 *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
358
359 /* Stuff in the constants. We move things into the comm page in strictly
360 * ascending order, so we can check for overlap and panic if so.
361 */
362 commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)strlen(signature));
363 commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
364 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(int));
365
366 c2 = 32; // default
367 if (_cpu_capabilities & kCache64)
368 c2 = 64;
369 else if (_cpu_capabilities & kCache128)
370 c2 = 128;
371 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
372
373 c4 = MP_SPIN_TRIES;
374 commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
375
376 /* machine_info valid after ml_get_max_cpus() */
377 c1 = machine_info.physical_cpu_max;
378 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
379 c1 = machine_info.logical_cpu_max;
380 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
381
382 c8 = ml_cpu_cache_size(0);
383 commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
384
385 cfamily = cpuid_info()->cpuid_cpufamily;
386 commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
387
388 if (next > _COMM_PAGE_END)
389 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
390
391 }
392
393
394 /* Fill in commpages: called once, during kernel initialization, from the
395 * startup thread before user-mode code is running.
396 *
397 * See the top of this file for a list of what you have to do to add
398 * a new routine to the commpage.
399 */
400
401 void
402 commpage_populate( void )
403 {
404 commpage_init_cpu_capabilities();
405
406 commpage_populate_one( commpage32_map,
407 &commPagePtr32,
408 _COMM_PAGE32_AREA_USED,
409 _COMM_PAGE32_BASE_ADDRESS,
410 &time_data32,
411 "commpage 32-bit",
412 VM_PROT_READ);
413 #ifndef __LP64__
414 pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
415 _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
416 #endif
417 time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
418
419 if (_cpu_capabilities & k64Bit) {
420 commpage_populate_one( commpage64_map,
421 &commPagePtr64,
422 _COMM_PAGE64_AREA_USED,
423 _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
424 &time_data64,
425 "commpage 64-bit",
426 VM_PROT_READ);
427 #ifndef __LP64__
428 pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
429 _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
430 #endif
431 }
432
433 simple_lock_init(&commpage_active_cpus_lock, 0);
434
435 commpage_update_active_cpus();
436 rtc_nanotime_init_commpage();
437 }
438
439 /* Fill in the common routines during kernel initialization.
440 * This is called before user-mode code is running.
441 */
442 void commpage_text_populate( void ){
443 commpage_descriptor **rd;
444
445 next =0;
446 cur_routine=0;
447 commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
448 commPageTextPtr32 = commPagePtr;
449
450 char *cptr = commPagePtr;
451 int i=0;
452 for(; i< _COMM_PAGE_TEXT_AREA_USED; i++){
453 cptr[i]=0xCC;
454 }
455
456 commPageBaseOffset = _COMM_PAGE_TEXT_START;
457 for (rd = commpage_32_routines; *rd != NULL; rd++) {
458 commpage_stuff_routine(*rd);
459 }
460 if (!matched)
461 panic(" commpage_text no match for last routine ");
462
463 #ifndef __LP64__
464 pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START,
465 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
466 #endif
467
468 if (_cpu_capabilities & k64Bit) {
469 next =0;
470 cur_routine=0;
471 commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
472 commPageTextPtr64 = commPagePtr;
473
474 cptr=commPagePtr;
475 for(i=0; i<_COMM_PAGE_TEXT_AREA_USED; i++){
476 cptr[i]=0xCC;
477 }
478
479 for (rd = commpage_64_routines; *rd !=NULL; rd++) {
480 commpage_stuff_routine(*rd);
481 }
482
483 #ifndef __LP64__
484 pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START,
485 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
486 #endif
487 }
488
489 if (!matched)
490 panic(" commpage_text no match for last routine ");
491
492 if (next > _COMM_PAGE_TEXT_END)
493 panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr);
494
495 }
496
497 /* Update commpage nanotime information. Note that we interleave
498 * setting the 32- and 64-bit commpages, in order to keep nanotime more
499 * nearly in sync between the two environments.
500 *
501 * This routine must be serialized by some external means, ie a lock.
502 */
503
504 void
505 commpage_set_nanotime(
506 uint64_t tsc_base,
507 uint64_t ns_base,
508 uint32_t scale,
509 uint32_t shift )
510 {
511 commpage_time_data *p32 = time_data32;
512 commpage_time_data *p64 = time_data64;
513 static uint32_t generation = 0;
514 uint32_t next_gen;
515
516 if (p32 == NULL) /* have commpages been allocated yet? */
517 return;
518
519 if ( generation != p32->nt_generation )
520 panic("nanotime trouble 1"); /* possibly not serialized */
521 if ( ns_base < p32->nt_ns_base )
522 panic("nanotime trouble 2");
523 if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) )
524 panic("nanotime trouble 3");
525
526 next_gen = ++generation;
527 if (next_gen == 0)
528 next_gen = ++generation;
529
530 p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
531 p64->nt_generation = 0;
532
533 p32->nt_tsc_base = tsc_base;
534 p64->nt_tsc_base = tsc_base;
535
536 p32->nt_ns_base = ns_base;
537 p64->nt_ns_base = ns_base;
538
539 p32->nt_scale = scale;
540 p64->nt_scale = scale;
541
542 p32->nt_shift = shift;
543 p64->nt_shift = shift;
544
545 p32->nt_generation = next_gen; /* mark data as valid */
546 p64->nt_generation = next_gen;
547 }
548
549
550 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
551
552 void
553 commpage_disable_timestamp( void )
554 {
555 time_data32->gtod_generation = 0;
556 time_data64->gtod_generation = 0;
557 }
558
559
560 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
561 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
562 * between the two environments.
563 *
564 * This routine must be serializeed by some external means, ie a lock.
565 */
566
567 void
568 commpage_set_timestamp(
569 uint64_t abstime,
570 uint64_t secs )
571 {
572 commpage_time_data *p32 = time_data32;
573 commpage_time_data *p64 = time_data64;
574 static uint32_t generation = 0;
575 uint32_t next_gen;
576
577 next_gen = ++generation;
578 if (next_gen == 0)
579 next_gen = ++generation;
580
581 p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
582 p64->gtod_generation = 0;
583
584 p32->gtod_ns_base = abstime;
585 p64->gtod_ns_base = abstime;
586
587 p32->gtod_sec_base = secs;
588 p64->gtod_sec_base = secs;
589
590 p32->gtod_generation = next_gen; /* mark data as valid */
591 p64->gtod_generation = next_gen;
592 }
593
594
595 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
596
597 void
598 commpage_set_memory_pressure(
599 unsigned int pressure )
600 {
601 char *cp;
602 uint32_t *ip;
603
604 cp = commPagePtr32;
605 if ( cp ) {
606 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
607 ip = (uint32_t*) cp;
608 *ip = (uint32_t) pressure;
609 }
610
611 cp = commPagePtr64;
612 if ( cp ) {
613 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
614 ip = (uint32_t*) cp;
615 *ip = (uint32_t) pressure;
616 }
617
618 }
619
620
621 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
622
623 void
624 commpage_set_spin_count(
625 unsigned int count )
626 {
627 char *cp;
628 uint32_t *ip;
629
630 if (count == 0) /* we test for 0 after decrement, not before */
631 count = 1;
632
633 cp = commPagePtr32;
634 if ( cp ) {
635 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
636 ip = (uint32_t*) cp;
637 *ip = (uint32_t) count;
638 }
639
640 cp = commPagePtr64;
641 if ( cp ) {
642 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
643 ip = (uint32_t*) cp;
644 *ip = (uint32_t) count;
645 }
646
647 }
648
649 /* Updated every time a logical CPU goes offline/online */
650 void
651 commpage_update_active_cpus(void)
652 {
653 char *cp;
654 volatile uint8_t *ip;
655
656 /* At least 32-bit commpage must be initialized */
657 if (!commPagePtr32)
658 return;
659
660 simple_lock(&commpage_active_cpus_lock);
661
662 cp = commPagePtr32;
663 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
664 ip = (volatile uint8_t*) cp;
665 *ip = (uint8_t) processor_avail_count;
666
667 cp = commPagePtr64;
668 if ( cp ) {
669 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
670 ip = (volatile uint8_t*) cp;
671 *ip = (uint8_t) processor_avail_count;
672 }
673
674 simple_unlock(&commpage_active_cpus_lock);
675 }
676
677 extern user32_addr_t commpage_text32_location;
678 extern user64_addr_t commpage_text64_location;
679
680 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
681
682 uint32_t
683 commpage_is_in_pfz32(uint32_t addr32)
684 {
685 if ( (addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET))
686 && (addr32 < (commpage_text32_location+_COMM_TEXT_PFZ_END_OFFSET))) {
687 return 1;
688 }
689 else
690 return 0;
691 }
692
693 uint32_t
694 commpage_is_in_pfz64(addr64_t addr64)
695 {
696 if ( (addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET))
697 && (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) {
698 return 1;
699 }
700 else
701 return 0;
702 }
703