]>
git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_input.c
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
55 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/sysctl.h>
63 #include <sys/malloc.h>
65 #include <sys/proc.h> /* for proc0 declaration */
66 #include <sys/protosw.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/syslog.h>
71 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
74 #include <net/if_types.h>
75 #include <net/route.h>
77 #include <netinet/in.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
81 #include <netinet/in_var.h>
82 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
83 #include <netinet/in_pcb.h>
84 #include <netinet/ip_var.h>
86 #include <netinet/ip6.h>
87 #include <netinet/icmp6.h>
88 #include <netinet6/nd6.h>
89 #include <netinet6/ip6_var.h>
90 #include <netinet6/in6_pcb.h>
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
98 #include <netinet6/tcp6_var.h>
100 #include <netinet/tcpip.h>
102 #include <netinet/tcp_debug.h>
103 u_char tcp_saveipgen
[40]; /* the size must be of max ip header, now IPv6 */
104 struct tcphdr tcp_savetcp
;
105 #endif /* TCPDEBUG */
108 #include <netinet6/ipsec.h>
110 #include <netinet6/ipsec6.h>
112 #include <netkey/key.h>
115 #include <sys/kdebug.h>
118 MALLOC_DEFINE(M_TSEGQ
, "tseg_qent", "TCP segment queue entry");
121 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
122 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
123 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
124 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
126 static int tcprexmtthresh
= 3;
128 extern int apple_hwcksum_rx
;
131 extern int ipsec_bypass
;
134 struct tcpstat tcpstat
;
135 SYSCTL_STRUCT(_net_inet_tcp
, TCPCTL_STATS
, stats
, CTLFLAG_RD
,
136 &tcpstat
, tcpstat
, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
138 static int log_in_vain
= 0;
139 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
,
140 &log_in_vain
, 0, "Log all incoming TCP connections");
142 static int blackhole
= 0;
143 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, blackhole
, CTLFLAG_RW
,
144 &blackhole
, 0, "Do not send RST when dropping refused connections");
146 int tcp_delack_enabled
= 1;
147 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, delayed_ack
, CTLFLAG_RW
,
148 &tcp_delack_enabled
, 0,
149 "Delay ACK to try and piggyback it onto a data packet");
151 int tcp_lq_overflow
= 1;
152 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcp_lq_overflow
, CTLFLAG_RW
,
154 "Listen Queue Overflow");
157 static int drop_synfin
= 1;
158 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, drop_synfin
, CTLFLAG_RW
,
159 &drop_synfin
, 0, "Drop TCP packets with SYN+FIN set");
162 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, reass
, CTLFLAG_RW
, 0,
163 "TCP Segment Reassembly Queue");
165 __private_extern__
int tcp_reass_maxseg
= 0;
166 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, maxsegments
, CTLFLAG_RW
,
167 &tcp_reass_maxseg
, 0,
168 "Global maximum number of TCP Segments in Reassembly Queue");
170 __private_extern__
int tcp_reass_qsize
= 0;
171 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, cursegments
, CTLFLAG_RD
,
173 "Global number of TCP Segments currently in Reassembly Queue");
175 static int tcp_reass_overflows
= 0;
176 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, overflows
, CTLFLAG_RD
,
177 &tcp_reass_overflows
, 0,
178 "Global number of TCP Segment Reassembly Queue Overflows");
181 __private_extern__
int slowlink_wsize
= 8192;
182 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, slowlink_wsize
, CTLFLAG_RW
,
183 &slowlink_wsize
, 0, "Maximum advertised window size for slowlink");
187 struct inpcbhead tcb
;
188 #define tcb6 tcb /* for KAME src sync over BSD*'s */
189 struct inpcbinfo tcbinfo
;
191 static void tcp_dooptions
__P((struct tcpcb
*,
192 u_char
*, int, struct tcphdr
*, struct tcpopt
*));
193 static void tcp_pulloutofband
__P((struct socket
*,
194 struct tcphdr
*, struct mbuf
*, int));
195 static int tcp_reass
__P((struct tcpcb
*, struct tcphdr
*, int *,
197 static void tcp_xmit_timer
__P((struct tcpcb
*, int));
198 static int tcp_newreno
__P((struct tcpcb
*, struct tcphdr
*));
200 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
202 #define ND6_HINT(tp) \
204 if ((tp) && (tp)->t_inpcb && \
205 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
206 (tp)->t_inpcb->in6p_route.ro_rt) \
207 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
213 extern u_long
*delack_bitmask
;
216 * Indicate whether this ack should be delayed. We can delay the ack if
217 * - delayed acks are enabled and
218 * - there is no delayed ack timer in progress and
219 * - our last ack wasn't a 0-sized window. We never want to delay
220 * the ack that opens up a 0-sized window.
222 #define DELAY_ACK(tp) \
223 (tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
224 (tp->t_flags & TF_RXWIN0SENT) == 0)
228 tcp_reass(tp
, th
, tlenp
, m
)
229 register struct tcpcb
*tp
;
230 register struct tcphdr
*th
;
235 struct tseg_qent
*p
= NULL
;
236 struct tseg_qent
*nq
;
237 struct tseg_qent
*te
;
238 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
242 * Call with th==0 after become established to
243 * force pre-ESTABLISHED data up to user socket.
249 * Limit the number of segments in the reassembly queue to prevent
250 * holding on to too many segments (and thus running out of mbufs).
251 * Make sure to let the missing segment through which caused this
252 * queue. Always keep one global queue entry spare to be able to
253 * process the missing segment.
255 if (th
->th_seq
!= tp
->rcv_nxt
&&
256 tcp_reass_qsize
+ 1 >= tcp_reass_maxseg
) {
257 tcp_reass_overflows
++;
258 tcpstat
.tcps_rcvmemdrop
++;
263 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
264 MALLOC(te
, struct tseg_qent
*, sizeof (struct tseg_qent
), M_TSEGQ
,
267 tcpstat
.tcps_rcvmemdrop
++;
274 * Find a segment which begins after this one does.
276 LIST_FOREACH(q
, &tp
->t_segq
, tqe_q
) {
277 if (SEQ_GT(q
->tqe_th
->th_seq
, th
->th_seq
))
283 * If there is a preceding segment, it may provide some of
284 * our data already. If so, drop the data from the incoming
285 * segment. If it provides all of our data, drop us.
289 /* conversion to int (in i) handles seq wraparound */
290 i
= p
->tqe_th
->th_seq
+ p
->tqe_len
- th
->th_seq
;
293 tcpstat
.tcps_rcvduppack
++;
294 tcpstat
.tcps_rcvdupbyte
+= *tlenp
;
299 * Try to present any queued data
300 * at the left window edge to the user.
301 * This is needed after the 3-WHS
304 goto present
; /* ??? */
311 tcpstat
.tcps_rcvoopack
++;
312 tcpstat
.tcps_rcvoobyte
+= *tlenp
;
315 * While we overlap succeeding segments trim them or,
316 * if they are completely covered, dequeue them.
319 register int i
= (th
->th_seq
+ *tlenp
) - q
->tqe_th
->th_seq
;
322 if (i
< q
->tqe_len
) {
323 q
->tqe_th
->th_seq
+= i
;
329 nq
= LIST_NEXT(q
, tqe_q
);
330 LIST_REMOVE(q
, tqe_q
);
337 /* Insert the new segment queue entry into place. */
340 te
->tqe_len
= *tlenp
;
343 LIST_INSERT_HEAD(&tp
->t_segq
, te
, tqe_q
);
345 LIST_INSERT_AFTER(p
, te
, tqe_q
);
350 * Present data to user, advancing rcv_nxt through
351 * completed sequence space.
353 if (!TCPS_HAVEESTABLISHED(tp
->t_state
))
355 q
= LIST_FIRST(&tp
->t_segq
);
356 if (!q
|| q
->tqe_th
->th_seq
!= tp
->rcv_nxt
)
359 tp
->rcv_nxt
+= q
->tqe_len
;
360 flags
= q
->tqe_th
->th_flags
& TH_FIN
;
361 nq
= LIST_NEXT(q
, tqe_q
);
362 LIST_REMOVE(q
, tqe_q
);
363 if (so
->so_state
& SS_CANTRCVMORE
)
366 sbappend(&so
->so_rcv
, q
->tqe_m
);
370 } while (q
&& q
->tqe_th
->th_seq
== tp
->rcv_nxt
);
374 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
376 KERNEL_DEBUG(DBG_LAYER_BEG
,
377 ((tp
->t_inpcb
->inp_fport
<< 16) | tp
->t_inpcb
->inp_lport
),
378 (((tp
->t_inpcb
->in6p_laddr
.s6_addr16
[0] & 0xffff) << 16) |
379 (tp
->t_inpcb
->in6p_faddr
.s6_addr16
[0] & 0xffff)),
385 KERNEL_DEBUG(DBG_LAYER_BEG
,
386 ((tp
->t_inpcb
->inp_fport
<< 16) | tp
->t_inpcb
->inp_lport
),
387 (((tp
->t_inpcb
->inp_laddr
.s_addr
& 0xffff) << 16) |
388 (tp
->t_inpcb
->inp_faddr
.s_addr
& 0xffff)),
398 * TCP input routine, follows pages 65-76 of the
399 * protocol specification dated September, 1981 very closely.
407 register struct mbuf
*m
= *mp
;
408 struct in6_ifaddr
*ia6
;
410 IP6_EXTHDR_CHECK(m
, *offp
, sizeof(struct tcphdr
), IPPROTO_DONE
);
413 * draft-itojun-ipv6-tcp-to-anycast
414 * better place to put this in?
416 ia6
= ip6_getdstifaddr(m
);
417 if (ia6
&& (ia6
->ia6_flags
& IN6_IFF_ANYCAST
)) {
420 ip6
= mtod(m
, struct ip6_hdr
*);
421 icmp6_error(m
, ICMP6_DST_UNREACH
, ICMP6_DST_UNREACH_ADDR
,
422 (caddr_t
)&ip6
->ip6_dst
- (caddr_t
)ip6
);
436 register struct tcphdr
*th
;
437 register struct ip
*ip
= NULL
;
438 register struct ipovly
*ipov
;
439 register struct inpcb
*inp
;
444 register struct tcpcb
*tp
= 0;
445 register int thflags
;
446 struct socket
*so
= 0;
447 int todrop
, acked
, ourfinisacked
, needoutput
= 0;
448 struct in_addr laddr
;
450 struct in6_addr laddr6
;
455 struct tcpopt to
; /* options in this segment */
456 struct rmxp_tao
*taop
; /* pointer to our TAO cache entry */
457 struct rmxp_tao tao_noncached
; /* in case there's no cached entry */
462 struct ip6_hdr
*ip6
= NULL
;
465 int rstreason
; /* For badport_bandlim accounting purposes */
466 struct proc
*proc0
=current_proc();
468 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_START
,0,0,0,0,0);
471 isipv6
= (mtod(m
, struct ip
*)->ip_v
== 6) ? 1 : 0;
473 bzero((char *)&to
, sizeof(to
));
475 tcpstat
.tcps_rcvtotal
++;
481 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
482 ip6
= mtod(m
, struct ip6_hdr
*);
483 tlen
= sizeof(*ip6
) + ntohs(ip6
->ip6_plen
) - off0
;
484 if (in6_cksum(m
, IPPROTO_TCP
, off0
, tlen
)) {
485 tcpstat
.tcps_rcvbadsum
++;
488 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
490 KERNEL_DEBUG(DBG_LAYER_BEG
, ((th
->th_dport
<< 16) | th
->th_sport
),
491 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
492 th
->th_seq
, th
->th_ack
, th
->th_win
);
494 * Be proactive about unspecified IPv6 address in source.
495 * As we use all-zero to indicate unbounded/unconnected pcb,
496 * unspecified IPv6 address can be used to confuse us.
498 * Note that packets with unspecified IPv6 destination is
499 * already dropped in ip6_input.
501 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
)) {
509 * Get IP and TCP header together in first mbuf.
510 * Note: IP leaves IP header in first mbuf.
512 if (off0
> sizeof (struct ip
)) {
513 ip_stripoptions(m
, (struct mbuf
*)0);
514 off0
= sizeof(struct ip
);
515 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
516 m
->m_pkthdr
.csum_flags
= 0; /* invalidate hwcksuming */
519 if (m
->m_len
< sizeof (struct tcpiphdr
)) {
520 if ((m
= m_pullup(m
, sizeof (struct tcpiphdr
))) == 0) {
521 tcpstat
.tcps_rcvshort
++;
525 ip
= mtod(m
, struct ip
*);
526 ipov
= (struct ipovly
*)ip
;
527 th
= (struct tcphdr
*)((caddr_t
)ip
+ off0
);
530 KERNEL_DEBUG(DBG_LAYER_BEG
, ((th
->th_dport
<< 16) | th
->th_sport
),
531 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
532 th
->th_seq
, th
->th_ack
, th
->th_win
);
534 if (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
) {
535 if (apple_hwcksum_rx
&& (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)) {
538 *(uint32_t*)&b
[0] = *(uint32_t*)&ipov
->ih_x1
[0];
539 *(uint32_t*)&b
[4] = *(uint32_t*)&ipov
->ih_x1
[4];
540 *(uint8_t*)&b
[8] = *(uint8_t*)&ipov
->ih_x1
[8];
542 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
543 ipov
->ih_len
= (u_short
)tlen
;
545 pseudo
= in_cksum(m
, sizeof (struct ip
));
547 *(uint32_t*)&ipov
->ih_x1
[0] = *(uint32_t*)&b
[0];
548 *(uint32_t*)&ipov
->ih_x1
[4] = *(uint32_t*)&b
[4];
549 *(uint8_t*)&ipov
->ih_x1
[8] = *(uint8_t*)&b
[8];
551 th
->th_sum
= in_addword(pseudo
, (m
->m_pkthdr
.csum_data
& 0xFFFF));
553 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
)
554 th
->th_sum
= m
->m_pkthdr
.csum_data
;
556 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
,
557 ip
->ip_dst
.s_addr
, htonl(m
->m_pkthdr
.csum_data
+
558 ip
->ip_len
+ IPPROTO_TCP
));
560 th
->th_sum
^= 0xffff;
564 * Checksum extended TCP header and data.
566 *(uint32_t*)&b
[0] = *(uint32_t*)&ipov
->ih_x1
[0];
567 *(uint32_t*)&b
[4] = *(uint32_t*)&ipov
->ih_x1
[4];
568 *(uint8_t*)&b
[8] = *(uint8_t*)&ipov
->ih_x1
[8];
570 len
= sizeof (struct ip
) + tlen
;
571 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
572 ipov
->ih_len
= (u_short
)tlen
;
574 th
->th_sum
= in_cksum(m
, len
);
576 *(uint32_t*)&ipov
->ih_x1
[0] = *(uint32_t*)&b
[0];
577 *(uint32_t*)&ipov
->ih_x1
[4] = *(uint32_t*)&b
[4];
578 *(uint8_t*)&ipov
->ih_x1
[8] = *(uint8_t*)&b
[8];
581 tcpstat
.tcps_rcvbadsum
++;
585 /* Re-initialization for later version check */
586 ip
->ip_v
= IPVERSION
;
591 * Check that TCP offset makes sense,
592 * pull out TCP options and adjust length. XXX
594 off
= th
->th_off
<< 2;
595 if (off
< sizeof (struct tcphdr
) || off
> tlen
) {
596 tcpstat
.tcps_rcvbadoff
++;
599 tlen
-= off
; /* tlen is used instead of ti->ti_len */
600 if (off
> sizeof (struct tcphdr
)) {
603 IP6_EXTHDR_CHECK(m
, off0
, off
, );
604 ip6
= mtod(m
, struct ip6_hdr
*);
605 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
609 if (m
->m_len
< sizeof(struct ip
) + off
) {
610 if ((m
= m_pullup(m
, sizeof (struct ip
) + off
)) == 0) {
611 tcpstat
.tcps_rcvshort
++;
614 ip
= mtod(m
, struct ip
*);
615 ipov
= (struct ipovly
*)ip
;
616 th
= (struct tcphdr
*)((caddr_t
)ip
+ off0
);
619 optlen
= off
- sizeof (struct tcphdr
);
620 optp
= (u_char
*)(th
+ 1);
622 * Do quick retrieval of timestamp options ("options
623 * prediction?"). If timestamp is the only option and it's
624 * formatted as recommended in RFC 1323 appendix A, we
625 * quickly get the values now and not bother calling
626 * tcp_dooptions(), etc.
628 if ((optlen
== TCPOLEN_TSTAMP_APPA
||
629 (optlen
> TCPOLEN_TSTAMP_APPA
&&
630 optp
[TCPOLEN_TSTAMP_APPA
] == TCPOPT_EOL
)) &&
631 *(u_int32_t
*)optp
== htonl(TCPOPT_TSTAMP_HDR
) &&
632 (th
->th_flags
& TH_SYN
) == 0) {
633 to
.to_flag
|= TOF_TS
;
634 to
.to_tsval
= ntohl(*(u_int32_t
*)(optp
+ 4));
635 to
.to_tsecr
= ntohl(*(u_int32_t
*)(optp
+ 8));
636 optp
= NULL
; /* we've parsed the options */
639 thflags
= th
->th_flags
;
643 * If the drop_synfin option is enabled, drop all packets with
644 * both the SYN and FIN bits set. This prevents e.g. nmap from
645 * identifying the TCP/IP stack.
647 * This is incompatible with RFC1644 extensions (T/TCP).
649 if (drop_synfin
&& (thflags
& (TH_SYN
|TH_FIN
)) == (TH_SYN
|TH_FIN
))
654 * Convert TCP protocol specific fields to host format.
662 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
663 * until after ip6_savecontrol() is called and before other functions
664 * which don't want those proto headers.
665 * Because ip6_savecontrol() is going to parse the mbuf to
666 * search for data to be passed up to user-land, it wants mbuf
667 * parameters to be unchanged.
669 drop_hdrlen
= off0
+ off
;
672 * Locate pcb for segment.
675 #if IPFIREWALL_FORWARD
676 if (ip_fw_fwd_addr
!= NULL
678 && isipv6
== NULL
/* IPv6 support is not yet */
682 * Diverted. Pretend to be the destination.
683 * already got one like this?
685 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
, th
->th_sport
,
686 ip
->ip_dst
, th
->th_dport
, 0, m
->m_pkthdr
.rcvif
);
689 * No, then it's new. Try find the ambushing socket
691 if (!ip_fw_fwd_addr
->sin_port
) {
692 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
,
693 th
->th_sport
, ip_fw_fwd_addr
->sin_addr
,
694 th
->th_dport
, 1, m
->m_pkthdr
.rcvif
);
696 inp
= in_pcblookup_hash(&tcbinfo
,
697 ip
->ip_src
, th
->th_sport
,
698 ip_fw_fwd_addr
->sin_addr
,
699 ntohs(ip_fw_fwd_addr
->sin_port
), 1,
703 ip_fw_fwd_addr
= NULL
;
705 #endif /* IPFIREWALL_FORWARD */
709 inp
= in6_pcblookup_hash(&tcbinfo
, &ip6
->ip6_src
, th
->th_sport
,
710 &ip6
->ip6_dst
, th
->th_dport
, 1,
714 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
, th
->th_sport
,
715 ip
->ip_dst
, th
->th_dport
, 1, m
->m_pkthdr
.rcvif
);
721 if (ipsec_bypass
== 0 && inp
!= NULL
&& ipsec6_in_reject_so(m
, inp
->inp_socket
)) {
722 ipsec6stat
.in_polvio
++;
727 if (ipsec_bypass
== 0 && inp
!= NULL
&& ipsec4_in_reject_so(m
, inp
->inp_socket
)) {
728 ipsecstat
.in_polvio
++;
734 * If the state is CLOSED (i.e., TCB does not exist) then
735 * all data in the incoming segment is discarded.
736 * If the TCB exists but is in CLOSED state, it is embryonic,
737 * but should either do a listen or a connect soon.
742 char dbuf
[INET6_ADDRSTRLEN
], sbuf
[INET6_ADDRSTRLEN
];
744 char dbuf
[4*sizeof "123"], sbuf
[4*sizeof "123"];
749 strcpy(dbuf
, ip6_sprintf(&ip6
->ip6_dst
));
750 strcpy(sbuf
, ip6_sprintf(&ip6
->ip6_src
));
754 strcpy(dbuf
, inet_ntoa(ip
->ip_dst
));
755 strcpy(sbuf
, inet_ntoa(ip
->ip_src
));
757 switch (log_in_vain
) {
761 "Connection attempt to TCP %s:%d from %s:%d\n",
762 dbuf
, ntohs(th
->th_dport
),
764 ntohs(th
->th_sport
));
768 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
769 dbuf
, ntohs(th
->th_dport
), sbuf
,
770 ntohs(th
->th_sport
), thflags
);
779 if (thflags
& TH_SYN
)
788 rstreason
= BANDLIM_RST_CLOSEDPORT
;
793 rstreason
= BANDLIM_RST_CLOSEDPORT
;
796 if (tp
->t_state
== TCPS_CLOSED
)
801 * Bogus state when listening port owned by SharedIP with loopback as the
802 * only configured interface: BlueBox does not filters loopback
804 if (tp
->t_state
== TCP_NSTATES
)
808 /* Unscale the window into a 32-bit value. */
809 if ((thflags
& TH_SYN
) == 0)
810 tiwin
= th
->th_win
<< tp
->snd_scale
;
814 so
= inp
->inp_socket
;
815 if (so
->so_options
& (SO_DEBUG
|SO_ACCEPTCONN
)) {
817 if (so
->so_options
& SO_DEBUG
) {
818 ostate
= tp
->t_state
;
821 bcopy((char *)ip6
, (char *)tcp_saveipgen
,
825 bcopy((char *)ip
, (char *)tcp_saveipgen
, sizeof(*ip
));
829 if (so
->so_options
& SO_ACCEPTCONN
) {
830 register struct tcpcb
*tp0
= tp
;
836 struct inpcb
*oinp
= sotoinpcb(so
);
838 int ogencnt
= so
->so_gencnt
;
842 * Current IPsec implementation makes incorrect IPsec
843 * cache if this check is done here.
844 * So delay this until duplicated socket is created.
846 if ((thflags
& (TH_RST
|TH_ACK
|TH_SYN
)) != TH_SYN
) {
848 * Note: dropwithreset makes sure we don't
849 * send a RST in response to a RST.
851 if (thflags
& TH_ACK
) {
852 tcpstat
.tcps_badsyn
++;
853 rstreason
= BANDLIM_RST_OPENPORT
;
859 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN
| DBG_FUNC_START
,0,0,0,0,0);
863 * If deprecated address is forbidden,
864 * we do not accept SYN to deprecated interface
865 * address to prevent any new inbound connection from
866 * getting established.
867 * When we do not accept SYN, we send a TCP RST,
868 * with deprecated source address (instead of dropping
869 * it). We compromise it as it is much better for peer
870 * to send a RST, and RST will be the final packet
873 * If we do not forbid deprecated addresses, we accept
874 * the SYN packet. RFC2462 does not suggest dropping
876 * If we decipher RFC2462 5.5.4, it says like this:
877 * 1. use of deprecated addr with existing
878 * communication is okay - "SHOULD continue to be
880 * 2. use of it with new communication:
881 * (2a) "SHOULD NOT be used if alternate address
882 * with sufficient scope is available"
883 * (2b) nothing mentioned otherwise.
884 * Here we fall into (2b) case as we have no choice in
885 * our source address selection - we must obey the peer.
887 * The wording in RFC2462 is confusing, and there are
888 * multiple description text for deprecated address
889 * handling - worse, they are not exactly the same.
890 * I believe 5.5.4 is the best one, so we follow 5.5.4.
892 if (isipv6
&& !ip6_use_deprecated
) {
893 struct in6_ifaddr
*ia6
;
895 if ((ia6
= ip6_getdstifaddr(m
)) &&
896 (ia6
->ia6_flags
& IN6_IFF_DEPRECATED
)) {
898 rstreason
= BANDLIM_RST_OPENPORT
;
904 so2
= sonewconn(so
, 0);
906 tcpstat
.tcps_listendrop
++;
907 so2
= sodropablereq(so
);
910 sototcpcb(so2
)->t_flags
|=
912 tcp_drop(sototcpcb(so2
), ETIMEDOUT
);
913 so2
= sonewconn(so
, 0);
919 * Make sure listening socket did not get closed during socket allocation,
920 * not only this is incorrect but it is know to cause panic
922 if (so
->so_gencnt
!= ogencnt
)
929 * This is ugly, but ....
931 * Mark socket as temporary until we're
932 * committed to keeping it. The code at
933 * ``drop'' and ``dropwithreset'' check the
934 * flag dropsocket to see if the temporary
935 * socket created here should be discarded.
936 * We mark the socket as discardable until
937 * we're committed to it below in TCPS_LISTEN.
940 inp
= (struct inpcb
*)so
->so_pcb
;
943 inp
->in6p_laddr
= ip6
->ip6_dst
;
945 inp
->inp_vflag
&= ~INP_IPV6
;
946 inp
->inp_vflag
|= INP_IPV4
;
948 inp
->inp_laddr
= ip
->ip_dst
;
952 inp
->inp_lport
= th
->th_dport
;
953 if (in_pcbinshash(inp
) != 0) {
955 * Undo the assignments above if we failed to
956 * put the PCB on the hash lists.
960 inp
->in6p_laddr
= in6addr_any
;
963 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
969 * To avoid creating incorrectly cached IPsec
970 * association, this is need to be done here.
972 * Subject: (KAME-snap 748)
973 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
974 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
976 if ((thflags
& (TH_RST
|TH_ACK
|TH_SYN
)) != TH_SYN
) {
978 * Note: dropwithreset makes sure we don't
979 * send a RST in response to a RST.
981 if (thflags
& TH_ACK
) {
982 tcpstat
.tcps_badsyn
++;
983 rstreason
= BANDLIM_RST_OPENPORT
;
992 * Inherit socket options from the listening
994 * Note that in6p_inputopts are not (even
995 * should not be) copied, since it stores
996 * previously received options and is used to
997 * detect if each new option is different than
998 * the previous one and hence should be passed
1000 * If we copied in6p_inputopts, a user would
1001 * not be able to receive options just after
1002 * calling the accept system call.
1005 oinp
->inp_flags
& INP_CONTROLOPTS
;
1006 if (oinp
->in6p_outputopts
)
1007 inp
->in6p_outputopts
=
1008 ip6_copypktopts(oinp
->in6p_outputopts
,
1012 inp
->inp_options
= ip_srcroute();
1014 /* copy old policy into new socket's */
1015 if (sotoinpcb(oso
)->inp_sp
)
1018 /* Is it a security hole here to silently fail to copy the policy? */
1019 if (inp
->inp_sp
!= NULL
)
1020 error
= ipsec_init_policy(so
, &inp
->inp_sp
);
1021 if (error
!= 0 || ipsec_copy_policy(sotoinpcb(oso
)->inp_sp
, inp
->inp_sp
))
1022 printf("tcp_input: could not copy policy\n");
1025 tp
= intotcpcb(inp
);
1026 tp
->t_state
= TCPS_LISTEN
;
1027 tp
->t_flags
|= tp0
->t_flags
& (TF_NOPUSH
|TF_NOOPT
|TF_NODELAY
);
1029 /* Compute proper scaling value from buffer space */
1030 while (tp
->request_r_scale
< TCP_MAX_WINSHIFT
&&
1031 TCP_MAXWIN
<< tp
->request_r_scale
<
1032 so
->so_rcv
.sb_hiwat
)
1033 tp
->request_r_scale
++;
1035 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN
| DBG_FUNC_END
,0,0,0,0,0);
1040 * Segment received on connection.
1041 * Reset idle time and keep-alive timer.
1044 if (TCPS_HAVEESTABLISHED(tp
->t_state
))
1045 tp
->t_timer
[TCPT_KEEP
] = TCP_KEEPIDLE(tp
);
1048 * Process options if not in LISTEN state,
1049 * else do it below (after getting remote address).
1051 if (tp
->t_state
!= TCPS_LISTEN
&& optp
)
1052 tcp_dooptions(tp
, optp
, optlen
, th
, &to
);
1055 * Header prediction: check for the two common cases
1056 * of a uni-directional data xfer. If the packet has
1057 * no control flags, is in-sequence, the window didn't
1058 * change and we're not retransmitting, it's a
1059 * candidate. If the length is zero and the ack moved
1060 * forward, we're the sender side of the xfer. Just
1061 * free the data acked & wake any higher level process
1062 * that was blocked waiting for space. If the length
1063 * is non-zero and the ack didn't move, we're the
1064 * receiver side. If we're getting packets in-order
1065 * (the reassembly queue is empty), add the data to
1066 * the socket buffer and note that we need a delayed ack.
1067 * Make sure that the hidden state-flags are also off.
1068 * Since we check for TCPS_ESTABLISHED above, it can only
1071 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1072 (thflags
& (TH_SYN
|TH_FIN
|TH_RST
|TH_URG
|TH_ACK
)) == TH_ACK
&&
1073 ((tp
->t_flags
& (TF_NEEDSYN
|TF_NEEDFIN
)) == 0) &&
1074 ((to
.to_flag
& TOF_TS
) == 0 ||
1075 TSTMP_GEQ(to
.to_tsval
, tp
->ts_recent
)) &&
1077 * Using the CC option is compulsory if once started:
1078 * the segment is OK if no T/TCP was negotiated or
1079 * if the segment has a CC option equal to CCrecv
1081 ((tp
->t_flags
& (TF_REQ_CC
|TF_RCVD_CC
)) != (TF_REQ_CC
|TF_RCVD_CC
) ||
1082 ((to
.to_flag
& TOF_CC
) != 0 && to
.to_cc
== tp
->cc_recv
)) &&
1083 th
->th_seq
== tp
->rcv_nxt
&&
1084 tiwin
&& tiwin
== tp
->snd_wnd
&&
1085 tp
->snd_nxt
== tp
->snd_max
) {
1088 * If last ACK falls within this segment's sequence numbers,
1089 * record the timestamp.
1090 * NOTE that the test is modified according to the latest
1091 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1093 if ((to
.to_flag
& TOF_TS
) != 0 &&
1094 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
1095 tp
->ts_recent_age
= tcp_now
;
1096 tp
->ts_recent
= to
.to_tsval
;
1100 if (SEQ_GT(th
->th_ack
, tp
->snd_una
) &&
1101 SEQ_LEQ(th
->th_ack
, tp
->snd_max
) &&
1102 tp
->snd_cwnd
>= tp
->snd_wnd
&&
1103 tp
->t_dupacks
< tcprexmtthresh
) {
1105 * this is a pure ack for outstanding data.
1107 ++tcpstat
.tcps_predack
;
1109 * "bad retransmit" recovery
1111 if (tp
->t_rxtshift
== 1 &&
1112 tcp_now
< tp
->t_badrxtwin
) {
1113 tp
->snd_cwnd
= tp
->snd_cwnd_prev
;
1115 tp
->snd_ssthresh_prev
;
1116 tp
->snd_nxt
= tp
->snd_max
;
1117 tp
->t_badrxtwin
= 0;
1119 if (((to
.to_flag
& TOF_TS
) != 0) && (to
.to_tsecr
!= 0)) /* Makes sure we already have a TS */
1121 tcp_now
- to
.to_tsecr
+ 1);
1122 else if (tp
->t_rtttime
&&
1123 SEQ_GT(th
->th_ack
, tp
->t_rtseq
))
1124 tcp_xmit_timer(tp
, tp
->t_rtttime
);
1125 acked
= th
->th_ack
- tp
->snd_una
;
1126 tcpstat
.tcps_rcvackpack
++;
1127 tcpstat
.tcps_rcvackbyte
+= acked
;
1128 sbdrop(&so
->so_snd
, acked
);
1129 tp
->snd_una
= th
->th_ack
;
1131 ND6_HINT(tp
); /* some progress has been done */
1134 * If all outstanding data are acked, stop
1135 * retransmit timer, otherwise restart timer
1136 * using current (possibly backed-off) value.
1137 * If process is waiting for space,
1138 * wakeup/selwakeup/signal. If data
1139 * are ready to send, let tcp_output
1140 * decide between more output or persist.
1142 if (tp
->snd_una
== tp
->snd_max
)
1143 tp
->t_timer
[TCPT_REXMT
] = 0;
1144 else if (tp
->t_timer
[TCPT_PERSIST
] == 0)
1145 tp
->t_timer
[TCPT_REXMT
] = tp
->t_rxtcur
;
1147 if (so
->so_snd
.sb_cc
)
1148 (void) tcp_output(tp
);
1150 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
1153 } else if (th
->th_ack
== tp
->snd_una
&&
1154 LIST_EMPTY(&tp
->t_segq
) &&
1155 tlen
<= sbspace(&so
->so_rcv
)) {
1157 * this is a pure, in-sequence data packet
1158 * with nothing on the reassembly queue and
1159 * we have enough buffer space to take it.
1161 ++tcpstat
.tcps_preddat
;
1162 tp
->rcv_nxt
+= tlen
;
1163 tcpstat
.tcps_rcvpack
++;
1164 tcpstat
.tcps_rcvbyte
+= tlen
;
1165 ND6_HINT(tp
); /* some progress has been done */
1167 * Add data to socket buffer.
1169 m_adj(m
, drop_hdrlen
); /* delayed header drop */
1170 sbappend(&so
->so_rcv
, m
);
1173 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
1174 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
1175 th
->th_seq
, th
->th_ack
, th
->th_win
);
1180 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
1181 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
1182 th
->th_seq
, th
->th_ack
, th
->th_win
);
1184 if (tcp_delack_enabled
) {
1185 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
1186 tp
->t_flags
|= TF_DELACK
;
1188 tp
->t_flags
|= TF_ACKNOW
;
1192 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
1198 * Calculate amount of space in receive window,
1199 * and then do TCP input processing.
1200 * Receive window is amount of space in rcv queue,
1201 * but not less than advertised window.
1205 win
= sbspace(&so
->so_rcv
);
1208 else { /* clip rcv window to 4K for modems */
1209 if (tp
->t_flags
& TF_SLOWLINK
&& slowlink_wsize
> 0)
1210 win
= min(win
, slowlink_wsize
);
1212 tp
->rcv_wnd
= imax(win
, (int)(tp
->rcv_adv
- tp
->rcv_nxt
));
1215 switch (tp
->t_state
) {
1218 * If the state is LISTEN then ignore segment if it contains an RST.
1219 * If the segment contains an ACK then it is bad and send a RST.
1220 * If it does not contain a SYN then it is not interesting; drop it.
1221 * If it is from this socket, drop it, it must be forged.
1222 * Don't bother responding if the destination was a broadcast.
1223 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1224 * tp->iss, and send a segment:
1225 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1226 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1227 * Fill in remote peer address fields if not previously specified.
1228 * Enter SYN_RECEIVED state, and process any other fields of this
1229 * segment in this state.
1232 register struct sockaddr_in
*sin
;
1234 register struct sockaddr_in6
*sin6
;
1237 if (thflags
& TH_RST
)
1239 if (thflags
& TH_ACK
) {
1240 rstreason
= BANDLIM_RST_OPENPORT
;
1243 if ((thflags
& TH_SYN
) == 0)
1245 if (th
->th_dport
== th
->th_sport
) {
1248 if (IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
,
1253 if (ip
->ip_dst
.s_addr
== ip
->ip_src
.s_addr
)
1257 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1258 * in_broadcast() should never return true on a received
1259 * packet with M_BCAST not set.
1261 * Packets with a multicast source address should also
1264 if (m
->m_flags
& (M_BCAST
|M_MCAST
))
1268 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
1269 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
1273 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
1274 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
1275 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
1276 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
1280 MALLOC(sin6
, struct sockaddr_in6
*, sizeof *sin6
,
1281 M_SONAME
, M_NOWAIT
);
1284 bzero(sin6
, sizeof(*sin6
));
1285 sin6
->sin6_family
= AF_INET6
;
1286 sin6
->sin6_len
= sizeof(*sin6
);
1287 sin6
->sin6_addr
= ip6
->ip6_src
;
1288 sin6
->sin6_port
= th
->th_sport
;
1289 laddr6
= inp
->in6p_laddr
;
1290 if (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
))
1291 inp
->in6p_laddr
= ip6
->ip6_dst
;
1292 if (in6_pcbconnect(inp
, (struct sockaddr
*)sin6
,
1294 inp
->in6p_laddr
= laddr6
;
1295 FREE(sin6
, M_SONAME
);
1298 FREE(sin6
, M_SONAME
);
1302 MALLOC(sin
, struct sockaddr_in
*, sizeof *sin
, M_SONAME
,
1306 sin
->sin_family
= AF_INET
;
1307 sin
->sin_len
= sizeof(*sin
);
1308 sin
->sin_addr
= ip
->ip_src
;
1309 sin
->sin_port
= th
->th_sport
;
1310 bzero((caddr_t
)sin
->sin_zero
, sizeof(sin
->sin_zero
));
1311 laddr
= inp
->inp_laddr
;
1312 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
)
1313 inp
->inp_laddr
= ip
->ip_dst
;
1314 if (in_pcbconnect(inp
, (struct sockaddr
*)sin
, proc0
)) {
1315 inp
->inp_laddr
= laddr
;
1316 FREE(sin
, M_SONAME
);
1319 FREE(sin
, M_SONAME
);
1321 if ((taop
= tcp_gettaocache(inp
)) == NULL
) {
1322 taop
= &tao_noncached
;
1323 bzero(taop
, sizeof(*taop
));
1325 tcp_dooptions(tp
, optp
, optlen
, th
, &to
);
1329 tp
->iss
= tcp_new_isn(tp
);
1331 tp
->irs
= th
->th_seq
;
1332 tcp_sendseqinit(tp
);
1334 tp
->snd_recover
= tp
->snd_una
;
1336 * Initialization of the tcpcb for transaction;
1337 * set SND.WND = SEG.WND,
1338 * initialize CCsend and CCrecv.
1340 tp
->snd_wnd
= tiwin
; /* initial send-window */
1341 tp
->cc_send
= CC_INC(tcp_ccgen
);
1342 tp
->cc_recv
= to
.to_cc
;
1344 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1345 * - compare SEG.CC against cached CC from the same host,
1347 * - if SEG.CC > chached value, SYN must be new and is accepted
1348 * immediately: save new CC in the cache, mark the socket
1349 * connected, enter ESTABLISHED state, turn on flag to
1350 * send a SYN in the next segment.
1351 * A virtual advertised window is set in rcv_adv to
1352 * initialize SWS prevention. Then enter normal segment
1353 * processing: drop SYN, process data and FIN.
1354 * - otherwise do a normal 3-way handshake.
1356 if ((to
.to_flag
& TOF_CC
) != 0) {
1357 if (((tp
->t_flags
& TF_NOPUSH
) != 0) &&
1358 taop
->tao_cc
!= 0 && CC_GT(to
.to_cc
, taop
->tao_cc
)) {
1360 taop
->tao_cc
= to
.to_cc
;
1362 tp
->t_state
= TCPS_ESTABLISHED
;
1365 * If there is a FIN, or if there is data and the
1366 * connection is local, then delay SYN,ACK(SYN) in
1367 * the hope of piggy-backing it on a response
1368 * segment. Otherwise must send ACK now in case
1369 * the other side is slow starting.
1371 if (tcp_delack_enabled
&& ((thflags
& TH_FIN
) ||
1374 (isipv6
&& in6_localaddr(&inp
->in6p_faddr
))
1378 in_localaddr(inp
->inp_faddr
)
1383 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
1384 tp
->t_flags
|= (TF_DELACK
| TF_NEEDSYN
);
1387 tp
->t_flags
|= (TF_ACKNOW
| TF_NEEDSYN
);
1390 * Limit the `virtual advertised window' to TCP_MAXWIN
1391 * here. Even if we requested window scaling, it will
1392 * become effective only later when our SYN is acked.
1394 if (tp
->t_flags
& TF_SLOWLINK
&& slowlink_wsize
> 0) /* clip window size for for slow link */
1395 tp
->rcv_adv
+= min(tp
->rcv_wnd
, slowlink_wsize
);
1397 tp
->rcv_adv
+= min(tp
->rcv_wnd
, TCP_MAXWIN
);
1398 tcpstat
.tcps_connects
++;
1400 tp
->t_timer
[TCPT_KEEP
] = tcp_keepinit
;
1401 dropsocket
= 0; /* committed to socket */
1402 tcpstat
.tcps_accepts
++;
1405 /* else do standard 3-way handshake */
1408 * No CC option, but maybe CC.NEW:
1409 * invalidate cached value.
1414 * TAO test failed or there was no CC option,
1415 * do a standard 3-way handshake.
1417 tp
->t_flags
|= TF_ACKNOW
;
1418 tp
->t_state
= TCPS_SYN_RECEIVED
;
1419 tp
->t_timer
[TCPT_KEEP
] = tcp_keepinit
;
1420 dropsocket
= 0; /* committed to socket */
1421 tcpstat
.tcps_accepts
++;
1426 * If the state is SYN_RECEIVED:
1427 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1429 case TCPS_SYN_RECEIVED
:
1430 if ((thflags
& TH_ACK
) &&
1431 (SEQ_LEQ(th
->th_ack
, tp
->snd_una
) ||
1432 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1433 rstreason
= BANDLIM_RST_OPENPORT
;
1439 * If the state is SYN_SENT:
1440 * if seg contains an ACK, but not for our SYN, drop the input.
1441 * if seg contains a RST, then drop the connection.
1442 * if seg does not contain SYN, then drop it.
1443 * Otherwise this is an acceptable SYN segment
1444 * initialize tp->rcv_nxt and tp->irs
1445 * if seg contains ack then advance tp->snd_una
1446 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1447 * arrange for segment to be acked (eventually)
1448 * continue processing rest of data/controls, beginning with URG
1451 if ((taop
= tcp_gettaocache(inp
)) == NULL
) {
1452 taop
= &tao_noncached
;
1453 bzero(taop
, sizeof(*taop
));
1456 if ((thflags
& TH_ACK
) &&
1457 (SEQ_LEQ(th
->th_ack
, tp
->iss
) ||
1458 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1460 * If we have a cached CCsent for the remote host,
1461 * hence we haven't just crashed and restarted,
1462 * do not send a RST. This may be a retransmission
1463 * from the other side after our earlier ACK was lost.
1464 * Our new SYN, when it arrives, will serve as the
1467 if (taop
->tao_ccsent
!= 0)
1470 rstreason
= BANDLIM_UNLIMITED
;
1474 if (thflags
& TH_RST
) {
1475 if (thflags
& TH_ACK
) {
1476 tp
= tcp_drop(tp
, ECONNREFUSED
);
1477 postevent(so
, 0, EV_RESET
);
1481 if ((thflags
& TH_SYN
) == 0)
1483 tp
->snd_wnd
= th
->th_win
; /* initial send window */
1484 tp
->cc_recv
= to
.to_cc
; /* foreign CC */
1486 tp
->irs
= th
->th_seq
;
1488 if (thflags
& TH_ACK
) {
1490 * Our SYN was acked. If segment contains CC.ECHO
1491 * option, check it to make sure this segment really
1492 * matches our SYN. If not, just drop it as old
1493 * duplicate, but send an RST if we're still playing
1494 * by the old rules. If no CC.ECHO option, make sure
1495 * we don't get fooled into using T/TCP.
1497 if (to
.to_flag
& TOF_CCECHO
) {
1498 if (tp
->cc_send
!= to
.to_ccecho
) {
1499 if (taop
->tao_ccsent
!= 0)
1502 rstreason
= BANDLIM_UNLIMITED
;
1507 tp
->t_flags
&= ~TF_RCVD_CC
;
1508 tcpstat
.tcps_connects
++;
1510 /* Do window scaling on this connection? */
1511 if ((tp
->t_flags
& (TF_RCVD_SCALE
|TF_REQ_SCALE
)) ==
1512 (TF_RCVD_SCALE
|TF_REQ_SCALE
)) {
1513 tp
->snd_scale
= tp
->requested_s_scale
;
1514 tp
->rcv_scale
= tp
->request_r_scale
;
1516 /* Segment is acceptable, update cache if undefined. */
1517 if (taop
->tao_ccsent
== 0)
1518 taop
->tao_ccsent
= to
.to_ccecho
;
1520 tp
->rcv_adv
+= tp
->rcv_wnd
;
1521 tp
->snd_una
++; /* SYN is acked */
1523 * If there's data, delay ACK; if there's also a FIN
1524 * ACKNOW will be turned on later.
1526 if (tcp_delack_enabled
&& tlen
!= 0) {
1527 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
1528 tp
->t_flags
|= TF_DELACK
;
1531 tp
->t_flags
|= TF_ACKNOW
;
1533 * Received <SYN,ACK> in SYN_SENT[*] state.
1535 * SYN_SENT --> ESTABLISHED
1536 * SYN_SENT* --> FIN_WAIT_1
1538 if (tp
->t_flags
& TF_NEEDFIN
) {
1539 tp
->t_state
= TCPS_FIN_WAIT_1
;
1540 tp
->t_flags
&= ~TF_NEEDFIN
;
1543 tp
->t_state
= TCPS_ESTABLISHED
;
1544 tp
->t_timer
[TCPT_KEEP
] = TCP_KEEPIDLE(tp
);
1548 * Received initial SYN in SYN-SENT[*] state => simul-
1549 * taneous open. If segment contains CC option and there is
1550 * a cached CC, apply TAO test; if it succeeds, connection is
1551 * half-synchronized. Otherwise, do 3-way handshake:
1552 * SYN-SENT -> SYN-RECEIVED
1553 * SYN-SENT* -> SYN-RECEIVED*
1554 * If there was no CC option, clear cached CC value.
1556 tp
->t_flags
|= TF_ACKNOW
;
1557 tp
->t_timer
[TCPT_REXMT
] = 0;
1558 if (to
.to_flag
& TOF_CC
) {
1559 if (taop
->tao_cc
!= 0 &&
1560 CC_GT(to
.to_cc
, taop
->tao_cc
)) {
1562 * update cache and make transition:
1563 * SYN-SENT -> ESTABLISHED*
1564 * SYN-SENT* -> FIN-WAIT-1*
1566 taop
->tao_cc
= to
.to_cc
;
1567 if (tp
->t_flags
& TF_NEEDFIN
) {
1568 tp
->t_state
= TCPS_FIN_WAIT_1
;
1569 tp
->t_flags
&= ~TF_NEEDFIN
;
1571 tp
->t_state
= TCPS_ESTABLISHED
;
1572 tp
->t_timer
[TCPT_KEEP
] = TCP_KEEPIDLE(tp
);
1574 tp
->t_flags
|= TF_NEEDSYN
;
1576 tp
->t_state
= TCPS_SYN_RECEIVED
;
1578 /* CC.NEW or no option => invalidate cache */
1580 tp
->t_state
= TCPS_SYN_RECEIVED
;
1586 * Advance th->th_seq to correspond to first data byte.
1587 * If data, trim to stay within window,
1588 * dropping FIN if necessary.
1591 if (tlen
> tp
->rcv_wnd
) {
1592 todrop
= tlen
- tp
->rcv_wnd
;
1596 tcpstat
.tcps_rcvpackafterwin
++;
1597 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1599 tp
->snd_wl1
= th
->th_seq
- 1;
1600 tp
->rcv_up
= th
->th_seq
;
1602 * Client side of transaction: already sent SYN and data.
1603 * If the remote host used T/TCP to validate the SYN,
1604 * our data will be ACK'd; if so, enter normal data segment
1605 * processing in the middle of step 5, ack processing.
1606 * Otherwise, goto step 6.
1608 if (thflags
& TH_ACK
)
1612 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1613 * if segment contains a SYN and CC [not CC.NEW] option:
1614 * if state == TIME_WAIT and connection duration > MSL,
1615 * drop packet and send RST;
1617 * if SEG.CC > CCrecv then is new SYN, and can implicitly
1618 * ack the FIN (and data) in retransmission queue.
1619 * Complete close and delete TCPCB. Then reprocess
1620 * segment, hoping to find new TCPCB in LISTEN state;
1622 * else must be old SYN; drop it.
1623 * else do normal processing.
1627 case TCPS_TIME_WAIT
:
1628 if ((thflags
& TH_SYN
) &&
1629 (to
.to_flag
& TOF_CC
) && tp
->cc_recv
!= 0) {
1630 if (tp
->t_state
== TCPS_TIME_WAIT
&&
1631 tp
->t_starttime
> tcp_msl
) {
1632 rstreason
= BANDLIM_UNLIMITED
;
1635 if (CC_GT(to
.to_cc
, tp
->cc_recv
)) {
1642 break; /* continue normal processing */
1644 /* Received a SYN while connection is already established.
1645 * This is a "half open connection and other anomalies" described
1646 * in RFC793 page 34, send an ACK so the remote reset the connection
1647 * or recovers by adjusting its sequence numberering
1649 case TCPS_ESTABLISHED
:
1650 if (thflags
& TH_SYN
)
1656 * States other than LISTEN or SYN_SENT.
1657 * First check the RST flag and sequence number since reset segments
1658 * are exempt from the timestamp and connection count tests. This
1659 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1660 * below which allowed reset segments in half the sequence space
1661 * to fall though and be processed (which gives forged reset
1662 * segments with a random sequence number a 50 percent chance of
1663 * killing a connection).
1664 * Then check timestamp, if present.
1665 * Then check the connection count, if present.
1666 * Then check that at least some bytes of segment are within
1667 * receive window. If segment begins before rcv_nxt,
1668 * drop leading data (and SYN); if nothing left, just ack.
1671 * If the RST bit is set, check the sequence number to see
1672 * if this is a valid reset segment.
1674 * In all states except SYN-SENT, all reset (RST) segments
1675 * are validated by checking their SEQ-fields. A reset is
1676 * valid if its sequence number is in the window.
1677 * Note: this does not take into account delayed ACKs, so
1678 * we should test against last_ack_sent instead of rcv_nxt.
1679 * The sequence number in the reset segment is normally an
1680 * echo of our outgoing acknowlegement numbers, but some hosts
1681 * send a reset with the sequence number at the rightmost edge
1682 * of our receive window, and we have to handle this case.
1683 * If we have multiple segments in flight, the intial reset
1684 * segment sequence numbers will be to the left of last_ack_sent,
1685 * but they will eventually catch up.
1686 * In any case, it never made sense to trim reset segments to
1687 * fit the receive window since RFC 1122 says:
1688 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1690 * A TCP SHOULD allow a received RST segment to include data.
1693 * It has been suggested that a RST segment could contain
1694 * ASCII text that encoded and explained the cause of the
1695 * RST. No standard has yet been established for such
1698 * If the reset segment passes the sequence number test examine
1700 * SYN_RECEIVED STATE:
1701 * If passive open, return to LISTEN state.
1702 * If active open, inform user that connection was refused.
1703 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1704 * Inform user that connection was reset, and close tcb.
1705 * CLOSING, LAST_ACK STATES:
1708 * Drop the segment - see Stevens, vol. 2, p. 964 and
1711 if (thflags
& TH_RST
) {
1712 if (SEQ_GEQ(th
->th_seq
, tp
->last_ack_sent
) &&
1713 SEQ_LT(th
->th_seq
, tp
->last_ack_sent
+ tp
->rcv_wnd
)) {
1714 switch (tp
->t_state
) {
1716 case TCPS_SYN_RECEIVED
:
1717 so
->so_error
= ECONNREFUSED
;
1720 case TCPS_ESTABLISHED
:
1721 case TCPS_FIN_WAIT_1
:
1722 case TCPS_CLOSE_WAIT
:
1726 case TCPS_FIN_WAIT_2
:
1727 so
->so_error
= ECONNRESET
;
1729 postevent(so
, 0, EV_RESET
);
1730 tp
->t_state
= TCPS_CLOSED
;
1731 tcpstat
.tcps_drops
++;
1740 case TCPS_TIME_WAIT
:
1748 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1749 * and it's less than ts_recent, drop it.
1751 if ((to
.to_flag
& TOF_TS
) != 0 && tp
->ts_recent
&&
1752 TSTMP_LT(to
.to_tsval
, tp
->ts_recent
)) {
1754 /* Check to see if ts_recent is over 24 days old. */
1755 if ((int)(tcp_now
- tp
->ts_recent_age
) > TCP_PAWS_IDLE
) {
1757 * Invalidate ts_recent. If this segment updates
1758 * ts_recent, the age will be reset later and ts_recent
1759 * will get a valid value. If it does not, setting
1760 * ts_recent to zero will at least satisfy the
1761 * requirement that zero be placed in the timestamp
1762 * echo reply when ts_recent isn't valid. The
1763 * age isn't reset until we get a valid ts_recent
1764 * because we don't want out-of-order segments to be
1765 * dropped when ts_recent is old.
1769 tcpstat
.tcps_rcvduppack
++;
1770 tcpstat
.tcps_rcvdupbyte
+= tlen
;
1771 tcpstat
.tcps_pawsdrop
++;
1778 * If T/TCP was negotiated and the segment doesn't have CC,
1779 * or if its CC is wrong then drop the segment.
1780 * RST segments do not have to comply with this.
1782 if ((tp
->t_flags
& (TF_REQ_CC
|TF_RCVD_CC
)) == (TF_REQ_CC
|TF_RCVD_CC
) &&
1783 ((to
.to_flag
& TOF_CC
) == 0 || tp
->cc_recv
!= to
.to_cc
))
1787 * In the SYN-RECEIVED state, validate that the packet belongs to
1788 * this connection before trimming the data to fit the receive
1789 * window. Check the sequence number versus IRS since we know
1790 * the sequence numbers haven't wrapped. This is a partial fix
1791 * for the "LAND" DoS attack.
1793 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& SEQ_LT(th
->th_seq
, tp
->irs
)) {
1794 rstreason
= BANDLIM_RST_OPENPORT
;
1798 todrop
= tp
->rcv_nxt
- th
->th_seq
;
1800 if (thflags
& TH_SYN
) {
1810 * Following if statement from Stevens, vol. 2, p. 960.
1813 || (todrop
== tlen
&& (thflags
& TH_FIN
) == 0)) {
1815 * Any valid FIN must be to the left of the window.
1816 * At this point the FIN must be a duplicate or out
1817 * of sequence; drop it.
1822 * Send an ACK to resynchronize and drop any data.
1823 * But keep on processing for RST or ACK.
1825 tp
->t_flags
|= TF_ACKNOW
;
1827 tcpstat
.tcps_rcvduppack
++;
1828 tcpstat
.tcps_rcvdupbyte
+= todrop
;
1830 tcpstat
.tcps_rcvpartduppack
++;
1831 tcpstat
.tcps_rcvpartdupbyte
+= todrop
;
1833 drop_hdrlen
+= todrop
; /* drop from the top afterwards */
1834 th
->th_seq
+= todrop
;
1836 if (th
->th_urp
> todrop
)
1837 th
->th_urp
-= todrop
;
1845 * If new data are received on a connection after the
1846 * user processes are gone, then RST the other end.
1848 if ((so
->so_state
& SS_NOFDREF
) &&
1849 tp
->t_state
> TCPS_CLOSE_WAIT
&& tlen
) {
1851 tcpstat
.tcps_rcvafterclose
++;
1852 rstreason
= BANDLIM_UNLIMITED
;
1857 * If segment ends after window, drop trailing data
1858 * (and PUSH and FIN); if nothing left, just ACK.
1860 todrop
= (th
->th_seq
+tlen
) - (tp
->rcv_nxt
+tp
->rcv_wnd
);
1862 tcpstat
.tcps_rcvpackafterwin
++;
1863 if (todrop
>= tlen
) {
1864 tcpstat
.tcps_rcvbyteafterwin
+= tlen
;
1866 * If a new connection request is received
1867 * while in TIME_WAIT, drop the old connection
1868 * and start over if the sequence numbers
1869 * are above the previous ones.
1871 if (thflags
& TH_SYN
&&
1872 tp
->t_state
== TCPS_TIME_WAIT
&&
1873 SEQ_GT(th
->th_seq
, tp
->rcv_nxt
)) {
1874 iss
= tcp_new_isn(tp
);
1879 * If window is closed can only take segments at
1880 * window edge, and have to drop data and PUSH from
1881 * incoming segments. Continue processing, but
1882 * remember to ack. Otherwise, drop segment
1885 if (tp
->rcv_wnd
== 0 && th
->th_seq
== tp
->rcv_nxt
) {
1886 tp
->t_flags
|= TF_ACKNOW
;
1887 tcpstat
.tcps_rcvwinprobe
++;
1891 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1894 thflags
&= ~(TH_PUSH
|TH_FIN
);
1898 * If last ACK falls within this segment's sequence numbers,
1899 * record its timestamp.
1900 * NOTE that the test is modified according to the latest
1901 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1903 if ((to
.to_flag
& TOF_TS
) != 0 &&
1904 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
1905 tp
->ts_recent_age
= tcp_now
;
1906 tp
->ts_recent
= to
.to_tsval
;
1910 * If a SYN is in the window, then this is an
1911 * error and we send an RST and drop the connection.
1913 if (thflags
& TH_SYN
) {
1914 tp
= tcp_drop(tp
, ECONNRESET
);
1915 rstreason
= BANDLIM_UNLIMITED
;
1916 postevent(so
, 0, EV_RESET
);
1921 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
1922 * flag is on (half-synchronized state), then queue data for
1923 * later processing; else drop segment and return.
1925 if ((thflags
& TH_ACK
) == 0) {
1926 if (tp
->t_state
== TCPS_SYN_RECEIVED
||
1927 (tp
->t_flags
& TF_NEEDSYN
))
1936 switch (tp
->t_state
) {
1939 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1940 * ESTABLISHED state and continue processing.
1941 * The ACK was checked above.
1943 case TCPS_SYN_RECEIVED
:
1945 tcpstat
.tcps_connects
++;
1948 /* Do window scaling? */
1949 if ((tp
->t_flags
& (TF_RCVD_SCALE
|TF_REQ_SCALE
)) ==
1950 (TF_RCVD_SCALE
|TF_REQ_SCALE
)) {
1951 tp
->snd_scale
= tp
->requested_s_scale
;
1952 tp
->rcv_scale
= tp
->request_r_scale
;
1955 * Upon successful completion of 3-way handshake,
1956 * update cache.CC if it was undefined, pass any queued
1957 * data to the user, and advance state appropriately.
1959 if ((taop
= tcp_gettaocache(inp
)) != NULL
&&
1961 taop
->tao_cc
= tp
->cc_recv
;
1965 * SYN-RECEIVED -> ESTABLISHED
1966 * SYN-RECEIVED* -> FIN-WAIT-1
1968 if (tp
->t_flags
& TF_NEEDFIN
) {
1969 tp
->t_state
= TCPS_FIN_WAIT_1
;
1970 tp
->t_flags
&= ~TF_NEEDFIN
;
1972 tp
->t_state
= TCPS_ESTABLISHED
;
1973 tp
->t_timer
[TCPT_KEEP
] = TCP_KEEPIDLE(tp
);
1976 * If segment contains data or ACK, will call tcp_reass()
1977 * later; if not, do so now to pass queued data to user.
1979 if (tlen
== 0 && (thflags
& TH_FIN
) == 0)
1980 (void) tcp_reass(tp
, (struct tcphdr
*)0, 0,
1982 tp
->snd_wl1
= th
->th_seq
- 1;
1986 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1987 * ACKs. If the ack is in the range
1988 * tp->snd_una < th->th_ack <= tp->snd_max
1989 * then advance tp->snd_una to th->th_ack and drop
1990 * data from the retransmission queue. If this ACK reflects
1991 * more up to date window information we update our window information.
1993 case TCPS_ESTABLISHED
:
1994 case TCPS_FIN_WAIT_1
:
1995 case TCPS_FIN_WAIT_2
:
1996 case TCPS_CLOSE_WAIT
:
1999 case TCPS_TIME_WAIT
:
2001 if (SEQ_LEQ(th
->th_ack
, tp
->snd_una
)) {
2002 if (tlen
== 0 && tiwin
== tp
->snd_wnd
) {
2003 tcpstat
.tcps_rcvdupack
++;
2005 * If we have outstanding data (other than
2006 * a window probe), this is a completely
2007 * duplicate ack (ie, window info didn't
2008 * change), the ack is the biggest we've
2009 * seen and we've seen exactly our rexmt
2010 * threshhold of them, assume a packet
2011 * has been dropped and retransmit it.
2012 * Kludge snd_nxt & the congestion
2013 * window so we send only this one
2016 * We know we're losing at the current
2017 * window size so do congestion avoidance
2018 * (set ssthresh to half the current window
2019 * and pull our congestion window back to
2020 * the new ssthresh).
2022 * Dup acks mean that packets have left the
2023 * network (they're now cached at the receiver)
2024 * so bump cwnd by the amount in the receiver
2025 * to keep a constant cwnd packets in the
2028 if (tp
->t_timer
[TCPT_REXMT
] == 0 ||
2029 th
->th_ack
!= tp
->snd_una
)
2031 else if (++tp
->t_dupacks
== tcprexmtthresh
) {
2032 tcp_seq onxt
= tp
->snd_nxt
;
2034 min(tp
->snd_wnd
, tp
->snd_cwnd
) / 2 /
2036 if (tcp_do_newreno
&& SEQ_LT(th
->th_ack
,
2038 /* False retransmit, should not
2041 tp
->snd_cwnd
+= tp
->t_maxseg
;
2043 (void) tcp_output(tp
);
2048 tp
->snd_ssthresh
= win
* tp
->t_maxseg
;
2049 tp
->snd_recover
= tp
->snd_max
;
2050 tp
->t_timer
[TCPT_REXMT
] = 0;
2052 tp
->snd_nxt
= th
->th_ack
;
2053 tp
->snd_cwnd
= tp
->t_maxseg
;
2054 (void) tcp_output(tp
);
2055 tp
->snd_cwnd
= tp
->snd_ssthresh
+
2056 tp
->t_maxseg
* tp
->t_dupacks
;
2057 if (SEQ_GT(onxt
, tp
->snd_nxt
))
2060 } else if (tp
->t_dupacks
> tcprexmtthresh
) {
2061 tp
->snd_cwnd
+= tp
->t_maxseg
;
2062 (void) tcp_output(tp
);
2070 * If the congestion window was inflated to account
2071 * for the other side's cached packets, retract it.
2073 if (tcp_do_newreno
== 0) {
2074 if (tp
->t_dupacks
>= tcprexmtthresh
&&
2075 tp
->snd_cwnd
> tp
->snd_ssthresh
)
2076 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2078 } else if (tp
->t_dupacks
>= tcprexmtthresh
&&
2079 !tcp_newreno(tp
, th
)) {
2081 * Window inflation should have left us with approx.
2082 * snd_ssthresh outstanding data. But in case we
2083 * would be inclined to send a burst, better to do
2084 * it via the slow start mechanism.
2086 if (SEQ_GT(th
->th_ack
+ tp
->snd_ssthresh
, tp
->snd_max
))
2088 tp
->snd_max
- th
->th_ack
+ tp
->t_maxseg
;
2090 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2094 if (tp
->t_dupacks
< tcprexmtthresh
)
2097 if (SEQ_GT(th
->th_ack
, tp
->snd_max
)) {
2098 tcpstat
.tcps_rcvacktoomuch
++;
2102 * If we reach this point, ACK is not a duplicate,
2103 * i.e., it ACKs something we sent.
2105 if (tp
->t_flags
& TF_NEEDSYN
) {
2107 * T/TCP: Connection was half-synchronized, and our
2108 * SYN has been ACK'd (so connection is now fully
2109 * synchronized). Go to non-starred state,
2110 * increment snd_una for ACK of SYN, and check if
2111 * we can do window scaling.
2113 tp
->t_flags
&= ~TF_NEEDSYN
;
2115 /* Do window scaling? */
2116 if ((tp
->t_flags
& (TF_RCVD_SCALE
|TF_REQ_SCALE
)) ==
2117 (TF_RCVD_SCALE
|TF_REQ_SCALE
)) {
2118 tp
->snd_scale
= tp
->requested_s_scale
;
2119 tp
->rcv_scale
= tp
->request_r_scale
;
2124 acked
= th
->th_ack
- tp
->snd_una
;
2125 tcpstat
.tcps_rcvackpack
++;
2126 tcpstat
.tcps_rcvackbyte
+= acked
;
2129 * If we just performed our first retransmit, and the ACK
2130 * arrives within our recovery window, then it was a mistake
2131 * to do the retransmit in the first place. Recover our
2132 * original cwnd and ssthresh, and proceed to transmit where
2135 if (tp
->t_rxtshift
== 1 && tcp_now
< tp
->t_badrxtwin
) {
2136 tp
->snd_cwnd
= tp
->snd_cwnd_prev
;
2137 tp
->snd_ssthresh
= tp
->snd_ssthresh_prev
;
2138 tp
->snd_nxt
= tp
->snd_max
;
2139 tp
->t_badrxtwin
= 0; /* XXX probably not required */
2143 * If we have a timestamp reply, update smoothed
2144 * round trip time. If no timestamp is present but
2145 * transmit timer is running and timed sequence
2146 * number was acked, update smoothed round trip time.
2147 * Since we now have an rtt measurement, cancel the
2148 * timer backoff (cf., Phil Karn's retransmit alg.).
2149 * Recompute the initial retransmit timer.
2150 * Also makes sure we have a valid time stamp in hand
2152 if (((to
.to_flag
& TOF_TS
) != 0) && (to
.to_tsecr
!= 0))
2153 tcp_xmit_timer(tp
, tcp_now
- to
.to_tsecr
+ 1);
2154 else if (tp
->t_rtttime
&& SEQ_GT(th
->th_ack
, tp
->t_rtseq
))
2155 tcp_xmit_timer(tp
, tp
->t_rtttime
);
2158 * If all outstanding data is acked, stop retransmit
2159 * timer and remember to restart (more output or persist).
2160 * If there is more data to be acked, restart retransmit
2161 * timer, using current (possibly backed-off) value.
2163 if (th
->th_ack
== tp
->snd_max
) {
2164 tp
->t_timer
[TCPT_REXMT
] = 0;
2166 } else if (tp
->t_timer
[TCPT_PERSIST
] == 0)
2167 tp
->t_timer
[TCPT_REXMT
] = tp
->t_rxtcur
;
2170 * If no data (only SYN) was ACK'd,
2171 * skip rest of ACK processing.
2177 * When new data is acked, open the congestion window.
2178 * If the window gives us less than ssthresh packets
2179 * in flight, open exponentially (maxseg per packet).
2180 * Otherwise open linearly: maxseg per window
2181 * (maxseg^2 / cwnd per packet).
2184 register u_int cw
= tp
->snd_cwnd
;
2185 register u_int incr
= tp
->t_maxseg
;
2187 if (cw
> tp
->snd_ssthresh
)
2188 incr
= incr
* incr
/ cw
;
2190 * If t_dupacks != 0 here, it indicates that we are still
2191 * in NewReno fast recovery mode, so we leave the congestion
2194 if (tcp_do_newreno
== 0 || tp
->t_dupacks
== 0)
2195 tp
->snd_cwnd
= min(cw
+ incr
,TCP_MAXWIN
<<tp
->snd_scale
);
2197 if (acked
> so
->so_snd
.sb_cc
) {
2198 tp
->snd_wnd
-= so
->so_snd
.sb_cc
;
2199 sbdrop(&so
->so_snd
, (int)so
->so_snd
.sb_cc
);
2202 sbdrop(&so
->so_snd
, acked
);
2203 tp
->snd_wnd
-= acked
;
2206 tp
->snd_una
= th
->th_ack
;
2207 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
))
2208 tp
->snd_nxt
= tp
->snd_una
;
2211 switch (tp
->t_state
) {
2214 * In FIN_WAIT_1 STATE in addition to the processing
2215 * for the ESTABLISHED state if our FIN is now acknowledged
2216 * then enter FIN_WAIT_2.
2218 case TCPS_FIN_WAIT_1
:
2219 if (ourfinisacked
) {
2221 * If we can't receive any more
2222 * data, then closing user can proceed.
2223 * Starting the timer is contrary to the
2224 * specification, but if we don't get a FIN
2225 * we'll hang forever.
2227 if (so
->so_state
& SS_CANTRCVMORE
) {
2228 soisdisconnected(so
);
2229 tp
->t_timer
[TCPT_2MSL
] = tcp_maxidle
;
2231 add_to_time_wait(tp
);
2232 tp
->t_state
= TCPS_FIN_WAIT_2
;
2237 * In CLOSING STATE in addition to the processing for
2238 * the ESTABLISHED state if the ACK acknowledges our FIN
2239 * then enter the TIME-WAIT state, otherwise ignore
2243 if (ourfinisacked
) {
2244 tp
->t_state
= TCPS_TIME_WAIT
;
2245 tcp_canceltimers(tp
);
2246 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2247 if (tp
->cc_recv
!= 0 &&
2248 tp
->t_starttime
< tcp_msl
)
2249 tp
->t_timer
[TCPT_2MSL
] =
2250 tp
->t_rxtcur
* TCPTV_TWTRUNC
;
2252 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2253 add_to_time_wait(tp
);
2254 soisdisconnected(so
);
2259 * In LAST_ACK, we may still be waiting for data to drain
2260 * and/or to be acked, as well as for the ack of our FIN.
2261 * If our FIN is now acknowledged, delete the TCB,
2262 * enter the closed state and return.
2265 if (ourfinisacked
) {
2272 * In TIME_WAIT state the only thing that should arrive
2273 * is a retransmission of the remote FIN. Acknowledge
2274 * it and restart the finack timer.
2276 case TCPS_TIME_WAIT
:
2277 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2278 add_to_time_wait(tp
);
2285 * Update window information.
2286 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2288 if ((thflags
& TH_ACK
) &&
2289 (SEQ_LT(tp
->snd_wl1
, th
->th_seq
) ||
2290 (tp
->snd_wl1
== th
->th_seq
&& (SEQ_LT(tp
->snd_wl2
, th
->th_ack
) ||
2291 (tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
))))) {
2292 /* keep track of pure window updates */
2294 tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
)
2295 tcpstat
.tcps_rcvwinupd
++;
2296 tp
->snd_wnd
= tiwin
;
2297 tp
->snd_wl1
= th
->th_seq
;
2298 tp
->snd_wl2
= th
->th_ack
;
2299 if (tp
->snd_wnd
> tp
->max_sndwnd
)
2300 tp
->max_sndwnd
= tp
->snd_wnd
;
2305 * Process segments with URG.
2307 if ((thflags
& TH_URG
) && th
->th_urp
&&
2308 TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
2310 * This is a kludge, but if we receive and accept
2311 * random urgent pointers, we'll crash in
2312 * soreceive. It's hard to imagine someone
2313 * actually wanting to send this much urgent data.
2315 if (th
->th_urp
+ so
->so_rcv
.sb_cc
> sb_max
) {
2316 th
->th_urp
= 0; /* XXX */
2317 thflags
&= ~TH_URG
; /* XXX */
2318 goto dodata
; /* XXX */
2321 * If this segment advances the known urgent pointer,
2322 * then mark the data stream. This should not happen
2323 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2324 * a FIN has been received from the remote side.
2325 * In these states we ignore the URG.
2327 * According to RFC961 (Assigned Protocols),
2328 * the urgent pointer points to the last octet
2329 * of urgent data. We continue, however,
2330 * to consider it to indicate the first octet
2331 * of data past the urgent section as the original
2332 * spec states (in one of two places).
2334 if (SEQ_GT(th
->th_seq
+th
->th_urp
, tp
->rcv_up
)) {
2335 tp
->rcv_up
= th
->th_seq
+ th
->th_urp
;
2336 so
->so_oobmark
= so
->so_rcv
.sb_cc
+
2337 (tp
->rcv_up
- tp
->rcv_nxt
) - 1;
2338 if (so
->so_oobmark
== 0) {
2339 so
->so_state
|= SS_RCVATMARK
;
2340 postevent(so
, 0, EV_OOB
);
2343 tp
->t_oobflags
&= ~(TCPOOB_HAVEDATA
| TCPOOB_HADDATA
);
2346 * Remove out of band data so doesn't get presented to user.
2347 * This can happen independent of advancing the URG pointer,
2348 * but if two URG's are pending at once, some out-of-band
2349 * data may creep in... ick.
2351 if (th
->th_urp
<= (u_long
)tlen
2353 && (so
->so_options
& SO_OOBINLINE
) == 0
2356 tcp_pulloutofband(so
, th
, m
,
2357 drop_hdrlen
); /* hdr drop is delayed */
2360 * If no out of band data is expected,
2361 * pull receive urgent pointer along
2362 * with the receive window.
2364 if (SEQ_GT(tp
->rcv_nxt
, tp
->rcv_up
))
2365 tp
->rcv_up
= tp
->rcv_nxt
;
2369 * Process the segment text, merging it into the TCP sequencing queue,
2370 * and arranging for acknowledgment of receipt if necessary.
2371 * This process logically involves adjusting tp->rcv_wnd as data
2372 * is presented to the user (this happens in tcp_usrreq.c,
2373 * case PRU_RCVD). If a FIN has already been received on this
2374 * connection then we just ignore the text.
2376 if ((tlen
|| (thflags
&TH_FIN
)) &&
2377 TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
2378 m_adj(m
, drop_hdrlen
); /* delayed header drop */
2380 * Insert segment which inludes th into reassembly queue of tcp with
2381 * control block tp. Return TH_FIN if reassembly now includes
2382 * a segment with FIN. This handle the common case inline (segment
2383 * is the next to be received on an established connection, and the
2384 * queue is empty), avoiding linkage into and removal from the queue
2385 * and repetition of various conversions.
2386 * Set DELACK for segments received in order, but ack immediately
2387 * when segments are out of order (so fast retransmit can work).
2389 if (th
->th_seq
== tp
->rcv_nxt
&&
2390 LIST_EMPTY(&tp
->t_segq
) &&
2391 TCPS_HAVEESTABLISHED(tp
->t_state
)) {
2393 if (tcp_delack_enabled
) {
2394 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
2395 tp
->t_flags
|= TF_DELACK
;
2399 callout_reset(tp
->tt_delack
, tcp_delacktime
,
2400 tcp_timer_delack
, tp
);
2403 tp
->t_flags
|= TF_ACKNOW
;
2404 tp
->rcv_nxt
+= tlen
;
2405 thflags
= th
->th_flags
& TH_FIN
;
2406 tcpstat
.tcps_rcvpack
++;
2407 tcpstat
.tcps_rcvbyte
+= tlen
;
2409 sbappend(&so
->so_rcv
, m
);
2412 thflags
= tcp_reass(tp
, th
, &tlen
, m
);
2413 tp
->t_flags
|= TF_ACKNOW
;
2416 if (tp
->t_flags
& TF_DELACK
)
2420 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
2421 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
2422 th
->th_seq
, th
->th_ack
, th
->th_win
);
2427 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
2428 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
2429 th
->th_seq
, th
->th_ack
, th
->th_win
);
2434 * Note the amount of data that peer has sent into
2435 * our window, in order to estimate the sender's
2438 len
= so
->so_rcv
.sb_hiwat
- (tp
->rcv_adv
- tp
->rcv_nxt
);
2445 * If FIN is received ACK the FIN and let the user know
2446 * that the connection is closing.
2448 if (thflags
& TH_FIN
) {
2449 if (TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
2451 postevent(so
, 0, EV_FIN
);
2453 * If connection is half-synchronized
2454 * (ie NEEDSYN flag on) then delay ACK,
2455 * so it may be piggybacked when SYN is sent.
2456 * Otherwise, since we received a FIN then no
2457 * more input can be expected, send ACK now.
2459 if (tcp_delack_enabled
&& (tp
->t_flags
& TF_NEEDSYN
)) {
2460 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
2461 tp
->t_flags
|= TF_DELACK
;
2464 tp
->t_flags
|= TF_ACKNOW
;
2467 switch (tp
->t_state
) {
2470 * In SYN_RECEIVED and ESTABLISHED STATES
2471 * enter the CLOSE_WAIT state.
2473 case TCPS_SYN_RECEIVED
:
2475 case TCPS_ESTABLISHED
:
2476 tp
->t_state
= TCPS_CLOSE_WAIT
;
2480 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2481 * enter the CLOSING state.
2483 case TCPS_FIN_WAIT_1
:
2484 tp
->t_state
= TCPS_CLOSING
;
2488 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2489 * starting the time-wait timer, turning off the other
2492 case TCPS_FIN_WAIT_2
:
2493 tp
->t_state
= TCPS_TIME_WAIT
;
2494 tcp_canceltimers(tp
);
2495 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2496 if (tp
->cc_recv
!= 0 &&
2497 tp
->t_starttime
< tcp_msl
) {
2498 tp
->t_timer
[TCPT_2MSL
] =
2499 tp
->t_rxtcur
* TCPTV_TWTRUNC
;
2500 /* For transaction client, force ACK now. */
2501 tp
->t_flags
|= TF_ACKNOW
;
2504 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2506 add_to_time_wait(tp
);
2507 soisdisconnected(so
);
2511 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2513 case TCPS_TIME_WAIT
:
2514 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2515 add_to_time_wait(tp
);
2520 if (so
->so_options
& SO_DEBUG
)
2521 tcp_trace(TA_INPUT
, ostate
, tp
, (void *)tcp_saveipgen
,
2526 * Return any desired output.
2528 if (needoutput
|| (tp
->t_flags
& TF_ACKNOW
))
2529 (void) tcp_output(tp
);
2530 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2535 * Generate an ACK dropping incoming segment if it occupies
2536 * sequence space, where the ACK reflects our state.
2538 * We can now skip the test for the RST flag since all
2539 * paths to this code happen after packets containing
2540 * RST have been dropped.
2542 * In the SYN-RECEIVED state, don't send an ACK unless the
2543 * segment we received passes the SYN-RECEIVED ACK test.
2544 * If it fails send a RST. This breaks the loop in the
2545 * "LAND" DoS attack, and also prevents an ACK storm
2546 * between two listening ports that have been sent forged
2547 * SYN segments, each with the source address of the other.
2549 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& (thflags
& TH_ACK
) &&
2550 (SEQ_GT(tp
->snd_una
, th
->th_ack
) ||
2551 SEQ_GT(th
->th_ack
, tp
->snd_max
)) ) {
2552 rstreason
= BANDLIM_RST_OPENPORT
;
2556 if (so
->so_options
& SO_DEBUG
)
2557 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
2561 tp
->t_flags
|= TF_ACKNOW
;
2562 (void) tcp_output(tp
);
2563 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2568 * Generate a RST, dropping incoming segment.
2569 * Make ACK acceptable to originator of segment.
2570 * Don't bother to respond if destination was broadcast/multicast.
2572 if ((thflags
& TH_RST
) || m
->m_flags
& (M_BCAST
|M_MCAST
))
2576 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
2577 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
2581 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
2582 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
2583 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
2584 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
2586 /* IPv6 anycast check is done at tcp6_input() */
2589 * Perform bandwidth limiting.
2592 if (badport_bandlim(rstreason
) < 0)
2597 if (tp
== 0 || (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2598 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
2601 if (thflags
& TH_ACK
)
2602 /* mtod() below is safe as long as hdr dropping is delayed */
2603 tcp_respond(tp
, mtod(m
, void *), th
, m
, (tcp_seq
)0, th
->th_ack
,
2606 if (thflags
& TH_SYN
)
2608 /* mtod() below is safe as long as hdr dropping is delayed */
2609 tcp_respond(tp
, mtod(m
, void *), th
, m
, th
->th_seq
+tlen
,
2610 (tcp_seq
)0, TH_RST
|TH_ACK
);
2612 /* destroy temporarily created socket */
2615 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2620 * Drop space held by incoming segment and return.
2623 if (tp
== 0 || (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2624 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
2628 /* destroy temporarily created socket */
2631 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2636 tcp_dooptions(tp
, cp
, cnt
, th
, to
)
2646 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2648 if (opt
== TCPOPT_EOL
)
2650 if (opt
== TCPOPT_NOP
)
2656 if (optlen
< 2 || optlen
> cnt
)
2665 if (optlen
!= TCPOLEN_MAXSEG
)
2667 if (!(th
->th_flags
& TH_SYN
))
2669 bcopy((char *) cp
+ 2, (char *) &mss
, sizeof(mss
));
2674 if (optlen
!= TCPOLEN_WINDOW
)
2676 if (!(th
->th_flags
& TH_SYN
))
2678 tp
->t_flags
|= TF_RCVD_SCALE
;
2679 tp
->requested_s_scale
= min(cp
[2], TCP_MAX_WINSHIFT
);
2682 case TCPOPT_TIMESTAMP
:
2683 if (optlen
!= TCPOLEN_TIMESTAMP
)
2685 to
->to_flag
|= TOF_TS
;
2686 bcopy((char *)cp
+ 2,
2687 (char *)&to
->to_tsval
, sizeof(to
->to_tsval
));
2688 NTOHL(to
->to_tsval
);
2689 bcopy((char *)cp
+ 6,
2690 (char *)&to
->to_tsecr
, sizeof(to
->to_tsecr
));
2691 NTOHL(to
->to_tsecr
);
2694 * A timestamp received in a SYN makes
2695 * it ok to send timestamp requests and replies.
2697 if (th
->th_flags
& TH_SYN
) {
2698 tp
->t_flags
|= TF_RCVD_TSTMP
;
2699 tp
->ts_recent
= to
->to_tsval
;
2700 tp
->ts_recent_age
= tcp_now
;
2704 if (optlen
!= TCPOLEN_CC
)
2706 to
->to_flag
|= TOF_CC
;
2707 bcopy((char *)cp
+ 2,
2708 (char *)&to
->to_cc
, sizeof(to
->to_cc
));
2711 * A CC or CC.new option received in a SYN makes
2712 * it ok to send CC in subsequent segments.
2714 if (th
->th_flags
& TH_SYN
)
2715 tp
->t_flags
|= TF_RCVD_CC
;
2718 if (optlen
!= TCPOLEN_CC
)
2720 if (!(th
->th_flags
& TH_SYN
))
2722 to
->to_flag
|= TOF_CCNEW
;
2723 bcopy((char *)cp
+ 2,
2724 (char *)&to
->to_cc
, sizeof(to
->to_cc
));
2727 * A CC or CC.new option received in a SYN makes
2728 * it ok to send CC in subsequent segments.
2730 tp
->t_flags
|= TF_RCVD_CC
;
2733 if (optlen
!= TCPOLEN_CC
)
2735 if (!(th
->th_flags
& TH_SYN
))
2737 to
->to_flag
|= TOF_CCECHO
;
2738 bcopy((char *)cp
+ 2,
2739 (char *)&to
->to_ccecho
, sizeof(to
->to_ccecho
));
2740 NTOHL(to
->to_ccecho
);
2744 if (th
->th_flags
& TH_SYN
)
2745 tcp_mss(tp
, mss
); /* sets t_maxseg */
2749 * Pull out of band byte out of a segment so
2750 * it doesn't appear in the user's data queue.
2751 * It is still reflected in the segment length for
2752 * sequencing purposes.
2755 tcp_pulloutofband(so
, th
, m
, off
)
2758 register struct mbuf
*m
;
2759 int off
; /* delayed to be droped hdrlen */
2761 int cnt
= off
+ th
->th_urp
- 1;
2764 if (m
->m_len
> cnt
) {
2765 char *cp
= mtod(m
, caddr_t
) + cnt
;
2766 struct tcpcb
*tp
= sototcpcb(so
);
2769 tp
->t_oobflags
|= TCPOOB_HAVEDATA
;
2770 bcopy(cp
+1, cp
, (unsigned)(m
->m_len
- cnt
- 1));
2772 if (m
->m_flags
& M_PKTHDR
)
2781 panic("tcp_pulloutofband");
2785 * Collect new round-trip time estimate
2786 * and update averages and current timeout.
2789 tcp_xmit_timer(tp
, rtt
)
2790 register struct tcpcb
*tp
;
2795 tcpstat
.tcps_rttupdated
++;
2797 if (tp
->t_srtt
!= 0) {
2799 * srtt is stored as fixed point with 5 bits after the
2800 * binary point (i.e., scaled by 8). The following magic
2801 * is equivalent to the smoothing algorithm in rfc793 with
2802 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2803 * point). Adjust rtt to origin 0.
2805 delta
= ((rtt
- 1) << TCP_DELTA_SHIFT
)
2806 - (tp
->t_srtt
>> (TCP_RTT_SHIFT
- TCP_DELTA_SHIFT
));
2808 if ((tp
->t_srtt
+= delta
) <= 0)
2812 * We accumulate a smoothed rtt variance (actually, a
2813 * smoothed mean difference), then set the retransmit
2814 * timer to smoothed rtt + 4 times the smoothed variance.
2815 * rttvar is stored as fixed point with 4 bits after the
2816 * binary point (scaled by 16). The following is
2817 * equivalent to rfc793 smoothing with an alpha of .75
2818 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2819 * rfc793's wired-in beta.
2823 delta
-= tp
->t_rttvar
>> (TCP_RTTVAR_SHIFT
- TCP_DELTA_SHIFT
);
2824 if ((tp
->t_rttvar
+= delta
) <= 0)
2828 * No rtt measurement yet - use the unsmoothed rtt.
2829 * Set the variance to half the rtt (so our first
2830 * retransmit happens at 3*rtt).
2832 tp
->t_srtt
= rtt
<< TCP_RTT_SHIFT
;
2833 tp
->t_rttvar
= rtt
<< (TCP_RTTVAR_SHIFT
- 1);
2839 * the retransmit should happen at rtt + 4 * rttvar.
2840 * Because of the way we do the smoothing, srtt and rttvar
2841 * will each average +1/2 tick of bias. When we compute
2842 * the retransmit timer, we want 1/2 tick of rounding and
2843 * 1 extra tick because of +-1/2 tick uncertainty in the
2844 * firing of the timer. The bias will give us exactly the
2845 * 1.5 tick we need. But, because the bias is
2846 * statistical, we have to test that we don't drop below
2847 * the minimum feasible timer (which is 2 ticks).
2849 TCPT_RANGESET(tp
->t_rxtcur
, TCP_REXMTVAL(tp
),
2850 max(tp
->t_rttmin
, rtt
+ 2), TCPTV_REXMTMAX
);
2853 * We received an ack for a packet that wasn't retransmitted;
2854 * it is probably safe to discard any error indications we've
2855 * received recently. This isn't quite right, but close enough
2856 * for now (a route might have failed after we sent a segment,
2857 * and the return path might not be symmetrical).
2859 tp
->t_softerror
= 0;
2863 * Determine a reasonable value for maxseg size.
2864 * If the route is known, check route for mtu.
2865 * If none, use an mss that can be handled on the outgoing
2866 * interface without forcing IP to fragment; if bigger than
2867 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2868 * to utilize large mbufs. If no route is found, route has no mtu,
2869 * or the destination isn't local, use a default, hopefully conservative
2870 * size (usually 512 or the default IP max size, but no more than the mtu
2871 * of the interface), as we can't discover anything about intervening
2872 * gateways or networks. We also initialize the congestion/slow start
2873 * window to be a single segment if the destination isn't local.
2874 * While looking at the routing entry, we also initialize other path-dependent
2875 * parameters from pre-set or cached values in the routing entry.
2877 * Also take into account the space needed for options that we
2878 * send regularly. Make maxseg shorter by that amount to assure
2879 * that we can send maxseg amount of data even when the options
2880 * are present. Store the upper limit of the length of options plus
2883 * NOTE that this routine is only called when we process an incoming
2884 * segment, for outgoing segments only tcp_mssopt is called.
2886 * In case of T/TCP, we call this routine during implicit connection
2887 * setup as well (offer = -1), to initialize maxseg from the cached
2895 register struct rtentry
*rt
;
2897 register int rtt
, mss
;
2901 struct rmxp_tao
*taop
;
2902 int origoffer
= offer
;
2910 isipv6
= ((inp
->inp_vflag
& INP_IPV6
) != 0) ? 1 : 0;
2911 min_protoh
= isipv6
? sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
)
2912 : sizeof (struct tcpiphdr
);
2914 #define min_protoh (sizeof (struct tcpiphdr))
2918 rt
= tcp_rtlookup6(inp
);
2921 rt
= tcp_rtlookup(inp
);
2923 tp
->t_maxopd
= tp
->t_maxseg
=
2925 isipv6
? tcp_v6mssdflt
:
2932 * Slower link window correction:
2933 * If a value is specificied for slowlink_wsize use it for PPP links
2934 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
2935 * it is the default value adversized by pseudo-devices over ppp.
2937 if (ifp
->if_type
== IFT_PPP
&& slowlink_wsize
> 0 &&
2938 ifp
->if_baudrate
> 9600 && ifp
->if_baudrate
<= 128000) {
2939 tp
->t_flags
|= TF_SLOWLINK
;
2941 so
= inp
->inp_socket
;
2943 taop
= rmx_taop(rt
->rt_rmx
);
2945 * Offer == -1 means that we didn't receive SYN yet,
2946 * use cached value in that case;
2949 offer
= taop
->tao_mssopt
;
2951 * Offer == 0 means that there was no MSS on the SYN segment,
2952 * in this case we use tcp_mssdflt.
2957 isipv6
? tcp_v6mssdflt
:
2962 * Prevent DoS attack with too small MSS. Round up
2963 * to at least minmss.
2965 offer
= max(offer
, tcp_minmss
);
2967 * Sanity check: make sure that maxopd will be large
2968 * enough to allow some data on segments even is the
2969 * all the option space is used (40bytes). Otherwise
2970 * funny things may happen in tcp_output.
2972 offer
= max(offer
, 64);
2974 taop
->tao_mssopt
= offer
;
2977 * While we're here, check if there's an initial rtt
2978 * or rttvar. Convert from the route-table units
2979 * to scaled multiples of the slow timeout timer.
2981 if (tp
->t_srtt
== 0 && (rtt
= rt
->rt_rmx
.rmx_rtt
)) {
2983 * XXX the lock bit for RTT indicates that the value
2984 * is also a minimum value; this is subject to time.
2986 if (rt
->rt_rmx
.rmx_locks
& RTV_RTT
)
2987 tp
->t_rttmin
= rtt
/ (RTM_RTTUNIT
/ PR_SLOWHZ
);
2988 tp
->t_srtt
= rtt
/ (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
2989 tcpstat
.tcps_usedrtt
++;
2990 if (rt
->rt_rmx
.rmx_rttvar
) {
2991 tp
->t_rttvar
= rt
->rt_rmx
.rmx_rttvar
/
2992 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
2993 tcpstat
.tcps_usedrttvar
++;
2995 /* default variation is +- 1 rtt */
2997 tp
->t_srtt
* TCP_RTTVAR_SCALE
/ TCP_RTT_SCALE
;
2999 TCPT_RANGESET(tp
->t_rxtcur
,
3000 ((tp
->t_srtt
>> 2) + tp
->t_rttvar
) >> 1,
3001 tp
->t_rttmin
, TCPTV_REXMTMAX
);
3004 * if there's an mtu associated with the route, use it
3005 * else, use the link mtu.
3007 if (rt
->rt_rmx
.rmx_mtu
)
3008 mss
= rt
->rt_rmx
.rmx_mtu
- min_protoh
;
3013 (isipv6
? nd_ifinfo
[rt
->rt_ifp
->if_index
].linkmtu
:
3022 if (!in6_localaddr(&inp
->in6p_faddr
))
3023 mss
= min(mss
, tcp_v6mssdflt
);
3026 if (!in_localaddr(inp
->inp_faddr
))
3027 mss
= min(mss
, tcp_mssdflt
);
3029 mss
= min(mss
, offer
);
3031 * maxopd stores the maximum length of data AND options
3032 * in a segment; maxseg is the amount of data in a normal
3033 * segment. We need to store this value (maxopd) apart
3034 * from maxseg, because now every segment carries options
3035 * and thus we normally have somewhat less data in segments.
3040 * In case of T/TCP, origoffer==-1 indicates, that no segments
3041 * were received yet. In this case we just guess, otherwise
3042 * we do the same as before T/TCP.
3044 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
3046 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
))
3047 mss
-= TCPOLEN_TSTAMP_APPA
;
3048 if ((tp
->t_flags
& (TF_REQ_CC
|TF_NOOPT
)) == TF_REQ_CC
&&
3050 (tp
->t_flags
& TF_RCVD_CC
) == TF_RCVD_CC
))
3051 mss
-= TCPOLEN_CC_APPA
;
3054 * If there's a pipesize (ie loopback), change the socket
3055 * buffer to that size only if it's bigger than the current
3056 * sockbuf size. Make the socket buffers an integral
3057 * number of mss units; if the mss is larger than
3058 * the socket buffer, decrease the mss.
3061 bufsize
= rt
->rt_rmx
.rmx_sendpipe
;
3062 if (bufsize
< so
->so_snd
.sb_hiwat
)
3064 bufsize
= so
->so_snd
.sb_hiwat
;
3068 bufsize
= roundup(bufsize
, mss
);
3069 if (bufsize
> sb_max
)
3071 (void)sbreserve(&so
->so_snd
, bufsize
);
3076 bufsize
= rt
->rt_rmx
.rmx_recvpipe
;
3077 if (bufsize
< so
->so_rcv
.sb_hiwat
)
3079 bufsize
= so
->so_rcv
.sb_hiwat
;
3080 if (bufsize
> mss
) {
3081 bufsize
= roundup(bufsize
, mss
);
3082 if (bufsize
> sb_max
)
3084 (void)sbreserve(&so
->so_rcv
, bufsize
);
3088 * Set the slow-start flight size depending on whether this
3089 * is a local network or not.
3093 (isipv6
&& in6_localaddr(&inp
->in6p_faddr
)) ||
3096 in_localaddr(inp
->inp_faddr
)
3101 tp
->snd_cwnd
= mss
* ss_fltsz_local
;
3103 tp
->snd_cwnd
= mss
* ss_fltsz
;
3105 if (rt
->rt_rmx
.rmx_ssthresh
) {
3107 * There's some sort of gateway or interface
3108 * buffer limit on the path. Use this to set
3109 * the slow start threshhold, but set the
3110 * threshold to no less than 2*mss.
3112 tp
->snd_ssthresh
= max(2 * mss
, rt
->rt_rmx
.rmx_ssthresh
);
3113 tcpstat
.tcps_usedssthresh
++;
3118 * Determine the MSS option to send on an outgoing SYN.
3131 isipv6
= ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) ? 1 : 0;
3132 min_protoh
= isipv6
? sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
)
3133 : sizeof (struct tcpiphdr
);
3135 #define min_protoh (sizeof (struct tcpiphdr))
3139 rt
= tcp_rtlookup6(tp
->t_inpcb
);
3142 rt
= tcp_rtlookup(tp
->t_inpcb
);
3146 isipv6
? tcp_v6mssdflt
:
3150 * Slower link window correction:
3151 * If a value is specificied for slowlink_wsize use it for PPP links
3152 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
3153 * it is the default value adversized by pseudo-devices over ppp.
3155 if (rt
->rt_ifp
->if_type
== IFT_PPP
&& slowlink_wsize
> 0 &&
3156 rt
->rt_ifp
->if_baudrate
> 9600 && rt
->rt_ifp
->if_baudrate
<= 128000) {
3157 tp
->t_flags
|= TF_SLOWLINK
;
3160 return rt
->rt_ifp
->if_mtu
- min_protoh
;
3165 * Checks for partial ack. If partial ack arrives, force the retransmission
3166 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3167 * 1. By setting snd_nxt to ti_ack, this forces retransmission timer to
3168 * be started again. If the ack advances at least to tp->snd_recover, return 0.
3175 if (SEQ_LT(th
->th_ack
, tp
->snd_recover
)) {
3176 tcp_seq onxt
= tp
->snd_nxt
;
3177 u_long ocwnd
= tp
->snd_cwnd
;
3179 tp
->t_timer
[TCPT_REXMT
] = 0;
3181 callout_stop(tp
->tt_rexmt
);
3184 tp
->snd_nxt
= th
->th_ack
;
3186 * Set snd_cwnd to one segment beyond acknowledged offset
3187 * (tp->snd_una has not yet been updated when this function
3190 tp
->snd_cwnd
= tp
->t_maxseg
+ (th
->th_ack
- tp
->snd_una
);
3191 (void) tcp_output(tp
);
3192 tp
->snd_cwnd
= ocwnd
;
3193 if (SEQ_GT(onxt
, tp
->snd_nxt
))
3196 * Partial window deflation. Relies on fact that tp->snd_una
3199 tp
->snd_cwnd
-= (th
->th_ack
- tp
->snd_una
- tp
->t_maxseg
);