]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_input.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_input.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/sysctl.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/proc.h> /* for proc0 declaration */
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/syslog.h>
81 #include <sys/mcache.h>
82 #if XNU_TARGET_OS_OSX
83 #include <sys/kasl.h>
84 #endif /* XNU_TARGET_OS_OSX */
85 #include <sys/kauth.h>
86 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
87
88 #include <machine/endian.h>
89
90 #include <net/if.h>
91 #include <net/if_types.h>
92 #include <net/route.h>
93 #include <net/ntstat.h>
94 #include <net/content_filter.h>
95 #include <net/dlil.h>
96 #include <net/multi_layer_pkt_log.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
102 #include <netinet/in_var.h>
103 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
104 #include <netinet/in_pcb.h>
105 #include <netinet/ip_var.h>
106 #include <mach/sdt.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_cache.h>
114 #include <netinet/tcp_fsm.h>
115 #include <netinet/tcp_seq.h>
116 #include <netinet/tcp_timer.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet/tcp_cc.h>
119 #include <dev/random/randomdev.h>
120 #include <kern/zalloc.h>
121 #include <netinet6/tcp6_var.h>
122 #include <netinet/tcpip.h>
123 #if TCPDEBUG
124 #include <netinet/tcp_debug.h>
125 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
126 struct tcphdr tcp_savetcp;
127 #endif /* TCPDEBUG */
128 #include <netinet/tcp_log.h>
129
130 #if IPSEC
131 #include <netinet6/ipsec.h>
132 #include <netinet6/ipsec6.h>
133 #include <netkey/key.h>
134 #endif /*IPSEC*/
135
136 #include <sys/kdebug.h>
137 #if MPTCP
138 #include <netinet/mptcp_var.h>
139 #include <netinet/mptcp.h>
140 #include <netinet/mptcp_opt.h>
141 #endif /* MPTCP */
142
143 #include <corecrypto/ccaes.h>
144
145 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
146 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
147 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
148 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
149
150 #define TCP_RTT_HISTORY_EXPIRE_TIME (60 * TCP_RETRANSHZ)
151 #define TCP_RECV_THROTTLE_WIN (5 * TCP_RETRANSHZ)
152 #define TCP_STRETCHACK_ENABLE_PKTCNT 2000
153
154 struct tcpstat tcpstat;
155
156 SYSCTL_SKMEM_TCP_INT(OID_AUTO, flow_control_response,
157 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_flow_control_response, 1,
158 "Improved response to Flow-control events");
159
160 static int log_in_vain = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain,
162 CTLFLAG_RW | CTLFLAG_LOCKED, &log_in_vain, 0,
163 "Log all incoming TCP connections");
164
165 SYSCTL_SKMEM_TCP_INT(OID_AUTO, ack_strategy,
166 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_ack_strategy, TCP_ACK_STRATEGY_MODERN,
167 "Revised TCP ACK-strategy, avoiding stretch-ACK implementation");
168
169 static int blackhole = 0;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole,
171 CTLFLAG_RW | CTLFLAG_LOCKED, &blackhole, 0,
172 "Do not send RST when dropping refused connections");
173
174 SYSCTL_SKMEM_TCP_INT(OID_AUTO, aggressive_rcvwnd_inc,
175 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_aggressive_rcvwnd_inc, 1,
176 "Be more aggressive about increasing the receive-window.");
177
178 SYSCTL_SKMEM_TCP_INT(OID_AUTO, delayed_ack,
179 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_delack_enabled, 3,
180 "Delay ACK to try and piggyback it onto a data packet");
181
182 SYSCTL_SKMEM_TCP_INT(OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED,
183 int, tcp_recv_bg, 0, "Receive background");
184
185 SYSCTL_SKMEM_TCP_INT(OID_AUTO, drop_synfin,
186 CTLFLAG_RW | CTLFLAG_LOCKED, static int, drop_synfin, 1,
187 "Drop TCP packets with SYN+FIN set");
188
189 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
190 "TCP Segment Reassembly Queue");
191
192 static int tcp_reass_overflows = 0;
193 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows,
194 CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_reass_overflows, 0,
195 "Global number of TCP Segment Reassembly Queue Overflows");
196
197
198 SYSCTL_SKMEM_TCP_INT(OID_AUTO, slowlink_wsize, CTLFLAG_RW | CTLFLAG_LOCKED,
199 __private_extern__ int, slowlink_wsize, 8192,
200 "Maximum advertised window size for slowlink");
201
202 SYSCTL_SKMEM_TCP_INT(OID_AUTO, maxseg_unacked,
203 CTLFLAG_RW | CTLFLAG_LOCKED, int, maxseg_unacked, 8,
204 "Maximum number of outstanding segments left unacked");
205
206 SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED,
207 int, tcp_do_rfc3465, 1, "");
208
209 SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465_lim2,
210 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_rfc3465_lim2, 1,
211 "Appropriate bytes counting w/ L=2*SMSS");
212
213 int rtt_samples_per_slot = 20;
214
215 int tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH;
216 u_int32_t tcp_autorcvbuf_inc_shift = 3;
217 SYSCTL_SKMEM_TCP_INT(OID_AUTO, recv_allowed_iaj,
218 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_allowed_iaj, ALLOWED_IAJ,
219 "Allowed inter-packet arrival jiter");
220
221 SYSCTL_SKMEM_TCP_INT(OID_AUTO, doautorcvbuf,
222 CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_do_autorcvbuf, 1,
223 "Enable automatic socket buffer tuning");
224
225 SYSCTL_SKMEM_TCP_INT(OID_AUTO, autotunereorder,
226 CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_autotune_reorder, 1,
227 "Enable automatic socket buffer tuning even when reordering is present");
228
229 SYSCTL_SKMEM_TCP_INT(OID_AUTO, autorcvbufmax,
230 CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_autorcvbuf_max, 2 * 1024 * 1024,
231 "Maximum receive socket buffer size");
232
233 int tcp_disable_access_to_stats = 1;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_access_to_stats,
235 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_disable_access_to_stats, 0,
236 "Disable access to tcpstat");
237
238 SYSCTL_SKMEM_TCP_INT(OID_AUTO, challengeack_limit,
239 CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_challengeack_limit, 10,
240 "Maximum number of challenge ACKs per connection per second");
241
242 /* TO BE REMOVED */
243 SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_rfc5961,
244 CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_do_rfc5961, 1,
245 "Enable/Disable full RFC 5961 compliance");
246
247 SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_better_lr,
248 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_better_lr, 1,
249 "Improved TCP Loss Recovery");
250
251 extern int tcp_acc_iaj_high;
252 extern int tcp_acc_iaj_react_limit;
253
254 int tcprexmtthresh = 3;
255
256 u_int32_t tcp_now;
257 struct timeval tcp_uptime; /* uptime when tcp_now was last updated */
258 lck_spin_t *tcp_uptime_lock; /* Used to sychronize updates to tcp_now */
259
260 struct inpcbhead tcb;
261 #define tcb6 tcb /* for KAME src sync over BSD*'s */
262 struct inpcbinfo tcbinfo;
263
264 static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *,
265 struct tcpopt *);
266 static void tcp_finalize_options(struct tcpcb *, struct tcpopt *, unsigned int);
267 static void tcp_pulloutofband(struct socket *,
268 struct tcphdr *, struct mbuf *, int);
269 static void tcp_xmit_timer(struct tcpcb *, int, u_int32_t, tcp_seq);
270 static inline unsigned int tcp_maxmtu(struct rtentry *);
271 static inline int tcp_stretch_ack_enable(struct tcpcb *tp, int thflags);
272 static inline void tcp_adaptive_rwtimo_check(struct tcpcb *, int);
273
274 #if TRAFFIC_MGT
275 static inline void update_iaj_state(struct tcpcb *tp, uint32_t tlen,
276 int reset_size);
277 static inline void compute_iaj(struct tcpcb *tp);
278 static inline void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj);
279 #endif /* TRAFFIC_MGT */
280
281 static inline unsigned int tcp_maxmtu6(struct rtentry *);
282 unsigned int get_maxmtu(struct rtentry *);
283
284 static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb,
285 struct tcpopt *to, uint32_t tlen);
286 void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb);
287 static void tcp_sbsnd_trim(struct sockbuf *sbsnd);
288 static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp);
289 static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb,
290 u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max);
291 static void tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th);
292 static void tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to,
293 struct tcphdr *th);
294 static void tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th);
295 static void tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th,
296 struct tcpopt *to);
297 /*
298 * Constants used for resizing receive socket buffer
299 * when timestamps are not supported
300 */
301 #define TCPTV_RCVNOTS_QUANTUM 100
302 #define TCP_RCVNOTS_BYTELEVEL 204800
303
304 /*
305 * Constants used for limiting early retransmits
306 * to 10 per minute.
307 */
308 #define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */
309 #define TCP_EARLY_REXMT_LIMIT 10
310
311 #define log_in_vain_log( a ) { log a; }
312
313 int tcp_rcvunackwin = TCPTV_UNACKWIN;
314 int tcp_maxrcvidle = TCPTV_MAXRCVIDLE;
315 SYSCTL_SKMEM_TCP_INT(OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
316 int, tcp_rcvsspktcnt, TCP_RCV_SS_PKTCOUNT, "packets to be seen before receiver stretches acks");
317
318 #define DELAY_ACK(tp, th) \
319 (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th))
320
321 static int tcp_dropdropablreq(struct socket *head);
322 static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
323 static void update_base_rtt(struct tcpcb *tp, uint32_t rtt);
324 void tcp_set_background_cc(struct socket *so);
325 void tcp_set_foreground_cc(struct socket *so);
326 static void tcp_set_new_cc(struct socket *so, uint16_t cc_index);
327 static void tcp_bwmeas_check(struct tcpcb *tp);
328
329 #if TRAFFIC_MGT
330 void
331 reset_acc_iaj(struct tcpcb *tp)
332 {
333 tp->acc_iaj = 0;
334 CLEAR_IAJ_STATE(tp);
335 }
336
337 static inline void
338 update_iaj_state(struct tcpcb *tp, uint32_t size, int rst_size)
339 {
340 if (rst_size > 0) {
341 tp->iaj_size = 0;
342 }
343 if (tp->iaj_size == 0 || size >= tp->iaj_size) {
344 tp->iaj_size = size;
345 tp->iaj_rcv_ts = tcp_now;
346 tp->iaj_small_pkt = 0;
347 }
348 }
349
350 /* For every 32 bit unsigned integer(v), this function will find the
351 * largest integer n such that (n*n <= v). This takes at most 16 iterations
352 * irrespective of the value of v and does not involve multiplications.
353 */
354 static inline int
355 isqrt(unsigned int val)
356 {
357 unsigned int sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
358 unsigned int temp, g = 0, b = 0x8000, bshft = 15;
359 if (val <= 100) {
360 for (g = 0; g <= 10; ++g) {
361 if (sqrt_cache[g] > val) {
362 g--;
363 break;
364 } else if (sqrt_cache[g] == val) {
365 break;
366 }
367 }
368 } else {
369 do {
370 temp = (((g << 1) + b) << (bshft--));
371 if (val >= temp) {
372 g += b;
373 val -= temp;
374 }
375 b >>= 1;
376 } while (b > 0 && val > 0);
377 }
378 return g;
379 }
380
381 static inline void
382 compute_iaj(struct tcpcb *tp)
383 {
384 compute_iaj_meat(tp, (tcp_now - tp->iaj_rcv_ts));
385 }
386
387 static inline void
388 compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj)
389 {
390 /* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds,
391 * throttle the receive window to a minimum of MIN_IAJ_WIN packets
392 */
393 #define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit)
394 #define IAJ_DIV_SHIFT 4
395 #define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1))
396
397 uint32_t allowed_iaj, acc_iaj = 0;
398
399 uint32_t mean, temp;
400 int32_t cur_iaj_dev;
401
402 cur_iaj_dev = (cur_iaj - tp->avg_iaj);
403
404 /* Allow a jitter of "allowed_iaj" milliseconds. Some connections
405 * may have a constant jitter more than that. We detect this by
406 * using standard deviation.
407 */
408 allowed_iaj = tp->avg_iaj + tp->std_dev_iaj;
409 if (allowed_iaj < tcp_allowed_iaj) {
410 allowed_iaj = tcp_allowed_iaj;
411 }
412
413 /* Initially when the connection starts, the senders congestion
414 * window is small. During this period we avoid throttling a
415 * connection because we do not have a good starting point for
416 * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over
417 * the first few packets.
418 */
419 if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) {
420 if (cur_iaj <= allowed_iaj) {
421 if (tp->acc_iaj >= 2) {
422 acc_iaj = tp->acc_iaj - 2;
423 } else {
424 acc_iaj = 0;
425 }
426 } else {
427 acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj);
428 }
429
430 if (acc_iaj > MAX_ACC_IAJ) {
431 acc_iaj = MAX_ACC_IAJ;
432 }
433 tp->acc_iaj = acc_iaj;
434 }
435
436 /* Compute weighted average where the history has a weight of
437 * 15 out of 16 and the current value has a weight of 1 out of 16.
438 * This will make the short-term measurements have more weight.
439 *
440 * The addition of 8 will help to round-up the value
441 * instead of round-down
442 */
443 tp->avg_iaj = (((tp->avg_iaj << IAJ_DIV_SHIFT) - tp->avg_iaj)
444 + cur_iaj + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
445
446 /* Compute Root-mean-square of deviation where mean is a weighted
447 * average as described above.
448 */
449 temp = tp->std_dev_iaj * tp->std_dev_iaj;
450 mean = (((temp << IAJ_DIV_SHIFT) - temp)
451 + (cur_iaj_dev * cur_iaj_dev)
452 + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
453
454 tp->std_dev_iaj = isqrt(mean);
455
456 DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj,
457 uint32_t, allowed_iaj);
458
459 return;
460 }
461 #endif /* TRAFFIC_MGT */
462
463 /*
464 * Perform rate limit check per connection per second
465 * tp->t_challengeack_last is the last_time diff was greater than 1sec
466 * tp->t_challengeack_count is the number of ACKs sent (within 1sec)
467 * Return TRUE if we shouldn't send the ACK due to rate limitation
468 * Return FALSE if it is still ok to send challenge ACK
469 */
470 static boolean_t
471 tcp_is_ack_ratelimited(struct tcpcb *tp)
472 {
473 boolean_t ret = TRUE;
474 uint32_t now = tcp_now;
475 int32_t diff = 0;
476
477 diff = timer_diff(now, 0, tp->t_challengeack_last, 0);
478 /* If it is first time or diff > 1000ms,
479 * update the challengeack_last and reset the
480 * current count of ACKs
481 */
482 if (tp->t_challengeack_last == 0 || diff >= 1000) {
483 tp->t_challengeack_last = now;
484 tp->t_challengeack_count = 0;
485 ret = FALSE;
486 } else if (tp->t_challengeack_count < tcp_challengeack_limit) {
487 ret = FALSE;
488 }
489
490 /* Careful about wrap-around */
491 if (ret == FALSE && (tp->t_challengeack_count + 1 > 0)) {
492 tp->t_challengeack_count++;
493 }
494
495 return ret;
496 }
497
498 /* Check if enough amount of data has been acknowledged since
499 * bw measurement was started
500 */
501 static void
502 tcp_bwmeas_check(struct tcpcb *tp)
503 {
504 int32_t bw_meas_bytes;
505 uint32_t bw, bytes, elapsed_time;
506
507 if (SEQ_LEQ(tp->snd_una, tp->t_bwmeas->bw_start)) {
508 return;
509 }
510
511 bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start;
512 if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) &&
513 bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) {
514 bytes = bw_meas_bytes;
515 elapsed_time = tcp_now - tp->t_bwmeas->bw_ts;
516 if (elapsed_time > 0) {
517 bw = bytes / elapsed_time;
518 if (bw > 0) {
519 if (tp->t_bwmeas->bw_sndbw > 0) {
520 tp->t_bwmeas->bw_sndbw =
521 (((tp->t_bwmeas->bw_sndbw << 3)
522 - tp->t_bwmeas->bw_sndbw)
523 + bw) >> 3;
524 } else {
525 tp->t_bwmeas->bw_sndbw = bw;
526 }
527
528 /* Store the maximum value */
529 if (tp->t_bwmeas->bw_sndbw_max == 0) {
530 tp->t_bwmeas->bw_sndbw_max =
531 tp->t_bwmeas->bw_sndbw;
532 } else {
533 tp->t_bwmeas->bw_sndbw_max =
534 max(tp->t_bwmeas->bw_sndbw,
535 tp->t_bwmeas->bw_sndbw_max);
536 }
537 }
538 }
539 tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS);
540 }
541 }
542
543 static int
544 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m,
545 struct ifnet *ifp, int *dowakeup)
546 {
547 struct tseg_qent *q;
548 struct tseg_qent *p = NULL;
549 struct tseg_qent *nq;
550 struct tseg_qent *te = NULL;
551 struct inpcb *inp = tp->t_inpcb;
552 struct socket *so = inp->inp_socket;
553 int flags = 0;
554 u_int16_t qlimit;
555 boolean_t cell = IFNET_IS_CELLULAR(ifp);
556 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
557 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
558 boolean_t dsack_set = FALSE;
559
560 /*
561 * Call with th==0 after become established to
562 * force pre-ESTABLISHED data up to user socket.
563 */
564 if (th == NULL) {
565 goto present;
566 }
567
568 /*
569 * If the reassembly queue already has entries or if we are going
570 * to add a new one, then the connection has reached a loss state.
571 * Reset the stretch-ack algorithm at this point.
572 */
573 tcp_reset_stretch_ack(tp);
574 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
575
576 #if TRAFFIC_MGT
577 if (tp->acc_iaj > 0) {
578 reset_acc_iaj(tp);
579 }
580 #endif /* TRAFFIC_MGT */
581
582 if (th->th_seq != tp->rcv_nxt) {
583 struct mbuf *tmp = m;
584 while (tmp != NULL) {
585 if (mbuf_class_under_pressure(tmp)) {
586 m_freem(m);
587 tcp_reass_overflows++;
588 tcpstat.tcps_rcvmemdrop++;
589 *tlenp = 0;
590 return 0;
591 }
592
593 tmp = tmp->m_next;
594 }
595 }
596
597 /*
598 * Limit the number of segments in the reassembly queue to prevent
599 * holding on to too many segments (and thus running out of mbufs).
600 * Make sure to let the missing segment through which caused this
601 * queue. Always keep one global queue entry spare to be able to
602 * process the missing segment.
603 */
604 qlimit = min(max(100, so->so_rcv.sb_hiwat >> 10),
605 (tcp_autorcvbuf_max >> 10));
606 if (th->th_seq != tp->rcv_nxt &&
607 (tp->t_reassqlen + 1) >= qlimit) {
608 tcp_reass_overflows++;
609 tcpstat.tcps_rcvmemdrop++;
610 m_freem(m);
611 *tlenp = 0;
612 return 0;
613 }
614
615 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
616 te = (struct tseg_qent *) zalloc(tcp_reass_zone);
617 if (te == NULL) {
618 tcpstat.tcps_rcvmemdrop++;
619 m_freem(m);
620 return 0;
621 }
622 tp->t_reassqlen++;
623
624 /*
625 * Find a segment which begins after this one does.
626 */
627 LIST_FOREACH(q, &tp->t_segq, tqe_q) {
628 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) {
629 break;
630 }
631 p = q;
632 }
633
634 /*
635 * If there is a preceding segment, it may provide some of
636 * our data already. If so, drop the data from the incoming
637 * segment. If it provides all of our data, drop us.
638 */
639 if (p != NULL) {
640 int i;
641 /* conversion to int (in i) handles seq wraparound */
642 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
643 if (i > 0) {
644 if (i > 1) {
645 /*
646 * Note duplicate data sequnce numbers
647 * to report in DSACK option
648 */
649 tp->t_dsack_lseq = th->th_seq;
650 tp->t_dsack_rseq = th->th_seq +
651 min(i, *tlenp);
652
653 /*
654 * Report only the first part of partial/
655 * non-contiguous duplicate sequence space
656 */
657 dsack_set = TRUE;
658 }
659 if (i >= *tlenp) {
660 tcpstat.tcps_rcvduppack++;
661 tcpstat.tcps_rcvdupbyte += *tlenp;
662 if (nstat_collect) {
663 nstat_route_rx(inp->inp_route.ro_rt,
664 1, *tlenp,
665 NSTAT_RX_FLAG_DUPLICATE);
666 INP_ADD_STAT(inp, cell, wifi, wired,
667 rxpackets, 1);
668 INP_ADD_STAT(inp, cell, wifi, wired,
669 rxbytes, *tlenp);
670 tp->t_stat.rxduplicatebytes += *tlenp;
671 inp_set_activity_bitmap(inp);
672 }
673 m_freem(m);
674 zfree(tcp_reass_zone, te);
675 te = NULL;
676 tp->t_reassqlen--;
677 /*
678 * Try to present any queued data
679 * at the left window edge to the user.
680 * This is needed after the 3-WHS
681 * completes.
682 */
683 goto present;
684 }
685 m_adj(m, i);
686 *tlenp -= i;
687 th->th_seq += i;
688 }
689 }
690 tp->t_rcvoopack++;
691 tcpstat.tcps_rcvoopack++;
692 tcpstat.tcps_rcvoobyte += *tlenp;
693 if (nstat_collect) {
694 nstat_route_rx(inp->inp_route.ro_rt, 1, *tlenp,
695 NSTAT_RX_FLAG_OUT_OF_ORDER);
696 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
697 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, *tlenp);
698 tp->t_stat.rxoutoforderbytes += *tlenp;
699 inp_set_activity_bitmap(inp);
700 }
701
702 /*
703 * While we overlap succeeding segments trim them or,
704 * if they are completely covered, dequeue them.
705 */
706 while (q) {
707 int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
708 if (i <= 0) {
709 break;
710 }
711
712 /*
713 * Report only the first part of partial/non-contiguous
714 * duplicate segment in dsack option. The variable
715 * dsack_set will be true if a previous entry has some of
716 * the duplicate sequence space.
717 */
718 if (i > 1 && !dsack_set) {
719 if (tp->t_dsack_lseq == 0) {
720 tp->t_dsack_lseq = q->tqe_th->th_seq;
721 tp->t_dsack_rseq =
722 tp->t_dsack_lseq + min(i, q->tqe_len);
723 } else {
724 /*
725 * this segment overlaps data in multple
726 * entries in the reassembly queue, move
727 * the right sequence number further.
728 */
729 tp->t_dsack_rseq =
730 tp->t_dsack_rseq + min(i, q->tqe_len);
731 }
732 }
733 if (i < q->tqe_len) {
734 q->tqe_th->th_seq += i;
735 q->tqe_len -= i;
736 m_adj(q->tqe_m, i);
737 break;
738 }
739
740 nq = LIST_NEXT(q, tqe_q);
741 LIST_REMOVE(q, tqe_q);
742 m_freem(q->tqe_m);
743 zfree(tcp_reass_zone, q);
744 tp->t_reassqlen--;
745 q = nq;
746 }
747
748 /* Insert the new segment queue entry into place. */
749 te->tqe_m = m;
750 te->tqe_th = th;
751 te->tqe_len = *tlenp;
752
753 if (p == NULL) {
754 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
755 } else {
756 LIST_INSERT_AFTER(p, te, tqe_q);
757 }
758
759 present:
760 /*
761 * Present data to user, advancing rcv_nxt through
762 * completed sequence space.
763 */
764 if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
765 return 0;
766 }
767 q = LIST_FIRST(&tp->t_segq);
768 if (!q || q->tqe_th->th_seq != tp->rcv_nxt) {
769 return 0;
770 }
771
772 /*
773 * If there is already another thread doing reassembly for this
774 * connection, it is better to let it finish the job --
775 * (radar 16316196)
776 */
777 if (tp->t_flagsext & TF_REASS_INPROG) {
778 return 0;
779 }
780
781 tp->t_flagsext |= TF_REASS_INPROG;
782 /* lost packet was recovered, so ooo data can be returned */
783 tcpstat.tcps_recovered_pkts++;
784
785 do {
786 tp->rcv_nxt += q->tqe_len;
787 flags = q->tqe_th->th_flags & TH_FIN;
788 LIST_REMOVE(q, tqe_q);
789 if (so->so_state & SS_CANTRCVMORE) {
790 m_freem(q->tqe_m);
791 } else {
792 /*
793 * The mbuf may be freed after it has been added to the
794 * receive socket buffer so we reinitialize th to point
795 * to a safe copy of the TCP header
796 */
797 struct tcphdr saved_tcphdr = {};
798
799 so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */
800 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
801
802 if (q->tqe_th->th_flags & TH_PUSH) {
803 tp->t_flagsext |= TF_LAST_IS_PSH;
804 } else {
805 tp->t_flagsext &= ~TF_LAST_IS_PSH;
806 }
807
808 if (sbappendstream_rcvdemux(so, q->tqe_m)) {
809 *dowakeup = 1;
810 }
811 th = &saved_tcphdr;
812 }
813 zfree(tcp_reass_zone, q);
814 tp->t_reassqlen--;
815 q = LIST_FIRST(&tp->t_segq);
816 } while (q && q->tqe_th->th_seq == tp->rcv_nxt);
817 tp->t_flagsext &= ~TF_REASS_INPROG;
818
819 if ((inp->inp_vflag & INP_IPV6) != 0) {
820 KERNEL_DEBUG(DBG_LAYER_BEG,
821 ((inp->inp_fport << 16) | inp->inp_lport),
822 (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
823 (inp->in6p_faddr.s6_addr16[0] & 0xffff)),
824 0, 0, 0);
825 } else {
826 KERNEL_DEBUG(DBG_LAYER_BEG,
827 ((inp->inp_fport << 16) | inp->inp_lport),
828 (((inp->inp_laddr.s_addr & 0xffff) << 16) |
829 (inp->inp_faddr.s_addr & 0xffff)),
830 0, 0, 0);
831 }
832
833 return flags;
834 }
835
836 /*
837 * Reduce congestion window -- used when ECN is seen or when a tail loss
838 * probe recovers the last packet.
839 */
840 static void
841 tcp_reduce_congestion_window(struct tcpcb *tp)
842 {
843 /*
844 * If the current tcp cc module has
845 * defined a hook for tasks to run
846 * before entering FR, call it
847 */
848 if (CC_ALGO(tp)->pre_fr != NULL) {
849 CC_ALGO(tp)->pre_fr(tp);
850 }
851 ENTER_FASTRECOVERY(tp);
852 if (tp->t_flags & TF_SENTFIN) {
853 tp->snd_recover = tp->snd_max - 1;
854 } else {
855 tp->snd_recover = tp->snd_max;
856 }
857 tp->t_timer[TCPT_REXMT] = 0;
858 tp->t_timer[TCPT_PTO] = 0;
859 tp->t_rtttime = 0;
860 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
861 tcp_cc_adjust_nonvalidated_cwnd(tp);
862 } else {
863 tp->snd_cwnd = tp->snd_ssthresh +
864 tp->t_maxseg * tcprexmtthresh;
865 }
866 }
867
868 /*
869 * This function is called upon reception of data on a socket. It's purpose is
870 * to handle the adaptive keepalive timers that monitor whether the connection
871 * is making progress. First the adaptive read-timer, second the TFO probe-timer.
872 *
873 * The application wants to get an event if there is a stall during read.
874 * Set the initial keepalive timeout to be equal to twice RTO.
875 *
876 * If the outgoing interface is in marginal conditions, we need to
877 * enable read probes for that too.
878 */
879 static inline void
880 tcp_adaptive_rwtimo_check(struct tcpcb *tp, int tlen)
881 {
882 struct ifnet *outifp = tp->t_inpcb->inp_last_outifp;
883
884 if ((tp->t_adaptive_rtimo > 0 ||
885 (outifp != NULL &&
886 (outifp->if_eflags & IFEF_PROBE_CONNECTIVITY)))
887 && tlen > 0 &&
888 tp->t_state == TCPS_ESTABLISHED) {
889 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
890 (TCP_REXMTVAL(tp) << 1));
891 tp->t_flagsext |= TF_DETECT_READSTALL;
892 tp->t_rtimo_probes = 0;
893 }
894 }
895
896 inline void
897 tcp_keepalive_reset(struct tcpcb *tp)
898 {
899 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
900 TCP_CONN_KEEPIDLE(tp));
901 tp->t_flagsext &= ~(TF_DETECT_READSTALL);
902 tp->t_rtimo_probes = 0;
903 }
904
905 /*
906 * TCP input routine, follows pages 65-76 of the
907 * protocol specification dated September, 1981 very closely.
908 */
909 int
910 tcp6_input(struct mbuf **mp, int *offp, int proto)
911 {
912 #pragma unused(proto)
913 struct mbuf *m = *mp;
914 uint32_t ia6_flags;
915 struct ifnet *ifp = m->m_pkthdr.rcvif;
916
917 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
918
919 /* Expect 32-bit aligned data pointer on strict-align platforms */
920 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
921
922 /*
923 * draft-itojun-ipv6-tcp-to-anycast
924 * better place to put this in?
925 */
926 if (ip6_getdstifaddr_info(m, NULL, &ia6_flags) == 0) {
927 if (ia6_flags & IN6_IFF_ANYCAST) {
928 struct ip6_hdr *ip6;
929
930 ip6 = mtod(m, struct ip6_hdr *);
931 icmp6_error(m, ICMP6_DST_UNREACH,
932 ICMP6_DST_UNREACH_ADDR,
933 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
934
935 IF_TCP_STATINC(ifp, icmp6unreach);
936
937 return IPPROTO_DONE;
938 }
939 }
940
941 tcp_input(m, *offp);
942 return IPPROTO_DONE;
943 }
944
945 /* Depending on the usage of mbuf space in the system, this function
946 * will return true or false. This is used to determine if a socket
947 * buffer can take more memory from the system for auto-tuning or not.
948 */
949 u_int8_t
950 tcp_cansbgrow(struct sockbuf *sb)
951 {
952 /* Calculate the host level space limit in terms of MSIZE buffers.
953 * We can use a maximum of half of the available mbuf space for
954 * socket buffers.
955 */
956 u_int32_t mblim = ((nmbclusters >> 1) << (MCLSHIFT - MSIZESHIFT));
957
958 /* Calculate per sb limit in terms of bytes. We optimize this limit
959 * for upto 16 socket buffers.
960 */
961
962 u_int32_t sbspacelim = ((nmbclusters >> 4) << MCLSHIFT);
963
964 if ((total_sbmb_cnt < mblim) &&
965 (sb->sb_hiwat < sbspacelim)) {
966 return 1;
967 } else {
968 OSIncrementAtomic64(&sbmb_limreached);
969 }
970 return 0;
971 }
972
973 static void
974 tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sbrcv,
975 u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max)
976 {
977 /* newsize should not exceed max */
978 newsize = min(newsize, rcvbuf_max);
979
980 /* The receive window scale negotiated at the
981 * beginning of the connection will also set a
982 * limit on the socket buffer size
983 */
984 newsize = min(newsize, TCP_MAXWIN << tp->rcv_scale);
985
986 /* Set new socket buffer size */
987 if (newsize > sbrcv->sb_hiwat &&
988 (sbreserve(sbrcv, newsize) == 1)) {
989 sbrcv->sb_idealsize = min(max(sbrcv->sb_idealsize,
990 (idealsize != 0) ? idealsize : newsize), rcvbuf_max);
991
992 /* Again check the limit set by the advertised
993 * window scale
994 */
995 sbrcv->sb_idealsize = min(sbrcv->sb_idealsize,
996 TCP_MAXWIN << tp->rcv_scale);
997 }
998 }
999
1000 /*
1001 * This function is used to grow a receive socket buffer. It
1002 * will take into account system-level memory usage and the
1003 * bandwidth available on the link to make a decision.
1004 */
1005 static void
1006 tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv,
1007 struct tcpopt *to, uint32_t pktlen)
1008 {
1009 struct socket *so = sbrcv->sb_so;
1010
1011 /*
1012 * Do not grow the receive socket buffer if
1013 * - auto resizing is disabled, globally or on this socket
1014 * - the high water mark already reached the maximum
1015 * - the stream is in background and receive side is being
1016 * throttled
1017 */
1018 if (tcp_do_autorcvbuf == 0 ||
1019 (sbrcv->sb_flags & SB_AUTOSIZE) == 0 ||
1020 tcp_cansbgrow(sbrcv) == 0 ||
1021 sbrcv->sb_hiwat >= tcp_autorcvbuf_max ||
1022 (tp->t_flagsext & TF_RECV_THROTTLE) ||
1023 (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) ||
1024 (!tcp_autotune_reorder && !LIST_EMPTY(&tp->t_segq))) {
1025 /* Can not resize the socket buffer, just return */
1026 goto out;
1027 }
1028
1029 if (!TSTMP_SUPPORTED(tp)) {
1030 /*
1031 * Timestamp option is not supported on this connection.
1032 * If the connection reached a state to indicate that
1033 * the receive socket buffer needs to grow, increase
1034 * the high water mark.
1035 */
1036 if (TSTMP_GEQ(tcp_now,
1037 tp->rfbuf_ts + TCPTV_RCVNOTS_QUANTUM)) {
1038 if (tp->rfbuf_cnt + pktlen >= TCP_RCVNOTS_BYTELEVEL) {
1039 tcp_sbrcv_reserve(tp, sbrcv,
1040 tcp_autorcvbuf_max, 0,
1041 tcp_autorcvbuf_max);
1042 }
1043 goto out;
1044 } else {
1045 tp->rfbuf_cnt += pktlen;
1046 return;
1047 }
1048 } else if (to->to_tsecr != 0) {
1049 /*
1050 * If the timestamp shows that one RTT has
1051 * completed, we can stop counting the
1052 * bytes. Here we consider increasing
1053 * the socket buffer if the bandwidth measured in
1054 * last rtt, is more than half of sb_hiwat, this will
1055 * help to scale the buffer according to the bandwidth
1056 * on the link.
1057 */
1058 if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) {
1059 if (tcp_aggressive_rcvwnd_inc) {
1060 tp->rfbuf_cnt += pktlen;
1061 }
1062
1063 if ((tcp_aggressive_rcvwnd_inc == 0 &&
1064 tp->rfbuf_cnt + pktlen > (sbrcv->sb_hiwat -
1065 (sbrcv->sb_hiwat >> 1))) ||
1066 (tcp_aggressive_rcvwnd_inc &&
1067 tp->rfbuf_cnt > tp->rfbuf_space)) {
1068 int32_t rcvbuf_inc;
1069 uint32_t idealsize;
1070
1071 if (tcp_aggressive_rcvwnd_inc == 0) {
1072 int32_t min_incr;
1073
1074 tp->rfbuf_cnt += pktlen;
1075 /*
1076 * Increment the receive window by a
1077 * multiple of maximum sized segments.
1078 * This will prevent a connection from
1079 * sending smaller segments on wire if it
1080 * is limited by the receive window.
1081 *
1082 * Set the ideal size based on current
1083 * bandwidth measurements. We set the
1084 * ideal size on receive socket buffer to
1085 * be twice the bandwidth delay product.
1086 */
1087 rcvbuf_inc = (tp->rfbuf_cnt << 1)
1088 - sbrcv->sb_hiwat;
1089
1090 /*
1091 * Make the increment equal to 8 segments
1092 * at least
1093 */
1094 min_incr = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1095 if (rcvbuf_inc < min_incr) {
1096 rcvbuf_inc = min_incr;
1097 }
1098
1099 idealsize = (tp->rfbuf_cnt << 1);
1100 } else {
1101 if (tp->rfbuf_cnt > tp->rfbuf_space + (tp->rfbuf_space >> 1)) {
1102 rcvbuf_inc = (tp->rfbuf_cnt << 2) - sbrcv->sb_hiwat;
1103 idealsize = (tp->rfbuf_cnt << 2);
1104 } else {
1105 rcvbuf_inc = (tp->rfbuf_cnt << 1) - sbrcv->sb_hiwat;
1106 idealsize = (tp->rfbuf_cnt << 1);
1107 }
1108 }
1109
1110 tp->rfbuf_space = tp->rfbuf_cnt;
1111
1112 if (rcvbuf_inc > 0) {
1113 rcvbuf_inc =
1114 (rcvbuf_inc / tp->t_maxseg) * tp->t_maxseg;
1115
1116 tcp_sbrcv_reserve(tp, sbrcv,
1117 sbrcv->sb_hiwat + rcvbuf_inc,
1118 idealsize, tcp_autorcvbuf_max);
1119 }
1120 }
1121 /* Measure instantaneous receive bandwidth */
1122 if (tp->t_bwmeas != NULL && tp->rfbuf_cnt > 0 &&
1123 TSTMP_GT(tcp_now, tp->rfbuf_ts)) {
1124 u_int32_t rcv_bw;
1125 rcv_bw = tp->rfbuf_cnt /
1126 (int)(tcp_now - tp->rfbuf_ts);
1127 if (tp->t_bwmeas->bw_rcvbw_max == 0) {
1128 tp->t_bwmeas->bw_rcvbw_max = rcv_bw;
1129 } else {
1130 tp->t_bwmeas->bw_rcvbw_max = max(
1131 tp->t_bwmeas->bw_rcvbw_max, rcv_bw);
1132 }
1133 }
1134 goto out;
1135 } else {
1136 tp->rfbuf_cnt += pktlen;
1137 return;
1138 }
1139 }
1140 out:
1141 /* Restart the measurement */
1142 tp->rfbuf_ts = tcp_now;
1143 tp->rfbuf_cnt = 0;
1144 return;
1145 }
1146
1147 /* This function will trim the excess space added to the socket buffer
1148 * to help a slow-reading app. The ideal-size of a socket buffer depends
1149 * on the link bandwidth or it is set by an application and we aim to
1150 * reach that size.
1151 */
1152 void
1153 tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv)
1154 {
1155 if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 &&
1156 sbrcv->sb_hiwat > sbrcv->sb_idealsize) {
1157 int32_t trim;
1158 /* compute the difference between ideal and current sizes */
1159 u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize;
1160
1161 /* Compute the maximum advertised window for
1162 * this connection.
1163 */
1164 u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt;
1165
1166 /* How much can we trim the receive socket buffer?
1167 * 1. it can not be trimmed beyond the max rcv win advertised
1168 * 2. if possible, leave 1/16 of bandwidth*delay to
1169 * avoid closing the win completely
1170 */
1171 u_int32_t leave = max(advwin, (sbrcv->sb_idealsize >> 4));
1172
1173 /* Sometimes leave can be zero, in that case leave at least
1174 * a few segments worth of space.
1175 */
1176 if (leave == 0) {
1177 leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1178 }
1179
1180 trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave);
1181 trim = imin(trim, (int32_t)diff);
1182
1183 if (trim > 0) {
1184 sbreserve(sbrcv, (sbrcv->sb_hiwat - trim));
1185 }
1186 }
1187 }
1188
1189 /* We may need to trim the send socket buffer size for two reasons:
1190 * 1. if the rtt seen on the connection is climbing up, we do not
1191 * want to fill the buffers any more.
1192 * 2. if the congestion win on the socket backed off, there is no need
1193 * to hold more mbufs for that connection than what the cwnd will allow.
1194 */
1195 void
1196 tcp_sbsnd_trim(struct sockbuf *sbsnd)
1197 {
1198 if (((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) ==
1199 (SB_AUTOSIZE | SB_TRIM)) &&
1200 (sbsnd->sb_idealsize > 0) &&
1201 (sbsnd->sb_hiwat > sbsnd->sb_idealsize)) {
1202 u_int32_t trim = 0;
1203 if (sbsnd->sb_cc <= sbsnd->sb_idealsize) {
1204 trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize;
1205 } else {
1206 trim = sbsnd->sb_hiwat - sbsnd->sb_cc;
1207 }
1208 sbreserve(sbsnd, (sbsnd->sb_hiwat - trim));
1209 }
1210 if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize) {
1211 sbsnd->sb_flags &= ~(SB_TRIM);
1212 }
1213 }
1214
1215 /*
1216 * If timestamp option was not negotiated on this connection
1217 * and this connection is on the receiving side of a stream
1218 * then we can not measure the delay on the link accurately.
1219 * Instead of enabling automatic receive socket buffer
1220 * resizing, just give more space to the receive socket buffer.
1221 */
1222 static inline void
1223 tcp_sbrcv_tstmp_check(struct tcpcb *tp)
1224 {
1225 struct socket *so = tp->t_inpcb->inp_socket;
1226 u_int32_t newsize = 2 * tcp_recvspace;
1227 struct sockbuf *sbrcv = &so->so_rcv;
1228
1229 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) !=
1230 (TF_REQ_TSTMP | TF_RCVD_TSTMP) &&
1231 (sbrcv->sb_flags & SB_AUTOSIZE) != 0) {
1232 tcp_sbrcv_reserve(tp, sbrcv, newsize, 0, newsize);
1233 }
1234 }
1235
1236 /* A receiver will evaluate the flow of packets on a connection
1237 * to see if it can reduce ack traffic. The receiver will start
1238 * stretching acks if all of the following conditions are met:
1239 * 1. tcp_delack_enabled is set to 3
1240 * 2. If the bytes received in the last 100ms is greater than a threshold
1241 * defined by maxseg_unacked
1242 * 3. If the connection has not been idle for tcp_maxrcvidle period.
1243 * 4. If the connection has seen enough packets to let the slow-start
1244 * finish after connection establishment or after some packet loss.
1245 *
1246 * The receiver will stop stretching acks if there is congestion/reordering
1247 * as indicated by packets on reassembly queue or an ECN. If the delayed-ack
1248 * timer fires while stretching acks, it means that the packet flow has gone
1249 * below the threshold defined by maxseg_unacked and the receiver will stop
1250 * stretching acks. The receiver gets no indication when slow-start is completed
1251 * or when the connection reaches an idle state. That is why we use
1252 * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle
1253 * state.
1254 */
1255 static inline int
1256 tcp_stretch_ack_enable(struct tcpcb *tp, int thflags)
1257 {
1258 if (tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) &&
1259 TSTMP_GEQ(tp->rcv_unackwin, tcp_now)) {
1260 tp->t_flags |= TF_STREAMING_ON;
1261 } else {
1262 tp->t_flags &= ~TF_STREAMING_ON;
1263 }
1264
1265 /* If there has been an idle time, reset streaming detection */
1266 if (TSTMP_GT(tcp_now, tp->rcv_unackwin + tcp_maxrcvidle)) {
1267 tp->t_flags &= ~TF_STREAMING_ON;
1268 }
1269
1270 /*
1271 * If there are flags other than TH_ACK set, reset streaming
1272 * detection
1273 */
1274 if (thflags & ~TH_ACK) {
1275 tp->t_flags &= ~TF_STREAMING_ON;
1276 }
1277
1278 if (tp->t_flagsext & TF_DISABLE_STRETCHACK) {
1279 if (tp->rcv_nostrack_pkts >= TCP_STRETCHACK_ENABLE_PKTCNT) {
1280 tp->t_flagsext &= ~TF_DISABLE_STRETCHACK;
1281 tp->rcv_nostrack_pkts = 0;
1282 tp->rcv_nostrack_ts = 0;
1283 } else {
1284 tp->rcv_nostrack_pkts++;
1285 }
1286 }
1287
1288 if (!(tp->t_flagsext & (TF_NOSTRETCHACK | TF_DISABLE_STRETCHACK)) &&
1289 (tp->t_flags & TF_STREAMING_ON) &&
1290 (!(tp->t_flagsext & TF_RCVUNACK_WAITSS) ||
1291 (tp->rcv_waitforss >= tcp_rcvsspktcnt))) {
1292 return 1;
1293 }
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * Reset the state related to stretch-ack algorithm. This will make
1300 * the receiver generate an ack every other packet. The receiver
1301 * will start re-evaluating the rate at which packets come to decide
1302 * if it can benefit by lowering the ack traffic.
1303 */
1304 void
1305 tcp_reset_stretch_ack(struct tcpcb *tp)
1306 {
1307 tp->t_flags &= ~(TF_STRETCHACK | TF_STREAMING_ON);
1308 tp->rcv_by_unackwin = 0;
1309 tp->rcv_by_unackhalfwin = 0;
1310 tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
1311
1312 /*
1313 * When there is packet loss or packet re-ordering or CWR due to
1314 * ECN, the sender's congestion window is reduced. In these states,
1315 * generate an ack for every other packet for some time to allow
1316 * the sender's congestion window to grow.
1317 */
1318 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
1319 tp->rcv_waitforss = 0;
1320 }
1321
1322 /*
1323 * The last packet was a retransmission, check if this ack
1324 * indicates that the retransmission was spurious.
1325 *
1326 * If the connection supports timestamps, we could use it to
1327 * detect if the last retransmit was not needed. Otherwise,
1328 * we check if the ACK arrived within RTT/2 window, then it
1329 * was a mistake to do the retransmit in the first place.
1330 *
1331 * This function will return 1 if it is a spurious retransmit,
1332 * 0 otherwise.
1333 */
1334 int
1335 tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcphdr *th,
1336 struct tcpopt *to, u_int32_t rxtime)
1337 {
1338 int32_t tdiff, bad_rexmt_win;
1339 bad_rexmt_win = (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
1340
1341 /* If the ack has ECN CE bit, then cwnd has to be adjusted */
1342 if (TCP_ECN_ENABLED(tp) && (th->th_flags & TH_ECE)) {
1343 return 0;
1344 }
1345 if (TSTMP_SUPPORTED(tp)) {
1346 if (rxtime > 0 && (to->to_flags & TOF_TS) && to->to_tsecr != 0 &&
1347 TSTMP_LT(to->to_tsecr, rxtime)) {
1348 return 1;
1349 }
1350 } else {
1351 if ((tp->t_rxtshift == 1 || (tp->t_flagsext & TF_SENT_TLPROBE)) &&
1352 rxtime > 0) {
1353 tdiff = (int32_t)(tcp_now - rxtime);
1354 if (tdiff < bad_rexmt_win) {
1355 return 1;
1356 }
1357 }
1358 }
1359 return 0;
1360 }
1361
1362
1363 /*
1364 * Restore congestion window state if a spurious timeout
1365 * was detected.
1366 */
1367 static void
1368 tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th)
1369 {
1370 if (TSTMP_SUPPORTED(tp)) {
1371 u_int32_t fsize, acked;
1372 fsize = tp->snd_max - th->th_ack;
1373 acked = BYTES_ACKED(th, tp);
1374
1375 /*
1376 * Implement bad retransmit recovery as
1377 * described in RFC 4015.
1378 */
1379 tp->snd_ssthresh = tp->snd_ssthresh_prev;
1380
1381 /* Initialize cwnd to the initial window */
1382 if (CC_ALGO(tp)->cwnd_init != NULL) {
1383 CC_ALGO(tp)->cwnd_init(tp);
1384 }
1385
1386 tp->snd_cwnd = fsize + min(acked, tp->snd_cwnd);
1387 } else {
1388 tp->snd_cwnd = tp->snd_cwnd_prev;
1389 tp->snd_ssthresh = tp->snd_ssthresh_prev;
1390 if (tp->t_flags & TF_WASFRECOVERY) {
1391 ENTER_FASTRECOVERY(tp);
1392 }
1393
1394 /* Do not use the loss flight size in this case */
1395 tp->t_lossflightsize = 0;
1396 }
1397 tp->snd_cwnd = max(tp->snd_cwnd, tcp_initial_cwnd(tp));
1398 tp->snd_recover = tp->snd_recover_prev;
1399 tp->snd_nxt = tp->snd_max;
1400
1401 /* Fix send socket buffer to reflect the change in cwnd */
1402 tcp_bad_rexmt_fix_sndbuf(tp);
1403
1404 /*
1405 * This RTT might reflect the extra delay induced
1406 * by the network. Skip using this sample for RTO
1407 * calculation and mark the connection so we can
1408 * recompute RTT when the next eligible sample is
1409 * found.
1410 */
1411 tp->t_flagsext |= TF_RECOMPUTE_RTT;
1412 tp->t_badrexmt_time = tcp_now;
1413 tp->t_rtttime = 0;
1414 }
1415
1416 /*
1417 * If the previous packet was sent in retransmission timer, and it was
1418 * not needed, then restore the congestion window to the state before that
1419 * transmission.
1420 *
1421 * If the last packet was sent in tail loss probe timeout, check if that
1422 * recovered the last packet. If so, that will indicate a real loss and
1423 * the congestion window needs to be lowered.
1424 */
1425 static void
1426 tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
1427 {
1428 if (tp->t_rxtshift > 0 &&
1429 tcp_detect_bad_rexmt(tp, th, to, tp->t_rxtstart)) {
1430 ++tcpstat.tcps_sndrexmitbad;
1431 tcp_bad_rexmt_restore_state(tp, th);
1432 tcp_ccdbg_trace(tp, th, TCP_CC_BAD_REXMT_RECOVERY);
1433 } else if ((tp->t_flagsext & TF_SENT_TLPROBE) && tp->t_tlphighrxt > 0 &&
1434 SEQ_GEQ(th->th_ack, tp->t_tlphighrxt) &&
1435 !tcp_detect_bad_rexmt(tp, th, to, tp->t_tlpstart)) {
1436 /*
1437 * check DSACK information also to make sure that
1438 * the TLP was indeed needed
1439 */
1440 if (tcp_rxtseg_dsack_for_tlp(tp)) {
1441 /*
1442 * received a DSACK to indicate that TLP was
1443 * not needed
1444 */
1445 tcp_rxtseg_clean(tp);
1446 goto out;
1447 }
1448
1449 /*
1450 * The tail loss probe recovered the last packet and
1451 * we need to adjust the congestion window to take
1452 * this loss into account.
1453 */
1454 ++tcpstat.tcps_tlp_recoverlastpkt;
1455 if (!IN_FASTRECOVERY(tp)) {
1456 tcp_reduce_congestion_window(tp);
1457 EXIT_FASTRECOVERY(tp);
1458 }
1459 tcp_ccdbg_trace(tp, th, TCP_CC_TLP_RECOVER_LASTPACKET);
1460 } else if (tcp_rxtseg_detect_bad_rexmt(tp, th->th_ack)) {
1461 /*
1462 * All of the retransmitted segments were duplicated, this
1463 * can be an indication of bad fast retransmit.
1464 */
1465 tcpstat.tcps_dsack_badrexmt++;
1466 tcp_bad_rexmt_restore_state(tp, th);
1467 tcp_ccdbg_trace(tp, th, TCP_CC_DSACK_BAD_REXMT);
1468 tcp_rxtseg_clean(tp);
1469 }
1470 out:
1471 tp->t_flagsext &= ~(TF_SENT_TLPROBE);
1472 tp->t_tlphighrxt = 0;
1473 tp->t_tlpstart = 0;
1474
1475 /*
1476 * check if the latest ack was for a segment sent during PMTU
1477 * blackhole detection. If the timestamp on the ack is before
1478 * PMTU blackhole detection, then revert the size of the max
1479 * segment to previous size.
1480 */
1481 if (tp->t_rxtshift > 0 && (tp->t_flags & TF_BLACKHOLE) &&
1482 tp->t_pmtud_start_ts > 0 && TSTMP_SUPPORTED(tp)) {
1483 if ((to->to_flags & TOF_TS) && to->to_tsecr != 0
1484 && TSTMP_LT(to->to_tsecr, tp->t_pmtud_start_ts)) {
1485 tcp_pmtud_revert_segment_size(tp);
1486 }
1487 }
1488 if (tp->t_pmtud_start_ts > 0) {
1489 tp->t_pmtud_start_ts = 0;
1490 }
1491
1492 tp->t_pmtud_lastseg_size = 0;
1493 }
1494
1495 /*
1496 * Check if early retransmit can be attempted according to RFC 5827.
1497 *
1498 * If packet reordering is detected on a connection, fast recovery will
1499 * be delayed until it is clear that the packet was lost and not reordered.
1500 * But reordering detection is done only when SACK is enabled.
1501 *
1502 * On connections that do not support SACK, there is a limit on the number
1503 * of early retransmits that can be done per minute. This limit is needed
1504 * to make sure that too many packets are not retransmitted when there is
1505 * packet reordering.
1506 */
1507 static void
1508 tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th)
1509 {
1510 u_int32_t obytes, snd_off;
1511 int32_t snd_len;
1512 struct socket *so = tp->t_inpcb->inp_socket;
1513
1514 if ((SACK_ENABLED(tp) || tp->t_early_rexmt_count < TCP_EARLY_REXMT_LIMIT) &&
1515 SEQ_GT(tp->snd_max, tp->snd_una) &&
1516 (tp->t_dupacks == 1 || (SACK_ENABLED(tp) && !TAILQ_EMPTY(&tp->snd_holes)))) {
1517 /*
1518 * If there are only a few outstanding
1519 * segments on the connection, we might need
1520 * to lower the retransmit threshold. This
1521 * will allow us to do Early Retransmit as
1522 * described in RFC 5827.
1523 */
1524 if (SACK_ENABLED(tp) &&
1525 !TAILQ_EMPTY(&tp->snd_holes)) {
1526 obytes = (tp->snd_max - tp->snd_fack) +
1527 tp->sackhint.sack_bytes_rexmit;
1528 } else {
1529 obytes = (tp->snd_max - tp->snd_una);
1530 }
1531
1532 /*
1533 * In order to lower retransmit threshold the
1534 * following two conditions must be met.
1535 * 1. the amount of outstanding data is less
1536 * than 4*SMSS bytes
1537 * 2. there is no unsent data ready for
1538 * transmission or the advertised window
1539 * will limit sending new segments.
1540 */
1541 snd_off = tp->snd_max - tp->snd_una;
1542 snd_len = min(so->so_snd.sb_cc, tp->snd_wnd) - snd_off;
1543 if (obytes < (tp->t_maxseg << 2) &&
1544 snd_len <= 0) {
1545 u_int32_t osegs;
1546
1547 osegs = obytes / tp->t_maxseg;
1548 if ((osegs * tp->t_maxseg) < obytes) {
1549 osegs++;
1550 }
1551
1552 /*
1553 * Since the connection might have already
1554 * received some dupacks, we add them to
1555 * to the outstanding segments count to get
1556 * the correct retransmit threshold.
1557 *
1558 * By checking for early retransmit after
1559 * receiving some duplicate acks when SACK
1560 * is supported, the connection will
1561 * enter fast recovery even if multiple
1562 * segments are lost in the same window.
1563 */
1564 osegs += tp->t_dupacks;
1565 if (osegs < 4) {
1566 tp->t_rexmtthresh =
1567 ((osegs - 1) > 1) ? (osegs - 1) : 1;
1568 tp->t_rexmtthresh =
1569 min(tp->t_rexmtthresh, tcprexmtthresh);
1570 tp->t_rexmtthresh =
1571 max(tp->t_rexmtthresh, tp->t_dupacks);
1572
1573 if (tp->t_early_rexmt_count == 0) {
1574 tp->t_early_rexmt_win = tcp_now;
1575 }
1576
1577 if (tp->t_flagsext & TF_SENT_TLPROBE) {
1578 tcpstat.tcps_tlp_recovery++;
1579 tcp_ccdbg_trace(tp, th,
1580 TCP_CC_TLP_RECOVERY);
1581 } else {
1582 tcpstat.tcps_early_rexmt++;
1583 tp->t_early_rexmt_count++;
1584 tcp_ccdbg_trace(tp, th,
1585 TCP_CC_EARLY_RETRANSMIT);
1586 }
1587 }
1588 }
1589 }
1590
1591 /*
1592 * If we ever sent a TLP probe, the acknowledgement will trigger
1593 * early retransmit because the value of snd_fack will be close
1594 * to snd_max. This will take care of adjustments to the
1595 * congestion window. So we can reset TF_SENT_PROBE flag.
1596 */
1597 tp->t_flagsext &= ~(TF_SENT_TLPROBE);
1598 tp->t_tlphighrxt = 0;
1599 tp->t_tlpstart = 0;
1600 }
1601
1602 static boolean_t
1603 tcp_tfo_syn(struct tcpcb *tp, struct tcpopt *to)
1604 {
1605 u_char out[CCAES_BLOCK_SIZE];
1606 unsigned char len;
1607
1608 if (!(to->to_flags & (TOF_TFO | TOF_TFOREQ)) ||
1609 !(tcp_fastopen & TCP_FASTOPEN_SERVER)) {
1610 return FALSE;
1611 }
1612
1613 if ((to->to_flags & TOF_TFOREQ)) {
1614 tp->t_tfo_flags |= TFO_F_OFFER_COOKIE;
1615
1616 tp->t_tfo_stats |= TFO_S_COOKIEREQ_RECV;
1617 tcpstat.tcps_tfo_cookie_req_rcv++;
1618 return FALSE;
1619 }
1620
1621 /* Ok, then it must be an offered cookie. We need to check that ... */
1622 tcp_tfo_gen_cookie(tp->t_inpcb, out, sizeof(out));
1623
1624 len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ;
1625 to->to_tfo++;
1626 if (memcmp(out, to->to_tfo, len)) {
1627 /* Cookies are different! Let's return and offer a new cookie */
1628 tp->t_tfo_flags |= TFO_F_OFFER_COOKIE;
1629
1630 tp->t_tfo_stats |= TFO_S_COOKIE_INVALID;
1631 tcpstat.tcps_tfo_cookie_invalid++;
1632 return FALSE;
1633 }
1634
1635 if (OSIncrementAtomic(&tcp_tfo_halfcnt) >= tcp_tfo_backlog) {
1636 /* Need to decrement again as we just increased it... */
1637 OSDecrementAtomic(&tcp_tfo_halfcnt);
1638 return FALSE;
1639 }
1640
1641 tp->t_tfo_flags |= TFO_F_COOKIE_VALID;
1642
1643 tp->t_tfo_stats |= TFO_S_SYNDATA_RCV;
1644 tcpstat.tcps_tfo_syn_data_rcv++;
1645
1646 return TRUE;
1647 }
1648
1649 static void
1650 tcp_tfo_synack(struct tcpcb *tp, struct tcpopt *to)
1651 {
1652 if (to->to_flags & TOF_TFO) {
1653 unsigned char len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ;
1654
1655 /*
1656 * If this happens, things have gone terribly wrong. len should
1657 * have been checked in tcp_dooptions.
1658 */
1659 VERIFY(len <= TFO_COOKIE_LEN_MAX);
1660
1661 to->to_tfo++;
1662
1663 tcp_cache_set_cookie(tp, to->to_tfo, len);
1664 tcp_heuristic_tfo_success(tp);
1665
1666 tp->t_tfo_stats |= TFO_S_COOKIE_RCV;
1667 tcpstat.tcps_tfo_cookie_rcv++;
1668 if (tp->t_tfo_flags & TFO_F_COOKIE_SENT) {
1669 tcpstat.tcps_tfo_cookie_wrong++;
1670 tp->t_tfo_stats |= TFO_S_COOKIE_WRONG;
1671 }
1672 } else {
1673 /*
1674 * Thus, no cookie in the response, but we either asked for one
1675 * or sent SYN+DATA. Now, we need to check whether we had to
1676 * rexmit the SYN. If that's the case, it's better to start
1677 * backing of TFO-cookie requests.
1678 */
1679 if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
1680 tp->t_tfo_flags & TFO_F_SYN_LOSS) {
1681 tp->t_tfo_stats |= TFO_S_SYN_LOSS;
1682 tcpstat.tcps_tfo_syn_loss++;
1683
1684 tcp_heuristic_tfo_loss(tp);
1685 } else {
1686 if (tp->t_tfo_flags & TFO_F_COOKIE_REQ) {
1687 tp->t_tfo_stats |= TFO_S_NO_COOKIE_RCV;
1688 tcpstat.tcps_tfo_no_cookie_rcv++;
1689 }
1690
1691 tcp_heuristic_tfo_success(tp);
1692 }
1693 }
1694 }
1695
1696 static void
1697 tcp_tfo_rcv_probe(struct tcpcb *tp, int tlen)
1698 {
1699 if (tlen != 0) {
1700 return;
1701 }
1702
1703 tp->t_tfo_probe_state = TFO_PROBE_PROBING;
1704
1705 /*
1706 * We send the probe out rather quickly (after one RTO). It does not
1707 * really hurt that much, it's only one additional segment on the wire.
1708 */
1709 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, (TCP_REXMTVAL(tp)));
1710 }
1711
1712 static void
1713 tcp_tfo_rcv_data(struct tcpcb *tp)
1714 {
1715 /* Transition from PROBING to NONE as data has been received */
1716 if (tp->t_tfo_probe_state >= TFO_PROBE_PROBING) {
1717 tp->t_tfo_probe_state = TFO_PROBE_NONE;
1718 }
1719 }
1720
1721 static void
1722 tcp_tfo_rcv_ack(struct tcpcb *tp, struct tcphdr *th)
1723 {
1724 if (tp->t_tfo_probe_state == TFO_PROBE_PROBING &&
1725 tp->t_tfo_probes > 0) {
1726 if (th->th_seq == tp->rcv_nxt) {
1727 /* No hole, so stop probing */
1728 tp->t_tfo_probe_state = TFO_PROBE_NONE;
1729 } else if (SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1730 /* There is a hole! Wait a bit for data... */
1731 tp->t_tfo_probe_state = TFO_PROBE_WAIT_DATA;
1732 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
1733 TCP_REXMTVAL(tp));
1734 }
1735 }
1736 }
1737
1738 /*
1739 * Update snd_wnd information.
1740 */
1741 static inline bool
1742 tcp_update_window(struct tcpcb *tp, int thflags, struct tcphdr * th,
1743 u_int32_t tiwin, int tlen)
1744 {
1745 /* Don't look at the window if there is no ACK flag */
1746 if ((thflags & TH_ACK) &&
1747 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1748 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1749 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1750 /* keep track of pure window updates */
1751 if (tlen == 0 &&
1752 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) {
1753 tcpstat.tcps_rcvwinupd++;
1754 }
1755 tp->snd_wnd = tiwin;
1756 tp->snd_wl1 = th->th_seq;
1757 tp->snd_wl2 = th->th_ack;
1758 if (tp->snd_wnd > tp->max_sndwnd) {
1759 tp->max_sndwnd = tp->snd_wnd;
1760 }
1761
1762 if (tp->t_inpcb->inp_socket->so_flags & SOF_MP_SUBFLOW) {
1763 mptcp_update_window_wakeup(tp);
1764 }
1765 return true;
1766 }
1767 return false;
1768 }
1769
1770 static void
1771 tcp_handle_wakeup(struct socket *so, int read_wakeup, int write_wakeup)
1772 {
1773 if (read_wakeup != 0) {
1774 sorwakeup(so);
1775 }
1776 if (write_wakeup != 0) {
1777 sowwakeup(so);
1778 }
1779 }
1780
1781 static void
1782 tcp_update_snd_una(struct tcpcb *tp, uint32_t ack)
1783 {
1784 tp->snd_una = ack;
1785 if (SACK_ENABLED(tp) && SEQ_LT(tp->send_highest_sack, tp->snd_una)) {
1786 tp->send_highest_sack = tp->snd_una;
1787
1788 /* If we move our marker, we need to start fresh */
1789 tp->t_new_dupacks = 0;
1790 }
1791 }
1792
1793 static bool
1794 tcp_syn_data_valid(struct tcpcb *tp, struct tcphdr *tcp_hdr, int tlen)
1795 {
1796 /* No data? */
1797 if (tlen <= 0) {
1798 return false;
1799 }
1800
1801 /* Not the right sequence-number? */
1802 if (tcp_hdr->th_seq != tp->irs) {
1803 return false;
1804 }
1805
1806 /* We could have wrapped around, check that */
1807 if (tp->t_inpcb->inp_stat->rxbytes > INT32_MAX) {
1808 return false;
1809 }
1810
1811 return true;
1812 }
1813
1814 void
1815 tcp_input(struct mbuf *m, int off0)
1816 {
1817 int exiting_fr = 0;
1818 struct tcphdr *th;
1819 struct ip *ip = NULL;
1820 struct inpcb *inp;
1821 u_char *optp = NULL;
1822 int optlen = 0;
1823 int tlen, off;
1824 int drop_hdrlen;
1825 struct tcpcb *tp = 0;
1826 int thflags;
1827 struct socket *so = 0;
1828 int todrop, acked, ourfinisacked, needoutput = 0;
1829 int read_wakeup = 0;
1830 int write_wakeup = 0;
1831 struct in_addr laddr;
1832 struct in6_addr laddr6;
1833 int dropsocket = 0;
1834 int iss = 0, nosock = 0;
1835 u_int32_t tiwin, sack_bytes_acked = 0, sack_bytes_newly_acked = 0;
1836 struct tcpopt to; /* options in this segment */
1837 #if TCPDEBUG
1838 short ostate = 0;
1839 #endif
1840 u_char ip_ecn = IPTOS_ECN_NOTECT;
1841 unsigned int ifscope;
1842 uint8_t isconnected, isdisconnected;
1843 struct ifnet *ifp = m->m_pkthdr.rcvif;
1844 int segment_count = m->m_pkthdr.seg_cnt ? : 1;
1845 int win;
1846 u_int16_t pf_tag = 0;
1847 #if MPTCP
1848 struct mptcb *mp_tp = NULL;
1849 #endif /* MPTCP */
1850 boolean_t cell = IFNET_IS_CELLULAR(ifp);
1851 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
1852 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
1853 boolean_t recvd_dsack = FALSE;
1854 struct tcp_respond_args tra;
1855 int prev_t_state;
1856 boolean_t check_cfil = cfil_filter_present();
1857 bool findpcb_iterated = false;
1858 /*
1859 * The mbuf may be freed after it has been added to the receive socket
1860 * buffer or the reassembly queue, so we reinitialize th to point to a
1861 * safe copy of the TCP header
1862 */
1863 struct tcphdr saved_tcphdr = {};
1864 /*
1865 * Save copy of the IPv4/IPv6 header.
1866 * Note: use array of uint32_t to silence compiler warning when casting
1867 * to a struct ip6_hdr pointer.
1868 */
1869 #define MAX_IPWORDS ((sizeof(struct ip) + MAX_IPOPTLEN) / sizeof(uint32_t))
1870 uint32_t saved_hdr[MAX_IPWORDS];
1871
1872 #define TCP_INC_VAR(stat, npkts) do { \
1873 stat += npkts; \
1874 } while (0)
1875
1876 if (tcp_ack_strategy == TCP_ACK_STRATEGY_LEGACY) {
1877 segment_count = 1;
1878 }
1879 TCP_INC_VAR(tcpstat.tcps_rcvtotal, segment_count);
1880
1881 struct ip6_hdr *ip6 = NULL;
1882 int isipv6;
1883 struct proc *kernel_proc = current_proc();
1884
1885 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
1886
1887 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
1888 bzero((char *)&to, sizeof(to));
1889
1890 if (m->m_flags & M_PKTHDR) {
1891 pf_tag = m_pftag(m)->pftag_tag;
1892 }
1893
1894 if (isipv6) {
1895 /*
1896 * Expect 32-bit aligned data pointer on
1897 * strict-align platforms
1898 */
1899 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1900
1901 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
1902 ip6 = mtod(m, struct ip6_hdr *);
1903 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
1904 th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1905
1906 if (tcp_input_checksum(AF_INET6, m, th, off0, tlen)) {
1907 TCP_LOG_DROP_PKT(ip6, th, ifp, "IPv6 bad tcp checksum");
1908 goto dropnosock;
1909 }
1910
1911 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1912 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1913 th->th_seq, th->th_ack, th->th_win);
1914 /*
1915 * Be proactive about unspecified IPv6 address in source.
1916 * As we use all-zero to indicate unbounded/unconnected pcb,
1917 * unspecified IPv6 address can be used to confuse us.
1918 *
1919 * Note that packets with unspecified IPv6 destination is
1920 * already dropped in ip6_input.
1921 */
1922 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1923 /* XXX stat */
1924 IF_TCP_STATINC(ifp, unspecv6);
1925 TCP_LOG_DROP_PKT(ip6, th, ifp, "src IPv6 address unspecified");
1926 goto dropnosock;
1927 }
1928 DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1929 struct ip6_hdr *, ip6, struct tcpcb *, NULL,
1930 struct tcphdr *, th);
1931
1932 ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
1933 } else {
1934 /*
1935 * Get IP and TCP header together in first mbuf.
1936 * Note: IP leaves IP header in first mbuf.
1937 */
1938 if (off0 > sizeof(struct ip)) {
1939 ip_stripoptions(m);
1940 off0 = sizeof(struct ip);
1941 }
1942 if (m->m_len < sizeof(struct tcpiphdr)) {
1943 if ((m = m_pullup(m, sizeof(struct tcpiphdr))) == 0) {
1944 tcpstat.tcps_rcvshort++;
1945 return;
1946 }
1947 }
1948
1949 /* Expect 32-bit aligned data pointer on strict-align platforms */
1950 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1951
1952 ip = mtod(m, struct ip *);
1953 th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1954 tlen = ip->ip_len;
1955
1956 if (tcp_input_checksum(AF_INET, m, th, off0, tlen)) {
1957 TCP_LOG_DROP_PKT(ip, th, ifp, "IPv4 bad tcp checksum");
1958 goto dropnosock;
1959 }
1960
1961 /* Re-initialization for later version check */
1962 ip->ip_v = IPVERSION;
1963 ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
1964
1965 DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1966 struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th);
1967
1968 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1969 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1970 th->th_seq, th->th_ack, th->th_win);
1971 }
1972
1973 #define TCP_LOG_HDR (isipv6 ? (void *)ip6 : (void *)ip)
1974
1975 /*
1976 * Check that TCP offset makes sense,
1977 * pull out TCP options and adjust length.
1978 */
1979 off = th->th_off << 2;
1980 if (off < sizeof(struct tcphdr) || off > tlen) {
1981 tcpstat.tcps_rcvbadoff++;
1982 IF_TCP_STATINC(ifp, badformat);
1983 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "bad tcp offset");
1984 goto dropnosock;
1985 }
1986 tlen -= off; /* tlen is used instead of ti->ti_len */
1987 if (off > sizeof(struct tcphdr)) {
1988 if (isipv6) {
1989 IP6_EXTHDR_CHECK(m, off0, off, return );
1990 ip6 = mtod(m, struct ip6_hdr *);
1991 th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1992 } else {
1993 if (m->m_len < sizeof(struct ip) + off) {
1994 if ((m = m_pullup(m, sizeof(struct ip) + off)) == 0) {
1995 tcpstat.tcps_rcvshort++;
1996 return;
1997 }
1998 ip = mtod(m, struct ip *);
1999 th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
2000 }
2001 }
2002 optlen = off - sizeof(struct tcphdr);
2003 optp = (u_char *)(th + 1);
2004 /*
2005 * Do quick retrieval of timestamp options ("options
2006 * prediction?"). If timestamp is the only option and it's
2007 * formatted as recommended in RFC 1323 appendix A, we
2008 * quickly get the values now and not bother calling
2009 * tcp_dooptions(), etc.
2010 */
2011 if ((optlen == TCPOLEN_TSTAMP_APPA ||
2012 (optlen > TCPOLEN_TSTAMP_APPA &&
2013 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
2014 *(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
2015 (th->th_flags & TH_SYN) == 0) {
2016 to.to_flags |= TOF_TS;
2017 to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4));
2018 to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8));
2019 optp = NULL; /* we've parsed the options */
2020 }
2021 }
2022 thflags = th->th_flags;
2023
2024 /*
2025 * Drop all packets with both the SYN and FIN bits set.
2026 * This prevents e.g. nmap from identifying the TCP/IP stack.
2027 *
2028 * This is a violation of the TCP specification.
2029 */
2030 if ((thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN)) {
2031 IF_TCP_STATINC(ifp, synfin);
2032 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "drop SYN FIN");
2033 goto dropnosock;
2034 }
2035
2036 /*
2037 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
2038 * until after ip6_savecontrol() is called and before other functions
2039 * which don't want those proto headers.
2040 * Because ip6_savecontrol() is going to parse the mbuf to
2041 * search for data to be passed up to user-land, it wants mbuf
2042 * parameters to be unchanged.
2043 */
2044 drop_hdrlen = off0 + off;
2045
2046 /* Since this is an entry point for input processing of tcp packets, we
2047 * can update the tcp clock here.
2048 */
2049 calculate_tcp_clock();
2050
2051 /*
2052 * Record the interface where this segment arrived on; this does not
2053 * affect normal data output (for non-detached TCP) as it provides a
2054 * hint about which route and interface to use for sending in the
2055 * absence of a PCB, when scoped routing (and thus source interface
2056 * selection) are enabled.
2057 */
2058 if ((m->m_pkthdr.pkt_flags & PKTF_LOOP) || m->m_pkthdr.rcvif == NULL) {
2059 ifscope = IFSCOPE_NONE;
2060 } else {
2061 ifscope = m->m_pkthdr.rcvif->if_index;
2062 }
2063
2064 /*
2065 * Convert TCP protocol specific fields to host format.
2066 */
2067
2068 #if BYTE_ORDER != BIG_ENDIAN
2069 NTOHL(th->th_seq);
2070 NTOHL(th->th_ack);
2071 NTOHS(th->th_win);
2072 NTOHS(th->th_urp);
2073 #endif
2074
2075 /*
2076 * Locate pcb for segment.
2077 */
2078 findpcb:
2079
2080 isconnected = FALSE;
2081 isdisconnected = FALSE;
2082
2083 if (isipv6) {
2084 inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
2085 &ip6->ip6_dst, th->th_dport, 1,
2086 m->m_pkthdr.rcvif);
2087 } else {
2088 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
2089 ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
2090 }
2091
2092 /*
2093 * Use the interface scope information from the PCB for outbound
2094 * segments. If the PCB isn't present and if scoped routing is
2095 * enabled, tcp_respond will use the scope of the interface where
2096 * the segment arrived on.
2097 */
2098 if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) {
2099 ifscope = inp->inp_boundifp->if_index;
2100 }
2101
2102 /*
2103 * If the state is CLOSED (i.e., TCB does not exist) then
2104 * all data in the incoming segment is discarded.
2105 * If the TCB exists but is in CLOSED state, it is embryonic,
2106 * but should either do a listen or a connect soon.
2107 */
2108 if (inp == NULL) {
2109 if (log_in_vain) {
2110 char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
2111
2112 if (isipv6) {
2113 inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
2114 inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
2115 } else {
2116 inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
2117 inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
2118 }
2119 switch (log_in_vain) {
2120 case 1:
2121 if (thflags & TH_SYN) {
2122 log(LOG_INFO,
2123 "Connection attempt to TCP %s:%d from %s:%d\n",
2124 dbuf, ntohs(th->th_dport),
2125 sbuf,
2126 ntohs(th->th_sport));
2127 }
2128 break;
2129 case 2:
2130 log(LOG_INFO,
2131 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
2132 dbuf, ntohs(th->th_dport), sbuf,
2133 ntohs(th->th_sport), thflags);
2134 break;
2135 case 3:
2136 case 4:
2137 if ((thflags & TH_SYN) && !(thflags & TH_ACK) &&
2138 !(m->m_flags & (M_BCAST | M_MCAST)) &&
2139 ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
2140 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))) {
2141 log_in_vain_log((LOG_INFO,
2142 "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
2143 dbuf, ntohs(th->th_dport),
2144 sbuf,
2145 ntohs(th->th_sport)));
2146 }
2147 break;
2148 default:
2149 break;
2150 }
2151 }
2152 if (blackhole) {
2153 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP) {
2154 switch (blackhole) {
2155 case 1:
2156 if (thflags & TH_SYN) {
2157 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole 1 syn for closed port");
2158 goto dropnosock;
2159 }
2160 break;
2161 case 2:
2162 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole 2 closed port");
2163 goto dropnosock;
2164 default:
2165 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole closed port");
2166 goto dropnosock;
2167 }
2168 }
2169 }
2170 IF_TCP_STATINC(ifp, noconnnolist);
2171 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "closed port");
2172 goto dropwithresetnosock;
2173 }
2174 so = inp->inp_socket;
2175 if (so == NULL) {
2176 /* This case shouldn't happen as the socket shouldn't be null
2177 * if inp_state isn't set to INPCB_STATE_DEAD
2178 * But just in case, we pretend we didn't find the socket if we hit this case
2179 * as this isn't cause for a panic (the socket might be leaked however)...
2180 */
2181 inp = NULL;
2182 #if TEMPDEBUG
2183 printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp);
2184 #endif
2185 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "inp_socket NULL");
2186 goto dropnosock;
2187 }
2188
2189 socket_lock(so, 1);
2190 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
2191 socket_unlock(so, 1);
2192 inp = NULL; // pretend we didn't find it
2193 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "inp state WNT_STOPUSING");
2194 goto dropnosock;
2195 }
2196
2197 if (!isipv6 && inp->inp_faddr.s_addr != INADDR_ANY) {
2198 if (inp->inp_faddr.s_addr != ip->ip_src.s_addr ||
2199 inp->inp_laddr.s_addr != ip->ip_dst.s_addr ||
2200 inp->inp_fport != th->th_sport ||
2201 inp->inp_lport != th->th_dport) {
2202 os_log_error(OS_LOG_DEFAULT, "%s 5-tuple does not match: %u:%u %u:%u\n",
2203 __func__,
2204 ntohs(inp->inp_fport), ntohs(th->th_sport),
2205 ntohs(inp->inp_lport), ntohs(th->th_dport));
2206 if (findpcb_iterated) {
2207 goto drop;
2208 }
2209 findpcb_iterated = true;
2210 socket_unlock(so, 1);
2211 inp = NULL;
2212 goto findpcb;
2213 }
2214 } else if (isipv6 && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2215 if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &ip6->ip6_src) ||
2216 !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &ip6->ip6_dst) ||
2217 inp->inp_fport != th->th_sport ||
2218 inp->inp_lport != th->th_dport) {
2219 os_log_error(OS_LOG_DEFAULT, "%s 5-tuple does not match: %u:%u %u:%u\n",
2220 __func__,
2221 ntohs(inp->inp_fport), ntohs(th->th_sport),
2222 ntohs(inp->inp_lport), ntohs(th->th_dport));
2223 if (findpcb_iterated) {
2224 goto drop;
2225 }
2226 findpcb_iterated = true;
2227 socket_unlock(so, 1);
2228 inp = NULL;
2229 goto findpcb;
2230 }
2231 }
2232
2233 tp = intotcpcb(inp);
2234 if (tp == NULL) {
2235 IF_TCP_STATINC(ifp, noconnlist);
2236 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "tp is NULL");
2237 goto dropwithreset;
2238 }
2239
2240 /* Now that we found the tcpcb, we can adjust the TCP timestamp */
2241 if (to.to_flags & TOF_TS) {
2242 to.to_tsecr -= tp->t_ts_offset;
2243 }
2244
2245 TCP_LOG_TH_FLAGS(TCP_LOG_HDR, th, tp, false, ifp);
2246
2247 if (tp->t_state == TCPS_CLOSED) {
2248 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "tp state TCPS_CLOSED");
2249 goto drop;
2250 }
2251
2252 #if NECP
2253 if (so->so_state & SS_ISCONNECTED) {
2254 // Connected TCP sockets have a fully-bound local and remote,
2255 // so the policy check doesn't need to override addresses
2256 if (!necp_socket_is_allowed_to_send_recv(inp, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
2257 TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false);
2258 IF_TCP_STATINC(ifp, badformat);
2259 goto drop;
2260 }
2261 } else {
2262 /*
2263 * If the proc_uuid_policy table has been updated since the last use
2264 * of the listening socket (i.e., the proc_uuid_policy_table_gencount
2265 * has been updated), the flags in the socket may be out of date.
2266 * If INP2_WANT_APP_POLICY is stale, inbound packets may
2267 * be dropped by NECP if the socket should now match a per-app
2268 * exception policy.
2269 * In order to avoid this refresh the proc_uuid_policy state to
2270 * potentially recalculate the socket's flags before checking
2271 * with NECP.
2272 */
2273 (void) inp_update_policy(inp);
2274
2275 if (isipv6) {
2276 if (!necp_socket_is_allowed_to_send_recv_v6(inp,
2277 th->th_dport, th->th_sport, &ip6->ip6_dst,
2278 &ip6->ip6_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
2279 TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false);
2280 IF_TCP_STATINC(ifp, badformat);
2281 goto drop;
2282 }
2283 } else {
2284 if (!necp_socket_is_allowed_to_send_recv_v4(inp,
2285 th->th_dport, th->th_sport, &ip->ip_dst, &ip->ip_src,
2286 ifp, pf_tag, NULL, NULL, NULL, NULL)) {
2287 TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false);
2288 IF_TCP_STATINC(ifp, badformat);
2289 goto drop;
2290 }
2291 }
2292 }
2293 #endif /* NECP */
2294
2295 prev_t_state = tp->t_state;
2296
2297 /* If none of the FIN|SYN|RST|ACK flag is set, drop */
2298 if ((thflags & TH_ACCEPT) == 0) {
2299 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 TH_ACCEPT == 0");
2300 goto drop;
2301 }
2302
2303 /* Unscale the window into a 32-bit value. */
2304 if ((thflags & TH_SYN) == 0) {
2305 tiwin = th->th_win << tp->snd_scale;
2306 } else {
2307 tiwin = th->th_win;
2308 }
2309
2310 /* Avoid processing packets while closing a listen socket */
2311 if (tp->t_state == TCPS_LISTEN &&
2312 (so->so_options & SO_ACCEPTCONN) == 0) {
2313 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "closing a listening socket");
2314 goto drop;
2315 }
2316
2317 if (so->so_options & (SO_DEBUG | SO_ACCEPTCONN)) {
2318 #if TCPDEBUG
2319 if (so->so_options & SO_DEBUG) {
2320 ostate = tp->t_state;
2321 if (isipv6) {
2322 bcopy((char *)ip6, (char *)tcp_saveipgen,
2323 sizeof(*ip6));
2324 } else {
2325 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
2326 }
2327 tcp_savetcp = *th;
2328 }
2329 #endif
2330 if (so->so_options & SO_ACCEPTCONN) {
2331 struct tcpcb *tp0 = tp;
2332 struct socket *so2;
2333 struct socket *oso;
2334 struct sockaddr_storage from;
2335 struct sockaddr_storage to2;
2336 struct inpcb *oinp = sotoinpcb(so);
2337 struct ifnet *head_ifscope;
2338 unsigned int head_nocell, head_recvanyif,
2339 head_noexpensive, head_awdl_unrestricted,
2340 head_intcoproc_allowed, head_external_port,
2341 head_noconstrained;
2342
2343 /* Get listener's bound-to-interface, if any */
2344 head_ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2345 inp->inp_boundifp : NULL;
2346 /* Get listener's no-cellular information, if any */
2347 head_nocell = INP_NO_CELLULAR(inp);
2348 /* Get listener's recv-any-interface, if any */
2349 head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF);
2350 /* Get listener's no-expensive information, if any */
2351 head_noexpensive = INP_NO_EXPENSIVE(inp);
2352 head_noconstrained = INP_NO_CONSTRAINED(inp);
2353 head_awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp);
2354 head_intcoproc_allowed = INP_INTCOPROC_ALLOWED(inp);
2355 head_external_port = (inp->inp_flags2 & INP2_EXTERNAL_PORT);
2356
2357 /*
2358 * If the state is LISTEN then ignore segment if it contains an RST.
2359 * If the segment contains an ACK then it is bad and send a RST.
2360 * If it does not contain a SYN then it is not interesting; drop it.
2361 * If it is from this socket, drop it, it must be forged.
2362 */
2363 if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
2364 IF_TCP_STATINC(ifp, listbadsyn);
2365
2366 if (thflags & TH_RST) {
2367 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN with RST");
2368 goto drop;
2369 }
2370 if (thflags & TH_ACK) {
2371 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN with ACK");
2372 tp = NULL;
2373 tcpstat.tcps_badsyn++;
2374 goto dropwithreset;
2375 }
2376
2377 /* We come here if there is no SYN set */
2378 tcpstat.tcps_badsyn++;
2379 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad SYN");
2380 goto drop;
2381 }
2382 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START, 0, 0, 0, 0, 0);
2383 if (th->th_dport == th->th_sport) {
2384 if (isipv6) {
2385 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
2386 &ip6->ip6_src)) {
2387 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad tuple same port");
2388 goto drop;
2389 }
2390 } else if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
2391 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad tuple same IPv4 address");
2392 goto drop;
2393 }
2394 }
2395 /*
2396 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2397 * in_broadcast() should never return true on a received
2398 * packet with M_BCAST not set.
2399 *
2400 * Packets with a multicast source address should also
2401 * be discarded.
2402 */
2403 if (m->m_flags & (M_BCAST | M_MCAST)) {
2404 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "mbuf M_BCAST | M_MCAST");
2405 goto drop;
2406 }
2407 if (isipv6) {
2408 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2409 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
2410 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "IN6_IS_ADDR_MULTICAST");
2411 goto drop;
2412 }
2413 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2414 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2415 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2416 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
2417 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "multicast or broadcast address");
2418 goto drop;
2419 }
2420
2421
2422 /*
2423 * If deprecated address is forbidden,
2424 * we do not accept SYN to deprecated interface
2425 * address to prevent any new inbound connection from
2426 * getting established.
2427 * When we do not accept SYN, we send a TCP RST,
2428 * with deprecated source address (instead of dropping
2429 * it). We compromise it as it is much better for peer
2430 * to send a RST, and RST will be the final packet
2431 * for the exchange.
2432 *
2433 * If we do not forbid deprecated addresses, we accept
2434 * the SYN packet. RFC 4862 forbids dropping SYN in
2435 * this case.
2436 */
2437 if (isipv6 && !ip6_use_deprecated) {
2438 uint32_t ia6_flags;
2439
2440 if (ip6_getdstifaddr_info(m, NULL,
2441 &ia6_flags) == 0) {
2442 if (ia6_flags & IN6_IFF_DEPRECATED) {
2443 tp = NULL;
2444 IF_TCP_STATINC(ifp, deprecate6);
2445 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "deprecated IPv6 address");
2446 goto dropwithreset;
2447 }
2448 }
2449 }
2450 if (so->so_filt || check_cfil) {
2451 if (isipv6) {
2452 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from;
2453
2454 sin6->sin6_len = sizeof(*sin6);
2455 sin6->sin6_family = AF_INET6;
2456 sin6->sin6_port = th->th_sport;
2457 sin6->sin6_flowinfo = 0;
2458 sin6->sin6_addr = ip6->ip6_src;
2459 sin6->sin6_scope_id = 0;
2460
2461 sin6 = (struct sockaddr_in6*)&to2;
2462
2463 sin6->sin6_len = sizeof(struct sockaddr_in6);
2464 sin6->sin6_family = AF_INET6;
2465 sin6->sin6_port = th->th_dport;
2466 sin6->sin6_flowinfo = 0;
2467 sin6->sin6_addr = ip6->ip6_dst;
2468 sin6->sin6_scope_id = 0;
2469 } else {
2470 struct sockaddr_in *sin = (struct sockaddr_in*)&from;
2471
2472 sin->sin_len = sizeof(*sin);
2473 sin->sin_family = AF_INET;
2474 sin->sin_port = th->th_sport;
2475 sin->sin_addr = ip->ip_src;
2476
2477 sin = (struct sockaddr_in*)&to2;
2478
2479 sin->sin_len = sizeof(struct sockaddr_in);
2480 sin->sin_family = AF_INET;
2481 sin->sin_port = th->th_dport;
2482 sin->sin_addr = ip->ip_dst;
2483 }
2484 }
2485
2486 if (so->so_filt) {
2487 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
2488 } else {
2489 so2 = sonewconn(so, 0, NULL);
2490 }
2491 if (so2 == 0) {
2492 tcpstat.tcps_listendrop++;
2493 if (tcp_dropdropablreq(so)) {
2494 if (so->so_filt) {
2495 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
2496 } else {
2497 so2 = sonewconn(so, 0, NULL);
2498 }
2499 }
2500 if (!so2) {
2501 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " listen drop");
2502 goto drop;
2503 }
2504 }
2505
2506 /* Point "inp" and "tp" in tandem to new socket */
2507 inp = (struct inpcb *)so2->so_pcb;
2508 tp = intotcpcb(inp);
2509
2510 oso = so;
2511 socket_unlock(so, 0); /* Unlock but keep a reference on listener for now */
2512
2513 so = so2;
2514 socket_lock(so, 1);
2515 /*
2516 * Mark socket as temporary until we're
2517 * committed to keeping it. The code at
2518 * ``drop'' and ``dropwithreset'' check the
2519 * flag dropsocket to see if the temporary
2520 * socket created here should be discarded.
2521 * We mark the socket as discardable until
2522 * we're committed to it below in TCPS_LISTEN.
2523 * There are some error conditions in which we
2524 * have to drop the temporary socket.
2525 */
2526 dropsocket++;
2527 /*
2528 * Inherit INP_BOUND_IF from listener; testing if
2529 * head_ifscope is non-NULL is sufficient, since it
2530 * can only be set to a non-zero value earlier if
2531 * the listener has such a flag set.
2532 */
2533 if (head_ifscope != NULL) {
2534 inp->inp_flags |= INP_BOUND_IF;
2535 inp->inp_boundifp = head_ifscope;
2536 } else {
2537 inp->inp_flags &= ~INP_BOUND_IF;
2538 }
2539 /*
2540 * Inherit restrictions from listener.
2541 */
2542 if (head_nocell) {
2543 inp_set_nocellular(inp);
2544 }
2545 if (head_noexpensive) {
2546 inp_set_noexpensive(inp);
2547 }
2548 if (head_noconstrained) {
2549 inp_set_noconstrained(inp);
2550 }
2551 if (head_awdl_unrestricted) {
2552 inp_set_awdl_unrestricted(inp);
2553 }
2554 if (head_intcoproc_allowed) {
2555 inp_set_intcoproc_allowed(inp);
2556 }
2557 /*
2558 * Inherit {IN,IN6}_RECV_ANYIF from listener.
2559 */
2560 if (head_recvanyif) {
2561 inp->inp_flags |= INP_RECV_ANYIF;
2562 } else {
2563 inp->inp_flags &= ~INP_RECV_ANYIF;
2564 }
2565
2566 if (head_external_port) {
2567 inp->inp_flags2 |= INP2_EXTERNAL_PORT;
2568 }
2569 if (isipv6) {
2570 inp->in6p_laddr = ip6->ip6_dst;
2571 } else {
2572 inp->inp_vflag &= ~INP_IPV6;
2573 inp->inp_vflag |= INP_IPV4;
2574 inp->inp_laddr = ip->ip_dst;
2575 }
2576 inp->inp_lport = th->th_dport;
2577 if (in_pcbinshash(inp, 0) != 0) {
2578 /*
2579 * Undo the assignments above if we failed to
2580 * put the PCB on the hash lists.
2581 */
2582 if (isipv6) {
2583 inp->in6p_laddr = in6addr_any;
2584 } else {
2585 inp->inp_laddr.s_addr = INADDR_ANY;
2586 }
2587 inp->inp_lport = 0;
2588 socket_lock(oso, 0); /* release ref on parent */
2589 socket_unlock(oso, 1);
2590 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " in_pcbinshash failed");
2591 goto drop;
2592 }
2593 socket_lock(oso, 0);
2594 if (isipv6) {
2595 /*
2596 * Inherit socket options from the listening
2597 * socket.
2598 * Note that in6p_inputopts are not (even
2599 * should not be) copied, since it stores
2600 * previously received options and is used to
2601 * detect if each new option is different than
2602 * the previous one and hence should be passed
2603 * to a user.
2604 * If we copied in6p_inputopts, a user would
2605 * not be able to receive options just after
2606 * calling the accept system call.
2607 */
2608 inp->inp_flags |=
2609 oinp->inp_flags & INP_CONTROLOPTS;
2610 if (oinp->in6p_outputopts) {
2611 inp->in6p_outputopts =
2612 ip6_copypktopts(oinp->in6p_outputopts,
2613 M_NOWAIT);
2614 }
2615 } else {
2616 inp->inp_options = ip_srcroute();
2617 inp->inp_ip_tos = oinp->inp_ip_tos;
2618 }
2619 #if IPSEC
2620 /* copy old policy into new socket's */
2621 if (sotoinpcb(oso)->inp_sp) {
2622 int error = 0;
2623 /* Is it a security hole here to silently fail to copy the policy? */
2624 if (inp->inp_sp != NULL) {
2625 error = ipsec_init_policy(so, &inp->inp_sp);
2626 }
2627 if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp)) {
2628 printf("tcp_input: could not copy policy\n");
2629 }
2630 }
2631 #endif
2632 /* inherit states from the listener */
2633 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2634 struct tcpcb *, tp, int32_t, TCPS_LISTEN);
2635 tp->t_state = TCPS_LISTEN;
2636 tp->t_flags |= tp0->t_flags & (TF_NOPUSH | TF_NOOPT | TF_NODELAY);
2637 tp->t_flagsext |= (tp0->t_flagsext & (TF_RXTFINDROP | TF_NOTIMEWAIT | TF_FASTOPEN));
2638 tp->t_keepinit = tp0->t_keepinit;
2639 tp->t_keepcnt = tp0->t_keepcnt;
2640 tp->t_keepintvl = tp0->t_keepintvl;
2641 tp->t_adaptive_wtimo = tp0->t_adaptive_wtimo;
2642 tp->t_adaptive_rtimo = tp0->t_adaptive_rtimo;
2643 tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
2644 if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) {
2645 tp->t_notsent_lowat = tp0->t_notsent_lowat;
2646 }
2647 tp->t_inpcb->inp_flags2 |=
2648 tp0->t_inpcb->inp_flags2 & INP2_KEEPALIVE_OFFLOAD;
2649
2650 /* now drop the reference on the listener */
2651 socket_unlock(oso, 1);
2652
2653 tcp_set_max_rwinscale(tp, so);
2654
2655 #if CONTENT_FILTER
2656 if (check_cfil) {
2657 int error = cfil_sock_attach(so2, (struct sockaddr*)&to2, (struct sockaddr*)&from,
2658 CFS_CONNECTION_DIR_IN);
2659 if (error != 0) {
2660 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " cfil_sock_attach failed");
2661 goto drop;
2662 }
2663 }
2664 #endif /* CONTENT_FILTER */
2665
2666 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END, 0, 0, 0, 0, 0);
2667 }
2668 }
2669 socket_lock_assert_owned(so);
2670
2671 if (net_mpklog_enabled && (m->m_pkthdr.rcvif->if_xflags & IFXF_MPK_LOG)) {
2672 MPKL_TCP_INPUT(tcp_mpkl_log_object,
2673 ntohs(tp->t_inpcb->inp_lport), ntohs(tp->t_inpcb->inp_fport),
2674 th->th_seq, th->th_ack, tlen, thflags,
2675 so->last_pid, so->so_log_seqn++);
2676 }
2677
2678 if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
2679 /*
2680 * Evaluate the rate of arrival of packets to see if the
2681 * receiver can reduce the ack traffic. The algorithm to
2682 * stretch acks will be enabled if the connection meets
2683 * certain criteria defined in tcp_stretch_ack_enable function.
2684 */
2685 if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) {
2686 TCP_INC_VAR(tp->rcv_waitforss, segment_count);
2687 }
2688 if (tcp_stretch_ack_enable(tp, thflags)) {
2689 tp->t_flags |= TF_STRETCHACK;
2690 tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS);
2691 tp->rcv_waitforss = 0;
2692 } else {
2693 tp->t_flags &= ~(TF_STRETCHACK);
2694 }
2695 if (TSTMP_GT(tp->rcv_unackwin - (tcp_rcvunackwin >> 1), tcp_now)) {
2696 tp->rcv_by_unackhalfwin += (tlen + off);
2697 tp->rcv_by_unackwin += (tlen + off);
2698 } else {
2699 tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
2700 tp->rcv_by_unackwin = tp->rcv_by_unackhalfwin + tlen + off;
2701 tp->rcv_by_unackhalfwin = tlen + off;
2702 }
2703 }
2704
2705 /*
2706 * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
2707 * bother doing extensive checks for state and whatnot.
2708 */
2709 if (thflags & TH_CWR) {
2710 tp->ecn_flags &= ~TE_SENDECE;
2711 tp->t_ecn_recv_cwr++;
2712 }
2713
2714 /*
2715 * Explicit Congestion Notification - Flag that we need to send ECT if
2716 * + The IP Congestion experienced flag was set.
2717 * + Socket is in established state
2718 * + We negotiated ECN in the TCP setup
2719 * + This isn't a pure ack (tlen > 0)
2720 * + The data is in the valid window
2721 *
2722 * TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
2723 */
2724 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2725 TCP_ECN_ENABLED(tp) && tlen > 0 &&
2726 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2727 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2728 tp->t_ecn_recv_ce++;
2729 tcpstat.tcps_ecn_recv_ce++;
2730 INP_INC_IFNET_STAT(inp, ecn_recv_ce);
2731 /* Mark this connection as it received CE from network */
2732 tp->ecn_flags |= TE_RECV_ECN_CE;
2733 tp->ecn_flags |= TE_SENDECE;
2734 }
2735
2736 /*
2737 * If we received an explicit notification of congestion in
2738 * ip tos ecn bits or by the CWR bit in TCP header flags, reset
2739 * the ack-stretching state. We need to handle ECN notification if
2740 * an ECN setup SYN was sent even once.
2741 */
2742 if (tp->t_state == TCPS_ESTABLISHED &&
2743 (tp->ecn_flags & TE_SETUPSENT) &&
2744 (ip_ecn == IPTOS_ECN_CE || (thflags & TH_CWR))) {
2745 tcp_reset_stretch_ack(tp);
2746 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
2747 CLEAR_IAJ_STATE(tp);
2748 }
2749
2750 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2751 !TCP_ECN_ENABLED(tp) && !(tp->ecn_flags & TE_CEHEURI_SET)) {
2752 tcpstat.tcps_ecn_fallback_ce++;
2753 tcp_heuristic_ecn_aggressive(tp);
2754 tp->ecn_flags |= TE_CEHEURI_SET;
2755 }
2756
2757 if (tp->t_state == TCPS_ESTABLISHED && TCP_ECN_ENABLED(tp) &&
2758 ip_ecn == IPTOS_ECN_CE && !(tp->ecn_flags & TE_CEHEURI_SET)) {
2759 if (inp->inp_stat->rxpackets < ECN_MIN_CE_PROBES) {
2760 tp->t_ecn_recv_ce_pkt++;
2761 } else if (tp->t_ecn_recv_ce_pkt > ECN_MAX_CE_RATIO) {
2762 tcpstat.tcps_ecn_fallback_ce++;
2763 tcp_heuristic_ecn_aggressive(tp);
2764 tp->ecn_flags |= TE_CEHEURI_SET;
2765 INP_INC_IFNET_STAT(inp, ecn_fallback_ce);
2766 } else {
2767 /* We tracked the first ECN_MIN_CE_PROBES segments, we
2768 * now know that the path is good.
2769 */
2770 tp->ecn_flags |= TE_CEHEURI_SET;
2771 }
2772 }
2773
2774 /* Update rcvtime as a new segment was received on the connection */
2775 tp->t_rcvtime = tcp_now;
2776
2777 /*
2778 * Segment received on connection.
2779 * Reset idle time and keep-alive timer.
2780 */
2781 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2782 tcp_keepalive_reset(tp);
2783
2784 if (tp->t_mpsub) {
2785 mptcp_reset_keepalive(tp);
2786 }
2787 }
2788
2789 /*
2790 * Process options if not in LISTEN state,
2791 * else do it below (after getting remote address).
2792 */
2793 if (tp->t_state != TCPS_LISTEN && optp) {
2794 tcp_dooptions(tp, optp, optlen, th, &to);
2795 }
2796 #if MPTCP
2797 if (tp->t_state != TCPS_LISTEN && (so->so_flags & SOF_MP_SUBFLOW) &&
2798 mptcp_input_preproc(tp, m, th, drop_hdrlen) != 0) {
2799 tp->t_flags |= TF_ACKNOW;
2800 (void) tcp_output(tp);
2801 tcp_check_timer_state(tp);
2802 socket_unlock(so, 1);
2803 return;
2804 }
2805 #endif /* MPTCP */
2806 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2807 if (!(thflags & TH_ACK) ||
2808 (SEQ_GT(th->th_ack, tp->iss) &&
2809 SEQ_LEQ(th->th_ack, tp->snd_max))) {
2810 tcp_finalize_options(tp, &to, ifscope);
2811 }
2812 }
2813
2814 #if TRAFFIC_MGT
2815 /*
2816 * Compute inter-packet arrival jitter. According to RFC 3550,
2817 * inter-packet arrival jitter is defined as the difference in
2818 * packet spacing at the receiver compared to the sender for a
2819 * pair of packets. When two packets of maximum segment size come
2820 * one after the other with consecutive sequence numbers, we
2821 * consider them as packets sent together at the sender and use
2822 * them as a pair to compute inter-packet arrival jitter. This
2823 * metric indicates the delay induced by the network components due
2824 * to queuing in edge/access routers.
2825 */
2826 if (tp->t_state == TCPS_ESTABLISHED &&
2827 (thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK | TH_ECE | TH_PUSH)) == TH_ACK &&
2828 ((tp->t_flags & TF_NEEDFIN) == 0) &&
2829 ((to.to_flags & TOF_TS) == 0 ||
2830 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2831 th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) {
2832 int seg_size = tlen;
2833 if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) {
2834 TCP_INC_VAR(tp->iaj_pktcnt, segment_count);
2835 }
2836
2837 if (tp->iaj_size == 0 || seg_size > tp->iaj_size ||
2838 (seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) {
2839 /*
2840 * State related to inter-arrival jitter is
2841 * uninitialized or we are trying to find a good
2842 * first packet to start computing the metric
2843 */
2844 update_iaj_state(tp, seg_size, 0);
2845 } else {
2846 if (seg_size == tp->iaj_size) {
2847 /*
2848 * Compute inter-arrival jitter taking
2849 * this packet as the second packet
2850 */
2851 compute_iaj(tp);
2852 }
2853 if (seg_size < tp->iaj_size) {
2854 /*
2855 * There is a smaller packet in the stream.
2856 * Some times the maximum size supported
2857 * on a path can change if there is a new
2858 * link with smaller MTU. The receiver will
2859 * not know about this change. If there
2860 * are too many packets smaller than
2861 * iaj_size, we try to learn the iaj_size
2862 * again.
2863 */
2864 TCP_INC_VAR(tp->iaj_small_pkt, segment_count);
2865 if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) {
2866 update_iaj_state(tp, seg_size, 1);
2867 } else {
2868 CLEAR_IAJ_STATE(tp);
2869 }
2870 } else {
2871 update_iaj_state(tp, seg_size, 0);
2872 }
2873 }
2874 } else {
2875 CLEAR_IAJ_STATE(tp);
2876 }
2877 #endif /* TRAFFIC_MGT */
2878
2879 /*
2880 * Header prediction: check for the two common cases
2881 * of a uni-directional data xfer. If the packet has
2882 * no control flags, is in-sequence, the window didn't
2883 * change and we're not retransmitting, it's a
2884 * candidate. If the length is zero and the ack moved
2885 * forward, we're the sender side of the xfer. Just
2886 * free the data acked & wake any higher level process
2887 * that was blocked waiting for space. If the length
2888 * is non-zero and the ack didn't move, we're the
2889 * receiver side. If we're getting packets in-order
2890 * (the reassembly queue is empty), add the data to
2891 * the socket buffer and note that we need a delayed ack.
2892 * Make sure that the hidden state-flags are also off.
2893 * Since we check for TCPS_ESTABLISHED above, it can only
2894 * be TH_NEEDSYN.
2895 */
2896 if (tp->t_state == TCPS_ESTABLISHED &&
2897 !(so->so_state & SS_CANTRCVMORE) &&
2898 (thflags & TH_FLAGS) == TH_ACK &&
2899 ((tp->t_flags & TF_NEEDFIN) == 0) &&
2900 ((to.to_flags & TOF_TS) == 0 ||
2901 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2902 th->th_seq == tp->rcv_nxt &&
2903 tiwin && tiwin == tp->snd_wnd &&
2904 tp->snd_nxt == tp->snd_max) {
2905 /*
2906 * If last ACK falls within this segment's sequence numbers,
2907 * record the timestamp.
2908 * NOTE that the test is modified according to the latest
2909 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2910 */
2911 if ((to.to_flags & TOF_TS) != 0 &&
2912 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2913 tp->ts_recent_age = tcp_now;
2914 tp->ts_recent = to.to_tsval;
2915 }
2916
2917 if (tlen == 0) {
2918 if (SEQ_GT(th->th_ack, tp->snd_una) &&
2919 SEQ_LEQ(th->th_ack, tp->snd_max) &&
2920 tp->snd_cwnd >= tp->snd_ssthresh &&
2921 (!IN_FASTRECOVERY(tp) &&
2922 ((!(SACK_ENABLED(tp)) &&
2923 tp->t_dupacks < tp->t_rexmtthresh) ||
2924 (SACK_ENABLED(tp) && to.to_nsacks == 0 &&
2925 TAILQ_EMPTY(&tp->snd_holes))))) {
2926 /*
2927 * this is a pure ack for outstanding data.
2928 */
2929 ++tcpstat.tcps_predack;
2930
2931 tcp_bad_rexmt_check(tp, th, &to);
2932
2933 /* Recalculate the RTT */
2934 tcp_compute_rtt(tp, &to, th);
2935
2936 VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una));
2937 acked = BYTES_ACKED(th, tp);
2938 tcpstat.tcps_rcvackpack++;
2939 tcpstat.tcps_rcvackbyte += acked;
2940
2941 /*
2942 * Handle an ack that is in sequence during
2943 * congestion avoidance phase. The
2944 * calculations in this function
2945 * assume that snd_una is not updated yet.
2946 */
2947 if (CC_ALGO(tp)->congestion_avd != NULL) {
2948 CC_ALGO(tp)->congestion_avd(tp, th);
2949 }
2950 tcp_ccdbg_trace(tp, th, TCP_CC_INSEQ_ACK_RCVD);
2951 sbdrop(&so->so_snd, acked);
2952 tcp_sbsnd_trim(&so->so_snd);
2953
2954 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2955 SEQ_LEQ(th->th_ack, tp->snd_recover)) {
2956 tp->snd_recover = th->th_ack - 1;
2957 }
2958
2959 tcp_update_snd_una(tp, th->th_ack);
2960
2961 TCP_RESET_REXMT_STATE(tp);
2962
2963 /*
2964 * pull snd_wl2 up to prevent seq wrap relative
2965 * to th_ack.
2966 */
2967 tp->snd_wl2 = th->th_ack;
2968
2969 if (tp->t_dupacks > 0) {
2970 tp->t_dupacks = 0;
2971 tp->t_rexmtthresh = tcprexmtthresh;
2972 tp->t_new_dupacks = 0;
2973 }
2974
2975 tp->sackhint.sack_bytes_acked = 0;
2976
2977 /*
2978 * If all outstanding data are acked, stop
2979 * retransmit timer, otherwise restart timer
2980 * using current (possibly backed-off) value.
2981 * If process is waiting for space,
2982 * wakeup/selwakeup/signal. If data
2983 * are ready to send, let tcp_output
2984 * decide between more output or persist.
2985 */
2986 if (tp->snd_una == tp->snd_max) {
2987 tp->t_timer[TCPT_REXMT] = 0;
2988 tp->t_timer[TCPT_PTO] = 0;
2989 } else if (tp->t_timer[TCPT_PERSIST] == 0) {
2990 tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
2991 }
2992 if (!SLIST_EMPTY(&tp->t_rxt_segments) &&
2993 !TCP_DSACK_SEQ_IN_WINDOW(tp,
2994 tp->t_dsack_lastuna, tp->snd_una)) {
2995 tcp_rxtseg_clean(tp);
2996 }
2997
2998 if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
2999 tp->t_bwmeas != NULL) {
3000 tcp_bwmeas_check(tp);
3001 }
3002
3003 write_wakeup = 1;
3004 if (!SLIST_EMPTY(&tp->t_notify_ack)) {
3005 tcp_notify_acknowledgement(tp, so);
3006 }
3007
3008 if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
3009 (void) tcp_output(tp);
3010 }
3011
3012 tcp_tfo_rcv_ack(tp, th);
3013
3014 m_freem(m);
3015
3016 tcp_check_timer_state(tp);
3017
3018 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
3019
3020 socket_unlock(so, 1);
3021 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
3022 return;
3023 }
3024 } else if (th->th_ack == tp->snd_una && LIST_EMPTY(&tp->t_segq) &&
3025 tlen <= tcp_sbspace(tp)) {
3026 /*
3027 * this is a pure, in-sequence data packet
3028 * with nothing on the reassembly queue and
3029 * we have enough buffer space to take it.
3030 */
3031
3032 /* Clean receiver SACK report if present */
3033 if (SACK_ENABLED(tp) && tp->rcv_numsacks) {
3034 tcp_clean_sackreport(tp);
3035 }
3036 ++tcpstat.tcps_preddat;
3037 tp->rcv_nxt += tlen;
3038 /*
3039 * Pull snd_wl1 up to prevent seq wrap relative to
3040 * th_seq.
3041 */
3042 tp->snd_wl1 = th->th_seq;
3043 /*
3044 * Pull rcv_up up to prevent seq wrap relative to
3045 * rcv_nxt.
3046 */
3047 tp->rcv_up = tp->rcv_nxt;
3048 TCP_INC_VAR(tcpstat.tcps_rcvpack, segment_count);
3049 tcpstat.tcps_rcvbyte += tlen;
3050 if (nstat_collect) {
3051 INP_ADD_STAT(inp, cell, wifi, wired,
3052 rxpackets, 1);
3053 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes,
3054 tlen);
3055 inp_set_activity_bitmap(inp);
3056 }
3057
3058 /*
3059 * Calculate the RTT on the receiver only if the
3060 * connection is in streaming mode and the last
3061 * packet was not an end-of-write
3062 */
3063 if (tp->t_flags & TF_STREAMING_ON) {
3064 tcp_compute_rtt(tp, &to, th);
3065 }
3066
3067 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
3068
3069 /*
3070 * Add data to socket buffer.
3071 */
3072 so_recv_data_stat(so, m, 0);
3073 m_adj(m, drop_hdrlen); /* delayed header drop */
3074
3075 if (isipv6) {
3076 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
3077 ip6 = (struct ip6_hdr *)&saved_hdr[0];
3078 } else {
3079 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
3080 ip = (struct ip *)&saved_hdr[0];
3081 }
3082 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
3083
3084 if (th->th_flags & TH_PUSH) {
3085 tp->t_flagsext |= TF_LAST_IS_PSH;
3086 } else {
3087 tp->t_flagsext &= ~TF_LAST_IS_PSH;
3088 }
3089
3090 if (sbappendstream_rcvdemux(so, m)) {
3091 mptcp_handle_input(so);
3092 read_wakeup = 1;
3093 }
3094 th = &saved_tcphdr;
3095
3096 if (isipv6) {
3097 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
3098 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
3099 th->th_seq, th->th_ack, th->th_win);
3100 } else {
3101 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
3102 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
3103 th->th_seq, th->th_ack, th->th_win);
3104 }
3105 TCP_INC_VAR(tp->t_unacksegs, segment_count);
3106 if (DELAY_ACK(tp, th)) {
3107 if ((tp->t_flags & TF_DELACK) == 0) {
3108 tp->t_flags |= TF_DELACK;
3109 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3110 }
3111 } else {
3112 tp->t_flags |= TF_ACKNOW;
3113 tcp_output(tp);
3114 }
3115
3116 tcp_adaptive_rwtimo_check(tp, tlen);
3117
3118 if (tlen > 0) {
3119 tcp_tfo_rcv_data(tp);
3120 }
3121
3122 tcp_check_timer_state(tp);
3123
3124 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
3125
3126 socket_unlock(so, 1);
3127 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
3128 return;
3129 }
3130 }
3131
3132 /*
3133 * Calculate amount of space in receive window,
3134 * and then do TCP input processing.
3135 * Receive window is amount of space in rcv queue,
3136 * but not less than advertised window.
3137 */
3138 socket_lock_assert_owned(so);
3139 win = tcp_sbspace(tp);
3140 if (win < 0) {
3141 win = 0;
3142 } else { /* clip rcv window to 4K for modems */
3143 if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) {
3144 win = min(win, slowlink_wsize);
3145 }
3146 }
3147 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
3148 #if MPTCP
3149 /*
3150 * Ensure that the subflow receive window isn't greater
3151 * than the connection level receive window.
3152 */
3153 if ((tp->t_mpflags & TMPF_MPTCP_TRUE) && (mp_tp = tptomptp(tp))) {
3154 socket_lock_assert_owned(mptetoso(mp_tp->mpt_mpte));
3155 int64_t recwin_conn = (int64_t)(mp_tp->mpt_rcvadv - mp_tp->mpt_rcvnxt);
3156
3157 VERIFY(recwin_conn < INT32_MAX && recwin_conn > INT32_MIN);
3158 if (recwin_conn > 0 && tp->rcv_wnd > (uint32_t)recwin_conn) {
3159 tp->rcv_wnd = (uint32_t)recwin_conn;
3160 tcpstat.tcps_mp_reducedwin++;
3161 }
3162 }
3163 #endif /* MPTCP */
3164
3165 switch (tp->t_state) {
3166 /*
3167 * Initialize tp->rcv_nxt, and tp->irs, select an initial
3168 * tp->iss, and send a segment:
3169 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3170 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
3171 * Fill in remote peer address fields if not previously specified.
3172 * Enter SYN_RECEIVED state, and process any other fields of this
3173 * segment in this state.
3174 */
3175 case TCPS_LISTEN: {
3176 struct sockaddr_in *sin;
3177 struct sockaddr_in6 *sin6;
3178
3179 socket_lock_assert_owned(so);
3180
3181 /* Clear the logging flags inherited from the listening socket */
3182 tp->t_log_flags = 0;
3183 tp->t_flagsext &= ~TF_LOGGED_CONN_SUMMARY;
3184
3185 if (isipv6) {
3186 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
3187 M_SONAME, M_NOWAIT);
3188 if (sin6 == NULL) {
3189 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "LISTEN malloc M_SONAME failed");
3190 goto drop;
3191 }
3192 bzero(sin6, sizeof(*sin6));
3193 sin6->sin6_family = AF_INET6;
3194 sin6->sin6_len = sizeof(*sin6);
3195 sin6->sin6_addr = ip6->ip6_src;
3196 sin6->sin6_port = th->th_sport;
3197 laddr6 = inp->in6p_laddr;
3198 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
3199 inp->in6p_laddr = ip6->ip6_dst;
3200 }
3201 if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
3202 kernel_proc)) {
3203 inp->in6p_laddr = laddr6;
3204 FREE(sin6, M_SONAME);
3205 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " LISTEN in6_pcbconnect failed");
3206 goto drop;
3207 }
3208 FREE(sin6, M_SONAME);
3209 } else {
3210 socket_lock_assert_owned(so);
3211 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
3212 M_NOWAIT);
3213 if (sin == NULL) {
3214 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "LISTEN malloc M_SONAME failed");
3215 goto drop;
3216 }
3217 sin->sin_family = AF_INET;
3218 sin->sin_len = sizeof(*sin);
3219 sin->sin_addr = ip->ip_src;
3220 sin->sin_port = th->th_sport;
3221 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
3222 laddr = inp->inp_laddr;
3223 if (inp->inp_laddr.s_addr == INADDR_ANY) {
3224 inp->inp_laddr = ip->ip_dst;
3225 }
3226 if (in_pcbconnect(inp, (struct sockaddr *)sin, kernel_proc,
3227 IFSCOPE_NONE, NULL)) {
3228 inp->inp_laddr = laddr;
3229 FREE(sin, M_SONAME);
3230 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " LISTEN in_pcbconnect failed");
3231 goto drop;
3232 }
3233 FREE(sin, M_SONAME);
3234 }
3235
3236 tcp_dooptions(tp, optp, optlen, th, &to);
3237 tcp_finalize_options(tp, &to, ifscope);
3238
3239 if (tfo_enabled(tp) && tcp_tfo_syn(tp, &to)) {
3240 isconnected = TRUE;
3241 }
3242
3243 if (iss) {
3244 tp->iss = iss;
3245 } else {
3246 tp->iss = tcp_new_isn(tp);
3247 }
3248 tp->irs = th->th_seq;
3249 tcp_sendseqinit(tp);
3250 tcp_rcvseqinit(tp);
3251 tp->snd_recover = tp->snd_una;
3252 /*
3253 * Initialization of the tcpcb for transaction;
3254 * set SND.WND = SEG.WND,
3255 * initialize CCsend and CCrecv.
3256 */
3257 tp->snd_wnd = tiwin; /* initial send-window */
3258 tp->max_sndwnd = tp->snd_wnd;
3259 tp->t_flags |= TF_ACKNOW;
3260 tp->t_unacksegs = 0;
3261 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3262 struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
3263 tp->t_state = TCPS_SYN_RECEIVED;
3264 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
3265 TCP_CONN_KEEPINIT(tp));
3266 tp->t_connect_time = tcp_now;
3267 dropsocket = 0; /* committed to socket */
3268
3269 if (inp->inp_flowhash == 0) {
3270 inp->inp_flowhash = inp_calc_flowhash(inp);
3271 }
3272 /* update flowinfo - RFC 6437 */
3273 if (inp->inp_flow == 0 &&
3274 inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
3275 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
3276 inp->inp_flow |=
3277 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
3278 }
3279
3280 /* reset the incomp processing flag */
3281 so->so_flags &= ~(SOF_INCOMP_INPROGRESS);
3282 tcpstat.tcps_accepts++;
3283 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
3284 /* ECN-setup SYN */
3285 tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
3286 }
3287
3288 /*
3289 * The address and connection state are finalized
3290 */
3291 TCP_LOG_CONNECT(tp, false, 0);
3292
3293 tcp_add_fsw_flow(tp, ifp);
3294
3295 goto trimthenstep6;
3296 }
3297
3298 /*
3299 * If the state is SYN_RECEIVED and the seg contains an ACK,
3300 * but not for our SYN/ACK, send a RST.
3301 */
3302 case TCPS_SYN_RECEIVED:
3303 if ((thflags & TH_ACK) &&
3304 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
3305 SEQ_GT(th->th_ack, tp->snd_max))) {
3306 IF_TCP_STATINC(ifp, ooopacket);
3307 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_RECEIVED bad ACK");
3308 goto dropwithreset;
3309 }
3310
3311 /*
3312 * In SYN_RECEIVED state, if we recv some SYNS with
3313 * window scale and others without, window scaling should
3314 * be disabled. Otherwise the window advertised will be
3315 * lower if we assume scaling and the other end does not.
3316 */
3317 if ((thflags & TH_SYN) &&
3318 (tp->irs == th->th_seq) &&
3319 !(to.to_flags & TOF_SCALE)) {
3320 tp->t_flags &= ~TF_RCVD_SCALE;
3321 }
3322 break;
3323
3324 /*
3325 * If the state is SYN_SENT:
3326 * if seg contains an ACK, but not for our SYN, drop the input.
3327 * if seg contains a RST, then drop the connection.
3328 * if seg does not contain SYN, then drop it.
3329 * Otherwise this is an acceptable SYN segment
3330 * initialize tp->rcv_nxt and tp->irs
3331 * if seg contains ack then advance tp->snd_una
3332 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
3333 * arrange for segment to be acked (eventually)
3334 * continue processing rest of data/controls, beginning with URG
3335 */
3336 case TCPS_SYN_SENT:
3337 if ((thflags & TH_ACK) &&
3338 (SEQ_LEQ(th->th_ack, tp->iss) ||
3339 SEQ_GT(th->th_ack, tp->snd_max))) {
3340 IF_TCP_STATINC(ifp, ooopacket);
3341 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT bad ACK");
3342 goto dropwithreset;
3343 }
3344 if (thflags & TH_RST) {
3345 if ((thflags & TH_ACK) != 0) {
3346 if (tfo_enabled(tp) &&
3347 !(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE)) {
3348 tcp_heuristic_tfo_rst(tp);
3349 }
3350 if ((tp->ecn_flags & (TE_SETUPSENT | TE_RCVD_SYN_RST)) == TE_SETUPSENT) {
3351 /*
3352 * On local connections, send
3353 * non-ECN syn one time before
3354 * dropping the connection
3355 */
3356 if (tp->t_flags & TF_LOCAL) {
3357 tp->ecn_flags |= TE_RCVD_SYN_RST;
3358 goto drop;
3359 } else {
3360 tcp_heuristic_ecn_synrst(tp);
3361 }
3362 }
3363 soevent(so,
3364 (SO_FILT_HINT_LOCKED |
3365 SO_FILT_HINT_CONNRESET));
3366 tp = tcp_drop(tp, ECONNREFUSED);
3367 }
3368 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT got RST");
3369 goto drop;
3370 }
3371 if ((thflags & TH_SYN) == 0) {
3372 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT no SYN");
3373 goto drop;
3374 }
3375 tp->snd_wnd = th->th_win; /* initial send window */
3376 tp->max_sndwnd = tp->snd_wnd;
3377
3378 tp->irs = th->th_seq;
3379 tcp_rcvseqinit(tp);
3380 if (thflags & TH_ACK) {
3381 tcpstat.tcps_connects++;
3382
3383 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
3384 /* ECN-setup SYN-ACK */
3385 tp->ecn_flags |= TE_SETUPRECEIVED;
3386 if (TCP_ECN_ENABLED(tp)) {
3387 tcp_heuristic_ecn_success(tp);
3388 tcpstat.tcps_ecn_client_success++;
3389 }
3390 } else {
3391 if (tp->ecn_flags & TE_SETUPSENT &&
3392 tp->t_rxtshift == 0) {
3393 tcp_heuristic_ecn_success(tp);
3394 tcpstat.tcps_ecn_not_supported++;
3395 }
3396 if (tp->ecn_flags & TE_SETUPSENT &&
3397 tp->t_rxtshift > 0) {
3398 tcp_heuristic_ecn_loss(tp);
3399 }
3400
3401 /* non-ECN-setup SYN-ACK */
3402 tp->ecn_flags &= ~TE_SENDIPECT;
3403 }
3404
3405 /* Do window scaling on this connection? */
3406 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
3407 tp->snd_scale = tp->requested_s_scale;
3408 tp->rcv_scale = tp->request_r_scale;
3409 }
3410
3411 tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale);
3412 tp->snd_una++; /* SYN is acked */
3413 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
3414 tp->snd_nxt = tp->snd_una;
3415 }
3416
3417 /*
3418 * We have sent more in the SYN than what is being
3419 * acked. (e.g., TFO)
3420 * We should restart the sending from what the receiver
3421 * has acknowledged immediately.
3422 */
3423 if (SEQ_GT(tp->snd_nxt, th->th_ack)) {
3424 /*
3425 * rdar://problem/33214601
3426 * There is a middlebox that acks all but one
3427 * byte and still drops the data.
3428 */
3429 if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
3430 (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
3431 tp->snd_max == th->th_ack + 1 &&
3432 tp->snd_max > tp->snd_una + 1) {
3433 tcp_heuristic_tfo_middlebox(tp);
3434
3435 so->so_error = ENODATA;
3436 soevent(so,
3437 (SO_FILT_HINT_LOCKED | SO_FILT_HINT_MP_SUB_ERROR));
3438
3439 tp->t_tfo_stats |= TFO_S_ONE_BYTE_PROXY;
3440 }
3441
3442 tp->snd_max = tp->snd_nxt = th->th_ack;
3443 }
3444
3445 /*
3446 * If there's data, delay ACK; if there's also a FIN
3447 * ACKNOW will be turned on later.
3448 */
3449 TCP_INC_VAR(tp->t_unacksegs, segment_count);
3450 if (DELAY_ACK(tp, th) && tlen != 0) {
3451 if ((tp->t_flags & TF_DELACK) == 0) {
3452 tp->t_flags |= TF_DELACK;
3453 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3454 }
3455 } else {
3456 tp->t_flags |= TF_ACKNOW;
3457 }
3458 /*
3459 * Received <SYN,ACK> in SYN_SENT[*] state.
3460 * Transitions:
3461 * SYN_SENT --> ESTABLISHED
3462 * SYN_SENT* --> FIN_WAIT_1
3463 */
3464 tp->t_starttime = tcp_now;
3465 tcp_sbrcv_tstmp_check(tp);
3466 if (tp->t_flags & TF_NEEDFIN) {
3467 DTRACE_TCP4(state__change, void, NULL,
3468 struct inpcb *, inp,
3469 struct tcpcb *, tp, int32_t,
3470 TCPS_FIN_WAIT_1);
3471 tp->t_state = TCPS_FIN_WAIT_1;
3472 tp->t_flags &= ~TF_NEEDFIN;
3473 thflags &= ~TH_SYN;
3474
3475 TCP_LOG_CONNECTION_SUMMARY(tp);
3476 } else {
3477 DTRACE_TCP4(state__change, void, NULL,
3478 struct inpcb *, inp, struct tcpcb *,
3479 tp, int32_t, TCPS_ESTABLISHED);
3480 tp->t_state = TCPS_ESTABLISHED;
3481 tp->t_timer[TCPT_KEEP] =
3482 OFFSET_FROM_START(tp,
3483 TCP_CONN_KEEPIDLE(tp));
3484 if (nstat_collect) {
3485 nstat_route_connect_success(
3486 inp->inp_route.ro_rt);
3487 }
3488 /*
3489 * The SYN is acknowledged but una is not
3490 * updated yet. So pass the value of
3491 * ack to compute sndbytes correctly
3492 */
3493 inp_count_sndbytes(inp, th->th_ack);
3494 }
3495 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
3496 #if MPTCP
3497 /*
3498 * Do not send the connect notification for additional
3499 * subflows until ACK for 3-way handshake arrives.
3500 */
3501 if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
3502 (tp->t_mpflags & TMPF_SENT_JOIN)) {
3503 isconnected = FALSE;
3504 } else
3505 #endif /* MPTCP */
3506 isconnected = TRUE;
3507
3508 if ((tp->t_tfo_flags & (TFO_F_COOKIE_REQ | TFO_F_COOKIE_SENT)) ||
3509 (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT)) {
3510 tcp_tfo_synack(tp, &to);
3511
3512 if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
3513 SEQ_LT(tp->snd_una, th->th_ack)) {
3514 tp->t_tfo_stats |= TFO_S_SYN_DATA_ACKED;
3515 tcpstat.tcps_tfo_syn_data_acked++;
3516 #if MPTCP
3517 if (so->so_flags & SOF_MP_SUBFLOW) {
3518 so->so_flags1 |= SOF1_TFO_REWIND;
3519 }
3520 #endif
3521 tcp_tfo_rcv_probe(tp, tlen);
3522 }
3523 }
3524 } else {
3525 /*
3526 * Received initial SYN in SYN-SENT[*] state => simul-
3527 * taneous open.
3528 * Do 3-way handshake:
3529 * SYN-SENT -> SYN-RECEIVED
3530 * SYN-SENT* -> SYN-RECEIVED*
3531 */
3532 tp->t_flags |= TF_ACKNOW;
3533 tp->t_timer[TCPT_REXMT] = 0;
3534 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3535 struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
3536 tp->t_state = TCPS_SYN_RECEIVED;
3537
3538 /*
3539 * During simultaneous open, TFO should not be used.
3540 * So, we disable it here, to prevent that data gets
3541 * sent on the SYN/ACK.
3542 */
3543 tcp_disable_tfo(tp);
3544 }
3545
3546 trimthenstep6:
3547 /*
3548 * Advance th->th_seq to correspond to first data byte.
3549 * If data, trim to stay within window,
3550 * dropping FIN if necessary.
3551 */
3552 th->th_seq++;
3553 if (tlen > tp->rcv_wnd) {
3554 todrop = tlen - tp->rcv_wnd;
3555 m_adj(m, -todrop);
3556 tlen = tp->rcv_wnd;
3557 thflags &= ~TH_FIN;
3558 tcpstat.tcps_rcvpackafterwin++;
3559 tcpstat.tcps_rcvbyteafterwin += todrop;
3560 }
3561 tp->snd_wl1 = th->th_seq - 1;
3562 tp->rcv_up = th->th_seq;
3563 /*
3564 * Client side of transaction: already sent SYN and data.
3565 * If the remote host used T/TCP to validate the SYN,
3566 * our data will be ACK'd; if so, enter normal data segment
3567 * processing in the middle of step 5, ack processing.
3568 * Otherwise, goto step 6.
3569 */
3570 if (thflags & TH_ACK) {
3571 goto process_ACK;
3572 }
3573 goto step6;
3574 /*
3575 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
3576 * do normal processing.
3577 *
3578 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
3579 */
3580 case TCPS_LAST_ACK:
3581 case TCPS_CLOSING:
3582 case TCPS_TIME_WAIT:
3583 break; /* continue normal processing */
3584
3585 /* Received a SYN while connection is already established.
3586 * This is a "half open connection and other anomalies" described
3587 * in RFC793 page 34, send an ACK so the remote reset the connection
3588 * or recovers by adjusting its sequence numbering. Sending an ACK is
3589 * in accordance with RFC 5961 Section 4.2
3590 */
3591 case TCPS_ESTABLISHED:
3592 if (thflags & TH_SYN && tlen <= 0) {
3593 /* Drop the packet silently if we have reached the limit */
3594 if (tcp_is_ack_ratelimited(tp)) {
3595 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 rate limited");
3596 goto drop;
3597 } else {
3598 /* Send challenge ACK */
3599 tcpstat.tcps_synchallenge++;
3600 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 challenge ACK");
3601 goto dropafterack;
3602 }
3603 }
3604 break;
3605 }
3606
3607 /*
3608 * States other than LISTEN or SYN_SENT.
3609 * First check the RST flag and sequence number since reset segments
3610 * are exempt from the timestamp and connection count tests. This
3611 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
3612 * below which allowed reset segments in half the sequence space
3613 * to fall though and be processed (which gives forged reset
3614 * segments with a random sequence number a 50 percent chance of
3615 * killing a connection).
3616 * Then check timestamp, if present.
3617 * Then check the connection count, if present.
3618 * Then check that at least some bytes of segment are within
3619 * receive window. If segment begins before rcv_nxt,
3620 * drop leading data (and SYN); if nothing left, just ack.
3621 *
3622 *
3623 * If the RST bit is set, check the sequence number to see
3624 * if this is a valid reset segment.
3625 * RFC 793 page 37:
3626 * In all states except SYN-SENT, all reset (RST) segments
3627 * are validated by checking their SEQ-fields. A reset is
3628 * valid if its sequence number is in the window.
3629 * Note: this does not take into account delayed ACKs, so
3630 * we should test against last_ack_sent instead of rcv_nxt.
3631 * The sequence number in the reset segment is normally an
3632 * echo of our outgoing acknowlegement numbers, but some hosts
3633 * send a reset with the sequence number at the rightmost edge
3634 * of our receive window, and we have to handle this case.
3635 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
3636 * that brute force RST attacks are possible. To combat this,
3637 * we use a much stricter check while in the ESTABLISHED state,
3638 * only accepting RSTs where the sequence number is equal to
3639 * last_ack_sent. In all other states (the states in which a
3640 * RST is more likely), the more permissive check is used.
3641 * RFC 5961 Section 3.2: if the RST bit is set, sequence # is
3642 * within the receive window and last_ack_sent == seq,
3643 * then reset the connection. Otherwise if the seq doesn't
3644 * match last_ack_sent, TCP must send challenge ACK. Perform
3645 * rate limitation when sending the challenge ACK.
3646 * If we have multiple segments in flight, the intial reset
3647 * segment sequence numbers will be to the left of last_ack_sent,
3648 * but they will eventually catch up.
3649 * In any case, it never made sense to trim reset segments to
3650 * fit the receive window since RFC 1122 says:
3651 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
3652 *
3653 * A TCP SHOULD allow a received RST segment to include data.
3654 *
3655 * DISCUSSION
3656 * It has been suggested that a RST segment could contain
3657 * ASCII text that encoded and explained the cause of the
3658 * RST. No standard has yet been established for such
3659 * data.
3660 *
3661 * If the reset segment passes the sequence number test examine
3662 * the state:
3663 * SYN_RECEIVED STATE:
3664 * If passive open, return to LISTEN state.
3665 * If active open, inform user that connection was refused.
3666 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
3667 * Inform user that connection was reset, and close tcb.
3668 * CLOSING, LAST_ACK STATES:
3669 * Close the tcb.
3670 * TIME_WAIT STATE:
3671 * Drop the segment - see Stevens, vol. 2, p. 964 and
3672 * RFC 1337.
3673 *
3674 * Radar 4803931: Allows for the case where we ACKed the FIN but
3675 * there is already a RST in flight from the peer.
3676 * In that case, accept the RST for non-established
3677 * state if it's one off from last_ack_sent.
3678 *
3679 */
3680 if (thflags & TH_RST) {
3681 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
3682 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
3683 (tp->rcv_wnd == 0 &&
3684 ((tp->last_ack_sent == th->th_seq) ||
3685 ((tp->last_ack_sent - 1) == th->th_seq)))) {
3686 if (tp->last_ack_sent == th->th_seq) {
3687 switch (tp->t_state) {
3688 case TCPS_SYN_RECEIVED:
3689 IF_TCP_STATINC(ifp, rstinsynrcv);
3690 so->so_error = ECONNREFUSED;
3691 goto close;
3692
3693 case TCPS_ESTABLISHED:
3694 if (TCP_ECN_ENABLED(tp) &&
3695 tp->snd_una == tp->iss + 1 &&
3696 SEQ_GT(tp->snd_max, tp->snd_una)) {
3697 /*
3698 * If the first data packet on an
3699 * ECN connection, receives a RST
3700 * increment the heuristic
3701 */
3702 tcp_heuristic_ecn_droprst(tp);
3703 }
3704 OS_FALLTHROUGH;
3705 case TCPS_FIN_WAIT_1:
3706 case TCPS_CLOSE_WAIT:
3707 case TCPS_FIN_WAIT_2:
3708 so->so_error = ECONNRESET;
3709 close:
3710 soevent(so,
3711 (SO_FILT_HINT_LOCKED |
3712 SO_FILT_HINT_CONNRESET));
3713
3714 tcpstat.tcps_drops++;
3715 tp = tcp_close(tp);
3716 break;
3717
3718 case TCPS_CLOSING:
3719 case TCPS_LAST_ACK:
3720 tp = tcp_close(tp);
3721 break;
3722
3723 case TCPS_TIME_WAIT:
3724 break;
3725 }
3726 } else {
3727 tcpstat.tcps_badrst++;
3728 /* Drop if we have reached the ACK limit */
3729 if (tcp_is_ack_ratelimited(tp)) {
3730 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 rate limited");
3731 goto drop;
3732 } else {
3733 /* Send challenge ACK */
3734 tcpstat.tcps_rstchallenge++;
3735 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 challenge ACK");
3736 goto dropafterack;
3737 }
3738 }
3739 }
3740 goto drop;
3741 }
3742
3743 /*
3744 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3745 * and it's less than ts_recent, drop it.
3746 */
3747 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3748 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3749 /* Check to see if ts_recent is over 24 days old. */
3750 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
3751 /*
3752 * Invalidate ts_recent. If this segment updates
3753 * ts_recent, the age will be reset later and ts_recent
3754 * will get a valid value. If it does not, setting
3755 * ts_recent to zero will at least satisfy the
3756 * requirement that zero be placed in the timestamp
3757 * echo reply when ts_recent isn't valid. The
3758 * age isn't reset until we get a valid ts_recent
3759 * because we don't want out-of-order segments to be
3760 * dropped when ts_recent is old.
3761 */
3762 tp->ts_recent = 0;
3763 } else {
3764 tcpstat.tcps_rcvduppack++;
3765 tcpstat.tcps_rcvdupbyte += tlen;
3766 tp->t_pawsdrop++;
3767 tcpstat.tcps_pawsdrop++;
3768
3769 /*
3770 * PAWS-drop when ECN is being used? That indicates
3771 * that ECT-marked packets take a different path, with
3772 * different congestion-characteristics.
3773 *
3774 * Only fallback when we did send less than 2GB as PAWS
3775 * really has no reason to kick in earlier.
3776 */
3777 if (TCP_ECN_ENABLED(tp) &&
3778 inp->inp_stat->rxbytes < 2147483648) {
3779 INP_INC_IFNET_STAT(inp, ecn_fallback_reorder);
3780 tcpstat.tcps_ecn_fallback_reorder++;
3781 tcp_heuristic_ecn_aggressive(tp);
3782 }
3783
3784 if (nstat_collect) {
3785 nstat_route_rx(tp->t_inpcb->inp_route.ro_rt,
3786 1, tlen, NSTAT_RX_FLAG_DUPLICATE);
3787 INP_ADD_STAT(inp, cell, wifi, wired,
3788 rxpackets, 1);
3789 INP_ADD_STAT(inp, cell, wifi, wired,
3790 rxbytes, tlen);
3791 tp->t_stat.rxduplicatebytes += tlen;
3792 inp_set_activity_bitmap(inp);
3793 }
3794 if (tlen > 0) {
3795 goto dropafterack;
3796 }
3797 goto drop;
3798 }
3799 }
3800
3801 /*
3802 * In the SYN-RECEIVED state, validate that the packet belongs to
3803 * this connection before trimming the data to fit the receive
3804 * window. Check the sequence number versus IRS since we know
3805 * the sequence numbers haven't wrapped. This is a partial fix
3806 * for the "LAND" DoS attack.
3807 */
3808 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
3809 IF_TCP_STATINC(ifp, dospacket);
3810 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_RECEIVED bad SEQ");
3811 goto dropwithreset;
3812 }
3813
3814 /*
3815 * Check if there is old data at the beginning of the window
3816 * i.e. the sequence number is before rcv_nxt
3817 */
3818 todrop = tp->rcv_nxt - th->th_seq;
3819 if (todrop > 0) {
3820 boolean_t is_syn_set = FALSE;
3821
3822 if (thflags & TH_SYN) {
3823 is_syn_set = TRUE;
3824 thflags &= ~TH_SYN;
3825 th->th_seq++;
3826 if (th->th_urp > 1) {
3827 th->th_urp--;
3828 } else {
3829 thflags &= ~TH_URG;
3830 }
3831 todrop--;
3832 }
3833 /*
3834 * Following if statement from Stevens, vol. 2, p. 960.
3835 * The amount of duplicate data is greater than or equal
3836 * to the size of the segment - entire segment is duplicate
3837 */
3838 if (todrop > tlen
3839 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
3840 /*
3841 * Any valid FIN must be to the left of the window.
3842 * At this point the FIN must be a duplicate or out
3843 * of sequence; drop it.
3844 */
3845 thflags &= ~TH_FIN;
3846
3847 /*
3848 * Send an ACK to resynchronize and drop any data.
3849 * But keep on processing for RST or ACK.
3850 *
3851 * If the SYN bit was originally set, then only send
3852 * an ACK if we are not rate-limiting this connection.
3853 */
3854 if (is_syn_set) {
3855 if (!tcp_is_ack_ratelimited(tp)) {
3856 tcpstat.tcps_synchallenge++;
3857 tp->t_flags |= TF_ACKNOW;
3858 }
3859 } else {
3860 tp->t_flags |= TF_ACKNOW;
3861 }
3862
3863 if (todrop == 1) {
3864 /* This could be a keepalive */
3865 soevent(so, SO_FILT_HINT_LOCKED |
3866 SO_FILT_HINT_KEEPALIVE);
3867 }
3868 todrop = tlen;
3869 tcpstat.tcps_rcvduppack++;
3870 tcpstat.tcps_rcvdupbyte += todrop;
3871 } else {
3872 tcpstat.tcps_rcvpartduppack++;
3873 tcpstat.tcps_rcvpartdupbyte += todrop;
3874 }
3875
3876 if (todrop > 1) {
3877 /*
3878 * Note the duplicate data sequence space so that
3879 * it can be reported in DSACK option.
3880 */
3881 tp->t_dsack_lseq = th->th_seq;
3882 tp->t_dsack_rseq = th->th_seq + todrop;
3883 tp->t_flags |= TF_ACKNOW;
3884 }
3885 if (nstat_collect) {
3886 nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1,
3887 todrop, NSTAT_RX_FLAG_DUPLICATE);
3888 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
3889 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, todrop);
3890 tp->t_stat.rxduplicatebytes += todrop;
3891 inp_set_activity_bitmap(inp);
3892 }
3893 drop_hdrlen += todrop; /* drop from the top afterwards */
3894 th->th_seq += todrop;
3895 tlen -= todrop;
3896 if (th->th_urp > todrop) {
3897 th->th_urp -= todrop;
3898 } else {
3899 thflags &= ~TH_URG;
3900 th->th_urp = 0;
3901 }
3902 }
3903
3904 /*
3905 * If new data are received on a connection after the user
3906 * processes are gone, then RST the other end.
3907 * Send also a RST when we received a data segment after we've
3908 * sent our FIN when the socket is defunct.
3909 * Note that an MPTCP subflow socket would have SS_NOFDREF set
3910 * by default. So, if it's an MPTCP-subflow we rather check the
3911 * MPTCP-level's socket state for SS_NOFDREF.
3912 */
3913 if (tlen) {
3914 boolean_t close_it = FALSE;
3915
3916 if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF) &&
3917 tp->t_state > TCPS_CLOSE_WAIT) {
3918 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SS_NOFDREF");
3919 close_it = TRUE;
3920 }
3921
3922 if ((so->so_flags & SOF_MP_SUBFLOW) && (mptetoso(tptomptp(tp)->mpt_mpte)->so_state & SS_NOFDREF) &&
3923 tp->t_state > TCPS_CLOSE_WAIT) {
3924 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SOF_MP_SUBFLOW SS_NOFDREF");
3925 close_it = TRUE;
3926 }
3927
3928 if ((so->so_flags & SOF_DEFUNCT) && tp->t_state > TCPS_FIN_WAIT_1) {
3929 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SOF_DEFUNCT");
3930 close_it = TRUE;
3931 }
3932
3933 if (so->so_state & SS_CANTRCVMORE) {
3934 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SS_CANTRCVMORE");
3935 close_it = TRUE;
3936 }
3937
3938 if (close_it) {
3939 tp = tcp_close(tp);
3940 tcpstat.tcps_rcvafterclose++;
3941 IF_TCP_STATINC(ifp, cleanup);
3942 goto dropwithreset;
3943 }
3944 }
3945
3946 /*
3947 * If segment ends after window, drop trailing data
3948 * (and PUSH and FIN); if nothing left, just ACK.
3949 */
3950 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
3951 if (todrop > 0) {
3952 tcpstat.tcps_rcvpackafterwin++;
3953 if (todrop >= tlen) {
3954 tcpstat.tcps_rcvbyteafterwin += tlen;
3955 /*
3956 * If a new connection request is received
3957 * while in TIME_WAIT, drop the old connection
3958 * and start over if the sequence numbers
3959 * are above the previous ones.
3960 */
3961 if (thflags & TH_SYN &&
3962 tp->t_state == TCPS_TIME_WAIT &&
3963 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
3964 iss = tcp_new_isn(tp);
3965 tp = tcp_close(tp);
3966 socket_unlock(so, 1);
3967 goto findpcb;
3968 }
3969 /*
3970 * If window is closed can only take segments at
3971 * window edge, and have to drop data and PUSH from
3972 * incoming segments. Continue processing, but
3973 * remember to ack. Otherwise, drop segment
3974 * and ack.
3975 */
3976 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
3977 tp->t_flags |= TF_ACKNOW;
3978 tcpstat.tcps_rcvwinprobe++;
3979 } else {
3980 goto dropafterack;
3981 }
3982 } else {
3983 tcpstat.tcps_rcvbyteafterwin += todrop;
3984 }
3985 m_adj(m, -todrop);
3986 tlen -= todrop;
3987 thflags &= ~(TH_PUSH | TH_FIN);
3988 }
3989
3990 /*
3991 * If last ACK falls within this segment's sequence numbers,
3992 * record its timestamp.
3993 * NOTE:
3994 * 1) That the test incorporates suggestions from the latest
3995 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
3996 * 2) That updating only on newer timestamps interferes with
3997 * our earlier PAWS tests, so this check should be solely
3998 * predicated on the sequence space of this segment.
3999 * 3) That we modify the segment boundary check to be
4000 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
4001 * instead of RFC1323's
4002 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
4003 * This modified check allows us to overcome RFC1323's
4004 * limitations as described in Stevens TCP/IP Illustrated
4005 * Vol. 2 p.869. In such cases, we can still calculate the
4006 * RTT correctly when RCV.NXT == Last.ACK.Sent.
4007 */
4008 if ((to.to_flags & TOF_TS) != 0 &&
4009 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
4010 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
4011 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
4012 tp->ts_recent_age = tcp_now;
4013 tp->ts_recent = to.to_tsval;
4014 }
4015
4016 /*
4017 * Stevens: If a SYN is in the window, then this is an
4018 * error and we send an RST and drop the connection.
4019 *
4020 * RFC 5961 Section 4.2
4021 * Send challenge ACK for any SYN in synchronized state
4022 * Perform rate limitation in doing so.
4023 */
4024 if (thflags & TH_SYN) {
4025 if (!tcp_syn_data_valid(tp, th, tlen)) {
4026 tcpstat.tcps_badsyn++;
4027 /* Drop if we have reached ACK limit */
4028 if (tcp_is_ack_ratelimited(tp)) {
4029 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad SYN rate limited");
4030 goto drop;
4031 } else {
4032 /* Send challenge ACK */
4033 tcpstat.tcps_synchallenge++;
4034 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad SYN challenge ack");
4035 goto dropafterack;
4036 }
4037 } else {
4038 /*
4039 * Received SYN (/ACK) with data.
4040 * Move sequence number along to process the data.
4041 */
4042 th->th_seq++;
4043 thflags &= ~TH_SYN;
4044 }
4045 }
4046
4047 /*
4048 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
4049 * flag is on (half-synchronized state), then queue data for
4050 * later processing; else drop segment and return.
4051 */
4052 if ((thflags & TH_ACK) == 0) {
4053 if (tp->t_state == TCPS_SYN_RECEIVED) {
4054 if ((tfo_enabled(tp))) {
4055 /*
4056 * So, we received a valid segment while in
4057 * SYN-RECEIVED.
4058 * As this cannot be an RST (see that if a bit
4059 * higher), and it does not have the ACK-flag
4060 * set, we want to retransmit the SYN/ACK.
4061 * Thus, we have to reset snd_nxt to snd_una to
4062 * trigger the going back to sending of the
4063 * SYN/ACK. This is more consistent with the
4064 * behavior of tcp_output(), which expects
4065 * to send the segment that is pointed to by
4066 * snd_nxt.
4067 */
4068 tp->snd_nxt = tp->snd_una;
4069
4070 /*
4071 * We need to make absolutely sure that we are
4072 * going to reply upon a duplicate SYN-segment.
4073 */
4074 if (th->th_flags & TH_SYN) {
4075 needoutput = 1;
4076 }
4077 }
4078
4079 goto step6;
4080 } else if (tp->t_flags & TF_ACKNOW) {
4081 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad ACK");
4082 goto dropafterack;
4083 } else {
4084 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad ACK");
4085 goto drop;
4086 }
4087 }
4088
4089 /*
4090 * Ack processing.
4091 */
4092
4093 switch (tp->t_state) {
4094 /*
4095 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
4096 * ESTABLISHED state and continue processing.
4097 * The ACK was checked above.
4098 */
4099 case TCPS_SYN_RECEIVED:
4100
4101 tcpstat.tcps_connects++;
4102
4103 /* Do window scaling? */
4104 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
4105 tp->snd_scale = tp->requested_s_scale;
4106 tp->rcv_scale = tp->request_r_scale;
4107 tp->snd_wnd = th->th_win << tp->snd_scale;
4108 tp->max_sndwnd = tp->snd_wnd;
4109 tiwin = tp->snd_wnd;
4110 }
4111 /*
4112 * Make transitions:
4113 * SYN-RECEIVED -> ESTABLISHED
4114 * SYN-RECEIVED* -> FIN-WAIT-1
4115 */
4116 tp->t_starttime = tcp_now;
4117 tcp_sbrcv_tstmp_check(tp);
4118 if (tp->t_flags & TF_NEEDFIN) {
4119 DTRACE_TCP4(state__change, void, NULL,
4120 struct inpcb *, inp,
4121 struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
4122 tp->t_state = TCPS_FIN_WAIT_1;
4123 tp->t_flags &= ~TF_NEEDFIN;
4124
4125 TCP_LOG_CONNECTION_SUMMARY(tp);
4126 } else {
4127 DTRACE_TCP4(state__change, void, NULL,
4128 struct inpcb *, inp,
4129 struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
4130 tp->t_state = TCPS_ESTABLISHED;
4131 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
4132 TCP_CONN_KEEPIDLE(tp));
4133 if (nstat_collect) {
4134 nstat_route_connect_success(
4135 tp->t_inpcb->inp_route.ro_rt);
4136 }
4137
4138 /*
4139 * The SYN is acknowledged but una is not updated
4140 * yet. So pass the value of ack to compute
4141 * sndbytes correctly
4142 */
4143 inp_count_sndbytes(inp, th->th_ack);
4144 }
4145 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
4146 /*
4147 * If segment contains data or ACK, will call tcp_reass()
4148 * later; if not, do so now to pass queued data to user.
4149 */
4150 if (tlen == 0 && (thflags & TH_FIN) == 0) {
4151 if (isipv6) {
4152 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
4153 ip6 = (struct ip6_hdr *)&saved_hdr[0];
4154 } else {
4155 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
4156 ip = (struct ip *)&saved_hdr[0];
4157 }
4158 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
4159 (void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
4160 NULL, ifp, &read_wakeup);
4161 th = &saved_tcphdr;
4162 }
4163 tp->snd_wl1 = th->th_seq - 1;
4164
4165 #if MPTCP
4166 /*
4167 * Do not send the connect notification for additional subflows
4168 * until ACK for 3-way handshake arrives.
4169 */
4170 if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
4171 (tp->t_mpflags & TMPF_SENT_JOIN)) {
4172 isconnected = FALSE;
4173 } else
4174 #endif /* MPTCP */
4175 isconnected = TRUE;
4176 if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) {
4177 /* Done this when receiving the SYN */
4178 isconnected = FALSE;
4179
4180 OSDecrementAtomic(&tcp_tfo_halfcnt);
4181
4182 /* Panic if something has gone terribly wrong. */
4183 VERIFY(tcp_tfo_halfcnt >= 0);
4184
4185 tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID;
4186 }
4187
4188 /*
4189 * In case there is data in the send-queue (e.g., TFO is being
4190 * used, or connectx+data has been done), then if we would
4191 * "FALLTHROUGH", we would handle this ACK as if data has been
4192 * acknowledged. But, we have to prevent this. And this
4193 * can be prevented by increasing snd_una by 1, so that the
4194 * SYN is not considered as data (snd_una++ is actually also
4195 * done in SYN_SENT-state as part of the regular TCP stack).
4196 *
4197 * In case there is data on this ack as well, the data will be
4198 * handled by the label "dodata" right after step6.
4199 */
4200 if (so->so_snd.sb_cc) {
4201 tp->snd_una++; /* SYN is acked */
4202 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4203 tp->snd_nxt = tp->snd_una;
4204 }
4205
4206 /*
4207 * No duplicate-ACK handling is needed. So, we
4208 * directly advance to processing the ACK (aka,
4209 * updating the RTT estimation,...)
4210 *
4211 * But, we first need to handle eventual SACKs,
4212 * because TFO will start sending data with the
4213 * SYN/ACK, so it might be that the client
4214 * includes a SACK with its ACK.
4215 */
4216 if (SACK_ENABLED(tp) &&
4217 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) {
4218 tcp_sack_doack(tp, &to, th, &sack_bytes_acked, &sack_bytes_newly_acked);
4219 }
4220
4221 goto process_ACK;
4222 }
4223
4224 OS_FALLTHROUGH;
4225
4226 /*
4227 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
4228 * ACKs. If the ack is in the range
4229 * tp->snd_una < th->th_ack <= tp->snd_max
4230 * then advance tp->snd_una to th->th_ack and drop
4231 * data from the retransmission queue. If this ACK reflects
4232 * more up to date window information we update our window information.
4233 */
4234 case TCPS_ESTABLISHED:
4235 case TCPS_FIN_WAIT_1:
4236 case TCPS_FIN_WAIT_2:
4237 case TCPS_CLOSE_WAIT:
4238 case TCPS_CLOSING:
4239 case TCPS_LAST_ACK:
4240 case TCPS_TIME_WAIT:
4241 if (SEQ_GT(th->th_ack, tp->snd_max)) {
4242 tcpstat.tcps_rcvacktoomuch++;
4243 if (tcp_is_ack_ratelimited(tp)) {
4244 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 rcvacktoomuch");
4245 goto drop;
4246 } else {
4247 goto dropafterack;
4248 }
4249 }
4250 if (SEQ_LT(th->th_ack, tp->snd_una - tp->max_sndwnd)) {
4251 if (tcp_is_ack_ratelimited(tp)) {
4252 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad ACK");
4253 goto drop;
4254 } else {
4255 goto dropafterack;
4256 }
4257 }
4258 if (SACK_ENABLED(tp) && to.to_nsacks > 0) {
4259 recvd_dsack = tcp_sack_process_dsack(tp, &to, th);
4260 /*
4261 * If DSACK is received and this packet has no
4262 * other SACK information, it can be dropped.
4263 * We do not want to treat it as a duplicate ack.
4264 */
4265 if (recvd_dsack &&
4266 SEQ_LEQ(th->th_ack, tp->snd_una) &&
4267 to.to_nsacks == 0) {
4268 tcp_bad_rexmt_check(tp, th, &to);
4269 goto drop;
4270 }
4271 }
4272
4273 if (SACK_ENABLED(tp) &&
4274 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) {
4275 tcp_sack_doack(tp, &to, th, &sack_bytes_acked, &sack_bytes_newly_acked);
4276 }
4277
4278 #if MPTCP
4279 if (tp->t_mpuna && SEQ_GEQ(th->th_ack, tp->t_mpuna)) {
4280 if (tp->t_mpflags & TMPF_PREESTABLISHED) {
4281 /* MP TCP establishment succeeded */
4282 tp->t_mpuna = 0;
4283 if (tp->t_mpflags & TMPF_JOINED_FLOW) {
4284 if (tp->t_mpflags & TMPF_SENT_JOIN) {
4285 tp->t_mpflags &=
4286 ~TMPF_PREESTABLISHED;
4287 tp->t_mpflags |=
4288 TMPF_MPTCP_TRUE;
4289
4290 tp->t_timer[TCPT_JACK_RXMT] = 0;
4291 tp->t_mprxtshift = 0;
4292 isconnected = TRUE;
4293 } else {
4294 isconnected = FALSE;
4295 }
4296 } else {
4297 isconnected = TRUE;
4298 }
4299 }
4300 }
4301 #endif /* MPTCP */
4302
4303 tcp_tfo_rcv_ack(tp, th);
4304
4305 /*
4306 * If we have outstanding data (other than
4307 * a window probe), this is a completely
4308 * duplicate ack and the ack is the biggest we've seen.
4309 *
4310 * Need to accommodate a change in window on duplicate acks
4311 * to allow operating systems that update window during
4312 * recovery with SACK
4313 */
4314 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
4315 if (tlen == 0 && (tiwin == tp->snd_wnd ||
4316 (to.to_nsacks > 0 && sack_bytes_acked > 0))) {
4317 uint32_t old_dupacks;
4318 /*
4319 * If both ends send FIN at the same time,
4320 * then the ack will be a duplicate ack
4321 * but we have to process the FIN. Check
4322 * for this condition and process the FIN
4323 * instead of the dupack
4324 */
4325 if ((thflags & TH_FIN) &&
4326 !TCPS_HAVERCVDFIN(tp->t_state)) {
4327 break;
4328 }
4329 process_dupack:
4330 old_dupacks = tp->t_dupacks;
4331 #if MPTCP
4332 /*
4333 * MPTCP options that are ignored must
4334 * not be treated as duplicate ACKs.
4335 */
4336 if (to.to_flags & TOF_MPTCP) {
4337 goto drop;
4338 }
4339
4340 if ((isconnected) && (tp->t_mpflags & TMPF_JOINED_FLOW)) {
4341 mptcplog((LOG_DEBUG, "MPTCP "
4342 "Sockets: bypass ack recovery\n"),
4343 MPTCP_SOCKET_DBG,
4344 MPTCP_LOGLVL_VERBOSE);
4345 break;
4346 }
4347 #endif /* MPTCP */
4348 /*
4349 * If a duplicate acknowledgement was seen
4350 * after ECN, it indicates packet loss in
4351 * addition to ECN. Reset INRECOVERY flag
4352 * so that we can process partial acks
4353 * correctly
4354 */
4355 if (tp->ecn_flags & TE_INRECOVERY) {
4356 tp->ecn_flags &= ~TE_INRECOVERY;
4357 }
4358
4359 tcpstat.tcps_rcvdupack++;
4360 if (SACK_ENABLED(tp) && tcp_do_better_lr) {
4361 tp->t_dupacks += max(1, sack_bytes_acked / tp->t_maxseg);
4362 } else {
4363 ++tp->t_dupacks;
4364 }
4365
4366 tp->sackhint.sack_bytes_acked += sack_bytes_acked;
4367
4368 if (SACK_ENABLED(tp) && tcp_do_better_lr) {
4369 tp->t_new_dupacks += (sack_bytes_newly_acked / tp->t_maxseg);
4370
4371 if (tp->t_new_dupacks >= tp->t_rexmtthresh && IN_FASTRECOVERY(tp)) {
4372 /* Let's restart the retransmission */
4373 tcp_sack_lost_rexmit(tp);
4374
4375 /*
4376 * If the current tcp cc module has
4377 * defined a hook for tasks to run
4378 * before entering FR, call it
4379 */
4380 if (CC_ALGO(tp)->pre_fr != NULL) {
4381 CC_ALGO(tp)->pre_fr(tp);
4382 }
4383
4384 ENTER_FASTRECOVERY(tp);
4385
4386 if (tp->t_flags & TF_SENTFIN) {
4387 tp->snd_recover = tp->snd_max - 1;
4388 } else {
4389 tp->snd_recover = tp->snd_max;
4390 }
4391 tp->t_rtttime = 0;
4392
4393 if (TCP_ECN_ENABLED(tp)) {
4394 tp->ecn_flags |= TE_SENDCWR;
4395 }
4396
4397 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
4398 tcp_cc_adjust_nonvalidated_cwnd(tp);
4399 } else {
4400 tp->snd_cwnd = tp->snd_ssthresh;
4401 }
4402 }
4403 }
4404
4405 /*
4406 * Check if we need to reset the limit on
4407 * early retransmit
4408 */
4409 if (tp->t_early_rexmt_count > 0 &&
4410 TSTMP_GEQ(tcp_now,
4411 (tp->t_early_rexmt_win +
4412 TCP_EARLY_REXMT_WIN))) {
4413 tp->t_early_rexmt_count = 0;
4414 }
4415
4416 /*
4417 * Is early retransmit needed? We check for
4418 * this when the connection is waiting for
4419 * duplicate acks to enter fast recovery.
4420 */
4421 if (!IN_FASTRECOVERY(tp)) {
4422 tcp_early_rexmt_check(tp, th);
4423 }
4424
4425 /*
4426 * If we've seen exactly rexmt threshold
4427 * of duplicate acks, assume a packet
4428 * has been dropped and retransmit it.
4429 * Kludge snd_nxt & the congestion
4430 * window so we send only this one
4431 * packet.
4432 *
4433 * We know we're losing at the current
4434 * window size so do congestion avoidance
4435 * (set ssthresh to half the current window
4436 * and pull our congestion window back to
4437 * the new ssthresh).
4438 *
4439 * Dup acks mean that packets have left the
4440 * network (they're now cached at the receiver)
4441 * so bump cwnd by the amount in the receiver
4442 * to keep a constant cwnd packets in the
4443 * network.
4444 */
4445 if (tp->t_timer[TCPT_REXMT] == 0 ||
4446 (th->th_ack != tp->snd_una && sack_bytes_acked == 0)) {
4447 tp->t_dupacks = 0;
4448 tp->t_rexmtthresh = tcprexmtthresh;
4449 tp->t_new_dupacks = 0;
4450 } else if ((tp->t_dupacks > tp->t_rexmtthresh && (!tcp_do_better_lr || old_dupacks >= tp->t_rexmtthresh)) ||
4451 IN_FASTRECOVERY(tp)) {
4452 /*
4453 * If this connection was seeing packet
4454 * reordering, then recovery might be
4455 * delayed to disambiguate between
4456 * reordering and loss
4457 */
4458 if (SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) &&
4459 (tp->t_flagsext &
4460 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) ==
4461 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) {
4462 /*
4463 * Since the SACK information is already
4464 * updated, this ACK will be dropped
4465 */
4466 break;
4467 }
4468
4469 /*
4470 * Dup acks mean that packets have left the
4471 * network (they're now cached at the receiver)
4472 * so bump cwnd by the amount in the receiver
4473 * to keep a constant cwnd packets in the
4474 * network.
4475 */
4476 if (SACK_ENABLED(tp) && IN_FASTRECOVERY(tp)) {
4477 int awnd;
4478
4479 /*
4480 * Compute the amount of data in flight first.
4481 * We can inject new data into the pipe iff
4482 * we have less than snd_ssthres worth of data in
4483 * flight.
4484 */
4485 awnd = (tp->snd_nxt - tp->snd_fack) + tp->sackhint.sack_bytes_rexmit;
4486 if (awnd < tp->snd_ssthresh) {
4487 tp->snd_cwnd += tp->t_maxseg;
4488 if (tp->snd_cwnd > tp->snd_ssthresh) {
4489 tp->snd_cwnd = tp->snd_ssthresh;
4490 }
4491 }
4492 } else {
4493 tp->snd_cwnd += tp->t_maxseg;
4494 }
4495
4496 /* Process any window updates */
4497 if (tiwin > tp->snd_wnd) {
4498 tcp_update_window(tp, thflags,
4499 th, tiwin, tlen);
4500 }
4501 tcp_ccdbg_trace(tp, th,
4502 TCP_CC_IN_FASTRECOVERY);
4503
4504 (void) tcp_output(tp);
4505
4506 goto drop;
4507 } else if ((!tcp_do_better_lr && tp->t_dupacks == tp->t_rexmtthresh) ||
4508 (tcp_do_better_lr && tp->t_dupacks >= tp->t_rexmtthresh)) {
4509 tcp_seq onxt = tp->snd_nxt;
4510
4511 /*
4512 * If we're doing sack, check to
4513 * see if we're already in sack
4514 * recovery. If we're not doing sack,
4515 * check to see if we're in newreno
4516 * recovery.
4517 */
4518 if (SACK_ENABLED(tp)) {
4519 if (IN_FASTRECOVERY(tp)) {
4520 tp->t_dupacks = 0;
4521 break;
4522 } else if (tp->t_flagsext & TF_DELAY_RECOVERY) {
4523 break;
4524 }
4525 } else {
4526 if (SEQ_LEQ(th->th_ack, tp->snd_recover)) {
4527 tp->t_dupacks = 0;
4528 break;
4529 }
4530 }
4531 if (tp->t_flags & TF_SENTFIN) {
4532 tp->snd_recover = tp->snd_max - 1;
4533 } else {
4534 tp->snd_recover = tp->snd_max;
4535 }
4536 tp->t_timer[TCPT_PTO] = 0;
4537 tp->t_rtttime = 0;
4538
4539 /*
4540 * If the connection has seen pkt
4541 * reordering, delay recovery until
4542 * it is clear that the packet
4543 * was lost.
4544 */
4545 if (SACK_ENABLED(tp) &&
4546 (tp->t_flagsext &
4547 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY))
4548 == TF_PKTS_REORDERED &&
4549 !IN_FASTRECOVERY(tp) &&
4550 tp->t_reorderwin > 0 &&
4551 (tp->t_state == TCPS_ESTABLISHED ||
4552 tp->t_state == TCPS_FIN_WAIT_1)) {
4553 tp->t_timer[TCPT_DELAYFR] =
4554 OFFSET_FROM_START(tp,
4555 tp->t_reorderwin);
4556 tp->t_flagsext |= TF_DELAY_RECOVERY;
4557 tcpstat.tcps_delay_recovery++;
4558 tcp_ccdbg_trace(tp, th,
4559 TCP_CC_DELAY_FASTRECOVERY);
4560 break;
4561 }
4562
4563 tcp_rexmt_save_state(tp);
4564 /*
4565 * If the current tcp cc module has
4566 * defined a hook for tasks to run
4567 * before entering FR, call it
4568 */
4569 if (CC_ALGO(tp)->pre_fr != NULL) {
4570 CC_ALGO(tp)->pre_fr(tp);
4571 }
4572 ENTER_FASTRECOVERY(tp);
4573 tp->t_timer[TCPT_REXMT] = 0;
4574 if (TCP_ECN_ENABLED(tp)) {
4575 tp->ecn_flags |= TE_SENDCWR;
4576 }
4577
4578 if (SACK_ENABLED(tp)) {
4579 tcpstat.tcps_sack_recovery_episode++;
4580 tp->t_sack_recovery_episode++;
4581 tp->sack_newdata = tp->snd_nxt;
4582 if (tcp_do_better_lr) {
4583 tp->snd_cwnd = tp->snd_ssthresh;
4584 } else {
4585 tp->snd_cwnd = tp->t_maxseg;
4586 }
4587 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
4588
4589 /* Process any window updates */
4590 if (tiwin > tp->snd_wnd) {
4591 tcp_update_window(tp, thflags, th, tiwin, tlen);
4592 }
4593
4594 tcp_ccdbg_trace(tp, th, TCP_CC_ENTER_FASTRECOVERY);
4595 (void) tcp_output(tp);
4596 goto drop;
4597 }
4598 tp->snd_nxt = th->th_ack;
4599 tp->snd_cwnd = tp->t_maxseg;
4600
4601 /* Process any window updates */
4602 if (tiwin > tp->snd_wnd) {
4603 tcp_update_window(tp, thflags, th, tiwin, tlen);
4604 }
4605
4606 (void) tcp_output(tp);
4607 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
4608 tcp_cc_adjust_nonvalidated_cwnd(tp);
4609 } else {
4610 tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks;
4611 }
4612 if (SEQ_GT(onxt, tp->snd_nxt)) {
4613 tp->snd_nxt = onxt;
4614 }
4615
4616 tcp_ccdbg_trace(tp, th, TCP_CC_ENTER_FASTRECOVERY);
4617 goto drop;
4618 } else if (ALLOW_LIMITED_TRANSMIT(tp) &&
4619 (!(SACK_ENABLED(tp)) || sack_bytes_acked > 0) &&
4620 (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)) > 0) {
4621 u_int32_t incr = (tp->t_maxseg * tp->t_dupacks);
4622
4623 /* Use Limited Transmit algorithm on the first two
4624 * duplicate acks when there is new data to transmit
4625 */
4626 tp->snd_cwnd += incr;
4627 tcpstat.tcps_limited_txt++;
4628 (void) tcp_output(tp);
4629
4630 tcp_ccdbg_trace(tp, th, TCP_CC_LIMITED_TRANSMIT);
4631
4632 /* Reset snd_cwnd back to normal */
4633 tp->snd_cwnd -= incr;
4634 }
4635 }
4636 break;
4637 }
4638 /*
4639 * If the congestion window was inflated to account
4640 * for the other side's cached packets, retract it.
4641 */
4642 if (IN_FASTRECOVERY(tp)) {
4643 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4644 /*
4645 * If we received an ECE and entered
4646 * recovery, the subsequent ACKs should
4647 * not be treated as partial acks.
4648 */
4649 if (tp->ecn_flags & TE_INRECOVERY) {
4650 goto process_ACK;
4651 }
4652
4653 if (SACK_ENABLED(tp)) {
4654 tcp_sack_partialack(tp, th);
4655 } else {
4656 tcp_newreno_partial_ack(tp, th);
4657 }
4658 tcp_ccdbg_trace(tp, th, TCP_CC_PARTIAL_ACK);
4659 } else {
4660 if (tcp_cubic_minor_fixes) {
4661 exiting_fr = 1;
4662 }
4663 EXIT_FASTRECOVERY(tp);
4664 if (CC_ALGO(tp)->post_fr != NULL) {
4665 CC_ALGO(tp)->post_fr(tp, th);
4666 }
4667 tp->t_pipeack = 0;
4668 tcp_clear_pipeack_state(tp);
4669 tcp_ccdbg_trace(tp, th,
4670 TCP_CC_EXIT_FASTRECOVERY);
4671 }
4672 } else if ((tp->t_flagsext &
4673 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY))
4674 == (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) {
4675 /*
4676 * If the ack acknowledges upto snd_recover or if
4677 * it acknowledges all the snd holes, exit
4678 * recovery and cancel the timer. Otherwise,
4679 * this is a partial ack. Wait for recovery timer
4680 * to enter recovery. The snd_holes have already
4681 * been updated.
4682 */
4683 if (SEQ_GEQ(th->th_ack, tp->snd_recover) ||
4684 TAILQ_EMPTY(&tp->snd_holes)) {
4685 tp->t_timer[TCPT_DELAYFR] = 0;
4686 tp->t_flagsext &= ~TF_DELAY_RECOVERY;
4687 EXIT_FASTRECOVERY(tp);
4688 tcp_ccdbg_trace(tp, th,
4689 TCP_CC_EXIT_FASTRECOVERY);
4690 }
4691 } else {
4692 /*
4693 * We were not in fast recovery. Reset the
4694 * duplicate ack counter.
4695 */
4696 tp->t_dupacks = 0;
4697 tp->t_rexmtthresh = tcprexmtthresh;
4698 tp->t_new_dupacks = 0;
4699 }
4700
4701 process_ACK:
4702 VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una));
4703 acked = BYTES_ACKED(th, tp);
4704 tcpstat.tcps_rcvackpack++;
4705 tcpstat.tcps_rcvackbyte += acked;
4706
4707 /*
4708 * If the last packet was a retransmit, make sure
4709 * it was not spurious.
4710 *
4711 * This will also take care of congestion window
4712 * adjustment if a last packet was recovered due to a
4713 * tail loss probe.
4714 */
4715 tcp_bad_rexmt_check(tp, th, &to);
4716
4717 /* Recalculate the RTT */
4718 tcp_compute_rtt(tp, &to, th);
4719
4720 /*
4721 * If all outstanding data is acked, stop retransmit
4722 * timer and remember to restart (more output or persist).
4723 * If there is more data to be acked, restart retransmit
4724 * timer, using current (possibly backed-off) value.
4725 */
4726 TCP_RESET_REXMT_STATE(tp);
4727 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
4728 tp->t_rttmin, TCPTV_REXMTMAX,
4729 TCP_ADD_REXMTSLOP(tp));
4730 if (th->th_ack == tp->snd_max) {
4731 tp->t_timer[TCPT_REXMT] = 0;
4732 tp->t_timer[TCPT_PTO] = 0;
4733 needoutput = 1;
4734 } else if (tp->t_timer[TCPT_PERSIST] == 0) {
4735 tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp,
4736 tp->t_rxtcur);
4737 }
4738
4739 if ((prev_t_state == TCPS_SYN_SENT ||
4740 prev_t_state == TCPS_SYN_RECEIVED) &&
4741 tp->t_state == TCPS_ESTABLISHED) {
4742 TCP_LOG_RTT_INFO(tp);
4743 }
4744
4745 /*
4746 * If no data (only SYN) was ACK'd, skip rest of ACK
4747 * processing.
4748 */
4749 if (acked == 0) {
4750 goto step6;
4751 }
4752
4753 /*
4754 * When outgoing data has been acked (except the SYN+data), we
4755 * mark this connection as "sending good" for TFO.
4756 */
4757 if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
4758 !(tp->t_tfo_flags & TFO_F_NO_SNDPROBING) &&
4759 !(th->th_flags & TH_SYN)) {
4760 tp->t_tfo_flags |= TFO_F_NO_SNDPROBING;
4761 }
4762
4763 /*
4764 * If TH_ECE is received, make sure that ECN is enabled
4765 * on that connection and we have sent ECT on data packets.
4766 */
4767 if ((thflags & TH_ECE) != 0 && TCP_ECN_ENABLED(tp) &&
4768 (tp->ecn_flags & TE_SENDIPECT)) {
4769 /*
4770 * Reduce the congestion window if we haven't
4771 * done so.
4772 */
4773 if (!IN_FASTRECOVERY(tp)) {
4774 tcp_reduce_congestion_window(tp);
4775 tp->ecn_flags |= (TE_INRECOVERY | TE_SENDCWR);
4776 /*
4777 * Also note that the connection received
4778 * ECE atleast once
4779 */
4780 tp->ecn_flags |= TE_RECV_ECN_ECE;
4781 INP_INC_IFNET_STAT(inp, ecn_recv_ece);
4782 tcpstat.tcps_ecn_recv_ece++;
4783 tcp_ccdbg_trace(tp, th, TCP_CC_ECN_RCVD);
4784 }
4785 }
4786
4787 /*
4788 * When new data is acked, open the congestion window.
4789 * The specifics of how this is achieved are up to the
4790 * congestion control algorithm in use for this connection.
4791 *
4792 * The calculations in this function assume that snd_una is
4793 * not updated yet.
4794 */
4795 if (!IN_FASTRECOVERY(tp) && !exiting_fr) {
4796 if (CC_ALGO(tp)->ack_rcvd != NULL) {
4797 CC_ALGO(tp)->ack_rcvd(tp, th);
4798 }
4799 tcp_ccdbg_trace(tp, th, TCP_CC_ACK_RCVD);
4800 }
4801 if (acked > so->so_snd.sb_cc) {
4802 tp->snd_wnd -= so->so_snd.sb_cc;
4803 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
4804 ourfinisacked = 1;
4805 } else {
4806 sbdrop(&so->so_snd, acked);
4807 tcp_sbsnd_trim(&so->so_snd);
4808 tp->snd_wnd -= acked;
4809 ourfinisacked = 0;
4810 }
4811 /* detect una wraparound */
4812 if (!IN_FASTRECOVERY(tp) &&
4813 SEQ_GT(tp->snd_una, tp->snd_recover) &&
4814 SEQ_LEQ(th->th_ack, tp->snd_recover)) {
4815 tp->snd_recover = th->th_ack - 1;
4816 }
4817
4818 if (IN_FASTRECOVERY(tp) &&
4819 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
4820 EXIT_FASTRECOVERY(tp);
4821 }
4822
4823 tcp_update_snd_una(tp, th->th_ack);
4824
4825 if (SACK_ENABLED(tp)) {
4826 if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
4827 tp->snd_recover = tp->snd_una;
4828 }
4829 }
4830 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4831 tp->snd_nxt = tp->snd_una;
4832 }
4833 if (!SLIST_EMPTY(&tp->t_rxt_segments) &&
4834 !TCP_DSACK_SEQ_IN_WINDOW(tp, tp->t_dsack_lastuna,
4835 tp->snd_una)) {
4836 tcp_rxtseg_clean(tp);
4837 }
4838 if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
4839 tp->t_bwmeas != NULL) {
4840 tcp_bwmeas_check(tp);
4841 }
4842
4843 write_wakeup = 1;
4844
4845 if (!SLIST_EMPTY(&tp->t_notify_ack)) {
4846 tcp_notify_acknowledgement(tp, so);
4847 }
4848
4849 switch (tp->t_state) {
4850 /*
4851 * In FIN_WAIT_1 STATE in addition to the processing
4852 * for the ESTABLISHED state if our FIN is now acknowledged
4853 * then enter FIN_WAIT_2.
4854 */
4855 case TCPS_FIN_WAIT_1:
4856 if (ourfinisacked) {
4857 /*
4858 * If we can't receive any more
4859 * data, then closing user can proceed.
4860 * Starting the TCPT_2MSL timer is contrary to the
4861 * specification, but if we don't get a FIN
4862 * we'll hang forever.
4863 */
4864 if (so->so_state & SS_CANTRCVMORE) {
4865 tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
4866 TCP_CONN_MAXIDLE(tp));
4867 isconnected = FALSE;
4868 isdisconnected = TRUE;
4869 }
4870 DTRACE_TCP4(state__change, void, NULL,
4871 struct inpcb *, inp,
4872 struct tcpcb *, tp,
4873 int32_t, TCPS_FIN_WAIT_2);
4874 tp->t_state = TCPS_FIN_WAIT_2;
4875 /* fall through and make sure we also recognize
4876 * data ACKed with the FIN
4877 */
4878 }
4879 break;
4880
4881 /*
4882 * In CLOSING STATE in addition to the processing for
4883 * the ESTABLISHED state if the ACK acknowledges our FIN
4884 * then enter the TIME-WAIT state, otherwise ignore
4885 * the segment.
4886 */
4887 case TCPS_CLOSING:
4888 if (ourfinisacked) {
4889 DTRACE_TCP4(state__change, void, NULL,
4890 struct inpcb *, inp,
4891 struct tcpcb *, tp,
4892 int32_t, TCPS_TIME_WAIT);
4893 tp->t_state = TCPS_TIME_WAIT;
4894 tcp_canceltimers(tp);
4895 if (tp->t_flagsext & TF_NOTIMEWAIT) {
4896 tp->t_flags |= TF_CLOSING;
4897 } else {
4898 add_to_time_wait(tp, 2 * tcp_msl);
4899 }
4900 isconnected = FALSE;
4901 isdisconnected = TRUE;
4902 }
4903 break;
4904
4905 /*
4906 * In LAST_ACK, we may still be waiting for data to drain
4907 * and/or to be acked, as well as for the ack of our FIN.
4908 * If our FIN is now acknowledged, delete the TCB,
4909 * enter the closed state and return.
4910 */
4911 case TCPS_LAST_ACK:
4912 if (ourfinisacked) {
4913 tp = tcp_close(tp);
4914 goto drop;
4915 }
4916 break;
4917
4918 /*
4919 * In TIME_WAIT state the only thing that should arrive
4920 * is a retransmission of the remote FIN. Acknowledge
4921 * it and restart the finack timer.
4922 */
4923 case TCPS_TIME_WAIT:
4924 add_to_time_wait(tp, 2 * tcp_msl);
4925 goto dropafterack;
4926 }
4927
4928 /*
4929 * If there is a SACK option on the ACK and we
4930 * haven't seen any duplicate acks before, count
4931 * it as a duplicate ack even if the cumulative
4932 * ack is advanced. If the receiver delayed an
4933 * ack and detected loss afterwards, then the ack
4934 * will advance cumulative ack and will also have
4935 * a SACK option. So counting it as one duplicate
4936 * ack is ok.
4937 */
4938 if (tp->t_state == TCPS_ESTABLISHED &&
4939 SACK_ENABLED(tp) && sack_bytes_acked > 0 &&
4940 to.to_nsacks > 0 && tp->t_dupacks == 0 &&
4941 SEQ_LEQ(th->th_ack, tp->snd_una) && tlen == 0 &&
4942 !(tp->t_flagsext & TF_PKTS_REORDERED)) {
4943 tcpstat.tcps_sack_ackadv++;
4944 goto process_dupack;
4945 }
4946 }
4947
4948 step6:
4949 /*
4950 * Update window information.
4951 */
4952 if (tcp_update_window(tp, thflags, th, tiwin, tlen)) {
4953 needoutput = 1;
4954 }
4955
4956 /*
4957 * Process segments with URG.
4958 */
4959 if ((thflags & TH_URG) && th->th_urp &&
4960 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4961 /*
4962 * This is a kludge, but if we receive and accept
4963 * random urgent pointers, we'll crash in
4964 * soreceive. It's hard to imagine someone
4965 * actually wanting to send this much urgent data.
4966 */
4967 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
4968 th->th_urp = 0; /* XXX */
4969 thflags &= ~TH_URG; /* XXX */
4970 goto dodata; /* XXX */
4971 }
4972 /*
4973 * If this segment advances the known urgent pointer,
4974 * then mark the data stream. This should not happen
4975 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
4976 * a FIN has been received from the remote side.
4977 * In these states we ignore the URG.
4978 *
4979 * According to RFC961 (Assigned Protocols),
4980 * the urgent pointer points to the last octet
4981 * of urgent data. We continue, however,
4982 * to consider it to indicate the first octet
4983 * of data past the urgent section as the original
4984 * spec states (in one of two places).
4985 */
4986 if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
4987 tp->rcv_up = th->th_seq + th->th_urp;
4988 so->so_oobmark = so->so_rcv.sb_cc +
4989 (tp->rcv_up - tp->rcv_nxt) - 1;
4990 if (so->so_oobmark == 0) {
4991 so->so_state |= SS_RCVATMARK;
4992 }
4993 sohasoutofband(so);
4994 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
4995 }
4996 /*
4997 * Remove out of band data so doesn't get presented to user.
4998 * This can happen independent of advancing the URG pointer,
4999 * but if two URG's are pending at once, some out-of-band
5000 * data may creep in... ick.
5001 */
5002 if (th->th_urp <= (u_int32_t)tlen
5003 #if SO_OOBINLINE
5004 && (so->so_options & SO_OOBINLINE) == 0
5005 #endif
5006 ) {
5007 tcp_pulloutofband(so, th, m,
5008 drop_hdrlen); /* hdr drop is delayed */
5009 }
5010 } else {
5011 /*
5012 * If no out of band data is expected,
5013 * pull receive urgent pointer along
5014 * with the receive window.
5015 */
5016 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) {
5017 tp->rcv_up = tp->rcv_nxt;
5018 }
5019 }
5020 dodata:
5021
5022 /* Set socket's connect or disconnect state correcly before doing data.
5023 * The following might unlock the socket if there is an upcall or a socket
5024 * filter.
5025 */
5026 if (isconnected) {
5027 soisconnected(so);
5028 } else if (isdisconnected) {
5029 soisdisconnected(so);
5030 }
5031
5032 /* Let's check the state of pcb just to make sure that it did not get closed
5033 * when we unlocked above
5034 */
5035 if (inp->inp_state == INPCB_STATE_DEAD) {
5036 /* Just drop the packet that we are processing and return */
5037 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "INPCB_STATE_DEAD");
5038 goto drop;
5039 }
5040
5041 /*
5042 * Process the segment text, merging it into the TCP sequencing queue,
5043 * and arranging for acknowledgment of receipt if necessary.
5044 * This process logically involves adjusting tp->rcv_wnd as data
5045 * is presented to the user (this happens in tcp_usrreq.c,
5046 * case PRU_RCVD). If a FIN has already been received on this
5047 * connection then we just ignore the text.
5048 *
5049 * If we are in SYN-received state and got a valid TFO cookie, we want
5050 * to process the data.
5051 */
5052 if ((tlen || (thflags & TH_FIN)) &&
5053 TCPS_HAVERCVDFIN(tp->t_state) == 0 &&
5054 (TCPS_HAVEESTABLISHED(tp->t_state) ||
5055 (tp->t_state == TCPS_SYN_RECEIVED &&
5056 (tp->t_tfo_flags & TFO_F_COOKIE_VALID)))) {
5057 tcp_seq save_start = th->th_seq;
5058 tcp_seq save_end = th->th_seq + tlen;
5059 m_adj(m, drop_hdrlen); /* delayed header drop */
5060 /*
5061 * Insert segment which includes th into TCP reassembly queue
5062 * with control block tp. Set thflags to whether reassembly now
5063 * includes a segment with FIN. This handles the common case
5064 * inline (segment is the next to be received on an established
5065 * connection, and the queue is empty), avoiding linkage into
5066 * and removal from the queue and repetition of various
5067 * conversions.
5068 * Set DELACK for segments received in order, but ack
5069 * immediately when segments are out of order (so
5070 * fast retransmit can work).
5071 */
5072 if (th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) {
5073 TCP_INC_VAR(tp->t_unacksegs, segment_count);
5074 /*
5075 * Calculate the RTT on the receiver only if the
5076 * connection is in streaming mode and the last
5077 * packet was not an end-of-write
5078 */
5079 if (tp->t_flags & TF_STREAMING_ON) {
5080 tcp_compute_rtt(tp, &to, th);
5081 }
5082
5083 if (DELAY_ACK(tp, th) &&
5084 ((tp->t_flags & TF_ACKNOW) == 0)) {
5085 if ((tp->t_flags & TF_DELACK) == 0) {
5086 tp->t_flags |= TF_DELACK;
5087 tp->t_timer[TCPT_DELACK] =
5088 OFFSET_FROM_START(tp, tcp_delack);
5089 }
5090 } else {
5091 tp->t_flags |= TF_ACKNOW;
5092 }
5093 tp->rcv_nxt += tlen;
5094 thflags = th->th_flags & TH_FIN;
5095 TCP_INC_VAR(tcpstat.tcps_rcvpack, segment_count);
5096 tcpstat.tcps_rcvbyte += tlen;
5097 if (nstat_collect) {
5098 INP_ADD_STAT(inp, cell, wifi, wired,
5099 rxpackets, 1);
5100 INP_ADD_STAT(inp, cell, wifi, wired,
5101 rxbytes, tlen);
5102 inp_set_activity_bitmap(inp);
5103 }
5104 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
5105 so_recv_data_stat(so, m, drop_hdrlen);
5106
5107 if (isipv6) {
5108 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
5109 ip6 = (struct ip6_hdr *)&saved_hdr[0];
5110 } else {
5111 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
5112 ip = (struct ip *)&saved_hdr[0];
5113 }
5114 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
5115
5116 if (th->th_flags & TH_PUSH) {
5117 tp->t_flagsext |= TF_LAST_IS_PSH;
5118 } else {
5119 tp->t_flagsext &= ~TF_LAST_IS_PSH;
5120 }
5121
5122 if (sbappendstream_rcvdemux(so, m)) {
5123 read_wakeup = 1;
5124 }
5125 th = &saved_tcphdr;
5126 } else {
5127 if (isipv6) {
5128 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
5129 ip6 = (struct ip6_hdr *)&saved_hdr[0];
5130 } else {
5131 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
5132 ip = (struct ip *)&saved_hdr[0];
5133 }
5134
5135 if (tcp_autotune_reorder) {
5136 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
5137 }
5138
5139 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
5140 thflags = tcp_reass(tp, th, &tlen, m, ifp, &read_wakeup);
5141 th = &saved_tcphdr;
5142 tp->t_flags |= TF_ACKNOW;
5143 }
5144
5145 if ((tlen > 0 || (th->th_flags & TH_FIN)) && SACK_ENABLED(tp)) {
5146 if (th->th_flags & TH_FIN) {
5147 save_end++;
5148 }
5149 tcp_update_sack_list(tp, save_start, save_end);
5150 }
5151
5152 tcp_adaptive_rwtimo_check(tp, tlen);
5153
5154 if (tlen > 0) {
5155 tcp_tfo_rcv_data(tp);
5156 }
5157
5158 if (tp->t_flags & TF_DELACK) {
5159 if (isipv6) {
5160 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
5161 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
5162 th->th_seq, th->th_ack, th->th_win);
5163 } else {
5164 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
5165 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
5166 th->th_seq, th->th_ack, th->th_win);
5167 }
5168 }
5169 } else {
5170 if ((so->so_flags & SOF_MP_SUBFLOW) && tlen == 0 &&
5171 (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN) &&
5172 (m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
5173 m_adj(m, drop_hdrlen); /* delayed header drop */
5174 /*
5175 * 0-length DATA_FIN. The rlen is actually 0. We special-case the
5176 * byte consumed by the dfin in mptcp_input and mptcp_reass_present
5177 */
5178 m->m_pkthdr.mp_rlen = 0;
5179 mptcp_input(tptomptp(tp)->mpt_mpte, m);
5180 tp->t_flags |= TF_ACKNOW;
5181 } else {
5182 m_freem(m);
5183 }
5184 thflags &= ~TH_FIN;
5185 }
5186
5187 /*
5188 * If FIN is received ACK the FIN and let the user know
5189 * that the connection is closing.
5190 */
5191 if (thflags & TH_FIN) {
5192 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5193 socantrcvmore(so);
5194 /*
5195 * If connection is half-synchronized
5196 * (ie NEEDSYN flag on) then delay ACK,
5197 * so it may be piggybacked when SYN is sent.
5198 * Otherwise, since we received a FIN then no
5199 * more input can be expected, send ACK now.
5200 */
5201 TCP_INC_VAR(tp->t_unacksegs, segment_count);
5202 tp->t_flags |= TF_ACKNOW;
5203 tp->rcv_nxt++;
5204 }
5205 switch (tp->t_state) {
5206 /*
5207 * In SYN_RECEIVED and ESTABLISHED STATES
5208 * enter the CLOSE_WAIT state.
5209 */
5210 case TCPS_SYN_RECEIVED:
5211 tp->t_starttime = tcp_now;
5212 OS_FALLTHROUGH;
5213 case TCPS_ESTABLISHED:
5214 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
5215 struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT);
5216 tp->t_state = TCPS_CLOSE_WAIT;
5217 break;
5218
5219 /*
5220 * If still in FIN_WAIT_1 STATE FIN has not been acked so
5221 * enter the CLOSING state.
5222 */
5223 case TCPS_FIN_WAIT_1:
5224 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
5225 struct tcpcb *, tp, int32_t, TCPS_CLOSING);
5226 tp->t_state = TCPS_CLOSING;
5227 break;
5228
5229 /*
5230 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5231 * starting the time-wait timer, turning off the other
5232 * standard timers.
5233 */
5234 case TCPS_FIN_WAIT_2:
5235 DTRACE_TCP4(state__change, void, NULL,
5236 struct inpcb *, inp,
5237 struct tcpcb *, tp,
5238 int32_t, TCPS_TIME_WAIT);
5239 tp->t_state = TCPS_TIME_WAIT;
5240 tcp_canceltimers(tp);
5241 tp->t_flags |= TF_ACKNOW;
5242 if (tp->t_flagsext & TF_NOTIMEWAIT) {
5243 tp->t_flags |= TF_CLOSING;
5244 } else {
5245 add_to_time_wait(tp, 2 * tcp_msl);
5246 }
5247 soisdisconnected(so);
5248 break;
5249
5250 /*
5251 * In TIME_WAIT state restart the 2 MSL time_wait timer.
5252 */
5253 case TCPS_TIME_WAIT:
5254 add_to_time_wait(tp, 2 * tcp_msl);
5255 break;
5256 }
5257 }
5258 #if TCPDEBUG
5259 if (so->so_options & SO_DEBUG) {
5260 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
5261 &tcp_savetcp, 0);
5262 }
5263 #endif
5264
5265 if (read_wakeup) {
5266 mptcp_handle_input(so);
5267 }
5268
5269 /*
5270 * Return any desired output.
5271 */
5272 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
5273 (void) tcp_output(tp);
5274 }
5275
5276 tcp_check_timer_state(tp);
5277
5278 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5279
5280 socket_unlock(so, 1);
5281 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5282 return;
5283
5284 dropafterack:
5285 /*
5286 * Generate an ACK dropping incoming segment if it occupies
5287 * sequence space, where the ACK reflects our state.
5288 *
5289 * We can now skip the test for the RST flag since all
5290 * paths to this code happen after packets containing
5291 * RST have been dropped.
5292 *
5293 * In the SYN-RECEIVED state, don't send an ACK unless the
5294 * segment we received passes the SYN-RECEIVED ACK test.
5295 * If it fails send a RST. This breaks the loop in the
5296 * "LAND" DoS attack, and also prevents an ACK storm
5297 * between two listening ports that have been sent forged
5298 * SYN segments, each with the source address of the other.
5299 */
5300 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
5301 (SEQ_GT(tp->snd_una, th->th_ack) ||
5302 SEQ_GT(th->th_ack, tp->snd_max))) {
5303 IF_TCP_STATINC(ifp, dospacket);
5304 goto dropwithreset;
5305 }
5306 #if TCPDEBUG
5307 if (so->so_options & SO_DEBUG) {
5308 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
5309 &tcp_savetcp, 0);
5310 }
5311 #endif
5312 m_freem(m);
5313 tp->t_flags |= TF_ACKNOW;
5314
5315 (void) tcp_output(tp);
5316
5317 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5318
5319 /* Don't need to check timer state as we should have done it during tcp_output */
5320 socket_unlock(so, 1);
5321 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5322 return;
5323 dropwithresetnosock:
5324 nosock = 1;
5325 dropwithreset:
5326 /*
5327 * Generate a RST, dropping incoming segment.
5328 * Make ACK acceptable to originator of segment.
5329 * Don't bother to respond if destination was broadcast/multicast.
5330 */
5331 if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST)) {
5332 goto drop;
5333 }
5334 if (isipv6) {
5335 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
5336 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
5337 goto drop;
5338 }
5339 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
5340 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
5341 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
5342 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
5343 goto drop;
5344 }
5345 /* IPv6 anycast check is done at tcp6_input() */
5346
5347 #if TCPDEBUG
5348 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
5349 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
5350 &tcp_savetcp, 0);
5351 }
5352 #endif
5353 bzero(&tra, sizeof(tra));
5354 tra.ifscope = ifscope;
5355 tra.awdl_unrestricted = 1;
5356 tra.intcoproc_allowed = 1;
5357 if (thflags & TH_ACK) {
5358 /* mtod() below is safe as long as hdr dropping is delayed */
5359 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
5360 TH_RST, &tra);
5361 } else {
5362 if (thflags & TH_SYN) {
5363 tlen++;
5364 }
5365 /* mtod() below is safe as long as hdr dropping is delayed */
5366 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
5367 (tcp_seq)0, TH_RST | TH_ACK, &tra);
5368 }
5369 /* destroy temporarily created socket */
5370 if (dropsocket) {
5371 (void) soabort(so);
5372 socket_unlock(so, 1);
5373 } else if ((inp != NULL) && (nosock == 0)) {
5374 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5375
5376 socket_unlock(so, 1);
5377 }
5378 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5379 return;
5380 dropnosock:
5381 nosock = 1;
5382 drop:
5383 /*
5384 * Drop space held by incoming segment and return.
5385 */
5386 #if TCPDEBUG
5387 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
5388 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
5389 &tcp_savetcp, 0);
5390 }
5391 #endif
5392 m_freem(m);
5393 /* destroy temporarily created socket */
5394 if (dropsocket) {
5395 (void) soabort(so);
5396 socket_unlock(so, 1);
5397 } else if (nosock == 0) {
5398 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5399
5400 socket_unlock(so, 1);
5401 }
5402 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5403 return;
5404 }
5405
5406 /*
5407 * Parse TCP options and place in tcpopt.
5408 */
5409 static void
5410 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
5411 struct tcpopt *to)
5412 {
5413 u_short mss = 0;
5414 int opt, optlen;
5415
5416 for (; cnt > 0; cnt -= optlen, cp += optlen) {
5417 opt = cp[0];
5418 if (opt == TCPOPT_EOL) {
5419 break;
5420 }
5421 if (opt == TCPOPT_NOP) {
5422 optlen = 1;
5423 } else {
5424 if (cnt < 2) {
5425 break;
5426 }
5427 optlen = cp[1];
5428 if (optlen < 2 || optlen > cnt) {
5429 break;
5430 }
5431 }
5432 switch (opt) {
5433 default:
5434 continue;
5435
5436 case TCPOPT_MAXSEG:
5437 if (optlen != TCPOLEN_MAXSEG) {
5438 continue;
5439 }
5440 if (!(th->th_flags & TH_SYN)) {
5441 continue;
5442 }
5443 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
5444 NTOHS(mss);
5445 to->to_mss = mss;
5446 to->to_flags |= TOF_MSS;
5447 break;
5448
5449 case TCPOPT_WINDOW:
5450 if (optlen != TCPOLEN_WINDOW) {
5451 continue;
5452 }
5453 if (!(th->th_flags & TH_SYN)) {
5454 continue;
5455 }
5456 to->to_flags |= TOF_SCALE;
5457 to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
5458 break;
5459
5460 case TCPOPT_TIMESTAMP:
5461 if (optlen != TCPOLEN_TIMESTAMP) {
5462 continue;
5463 }
5464 to->to_flags |= TOF_TS;
5465 bcopy((char *)cp + 2,
5466 (char *)&to->to_tsval, sizeof(to->to_tsval));
5467 NTOHL(to->to_tsval);
5468 bcopy((char *)cp + 6,
5469 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
5470 NTOHL(to->to_tsecr);
5471 to->to_tsecr -= tp->t_ts_offset;
5472 /* Re-enable sending Timestamps if we received them */
5473 if (!(tp->t_flags & TF_REQ_TSTMP)) {
5474 tp->t_flags |= TF_REQ_TSTMP;
5475 }
5476 break;
5477 case TCPOPT_SACK_PERMITTED:
5478 if (optlen != TCPOLEN_SACK_PERMITTED) {
5479 continue;
5480 }
5481 if (th->th_flags & TH_SYN) {
5482 to->to_flags |= TOF_SACK;
5483 }
5484 break;
5485 case TCPOPT_SACK:
5486 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) {
5487 continue;
5488 }
5489 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
5490 to->to_sacks = cp + 2;
5491 tcpstat.tcps_sack_rcv_blocks++;
5492
5493 break;
5494 case TCPOPT_FASTOPEN:
5495 if (optlen == TCPOLEN_FASTOPEN_REQ) {
5496 if (tp->t_state != TCPS_LISTEN) {
5497 continue;
5498 }
5499
5500 to->to_flags |= TOF_TFOREQ;
5501 } else {
5502 if (optlen < TCPOLEN_FASTOPEN_REQ ||
5503 (optlen - TCPOLEN_FASTOPEN_REQ) > TFO_COOKIE_LEN_MAX ||
5504 (optlen - TCPOLEN_FASTOPEN_REQ) < TFO_COOKIE_LEN_MIN) {
5505 continue;
5506 }
5507 if (tp->t_state != TCPS_LISTEN &&
5508 tp->t_state != TCPS_SYN_SENT) {
5509 continue;
5510 }
5511
5512 to->to_flags |= TOF_TFO;
5513 to->to_tfo = cp + 1;
5514 }
5515
5516 break;
5517 #if MPTCP
5518 case TCPOPT_MULTIPATH:
5519 tcp_do_mptcp_options(tp, cp, th, to, optlen);
5520 break;
5521 #endif /* MPTCP */
5522 }
5523 }
5524 }
5525
5526 static void
5527 tcp_finalize_options(struct tcpcb *tp, struct tcpopt *to, unsigned int ifscope)
5528 {
5529 if (to->to_flags & TOF_TS) {
5530 tp->t_flags |= TF_RCVD_TSTMP;
5531 tp->ts_recent = to->to_tsval;
5532 tp->ts_recent_age = tcp_now;
5533 }
5534 if (to->to_flags & TOF_MSS) {
5535 tcp_mss(tp, to->to_mss, ifscope);
5536 }
5537 if (SACK_ENABLED(tp)) {
5538 if (!(to->to_flags & TOF_SACK)) {
5539 tp->t_flagsext &= ~(TF_SACK_ENABLE);
5540 } else {
5541 tp->t_flags |= TF_SACK_PERMIT;
5542 }
5543 }
5544 if (to->to_flags & TOF_SCALE) {
5545 tp->t_flags |= TF_RCVD_SCALE;
5546 tp->requested_s_scale = to->to_requested_s_scale;
5547
5548 /* Re-enable window scaling, if the option is received */
5549 if (tp->request_r_scale > 0) {
5550 tp->t_flags |= TF_REQ_SCALE;
5551 }
5552 }
5553 }
5554
5555 /*
5556 * Pull out of band byte out of a segment so
5557 * it doesn't appear in the user's data queue.
5558 * It is still reflected in the segment length for
5559 * sequencing purposes.
5560 *
5561 * @param off delayed to be droped hdrlen
5562 */
5563 static void
5564 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
5565 {
5566 int cnt = off + th->th_urp - 1;
5567
5568 while (cnt >= 0) {
5569 if (m->m_len > cnt) {
5570 char *cp = mtod(m, caddr_t) + cnt;
5571 struct tcpcb *tp = sototcpcb(so);
5572
5573 tp->t_iobc = *cp;
5574 tp->t_oobflags |= TCPOOB_HAVEDATA;
5575 bcopy(cp + 1, cp, (unsigned)(m->m_len - cnt - 1));
5576 m->m_len--;
5577 if (m->m_flags & M_PKTHDR) {
5578 m->m_pkthdr.len--;
5579 }
5580 return;
5581 }
5582 cnt -= m->m_len;
5583 m = m->m_next;
5584 if (m == 0) {
5585 break;
5586 }
5587 }
5588 panic("tcp_pulloutofband");
5589 }
5590
5591 uint32_t
5592 get_base_rtt(struct tcpcb *tp)
5593 {
5594 struct rtentry *rt = tp->t_inpcb->inp_route.ro_rt;
5595 return (rt == NULL) ? 0 : rt->rtt_min;
5596 }
5597
5598 /* Each value of RTT base represents the minimum RTT seen in a minute.
5599 * We keep upto N_RTT_BASE minutes worth of history.
5600 */
5601 void
5602 update_base_rtt(struct tcpcb *tp, uint32_t rtt)
5603 {
5604 u_int32_t base_rtt, i;
5605 struct rtentry *rt;
5606
5607 if ((rt = tp->t_inpcb->inp_route.ro_rt) == NULL) {
5608 return;
5609 }
5610 if (rt->rtt_expire_ts == 0) {
5611 RT_LOCK_SPIN(rt);
5612 if (rt->rtt_expire_ts != 0) {
5613 RT_UNLOCK(rt);
5614 goto update;
5615 }
5616 rt->rtt_expire_ts = tcp_now;
5617 rt->rtt_index = 0;
5618 rt->rtt_hist[0] = rtt;
5619 rt->rtt_min = rtt;
5620 RT_UNLOCK(rt);
5621 return;
5622 }
5623 update:
5624 #if TRAFFIC_MGT
5625 /*
5626 * If the recv side is being throttled, check if the
5627 * current RTT is closer to the base RTT seen in
5628 * first (recent) two slots. If so, unthrottle the stream.
5629 */
5630 if ((tp->t_flagsext & TF_RECV_THROTTLE) &&
5631 (int)(tcp_now - tp->t_recv_throttle_ts) >= TCP_RECV_THROTTLE_WIN) {
5632 base_rtt = rt->rtt_min;
5633 if (tp->t_rttcur <= (base_rtt + target_qdelay)) {
5634 tp->t_flagsext &= ~TF_RECV_THROTTLE;
5635 tp->t_recv_throttle_ts = 0;
5636 }
5637 }
5638 #endif /* TRAFFIC_MGT */
5639 if ((int)(tcp_now - rt->rtt_expire_ts) >=
5640 TCP_RTT_HISTORY_EXPIRE_TIME) {
5641 RT_LOCK_SPIN(rt);
5642 /* check the condition again to avoid race */
5643 if ((int)(tcp_now - rt->rtt_expire_ts) >=
5644 TCP_RTT_HISTORY_EXPIRE_TIME) {
5645 rt->rtt_index++;
5646 if (rt->rtt_index >= NRTT_HIST) {
5647 rt->rtt_index = 0;
5648 }
5649 rt->rtt_hist[rt->rtt_index] = rtt;
5650 rt->rtt_expire_ts = tcp_now;
5651 } else {
5652 rt->rtt_hist[rt->rtt_index] =
5653 min(rt->rtt_hist[rt->rtt_index], rtt);
5654 }
5655 /* forget the old value and update minimum */
5656 rt->rtt_min = 0;
5657 for (i = 0; i < NRTT_HIST; ++i) {
5658 if (rt->rtt_hist[i] != 0 &&
5659 (rt->rtt_min == 0 ||
5660 rt->rtt_hist[i] < rt->rtt_min)) {
5661 rt->rtt_min = rt->rtt_hist[i];
5662 }
5663 }
5664 RT_UNLOCK(rt);
5665 } else {
5666 rt->rtt_hist[rt->rtt_index] =
5667 min(rt->rtt_hist[rt->rtt_index], rtt);
5668 if (rt->rtt_min == 0) {
5669 rt->rtt_min = rtt;
5670 } else {
5671 rt->rtt_min = min(rt->rtt_min, rtt);
5672 }
5673 }
5674 }
5675
5676 /*
5677 * If we have a timestamp reply, update smoothed RTT. If no timestamp is
5678 * present but transmit timer is running and timed sequence number was
5679 * acked, update smoothed RTT.
5680 *
5681 * If timestamps are supported, a receiver can update RTT even if
5682 * there is no outstanding data.
5683 *
5684 * Some boxes send broken timestamp replies during the SYN+ACK phase,
5685 * ignore timestamps of 0or we could calculate a huge RTT and blow up
5686 * the retransmit timer.
5687 */
5688 static void
5689 tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
5690 {
5691 int rtt = 0;
5692 VERIFY(to != NULL && th != NULL);
5693 if (tp->t_rtttime != 0 && SEQ_GT(th->th_ack, tp->t_rtseq)) {
5694 u_int32_t pipe_ack_val;
5695 rtt = tcp_now - tp->t_rtttime;
5696 /*
5697 * Compute pipe ack -- the amount of data acknowledged
5698 * in the last RTT
5699 */
5700 if (SEQ_GT(th->th_ack, tp->t_pipeack_lastuna)) {
5701 pipe_ack_val = th->th_ack - tp->t_pipeack_lastuna;
5702 /* Update the sample */
5703 tp->t_pipeack_sample[tp->t_pipeack_ind++] =
5704 pipe_ack_val;
5705 tp->t_pipeack_ind %= TCP_PIPEACK_SAMPLE_COUNT;
5706
5707 /* Compute the max of the pipeack samples */
5708 pipe_ack_val = tcp_get_max_pipeack(tp);
5709 tp->t_pipeack = (pipe_ack_val >
5710 tcp_initial_cwnd(tp)) ?
5711 pipe_ack_val : 0;
5712 }
5713 /* start another measurement */
5714 tp->t_rtttime = 0;
5715 }
5716 if (((to->to_flags & TOF_TS) != 0) &&
5717 (to->to_tsecr != 0) &&
5718 TSTMP_GEQ(tcp_now, to->to_tsecr)) {
5719 tcp_xmit_timer(tp, (tcp_now - to->to_tsecr),
5720 to->to_tsecr, th->th_ack);
5721 } else if (rtt > 0) {
5722 tcp_xmit_timer(tp, rtt, 0, th->th_ack);
5723 }
5724 }
5725
5726 /*
5727 * Collect new round-trip time estimate and update averages and
5728 * current timeout.
5729 */
5730 static void
5731 tcp_xmit_timer(struct tcpcb *tp, int rtt,
5732 u_int32_t tsecr, tcp_seq th_ack)
5733 {
5734 int delta;
5735 int old_srtt = tp->t_srtt;
5736 int old_rttvar = tp->t_rttvar;
5737 bool log_rtt = false;
5738
5739 /*
5740 * On AWDL interface, the initial RTT measurement on SYN
5741 * can be wrong due to peer caching. Avoid the first RTT
5742 * measurement as it might skew up the RTO.
5743 * <rdar://problem/28739046>
5744 */
5745 if (tp->t_inpcb->inp_last_outifp != NULL &&
5746 (tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_AWDL) &&
5747 th_ack == tp->iss + 1) {
5748 return;
5749 }
5750
5751 if (tp->t_flagsext & TF_RECOMPUTE_RTT) {
5752 if (SEQ_GT(th_ack, tp->snd_una) &&
5753 SEQ_LEQ(th_ack, tp->snd_max) &&
5754 (tsecr == 0 ||
5755 TSTMP_GEQ(tsecr, tp->t_badrexmt_time))) {
5756 /*
5757 * We received a new ACK after a
5758 * spurious timeout. Adapt retransmission
5759 * timer as described in rfc 4015.
5760 */
5761 tp->t_flagsext &= ~(TF_RECOMPUTE_RTT);
5762 tp->t_badrexmt_time = 0;
5763 tp->t_srtt = max(tp->t_srtt_prev, rtt);
5764 tp->t_srtt = tp->t_srtt << TCP_RTT_SHIFT;
5765 tp->t_rttvar = max(tp->t_rttvar_prev, (rtt >> 1));
5766 tp->t_rttvar = tp->t_rttvar << TCP_RTTVAR_SHIFT;
5767
5768 if (tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) {
5769 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5770 }
5771
5772 goto compute_rto;
5773 } else {
5774 return;
5775 }
5776 }
5777
5778 tcpstat.tcps_rttupdated++;
5779 tp->t_rttupdated++;
5780
5781 if (rtt > 0) {
5782 tp->t_rttcur = rtt;
5783 update_base_rtt(tp, rtt);
5784 }
5785
5786 if (tp->t_srtt != 0) {
5787 /*
5788 * srtt is stored as fixed point with 5 bits after the
5789 * binary point (i.e., scaled by 32). The following magic
5790 * is equivalent to the smoothing algorithm in rfc793 with
5791 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
5792 * point).
5793 *
5794 * Freebsd adjusts rtt to origin 0 by subtracting 1
5795 * from the provided rtt value. This was required because
5796 * of the way t_rtttime was initiailised to 1 before.
5797 * Since we changed t_rtttime to be based on
5798 * tcp_now, this extra adjustment is not needed.
5799 */
5800 delta = (rtt << TCP_DELTA_SHIFT)
5801 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
5802
5803 if ((tp->t_srtt += delta) <= 0) {
5804 tp->t_srtt = 1;
5805 }
5806
5807 /*
5808 * We accumulate a smoothed rtt variance (actually, a
5809 * smoothed mean difference), then set the retransmit
5810 * timer to smoothed rtt + 4 times the smoothed variance.
5811 * rttvar is stored as fixed point with 4 bits after the
5812 * binary point (scaled by 16). The following is
5813 * equivalent to rfc793 smoothing with an alpha of .75
5814 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
5815 * rfc793's wired-in beta.
5816 */
5817 if (delta < 0) {
5818 delta = -delta;
5819 }
5820 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
5821 if ((tp->t_rttvar += delta) <= 0) {
5822 tp->t_rttvar = 1;
5823 }
5824 if (tp->t_rttbest == 0 ||
5825 tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) {
5826 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5827 }
5828 } else {
5829 /*
5830 * No rtt measurement yet - use the unsmoothed rtt.
5831 * Set the variance to half the rtt (so our first
5832 * retransmit happens at 3*rtt).
5833 */
5834 tp->t_srtt = rtt << TCP_RTT_SHIFT;
5835 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
5836 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5837 }
5838
5839 compute_rto:
5840 nstat_route_rtt(tp->t_inpcb->inp_route.ro_rt, tp->t_srtt,
5841 tp->t_rttvar);
5842
5843 /*
5844 * the retransmit should happen at rtt + 4 * rttvar.
5845 * Because of the way we do the smoothing, srtt and rttvar
5846 * will each average +1/2 tick of bias. When we compute
5847 * the retransmit timer, we want 1/2 tick of rounding and
5848 * 1 extra tick because of +-1/2 tick uncertainty in the
5849 * firing of the timer. The bias will give us exactly the
5850 * 1.5 tick we need. But, because the bias is
5851 * statistical, we have to test that we don't drop below
5852 * the minimum feasible timer (which is 2 ticks).
5853 */
5854 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
5855 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX,
5856 TCP_ADD_REXMTSLOP(tp));
5857
5858 /*
5859 * We received an ack for a packet that wasn't retransmitted;
5860 * it is probably safe to discard any error indications we've
5861 * received recently. This isn't quite right, but close enough
5862 * for now (a route might have failed after we sent a segment,
5863 * and the return path might not be symmetrical).
5864 */
5865 tp->t_softerror = 0;
5866
5867 if (log_rtt) {
5868 TCP_LOG_RTT_INFO(tp);
5869 }
5870
5871 TCP_LOG_RTT_CHANGE(tp, old_srtt, old_rttvar);
5872 }
5873
5874 static inline unsigned int
5875 tcp_maxmtu(struct rtentry *rt)
5876 {
5877 unsigned int maxmtu;
5878 int interface_mtu = 0;
5879
5880 RT_LOCK_ASSERT_HELD(rt);
5881 interface_mtu = rt->rt_ifp->if_mtu;
5882
5883 if (rt_key(rt)->sa_family == AF_INET &&
5884 INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) {
5885 interface_mtu = IN6_LINKMTU(rt->rt_ifp);
5886 /* Further adjust the size for CLAT46 expansion */
5887 interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
5888 }
5889
5890 if (rt->rt_rmx.rmx_mtu == 0) {
5891 maxmtu = interface_mtu;
5892 } else {
5893 maxmtu = MIN(rt->rt_rmx.rmx_mtu, interface_mtu);
5894 }
5895
5896 return maxmtu;
5897 }
5898
5899 static inline unsigned int
5900 tcp_maxmtu6(struct rtentry *rt)
5901 {
5902 unsigned int maxmtu;
5903 struct nd_ifinfo *ndi = NULL;
5904
5905 RT_LOCK_ASSERT_HELD(rt);
5906 if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized) {
5907 ndi = NULL;
5908 }
5909 if (ndi != NULL) {
5910 lck_mtx_lock(&ndi->lock);
5911 }
5912 if (rt->rt_rmx.rmx_mtu == 0) {
5913 maxmtu = IN6_LINKMTU(rt->rt_ifp);
5914 } else {
5915 maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
5916 }
5917 if (ndi != NULL) {
5918 lck_mtx_unlock(&ndi->lock);
5919 }
5920
5921 return maxmtu;
5922 }
5923
5924 unsigned int
5925 get_maxmtu(struct rtentry *rt)
5926 {
5927 unsigned int maxmtu = 0;
5928
5929 RT_LOCK_ASSERT_NOTHELD(rt);
5930
5931 RT_LOCK(rt);
5932
5933 if (rt_key(rt)->sa_family == AF_INET6) {
5934 maxmtu = tcp_maxmtu6(rt);
5935 } else {
5936 maxmtu = tcp_maxmtu(rt);
5937 }
5938
5939 RT_UNLOCK(rt);
5940
5941 return maxmtu;
5942 }
5943
5944 /*
5945 * Determine a reasonable value for maxseg size.
5946 * If the route is known, check route for mtu.
5947 * If none, use an mss that can be handled on the outgoing
5948 * interface without forcing IP to fragment; if bigger than
5949 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
5950 * to utilize large mbufs. If no route is found, route has no mtu,
5951 * or the destination isn't local, use a default, hopefully conservative
5952 * size (usually 512 or the default IP max size, but no more than the mtu
5953 * of the interface), as we can't discover anything about intervening
5954 * gateways or networks. We also initialize the congestion/slow start
5955 * window. While looking at the routing entry, we also initialize
5956 * other path-dependent parameters from pre-set or cached values
5957 * in the routing entry.
5958 *
5959 * Also take into account the space needed for options that we
5960 * send regularly. Make maxseg shorter by that amount to assure
5961 * that we can send maxseg amount of data even when the options
5962 * are present. Store the upper limit of the length of options plus
5963 * data in maxopd.
5964 *
5965 * NOTE that this routine is only called when we process an incoming
5966 * segment, for outgoing segments only tcp_mssopt is called.
5967 *
5968 */
5969 void
5970 tcp_mss(struct tcpcb *tp, int offer, unsigned int input_ifscope)
5971 {
5972 struct rtentry *rt;
5973 struct ifnet *ifp;
5974 int rtt, mss;
5975 u_int32_t bufsize;
5976 struct inpcb *inp;
5977 struct socket *so;
5978 int origoffer = offer;
5979 u_int32_t sb_max_corrected;
5980 int isnetlocal = 0;
5981 int isipv6;
5982 int min_protoh;
5983
5984 inp = tp->t_inpcb;
5985
5986 so = inp->inp_socket;
5987 /*
5988 * Nothing left to send after the socket is defunct or TCP is in the closed state
5989 */
5990 if ((so->so_state & SS_DEFUNCT) || tp->t_state == TCPS_CLOSED) {
5991 return;
5992 }
5993
5994 isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
5995 min_protoh = isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr)
5996 : sizeof(struct tcpiphdr);
5997
5998 if (isipv6) {
5999 rt = tcp_rtlookup6(inp, input_ifscope);
6000 } else {
6001 rt = tcp_rtlookup(inp, input_ifscope);
6002 }
6003 isnetlocal = (tp->t_flags & TF_LOCAL);
6004
6005 if (rt == NULL) {
6006 tp->t_maxopd = tp->t_maxseg = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
6007 return;
6008 }
6009 ifp = rt->rt_ifp;
6010 /*
6011 * Slower link window correction:
6012 * If a value is specificied for slowlink_wsize use it for
6013 * PPP links believed to be on a serial modem (speed <128Kbps).
6014 * Excludes 9600bps as it is the default value adversized
6015 * by pseudo-devices over ppp.
6016 */
6017 if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
6018 ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
6019 tp->t_flags |= TF_SLOWLINK;
6020 }
6021
6022 /*
6023 * Offer == -1 means that we didn't receive SYN yet. Use 0 then.
6024 */
6025 if (offer == -1) {
6026 offer = rt->rt_rmx.rmx_filler[0];
6027 }
6028 /*
6029 * Offer == 0 means that there was no MSS on the SYN segment,
6030 * in this case we use tcp_mssdflt.
6031 */
6032 if (offer == 0) {
6033 offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
6034 } else {
6035 /*
6036 * Prevent DoS attack with too small MSS. Round up
6037 * to at least minmss.
6038 */
6039 offer = max(offer, tcp_minmss);
6040 /*
6041 * Sanity check: make sure that maxopd will be large
6042 * enough to allow some data on segments even is the
6043 * all the option space is used (40bytes). Otherwise
6044 * funny things may happen in tcp_output.
6045 */
6046 offer = max(offer, 64);
6047 }
6048 rt->rt_rmx.rmx_filler[0] = offer;
6049
6050 /*
6051 * While we're here, check if there's an initial rtt
6052 * or rttvar. Convert from the route-table units
6053 * to scaled multiples of the slow timeout timer.
6054 */
6055 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) {
6056 tcp_getrt_rtt(tp, rt);
6057 } else {
6058 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
6059 }
6060
6061 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
6062
6063 #if NECP
6064 // At this point, the mss is just the MTU. Adjust if necessary.
6065 mss = necp_socket_get_effective_mtu(inp, mss);
6066 #endif /* NECP */
6067
6068 mss -= min_protoh;
6069
6070 if (rt->rt_rmx.rmx_mtu == 0) {
6071 if (isipv6) {
6072 if (!isnetlocal) {
6073 mss = min(mss, tcp_v6mssdflt);
6074 }
6075 } else if (!isnetlocal) {
6076 mss = min(mss, tcp_mssdflt);
6077 }
6078 }
6079
6080 mss = min(mss, offer);
6081 /*
6082 * maxopd stores the maximum length of data AND options
6083 * in a segment; maxseg is the amount of data in a normal
6084 * segment. We need to store this value (maxopd) apart
6085 * from maxseg, because now every segment carries options
6086 * and thus we normally have somewhat less data in segments.
6087 */
6088 tp->t_maxopd = mss;
6089
6090 /*
6091 * origoffer==-1 indicates, that no segments were received yet.
6092 * In this case we just guess.
6093 */
6094 if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
6095 (origoffer == -1 ||
6096 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) {
6097 mss -= TCPOLEN_TSTAMP_APPA;
6098 }
6099
6100 #if MPTCP
6101 mss -= mptcp_adj_mss(tp, FALSE);
6102 #endif /* MPTCP */
6103 tp->t_maxseg = mss;
6104
6105 /*
6106 * Calculate corrected value for sb_max; ensure to upgrade the
6107 * numerator for large sb_max values else it will overflow.
6108 */
6109 sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
6110
6111 /*
6112 * If there's a pipesize (ie loopback), change the socket
6113 * buffer to that size only if it's bigger than the current
6114 * sockbuf size. Make the socket buffers an integral
6115 * number of mss units; if the mss is larger than
6116 * the socket buffer, decrease the mss.
6117 */
6118 #if RTV_SPIPE
6119 bufsize = rt->rt_rmx.rmx_sendpipe;
6120 if (bufsize < so->so_snd.sb_hiwat)
6121 #endif
6122 bufsize = so->so_snd.sb_hiwat;
6123 if (bufsize < mss) {
6124 mss = bufsize;
6125 } else {
6126 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
6127 if (bufsize > sb_max_corrected) {
6128 bufsize = sb_max_corrected;
6129 }
6130 (void)sbreserve(&so->so_snd, bufsize);
6131 }
6132 tp->t_maxseg = mss;
6133
6134 ASSERT(tp->t_maxseg);
6135
6136 /*
6137 * Update MSS using recommendation from link status report. This is
6138 * temporary
6139 */
6140 tcp_update_mss_locked(so, ifp);
6141
6142 #if RTV_RPIPE
6143 bufsize = rt->rt_rmx.rmx_recvpipe;
6144 if (bufsize < so->so_rcv.sb_hiwat)
6145 #endif
6146 bufsize = so->so_rcv.sb_hiwat;
6147 if (bufsize > mss) {
6148 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
6149 if (bufsize > sb_max_corrected) {
6150 bufsize = sb_max_corrected;
6151 }
6152 (void)sbreserve(&so->so_rcv, bufsize);
6153 }
6154
6155 set_tcp_stream_priority(so);
6156
6157 if (rt->rt_rmx.rmx_ssthresh) {
6158 /*
6159 * There's some sort of gateway or interface
6160 * buffer limit on the path. Use this to set
6161 * slow-start threshold, but set the threshold to
6162 * no less than 2*mss.
6163 */
6164 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
6165 tcpstat.tcps_usedssthresh++;
6166 } else {
6167 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
6168 }
6169
6170 /*
6171 * Set the slow-start flight size depending on whether this
6172 * is a local network or not.
6173 */
6174 if (CC_ALGO(tp)->cwnd_init != NULL) {
6175 CC_ALGO(tp)->cwnd_init(tp);
6176 }
6177
6178 tcp_ccdbg_trace(tp, NULL, TCP_CC_CWND_INIT);
6179
6180 /* Route locked during lookup above */
6181 RT_UNLOCK(rt);
6182 }
6183
6184 /*
6185 * Determine the MSS option to send on an outgoing SYN.
6186 */
6187 int
6188 tcp_mssopt(struct tcpcb *tp)
6189 {
6190 struct rtentry *rt;
6191 int mss;
6192 int isipv6;
6193 int min_protoh;
6194
6195 isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
6196 min_protoh = isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr)
6197 : sizeof(struct tcpiphdr);
6198
6199 if (isipv6) {
6200 rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE);
6201 } else {
6202 rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE);
6203 }
6204 if (rt == NULL) {
6205 return isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
6206 }
6207 /*
6208 * Slower link window correction:
6209 * If a value is specificied for slowlink_wsize use it for PPP links
6210 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
6211 * it is the default value adversized by pseudo-devices over ppp.
6212 */
6213 if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
6214 rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
6215 tp->t_flags |= TF_SLOWLINK;
6216 }
6217
6218 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
6219 /* Route locked during lookup above */
6220 RT_UNLOCK(rt);
6221
6222 #if NECP
6223 // At this point, the mss is just the MTU. Adjust if necessary.
6224 mss = necp_socket_get_effective_mtu(tp->t_inpcb, mss);
6225 #endif /* NECP */
6226
6227 return mss - min_protoh;
6228 }
6229
6230 /*
6231 * On a partial ack arrives, force the retransmission of the
6232 * next unacknowledged segment. Do not clear tp->t_dupacks.
6233 * By setting snd_nxt to th_ack, this forces retransmission timer to
6234 * be started again.
6235 */
6236 static void
6237 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
6238 {
6239 tcp_seq onxt = tp->snd_nxt;
6240 u_int32_t ocwnd = tp->snd_cwnd;
6241 tp->t_timer[TCPT_REXMT] = 0;
6242 tp->t_timer[TCPT_PTO] = 0;
6243 tp->t_rtttime = 0;
6244 tp->snd_nxt = th->th_ack;
6245 /*
6246 * Set snd_cwnd to one segment beyond acknowledged offset
6247 * (tp->snd_una has not yet been updated when this function
6248 * is called)
6249 */
6250 tp->snd_cwnd = tp->t_maxseg + BYTES_ACKED(th, tp);
6251 (void) tcp_output(tp);
6252 tp->snd_cwnd = ocwnd;
6253 if (SEQ_GT(onxt, tp->snd_nxt)) {
6254 tp->snd_nxt = onxt;
6255 }
6256 /*
6257 * Partial window deflation. Relies on fact that tp->snd_una
6258 * not updated yet.
6259 */
6260 if (tp->snd_cwnd > BYTES_ACKED(th, tp)) {
6261 tp->snd_cwnd -= BYTES_ACKED(th, tp);
6262 } else {
6263 tp->snd_cwnd = 0;
6264 }
6265 tp->snd_cwnd += tp->t_maxseg;
6266 }
6267
6268 /*
6269 * Drop a random TCP connection that hasn't been serviced yet and
6270 * is eligible for discard. There is a one in qlen chance that
6271 * we will return a null, saying that there are no dropable
6272 * requests. In this case, the protocol specific code should drop
6273 * the new request. This insures fairness.
6274 *
6275 * The listening TCP socket "head" must be locked
6276 */
6277 static int
6278 tcp_dropdropablreq(struct socket *head)
6279 {
6280 struct socket *so, *sonext;
6281 unsigned int i, j, qlen;
6282 static u_int32_t rnd = 0;
6283 static u_int64_t old_runtime;
6284 static unsigned int cur_cnt, old_cnt;
6285 u_int64_t now_sec;
6286 struct inpcb *inp = NULL;
6287 struct tcpcb *tp;
6288
6289 if ((head->so_options & SO_ACCEPTCONN) == 0) {
6290 return 0;
6291 }
6292
6293 if (TAILQ_EMPTY(&head->so_incomp)) {
6294 return 0;
6295 }
6296
6297 so_acquire_accept_list(head, NULL);
6298 socket_unlock(head, 0);
6299
6300 /*
6301 * Check if there is any socket in the incomp queue
6302 * that is closed because of a reset from the peer and is
6303 * waiting to be garbage collected. If so, pick that as
6304 * the victim
6305 */
6306 TAILQ_FOREACH_SAFE(so, &head->so_incomp, so_list, sonext) {
6307 inp = sotoinpcb(so);
6308 tp = intotcpcb(inp);
6309 if (tp != NULL && tp->t_state == TCPS_CLOSED &&
6310 so->so_head != NULL &&
6311 (so->so_state & (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) ==
6312 (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) {
6313 /*
6314 * The listen socket is already locked but we
6315 * can lock this socket here without lock ordering
6316 * issues because it is in the incomp queue and
6317 * is not visible to others.
6318 */
6319 if (socket_try_lock(so)) {
6320 so->so_usecount++;
6321 goto found_victim;
6322 } else {
6323 continue;
6324 }
6325 }
6326 }
6327
6328 so = TAILQ_FIRST(&head->so_incomp);
6329
6330 now_sec = net_uptime();
6331 if ((i = (now_sec - old_runtime)) != 0) {
6332 old_runtime = now_sec;
6333 old_cnt = cur_cnt / i;
6334 cur_cnt = 0;
6335 }
6336
6337 qlen = head->so_incqlen;
6338 if (rnd == 0) {
6339 rnd = RandomULong();
6340 }
6341
6342 if (++cur_cnt > qlen || old_cnt > qlen) {
6343 rnd = (314159 * rnd + 66329) & 0xffff;
6344 j = ((qlen + 1) * rnd) >> 16;
6345
6346 while (j-- && so) {
6347 so = TAILQ_NEXT(so, so_list);
6348 }
6349 }
6350 /* Find a connection that is not already closing (or being served) */
6351 while (so) {
6352 inp = (struct inpcb *)so->so_pcb;
6353
6354 sonext = TAILQ_NEXT(so, so_list);
6355
6356 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
6357 /*
6358 * Avoid the issue of a socket being accepted
6359 * by one input thread and being dropped by
6360 * another input thread. If we can't get a hold
6361 * on this mutex, then grab the next socket in
6362 * line.
6363 */
6364 if (socket_try_lock(so)) {
6365 so->so_usecount++;
6366 if ((so->so_usecount == 2) &&
6367 (so->so_state & SS_INCOMP) &&
6368 !(so->so_flags & SOF_INCOMP_INPROGRESS)) {
6369 break;
6370 } else {
6371 /*
6372 * don't use if being accepted or
6373 * used in any other way
6374 */
6375 in_pcb_checkstate(inp, WNT_RELEASE, 1);
6376 socket_unlock(so, 1);
6377 }
6378 } else {
6379 /*
6380 * do not try to lock the inp in
6381 * in_pcb_checkstate because the lock
6382 * is already held in some other thread.
6383 * Only drop the inp_wntcnt reference.
6384 */
6385 in_pcb_checkstate(inp, WNT_RELEASE, 1);
6386 }
6387 }
6388 so = sonext;
6389 }
6390 if (so == NULL) {
6391 socket_lock(head, 0);
6392 so_release_accept_list(head);
6393 return 0;
6394 }
6395
6396 /* Makes sure socket is still in the right state to be discarded */
6397
6398 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
6399 socket_unlock(so, 1);
6400 socket_lock(head, 0);
6401 so_release_accept_list(head);
6402 return 0;
6403 }
6404
6405 found_victim:
6406 if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
6407 /* do not discard: that socket is being accepted */
6408 socket_unlock(so, 1);
6409 socket_lock(head, 0);
6410 so_release_accept_list(head);
6411 return 0;
6412 }
6413
6414 socket_lock(head, 0);
6415 TAILQ_REMOVE(&head->so_incomp, so, so_list);
6416 head->so_incqlen--;
6417 head->so_qlen--;
6418 so->so_state &= ~SS_INCOMP;
6419 so->so_flags |= SOF_OVERFLOW;
6420 so->so_head = NULL;
6421 so_release_accept_list(head);
6422 socket_unlock(head, 0);
6423
6424 socket_lock_assert_owned(so);
6425 tp = sototcpcb(so);
6426
6427 tcp_close(tp);
6428 if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) {
6429 /*
6430 * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE
6431 * doesn't require a lock, it could have happened while
6432 * we are holding the lock. This pcb will have to
6433 * be garbage collected later.
6434 * Release the reference held for so_incomp queue
6435 */
6436 VERIFY(so->so_usecount > 0);
6437 so->so_usecount--;
6438 socket_unlock(so, 1);
6439 } else {
6440 /*
6441 * Unlock this socket and leave the reference on.
6442 * We need to acquire the pcbinfo lock in order to
6443 * fully dispose it off
6444 */
6445 socket_unlock(so, 0);
6446
6447 lck_rw_lock_exclusive(tcbinfo.ipi_lock);
6448
6449 socket_lock(so, 0);
6450 /* Release the reference held for so_incomp queue */
6451 VERIFY(so->so_usecount > 0);
6452 so->so_usecount--;
6453
6454 if (so->so_usecount != 1 ||
6455 (inp->inp_wantcnt > 0 &&
6456 inp->inp_wantcnt != WNT_STOPUSING)) {
6457 /*
6458 * There is an extra wantcount or usecount
6459 * that must have been added when the socket
6460 * was unlocked. This socket will have to be
6461 * garbage collected later
6462 */
6463 socket_unlock(so, 1);
6464 } else {
6465 /* Drop the reference held for this function */
6466 VERIFY(so->so_usecount > 0);
6467 so->so_usecount--;
6468
6469 in_pcbdispose(inp);
6470 }
6471 lck_rw_done(tcbinfo.ipi_lock);
6472 }
6473 tcpstat.tcps_drops++;
6474
6475 socket_lock(head, 0);
6476 return 1;
6477 }
6478
6479 /* Set background congestion control on a socket */
6480 void
6481 tcp_set_background_cc(struct socket *so)
6482 {
6483 tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX);
6484 }
6485
6486 /* Set foreground congestion control on a socket */
6487 void
6488 tcp_set_foreground_cc(struct socket *so)
6489 {
6490 if (tcp_use_newreno) {
6491 tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX);
6492 } else {
6493 tcp_set_new_cc(so, TCP_CC_ALGO_CUBIC_INDEX);
6494 }
6495 }
6496
6497 static void
6498 tcp_set_new_cc(struct socket *so, uint16_t cc_index)
6499 {
6500 struct inpcb *inp = sotoinpcb(so);
6501 struct tcpcb *tp = intotcpcb(inp);
6502 u_char old_cc_index = 0;
6503 if (tp->tcp_cc_index != cc_index) {
6504 old_cc_index = tp->tcp_cc_index;
6505
6506 if (CC_ALGO(tp)->cleanup != NULL) {
6507 CC_ALGO(tp)->cleanup(tp);
6508 }
6509 tp->tcp_cc_index = cc_index;
6510
6511 tcp_cc_allocate_state(tp);
6512
6513 if (CC_ALGO(tp)->switch_to != NULL) {
6514 CC_ALGO(tp)->switch_to(tp, old_cc_index);
6515 }
6516
6517 tcp_ccdbg_trace(tp, NULL, TCP_CC_CHANGE_ALGO);
6518 }
6519 }
6520
6521 void
6522 tcp_set_recv_bg(struct socket *so)
6523 {
6524 if (!IS_TCP_RECV_BG(so)) {
6525 so->so_flags1 |= SOF1_TRAFFIC_MGT_TCP_RECVBG;
6526 }
6527 }
6528
6529 void
6530 tcp_clear_recv_bg(struct socket *so)
6531 {
6532 if (IS_TCP_RECV_BG(so)) {
6533 so->so_flags1 &= ~(SOF1_TRAFFIC_MGT_TCP_RECVBG);
6534 }
6535 }
6536
6537 void
6538 inp_fc_throttle_tcp(struct inpcb *inp)
6539 {
6540 struct tcpcb *tp = inp->inp_ppcb;
6541
6542 if (!tcp_flow_control_response) {
6543 return;
6544 }
6545
6546 /*
6547 * Back off the slow-start threshold and enter
6548 * congestion avoidance phase
6549 */
6550 if (CC_ALGO(tp)->pre_fr != NULL) {
6551 CC_ALGO(tp)->pre_fr(tp);
6552 }
6553 }
6554
6555 void
6556 inp_fc_unthrottle_tcp(struct inpcb *inp)
6557 {
6558 struct tcpcb *tp = inp->inp_ppcb;
6559
6560 if (tcp_flow_control_response) {
6561 if (CC_ALGO(tp)->post_fr != NULL) {
6562 CC_ALGO(tp)->post_fr(tp, NULL);
6563 }
6564
6565 tp->t_bytes_acked = 0;
6566
6567 /*
6568 * Reset retransmit shift as we know that the reason
6569 * for delay in sending a packet is due to flow
6570 * control on the outgoing interface. There is no need
6571 * to backoff retransmit timer.
6572 */
6573 TCP_RESET_REXMT_STATE(tp);
6574
6575 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
6576
6577 /*
6578 * Start the output stream again. Since we are
6579 * not retransmitting data, do not reset the
6580 * retransmit timer or rtt calculation.
6581 */
6582 tcp_output(tp);
6583 return;
6584 }
6585
6586 /*
6587 * Back off the slow-start threshold and enter
6588 * congestion avoidance phase
6589 */
6590 if (CC_ALGO(tp)->pre_fr != NULL) {
6591 CC_ALGO(tp)->pre_fr(tp);
6592 }
6593
6594 tp->snd_cwnd = tp->snd_ssthresh;
6595 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
6596 /*
6597 * Restart counting for ABC as we changed the
6598 * congestion window just now.
6599 */
6600 tp->t_bytes_acked = 0;
6601
6602 /* Reset retransmit shift as we know that the reason
6603 * for delay in sending a packet is due to flow
6604 * control on the outgoing interface. There is no need
6605 * to backoff retransmit timer.
6606 */
6607 TCP_RESET_REXMT_STATE(tp);
6608
6609 /*
6610 * Start the output stream again. Since we are
6611 * not retransmitting data, do not reset the
6612 * retransmit timer or rtt calculation.
6613 */
6614 tcp_output(tp);
6615 }
6616
6617 static int
6618 tcp_getstat SYSCTL_HANDLER_ARGS
6619 {
6620 #pragma unused(oidp, arg1, arg2)
6621
6622 int error;
6623 struct tcpstat *stat;
6624 stat = &tcpstat;
6625 #if XNU_TARGET_OS_OSX
6626 struct tcpstat zero_stat;
6627
6628 if (tcp_disable_access_to_stats &&
6629 !kauth_cred_issuser(kauth_cred_get())) {
6630 bzero(&zero_stat, sizeof(zero_stat));
6631 stat = &zero_stat;
6632 }
6633
6634 #endif /* XNU_TARGET_OS_OSX */
6635
6636 if (req->oldptr == 0) {
6637 req->oldlen = (size_t)sizeof(struct tcpstat);
6638 }
6639
6640 error = SYSCTL_OUT(req, stat, MIN(sizeof(tcpstat), req->oldlen));
6641
6642 return error;
6643 }
6644
6645 /*
6646 * Checksum extended TCP header and data.
6647 */
6648 int
6649 tcp_input_checksum(int af, struct mbuf *m, struct tcphdr *th, int off, int tlen)
6650 {
6651 struct ifnet *ifp = m->m_pkthdr.rcvif;
6652
6653 switch (af) {
6654 case AF_INET: {
6655 struct ip *ip = mtod(m, struct ip *);
6656 struct ipovly *ipov = (struct ipovly *)ip;
6657
6658 /* ip_stripoptions() must have been called before we get here */
6659 ASSERT((ip->ip_hl << 2) == sizeof(*ip));
6660
6661 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
6662 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
6663 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
6664 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6665 th->th_sum = m->m_pkthdr.csum_rx_val;
6666 } else {
6667 uint32_t sum = m->m_pkthdr.csum_rx_val;
6668 uint32_t start = m->m_pkthdr.csum_rx_start;
6669 int32_t trailer = (m_pktlen(m) - (off + tlen));
6670
6671 /*
6672 * Perform 1's complement adjustment of octets
6673 * that got included/excluded in the hardware-
6674 * calculated checksum value. Ignore cases
6675 * where the value already includes the entire
6676 * IP header span, as the sum for those octets
6677 * would already be 0 by the time we get here;
6678 * IP has already performed its header checksum
6679 * checks. If we do need to adjust, restore
6680 * the original fields in the IP header when
6681 * computing the adjustment value. Also take
6682 * care of any trailing bytes and subtract out
6683 * their partial sum.
6684 */
6685 ASSERT(trailer >= 0);
6686 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
6687 ((start != 0 && start != off) || trailer)) {
6688 uint32_t swbytes = (uint32_t)trailer;
6689
6690 if (start < off) {
6691 ip->ip_len += sizeof(*ip);
6692 #if BYTE_ORDER != BIG_ENDIAN
6693 HTONS(ip->ip_len);
6694 HTONS(ip->ip_off);
6695 #endif /* BYTE_ORDER != BIG_ENDIAN */
6696 }
6697 /* callee folds in sum */
6698 sum = m_adj_sum16(m, start, off,
6699 tlen, sum);
6700 if (off > start) {
6701 swbytes += (off - start);
6702 } else {
6703 swbytes += (start - off);
6704 }
6705
6706 if (start < off) {
6707 #if BYTE_ORDER != BIG_ENDIAN
6708 NTOHS(ip->ip_off);
6709 NTOHS(ip->ip_len);
6710 #endif /* BYTE_ORDER != BIG_ENDIAN */
6711 ip->ip_len -= sizeof(*ip);
6712 }
6713
6714 if (swbytes != 0) {
6715 tcp_in_cksum_stats(swbytes);
6716 }
6717 if (trailer != 0) {
6718 m_adj(m, -trailer);
6719 }
6720 }
6721
6722 /* callee folds in sum */
6723 th->th_sum = in_pseudo(ip->ip_src.s_addr,
6724 ip->ip_dst.s_addr,
6725 sum + htonl(tlen + IPPROTO_TCP));
6726 }
6727 th->th_sum ^= 0xffff;
6728 } else {
6729 uint16_t ip_sum;
6730 int len;
6731 char b[9];
6732
6733 bcopy(ipov->ih_x1, b, sizeof(ipov->ih_x1));
6734 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
6735 ip_sum = ipov->ih_len;
6736 ipov->ih_len = (u_short)tlen;
6737 #if BYTE_ORDER != BIG_ENDIAN
6738 HTONS(ipov->ih_len);
6739 #endif
6740 len = sizeof(struct ip) + tlen;
6741 th->th_sum = in_cksum(m, len);
6742 bcopy(b, ipov->ih_x1, sizeof(ipov->ih_x1));
6743 ipov->ih_len = ip_sum;
6744
6745 tcp_in_cksum_stats(len);
6746 }
6747 break;
6748 }
6749 case AF_INET6: {
6750 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
6751
6752 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
6753 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
6754 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
6755 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6756 th->th_sum = m->m_pkthdr.csum_rx_val;
6757 } else {
6758 uint32_t sum = m->m_pkthdr.csum_rx_val;
6759 uint32_t start = m->m_pkthdr.csum_rx_start;
6760 int32_t trailer = (m_pktlen(m) - (off + tlen));
6761
6762 /*
6763 * Perform 1's complement adjustment of octets
6764 * that got included/excluded in the hardware-
6765 * calculated checksum value. Also take care
6766 * of any trailing bytes and subtract out their
6767 * partial sum.
6768 */
6769 ASSERT(trailer >= 0);
6770 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
6771 (start != off || trailer != 0)) {
6772 uint16_t s = 0, d = 0;
6773 uint32_t swbytes = (uint32_t)trailer;
6774
6775 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
6776 s = ip6->ip6_src.s6_addr16[1];
6777 ip6->ip6_src.s6_addr16[1] = 0;
6778 }
6779 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
6780 d = ip6->ip6_dst.s6_addr16[1];
6781 ip6->ip6_dst.s6_addr16[1] = 0;
6782 }
6783
6784 /* callee folds in sum */
6785 sum = m_adj_sum16(m, start, off,
6786 tlen, sum);
6787 if (off > start) {
6788 swbytes += (off - start);
6789 } else {
6790 swbytes += (start - off);
6791 }
6792
6793 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
6794 ip6->ip6_src.s6_addr16[1] = s;
6795 }
6796 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
6797 ip6->ip6_dst.s6_addr16[1] = d;
6798 }
6799
6800 if (swbytes != 0) {
6801 tcp_in6_cksum_stats(swbytes);
6802 }
6803 if (trailer != 0) {
6804 m_adj(m, -trailer);
6805 }
6806 }
6807
6808 th->th_sum = in6_pseudo(
6809 &ip6->ip6_src, &ip6->ip6_dst,
6810 sum + htonl(tlen + IPPROTO_TCP));
6811 }
6812 th->th_sum ^= 0xffff;
6813 } else {
6814 tcp_in6_cksum_stats(tlen);
6815 th->th_sum = in6_cksum(m, IPPROTO_TCP, off, tlen);
6816 }
6817 break;
6818 }
6819 default:
6820 VERIFY(0);
6821 /* NOTREACHED */
6822 }
6823
6824 if (th->th_sum != 0) {
6825 tcpstat.tcps_rcvbadsum++;
6826 IF_TCP_STATINC(ifp, badformat);
6827 return -1;
6828 }
6829
6830 return 0;
6831 }
6832
6833
6834 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats,
6835 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, tcp_getstat,
6836 "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
6837
6838 static int
6839 sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
6840 {
6841 #pragma unused(arg1, arg2)
6842
6843 int error, val = tcprexmtthresh;
6844
6845 error = sysctl_handle_int(oidp, &val, 0, req);
6846 if (error || !req->newptr) {
6847 return error;
6848 }
6849
6850 /*
6851 * Constrain the number of duplicate ACKs
6852 * to consider for TCP fast retransmit
6853 * to either 2 or 3
6854 */
6855
6856 if (val < 2 || val > 3) {
6857 return EINVAL;
6858 }
6859
6860 tcprexmtthresh = val;
6861
6862 return 0;
6863 }
6864
6865 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT | CTLFLAG_RW |
6866 CTLFLAG_LOCKED, &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I",
6867 "Duplicate ACK Threshold for Fast Retransmit");