2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/sysctl.h>
74 #include <sys/malloc.h>
76 #include <sys/proc.h> /* for proc0 declaration */
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/syslog.h>
81 #include <sys/mcache.h>
84 #endif /* XNU_TARGET_OS_OSX */
85 #include <sys/kauth.h>
86 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
88 #include <machine/endian.h>
91 #include <net/if_types.h>
92 #include <net/route.h>
93 #include <net/ntstat.h>
94 #include <net/content_filter.h>
96 #include <net/multi_layer_pkt_log.h>
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
102 #include <netinet/in_var.h>
103 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
104 #include <netinet/in_pcb.h>
105 #include <netinet/ip_var.h>
106 #include <mach/sdt.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_cache.h>
114 #include <netinet/tcp_fsm.h>
115 #include <netinet/tcp_seq.h>
116 #include <netinet/tcp_timer.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet/tcp_cc.h>
119 #include <dev/random/randomdev.h>
120 #include <kern/zalloc.h>
121 #include <netinet6/tcp6_var.h>
122 #include <netinet/tcpip.h>
124 #include <netinet/tcp_debug.h>
125 u_char tcp_saveipgen
[40]; /* the size must be of max ip header, now IPv6 */
126 struct tcphdr tcp_savetcp
;
127 #endif /* TCPDEBUG */
128 #include <netinet/tcp_log.h>
131 #include <netinet6/ipsec.h>
132 #include <netinet6/ipsec6.h>
133 #include <netkey/key.h>
136 #include <sys/kdebug.h>
138 #include <netinet/mptcp_var.h>
139 #include <netinet/mptcp.h>
140 #include <netinet/mptcp_opt.h>
143 #include <corecrypto/ccaes.h>
145 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
146 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
147 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
148 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
150 #define TCP_RTT_HISTORY_EXPIRE_TIME (60 * TCP_RETRANSHZ)
151 #define TCP_RECV_THROTTLE_WIN (5 * TCP_RETRANSHZ)
152 #define TCP_STRETCHACK_ENABLE_PKTCNT 2000
154 struct tcpstat tcpstat
;
156 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, flow_control_response
,
157 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_flow_control_response
, 1,
158 "Improved response to Flow-control events");
160 static int log_in_vain
= 0;
161 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, log_in_vain
,
162 CTLFLAG_RW
| CTLFLAG_LOCKED
, &log_in_vain
, 0,
163 "Log all incoming TCP connections");
165 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, ack_strategy
,
166 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_ack_strategy
, TCP_ACK_STRATEGY_MODERN
,
167 "Revised TCP ACK-strategy, avoiding stretch-ACK implementation");
169 static int blackhole
= 0;
170 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, blackhole
,
171 CTLFLAG_RW
| CTLFLAG_LOCKED
, &blackhole
, 0,
172 "Do not send RST when dropping refused connections");
174 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, aggressive_rcvwnd_inc
,
175 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_aggressive_rcvwnd_inc
, 1,
176 "Be more aggressive about increasing the receive-window.");
178 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, delayed_ack
,
179 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_delack_enabled
, 3,
180 "Delay ACK to try and piggyback it onto a data packet");
182 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, recvbg
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
183 int, tcp_recv_bg
, 0, "Receive background");
185 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, drop_synfin
,
186 CTLFLAG_RW
| CTLFLAG_LOCKED
, static int, drop_synfin
, 1,
187 "Drop TCP packets with SYN+FIN set");
189 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, reass
, CTLFLAG_RW
| CTLFLAG_LOCKED
, 0,
190 "TCP Segment Reassembly Queue");
192 static int tcp_reass_overflows
= 0;
193 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, overflows
,
194 CTLFLAG_RD
| CTLFLAG_LOCKED
, &tcp_reass_overflows
, 0,
195 "Global number of TCP Segment Reassembly Queue Overflows");
198 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, slowlink_wsize
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
199 __private_extern__
int, slowlink_wsize
, 8192,
200 "Maximum advertised window size for slowlink");
202 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, maxseg_unacked
,
203 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, maxseg_unacked
, 8,
204 "Maximum number of outstanding segments left unacked");
206 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rfc3465
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
207 int, tcp_do_rfc3465
, 1, "");
209 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rfc3465_lim2
,
210 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_do_rfc3465_lim2
, 1,
211 "Appropriate bytes counting w/ L=2*SMSS");
213 int rtt_samples_per_slot
= 20;
215 int tcp_acc_iaj_high_thresh
= ACC_IAJ_HIGH_THRESH
;
216 u_int32_t tcp_autorcvbuf_inc_shift
= 3;
217 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, recv_allowed_iaj
,
218 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_allowed_iaj
, ALLOWED_IAJ
,
219 "Allowed inter-packet arrival jiter");
221 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, doautorcvbuf
,
222 CTLFLAG_RW
| CTLFLAG_LOCKED
, u_int32_t
, tcp_do_autorcvbuf
, 1,
223 "Enable automatic socket buffer tuning");
225 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, autotunereorder
,
226 CTLFLAG_RW
| CTLFLAG_LOCKED
, u_int32_t
, tcp_autotune_reorder
, 1,
227 "Enable automatic socket buffer tuning even when reordering is present");
229 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, autorcvbufmax
,
230 CTLFLAG_RW
| CTLFLAG_LOCKED
, u_int32_t
, tcp_autorcvbuf_max
, 2 * 1024 * 1024,
231 "Maximum receive socket buffer size");
233 int tcp_disable_access_to_stats
= 1;
234 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, disable_access_to_stats
,
235 CTLFLAG_RW
| CTLFLAG_LOCKED
, &tcp_disable_access_to_stats
, 0,
236 "Disable access to tcpstat");
238 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, challengeack_limit
,
239 CTLFLAG_RW
| CTLFLAG_LOCKED
, uint32_t, tcp_challengeack_limit
, 10,
240 "Maximum number of challenge ACKs per connection per second");
243 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, do_rfc5961
,
244 CTLFLAG_RW
| CTLFLAG_LOCKED
, static int, tcp_do_rfc5961
, 1,
245 "Enable/Disable full RFC 5961 compliance");
247 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, do_better_lr
,
248 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_do_better_lr
, 1,
249 "Improved TCP Loss Recovery");
251 extern int tcp_acc_iaj_high
;
252 extern int tcp_acc_iaj_react_limit
;
254 int tcprexmtthresh
= 3;
257 struct timeval tcp_uptime
; /* uptime when tcp_now was last updated */
258 lck_spin_t
*tcp_uptime_lock
; /* Used to sychronize updates to tcp_now */
260 struct inpcbhead tcb
;
261 #define tcb6 tcb /* for KAME src sync over BSD*'s */
262 struct inpcbinfo tcbinfo
;
264 static void tcp_dooptions(struct tcpcb
*, u_char
*, int, struct tcphdr
*,
266 static void tcp_finalize_options(struct tcpcb
*, struct tcpopt
*, unsigned int);
267 static void tcp_pulloutofband(struct socket
*,
268 struct tcphdr
*, struct mbuf
*, int);
269 static void tcp_xmit_timer(struct tcpcb
*, int, u_int32_t
, tcp_seq
);
270 static inline unsigned int tcp_maxmtu(struct rtentry
*);
271 static inline int tcp_stretch_ack_enable(struct tcpcb
*tp
, int thflags
);
272 static inline void tcp_adaptive_rwtimo_check(struct tcpcb
*, int);
275 static inline void update_iaj_state(struct tcpcb
*tp
, uint32_t tlen
,
277 static inline void compute_iaj(struct tcpcb
*tp
);
278 static inline void compute_iaj_meat(struct tcpcb
*tp
, uint32_t cur_iaj
);
279 #endif /* TRAFFIC_MGT */
281 static inline unsigned int tcp_maxmtu6(struct rtentry
*);
282 unsigned int get_maxmtu(struct rtentry
*);
284 static void tcp_sbrcv_grow(struct tcpcb
*tp
, struct sockbuf
*sb
,
285 struct tcpopt
*to
, uint32_t tlen
);
286 void tcp_sbrcv_trim(struct tcpcb
*tp
, struct sockbuf
*sb
);
287 static void tcp_sbsnd_trim(struct sockbuf
*sbsnd
);
288 static inline void tcp_sbrcv_tstmp_check(struct tcpcb
*tp
);
289 static inline void tcp_sbrcv_reserve(struct tcpcb
*tp
, struct sockbuf
*sb
,
290 u_int32_t newsize
, u_int32_t idealsize
, u_int32_t rcvbuf_max
);
291 static void tcp_bad_rexmt_restore_state(struct tcpcb
*tp
, struct tcphdr
*th
);
292 static void tcp_compute_rtt(struct tcpcb
*tp
, struct tcpopt
*to
,
294 static void tcp_early_rexmt_check(struct tcpcb
*tp
, struct tcphdr
*th
);
295 static void tcp_bad_rexmt_check(struct tcpcb
*tp
, struct tcphdr
*th
,
298 * Constants used for resizing receive socket buffer
299 * when timestamps are not supported
301 #define TCPTV_RCVNOTS_QUANTUM 100
302 #define TCP_RCVNOTS_BYTELEVEL 204800
305 * Constants used for limiting early retransmits
308 #define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */
309 #define TCP_EARLY_REXMT_LIMIT 10
311 #define log_in_vain_log( a ) { log a; }
313 int tcp_rcvunackwin
= TCPTV_UNACKWIN
;
314 int tcp_maxrcvidle
= TCPTV_MAXRCVIDLE
;
315 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rcvsspktcnt
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
316 int, tcp_rcvsspktcnt
, TCP_RCV_SS_PKTCOUNT
, "packets to be seen before receiver stretches acks");
318 #define DELAY_ACK(tp, th) \
319 (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th))
321 static int tcp_dropdropablreq(struct socket
*head
);
322 static void tcp_newreno_partial_ack(struct tcpcb
*tp
, struct tcphdr
*th
);
323 static void update_base_rtt(struct tcpcb
*tp
, uint32_t rtt
);
324 void tcp_set_background_cc(struct socket
*so
);
325 void tcp_set_foreground_cc(struct socket
*so
);
326 static void tcp_set_new_cc(struct socket
*so
, uint16_t cc_index
);
327 static void tcp_bwmeas_check(struct tcpcb
*tp
);
331 reset_acc_iaj(struct tcpcb
*tp
)
338 update_iaj_state(struct tcpcb
*tp
, uint32_t size
, int rst_size
)
343 if (tp
->iaj_size
== 0 || size
>= tp
->iaj_size
) {
345 tp
->iaj_rcv_ts
= tcp_now
;
346 tp
->iaj_small_pkt
= 0;
350 /* For every 32 bit unsigned integer(v), this function will find the
351 * largest integer n such that (n*n <= v). This takes at most 16 iterations
352 * irrespective of the value of v and does not involve multiplications.
355 isqrt(unsigned int val
)
357 unsigned int sqrt_cache
[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
358 unsigned int temp
, g
= 0, b
= 0x8000, bshft
= 15;
360 for (g
= 0; g
<= 10; ++g
) {
361 if (sqrt_cache
[g
] > val
) {
364 } else if (sqrt_cache
[g
] == val
) {
370 temp
= (((g
<< 1) + b
) << (bshft
--));
376 } while (b
> 0 && val
> 0);
382 compute_iaj(struct tcpcb
*tp
)
384 compute_iaj_meat(tp
, (tcp_now
- tp
->iaj_rcv_ts
));
388 compute_iaj_meat(struct tcpcb
*tp
, uint32_t cur_iaj
)
390 /* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds,
391 * throttle the receive window to a minimum of MIN_IAJ_WIN packets
393 #define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit)
394 #define IAJ_DIV_SHIFT 4
395 #define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1))
397 uint32_t allowed_iaj
, acc_iaj
= 0;
402 cur_iaj_dev
= (cur_iaj
- tp
->avg_iaj
);
404 /* Allow a jitter of "allowed_iaj" milliseconds. Some connections
405 * may have a constant jitter more than that. We detect this by
406 * using standard deviation.
408 allowed_iaj
= tp
->avg_iaj
+ tp
->std_dev_iaj
;
409 if (allowed_iaj
< tcp_allowed_iaj
) {
410 allowed_iaj
= tcp_allowed_iaj
;
413 /* Initially when the connection starts, the senders congestion
414 * window is small. During this period we avoid throttling a
415 * connection because we do not have a good starting point for
416 * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over
417 * the first few packets.
419 if (tp
->iaj_pktcnt
> IAJ_IGNORE_PKTCNT
) {
420 if (cur_iaj
<= allowed_iaj
) {
421 if (tp
->acc_iaj
>= 2) {
422 acc_iaj
= tp
->acc_iaj
- 2;
427 acc_iaj
= tp
->acc_iaj
+ (cur_iaj
- allowed_iaj
);
430 if (acc_iaj
> MAX_ACC_IAJ
) {
431 acc_iaj
= MAX_ACC_IAJ
;
433 tp
->acc_iaj
= acc_iaj
;
436 /* Compute weighted average where the history has a weight of
437 * 15 out of 16 and the current value has a weight of 1 out of 16.
438 * This will make the short-term measurements have more weight.
440 * The addition of 8 will help to round-up the value
441 * instead of round-down
443 tp
->avg_iaj
= (((tp
->avg_iaj
<< IAJ_DIV_SHIFT
) - tp
->avg_iaj
)
444 + cur_iaj
+ IAJ_ROUNDUP_CONST
) >> IAJ_DIV_SHIFT
;
446 /* Compute Root-mean-square of deviation where mean is a weighted
447 * average as described above.
449 temp
= tp
->std_dev_iaj
* tp
->std_dev_iaj
;
450 mean
= (((temp
<< IAJ_DIV_SHIFT
) - temp
)
451 + (cur_iaj_dev
* cur_iaj_dev
)
452 + IAJ_ROUNDUP_CONST
) >> IAJ_DIV_SHIFT
;
454 tp
->std_dev_iaj
= isqrt(mean
);
456 DTRACE_TCP3(iaj
, struct tcpcb
*, tp
, uint32_t, cur_iaj
,
457 uint32_t, allowed_iaj
);
461 #endif /* TRAFFIC_MGT */
464 * Perform rate limit check per connection per second
465 * tp->t_challengeack_last is the last_time diff was greater than 1sec
466 * tp->t_challengeack_count is the number of ACKs sent (within 1sec)
467 * Return TRUE if we shouldn't send the ACK due to rate limitation
468 * Return FALSE if it is still ok to send challenge ACK
471 tcp_is_ack_ratelimited(struct tcpcb
*tp
)
473 boolean_t ret
= TRUE
;
474 uint32_t now
= tcp_now
;
477 diff
= timer_diff(now
, 0, tp
->t_challengeack_last
, 0);
478 /* If it is first time or diff > 1000ms,
479 * update the challengeack_last and reset the
480 * current count of ACKs
482 if (tp
->t_challengeack_last
== 0 || diff
>= 1000) {
483 tp
->t_challengeack_last
= now
;
484 tp
->t_challengeack_count
= 0;
486 } else if (tp
->t_challengeack_count
< tcp_challengeack_limit
) {
490 /* Careful about wrap-around */
491 if (ret
== FALSE
&& (tp
->t_challengeack_count
+ 1 > 0)) {
492 tp
->t_challengeack_count
++;
498 /* Check if enough amount of data has been acknowledged since
499 * bw measurement was started
502 tcp_bwmeas_check(struct tcpcb
*tp
)
504 int32_t bw_meas_bytes
;
505 uint32_t bw
, bytes
, elapsed_time
;
507 if (SEQ_LEQ(tp
->snd_una
, tp
->t_bwmeas
->bw_start
)) {
511 bw_meas_bytes
= tp
->snd_una
- tp
->t_bwmeas
->bw_start
;
512 if ((tp
->t_flagsext
& TF_BWMEAS_INPROGRESS
) &&
513 bw_meas_bytes
>= (int32_t)(tp
->t_bwmeas
->bw_size
)) {
514 bytes
= bw_meas_bytes
;
515 elapsed_time
= tcp_now
- tp
->t_bwmeas
->bw_ts
;
516 if (elapsed_time
> 0) {
517 bw
= bytes
/ elapsed_time
;
519 if (tp
->t_bwmeas
->bw_sndbw
> 0) {
520 tp
->t_bwmeas
->bw_sndbw
=
521 (((tp
->t_bwmeas
->bw_sndbw
<< 3)
522 - tp
->t_bwmeas
->bw_sndbw
)
525 tp
->t_bwmeas
->bw_sndbw
= bw
;
528 /* Store the maximum value */
529 if (tp
->t_bwmeas
->bw_sndbw_max
== 0) {
530 tp
->t_bwmeas
->bw_sndbw_max
=
531 tp
->t_bwmeas
->bw_sndbw
;
533 tp
->t_bwmeas
->bw_sndbw_max
=
534 max(tp
->t_bwmeas
->bw_sndbw
,
535 tp
->t_bwmeas
->bw_sndbw_max
);
539 tp
->t_flagsext
&= ~(TF_BWMEAS_INPROGRESS
);
544 tcp_reass(struct tcpcb
*tp
, struct tcphdr
*th
, int *tlenp
, struct mbuf
*m
,
545 struct ifnet
*ifp
, int *dowakeup
)
548 struct tseg_qent
*p
= NULL
;
549 struct tseg_qent
*nq
;
550 struct tseg_qent
*te
= NULL
;
551 struct inpcb
*inp
= tp
->t_inpcb
;
552 struct socket
*so
= inp
->inp_socket
;
555 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
556 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
557 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
558 boolean_t dsack_set
= FALSE
;
561 * Call with th==0 after become established to
562 * force pre-ESTABLISHED data up to user socket.
569 * If the reassembly queue already has entries or if we are going
570 * to add a new one, then the connection has reached a loss state.
571 * Reset the stretch-ack algorithm at this point.
573 tcp_reset_stretch_ack(tp
);
574 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
577 if (tp
->acc_iaj
> 0) {
580 #endif /* TRAFFIC_MGT */
582 if (th
->th_seq
!= tp
->rcv_nxt
) {
583 struct mbuf
*tmp
= m
;
584 while (tmp
!= NULL
) {
585 if (mbuf_class_under_pressure(tmp
)) {
587 tcp_reass_overflows
++;
588 tcpstat
.tcps_rcvmemdrop
++;
598 * Limit the number of segments in the reassembly queue to prevent
599 * holding on to too many segments (and thus running out of mbufs).
600 * Make sure to let the missing segment through which caused this
601 * queue. Always keep one global queue entry spare to be able to
602 * process the missing segment.
604 qlimit
= min(max(100, so
->so_rcv
.sb_hiwat
>> 10),
605 (tcp_autorcvbuf_max
>> 10));
606 if (th
->th_seq
!= tp
->rcv_nxt
&&
607 (tp
->t_reassqlen
+ 1) >= qlimit
) {
608 tcp_reass_overflows
++;
609 tcpstat
.tcps_rcvmemdrop
++;
615 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
616 te
= (struct tseg_qent
*) zalloc(tcp_reass_zone
);
618 tcpstat
.tcps_rcvmemdrop
++;
625 * Find a segment which begins after this one does.
627 LIST_FOREACH(q
, &tp
->t_segq
, tqe_q
) {
628 if (SEQ_GT(q
->tqe_th
->th_seq
, th
->th_seq
)) {
635 * If there is a preceding segment, it may provide some of
636 * our data already. If so, drop the data from the incoming
637 * segment. If it provides all of our data, drop us.
641 /* conversion to int (in i) handles seq wraparound */
642 i
= p
->tqe_th
->th_seq
+ p
->tqe_len
- th
->th_seq
;
646 * Note duplicate data sequnce numbers
647 * to report in DSACK option
649 tp
->t_dsack_lseq
= th
->th_seq
;
650 tp
->t_dsack_rseq
= th
->th_seq
+
654 * Report only the first part of partial/
655 * non-contiguous duplicate sequence space
660 tcpstat
.tcps_rcvduppack
++;
661 tcpstat
.tcps_rcvdupbyte
+= *tlenp
;
663 nstat_route_rx(inp
->inp_route
.ro_rt
,
665 NSTAT_RX_FLAG_DUPLICATE
);
666 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
668 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
670 tp
->t_stat
.rxduplicatebytes
+= *tlenp
;
671 inp_set_activity_bitmap(inp
);
674 zfree(tcp_reass_zone
, te
);
678 * Try to present any queued data
679 * at the left window edge to the user.
680 * This is needed after the 3-WHS
691 tcpstat
.tcps_rcvoopack
++;
692 tcpstat
.tcps_rcvoobyte
+= *tlenp
;
694 nstat_route_rx(inp
->inp_route
.ro_rt
, 1, *tlenp
,
695 NSTAT_RX_FLAG_OUT_OF_ORDER
);
696 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxpackets
, 1);
697 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
, *tlenp
);
698 tp
->t_stat
.rxoutoforderbytes
+= *tlenp
;
699 inp_set_activity_bitmap(inp
);
703 * While we overlap succeeding segments trim them or,
704 * if they are completely covered, dequeue them.
707 int i
= (th
->th_seq
+ *tlenp
) - q
->tqe_th
->th_seq
;
713 * Report only the first part of partial/non-contiguous
714 * duplicate segment in dsack option. The variable
715 * dsack_set will be true if a previous entry has some of
716 * the duplicate sequence space.
718 if (i
> 1 && !dsack_set
) {
719 if (tp
->t_dsack_lseq
== 0) {
720 tp
->t_dsack_lseq
= q
->tqe_th
->th_seq
;
722 tp
->t_dsack_lseq
+ min(i
, q
->tqe_len
);
725 * this segment overlaps data in multple
726 * entries in the reassembly queue, move
727 * the right sequence number further.
730 tp
->t_dsack_rseq
+ min(i
, q
->tqe_len
);
733 if (i
< q
->tqe_len
) {
734 q
->tqe_th
->th_seq
+= i
;
740 nq
= LIST_NEXT(q
, tqe_q
);
741 LIST_REMOVE(q
, tqe_q
);
743 zfree(tcp_reass_zone
, q
);
748 /* Insert the new segment queue entry into place. */
751 te
->tqe_len
= *tlenp
;
754 LIST_INSERT_HEAD(&tp
->t_segq
, te
, tqe_q
);
756 LIST_INSERT_AFTER(p
, te
, tqe_q
);
761 * Present data to user, advancing rcv_nxt through
762 * completed sequence space.
764 if (!TCPS_HAVEESTABLISHED(tp
->t_state
)) {
767 q
= LIST_FIRST(&tp
->t_segq
);
768 if (!q
|| q
->tqe_th
->th_seq
!= tp
->rcv_nxt
) {
773 * If there is already another thread doing reassembly for this
774 * connection, it is better to let it finish the job --
777 if (tp
->t_flagsext
& TF_REASS_INPROG
) {
781 tp
->t_flagsext
|= TF_REASS_INPROG
;
782 /* lost packet was recovered, so ooo data can be returned */
783 tcpstat
.tcps_recovered_pkts
++;
786 tp
->rcv_nxt
+= q
->tqe_len
;
787 flags
= q
->tqe_th
->th_flags
& TH_FIN
;
788 LIST_REMOVE(q
, tqe_q
);
789 if (so
->so_state
& SS_CANTRCVMORE
) {
793 * The mbuf may be freed after it has been added to the
794 * receive socket buffer so we reinitialize th to point
795 * to a safe copy of the TCP header
797 struct tcphdr saved_tcphdr
= {};
799 so_recv_data_stat(so
, q
->tqe_m
, 0); /* XXXX */
800 memcpy(&saved_tcphdr
, th
, sizeof(struct tcphdr
));
802 if (q
->tqe_th
->th_flags
& TH_PUSH
) {
803 tp
->t_flagsext
|= TF_LAST_IS_PSH
;
805 tp
->t_flagsext
&= ~TF_LAST_IS_PSH
;
808 if (sbappendstream_rcvdemux(so
, q
->tqe_m
)) {
813 zfree(tcp_reass_zone
, q
);
815 q
= LIST_FIRST(&tp
->t_segq
);
816 } while (q
&& q
->tqe_th
->th_seq
== tp
->rcv_nxt
);
817 tp
->t_flagsext
&= ~TF_REASS_INPROG
;
819 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
820 KERNEL_DEBUG(DBG_LAYER_BEG
,
821 ((inp
->inp_fport
<< 16) | inp
->inp_lport
),
822 (((inp
->in6p_laddr
.s6_addr16
[0] & 0xffff) << 16) |
823 (inp
->in6p_faddr
.s6_addr16
[0] & 0xffff)),
826 KERNEL_DEBUG(DBG_LAYER_BEG
,
827 ((inp
->inp_fport
<< 16) | inp
->inp_lport
),
828 (((inp
->inp_laddr
.s_addr
& 0xffff) << 16) |
829 (inp
->inp_faddr
.s_addr
& 0xffff)),
837 * Reduce congestion window -- used when ECN is seen or when a tail loss
838 * probe recovers the last packet.
841 tcp_reduce_congestion_window(struct tcpcb
*tp
)
844 * If the current tcp cc module has
845 * defined a hook for tasks to run
846 * before entering FR, call it
848 if (CC_ALGO(tp
)->pre_fr
!= NULL
) {
849 CC_ALGO(tp
)->pre_fr(tp
);
851 ENTER_FASTRECOVERY(tp
);
852 if (tp
->t_flags
& TF_SENTFIN
) {
853 tp
->snd_recover
= tp
->snd_max
- 1;
855 tp
->snd_recover
= tp
->snd_max
;
857 tp
->t_timer
[TCPT_REXMT
] = 0;
858 tp
->t_timer
[TCPT_PTO
] = 0;
860 if (tp
->t_flagsext
& TF_CWND_NONVALIDATED
) {
861 tcp_cc_adjust_nonvalidated_cwnd(tp
);
863 tp
->snd_cwnd
= tp
->snd_ssthresh
+
864 tp
->t_maxseg
* tcprexmtthresh
;
869 * This function is called upon reception of data on a socket. It's purpose is
870 * to handle the adaptive keepalive timers that monitor whether the connection
871 * is making progress. First the adaptive read-timer, second the TFO probe-timer.
873 * The application wants to get an event if there is a stall during read.
874 * Set the initial keepalive timeout to be equal to twice RTO.
876 * If the outgoing interface is in marginal conditions, we need to
877 * enable read probes for that too.
880 tcp_adaptive_rwtimo_check(struct tcpcb
*tp
, int tlen
)
882 struct ifnet
*outifp
= tp
->t_inpcb
->inp_last_outifp
;
884 if ((tp
->t_adaptive_rtimo
> 0 ||
886 (outifp
->if_eflags
& IFEF_PROBE_CONNECTIVITY
)))
888 tp
->t_state
== TCPS_ESTABLISHED
) {
889 tp
->t_timer
[TCPT_KEEP
] = OFFSET_FROM_START(tp
,
890 (TCP_REXMTVAL(tp
) << 1));
891 tp
->t_flagsext
|= TF_DETECT_READSTALL
;
892 tp
->t_rtimo_probes
= 0;
897 tcp_keepalive_reset(struct tcpcb
*tp
)
899 tp
->t_timer
[TCPT_KEEP
] = OFFSET_FROM_START(tp
,
900 TCP_CONN_KEEPIDLE(tp
));
901 tp
->t_flagsext
&= ~(TF_DETECT_READSTALL
);
902 tp
->t_rtimo_probes
= 0;
906 * TCP input routine, follows pages 65-76 of the
907 * protocol specification dated September, 1981 very closely.
910 tcp6_input(struct mbuf
**mp
, int *offp
, int proto
)
912 #pragma unused(proto)
913 struct mbuf
*m
= *mp
;
915 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
917 IP6_EXTHDR_CHECK(m
, *offp
, sizeof(struct tcphdr
), return IPPROTO_DONE
);
919 /* Expect 32-bit aligned data pointer on strict-align platforms */
920 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
923 * draft-itojun-ipv6-tcp-to-anycast
924 * better place to put this in?
926 if (ip6_getdstifaddr_info(m
, NULL
, &ia6_flags
) == 0) {
927 if (ia6_flags
& IN6_IFF_ANYCAST
) {
930 ip6
= mtod(m
, struct ip6_hdr
*);
931 icmp6_error(m
, ICMP6_DST_UNREACH
,
932 ICMP6_DST_UNREACH_ADDR
,
933 (caddr_t
)&ip6
->ip6_dst
- (caddr_t
)ip6
);
935 IF_TCP_STATINC(ifp
, icmp6unreach
);
945 /* Depending on the usage of mbuf space in the system, this function
946 * will return true or false. This is used to determine if a socket
947 * buffer can take more memory from the system for auto-tuning or not.
950 tcp_cansbgrow(struct sockbuf
*sb
)
952 /* Calculate the host level space limit in terms of MSIZE buffers.
953 * We can use a maximum of half of the available mbuf space for
956 u_int32_t mblim
= ((nmbclusters
>> 1) << (MCLSHIFT
- MSIZESHIFT
));
958 /* Calculate per sb limit in terms of bytes. We optimize this limit
959 * for upto 16 socket buffers.
962 u_int32_t sbspacelim
= ((nmbclusters
>> 4) << MCLSHIFT
);
964 if ((total_sbmb_cnt
< mblim
) &&
965 (sb
->sb_hiwat
< sbspacelim
)) {
968 OSIncrementAtomic64(&sbmb_limreached
);
974 tcp_sbrcv_reserve(struct tcpcb
*tp
, struct sockbuf
*sbrcv
,
975 u_int32_t newsize
, u_int32_t idealsize
, u_int32_t rcvbuf_max
)
977 /* newsize should not exceed max */
978 newsize
= min(newsize
, rcvbuf_max
);
980 /* The receive window scale negotiated at the
981 * beginning of the connection will also set a
982 * limit on the socket buffer size
984 newsize
= min(newsize
, TCP_MAXWIN
<< tp
->rcv_scale
);
986 /* Set new socket buffer size */
987 if (newsize
> sbrcv
->sb_hiwat
&&
988 (sbreserve(sbrcv
, newsize
) == 1)) {
989 sbrcv
->sb_idealsize
= min(max(sbrcv
->sb_idealsize
,
990 (idealsize
!= 0) ? idealsize
: newsize
), rcvbuf_max
);
992 /* Again check the limit set by the advertised
995 sbrcv
->sb_idealsize
= min(sbrcv
->sb_idealsize
,
996 TCP_MAXWIN
<< tp
->rcv_scale
);
1001 * This function is used to grow a receive socket buffer. It
1002 * will take into account system-level memory usage and the
1003 * bandwidth available on the link to make a decision.
1006 tcp_sbrcv_grow(struct tcpcb
*tp
, struct sockbuf
*sbrcv
,
1007 struct tcpopt
*to
, uint32_t pktlen
)
1009 struct socket
*so
= sbrcv
->sb_so
;
1012 * Do not grow the receive socket buffer if
1013 * - auto resizing is disabled, globally or on this socket
1014 * - the high water mark already reached the maximum
1015 * - the stream is in background and receive side is being
1018 if (tcp_do_autorcvbuf
== 0 ||
1019 (sbrcv
->sb_flags
& SB_AUTOSIZE
) == 0 ||
1020 tcp_cansbgrow(sbrcv
) == 0 ||
1021 sbrcv
->sb_hiwat
>= tcp_autorcvbuf_max
||
1022 (tp
->t_flagsext
& TF_RECV_THROTTLE
) ||
1023 (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) ||
1024 (!tcp_autotune_reorder
&& !LIST_EMPTY(&tp
->t_segq
))) {
1025 /* Can not resize the socket buffer, just return */
1029 if (!TSTMP_SUPPORTED(tp
)) {
1031 * Timestamp option is not supported on this connection.
1032 * If the connection reached a state to indicate that
1033 * the receive socket buffer needs to grow, increase
1034 * the high water mark.
1036 if (TSTMP_GEQ(tcp_now
,
1037 tp
->rfbuf_ts
+ TCPTV_RCVNOTS_QUANTUM
)) {
1038 if (tp
->rfbuf_cnt
+ pktlen
>= TCP_RCVNOTS_BYTELEVEL
) {
1039 tcp_sbrcv_reserve(tp
, sbrcv
,
1040 tcp_autorcvbuf_max
, 0,
1041 tcp_autorcvbuf_max
);
1045 tp
->rfbuf_cnt
+= pktlen
;
1048 } else if (to
->to_tsecr
!= 0) {
1050 * If the timestamp shows that one RTT has
1051 * completed, we can stop counting the
1052 * bytes. Here we consider increasing
1053 * the socket buffer if the bandwidth measured in
1054 * last rtt, is more than half of sb_hiwat, this will
1055 * help to scale the buffer according to the bandwidth
1058 if (TSTMP_GEQ(to
->to_tsecr
, tp
->rfbuf_ts
)) {
1059 if (tcp_aggressive_rcvwnd_inc
) {
1060 tp
->rfbuf_cnt
+= pktlen
;
1063 if ((tcp_aggressive_rcvwnd_inc
== 0 &&
1064 tp
->rfbuf_cnt
+ pktlen
> (sbrcv
->sb_hiwat
-
1065 (sbrcv
->sb_hiwat
>> 1))) ||
1066 (tcp_aggressive_rcvwnd_inc
&&
1067 tp
->rfbuf_cnt
> tp
->rfbuf_space
)) {
1071 if (tcp_aggressive_rcvwnd_inc
== 0) {
1074 tp
->rfbuf_cnt
+= pktlen
;
1076 * Increment the receive window by a
1077 * multiple of maximum sized segments.
1078 * This will prevent a connection from
1079 * sending smaller segments on wire if it
1080 * is limited by the receive window.
1082 * Set the ideal size based on current
1083 * bandwidth measurements. We set the
1084 * ideal size on receive socket buffer to
1085 * be twice the bandwidth delay product.
1087 rcvbuf_inc
= (tp
->rfbuf_cnt
<< 1)
1091 * Make the increment equal to 8 segments
1094 min_incr
= tp
->t_maxseg
<< tcp_autorcvbuf_inc_shift
;
1095 if (rcvbuf_inc
< min_incr
) {
1096 rcvbuf_inc
= min_incr
;
1099 idealsize
= (tp
->rfbuf_cnt
<< 1);
1101 if (tp
->rfbuf_cnt
> tp
->rfbuf_space
+ (tp
->rfbuf_space
>> 1)) {
1102 rcvbuf_inc
= (tp
->rfbuf_cnt
<< 2) - sbrcv
->sb_hiwat
;
1103 idealsize
= (tp
->rfbuf_cnt
<< 2);
1105 rcvbuf_inc
= (tp
->rfbuf_cnt
<< 1) - sbrcv
->sb_hiwat
;
1106 idealsize
= (tp
->rfbuf_cnt
<< 1);
1110 tp
->rfbuf_space
= tp
->rfbuf_cnt
;
1112 if (rcvbuf_inc
> 0) {
1114 (rcvbuf_inc
/ tp
->t_maxseg
) * tp
->t_maxseg
;
1116 tcp_sbrcv_reserve(tp
, sbrcv
,
1117 sbrcv
->sb_hiwat
+ rcvbuf_inc
,
1118 idealsize
, tcp_autorcvbuf_max
);
1121 /* Measure instantaneous receive bandwidth */
1122 if (tp
->t_bwmeas
!= NULL
&& tp
->rfbuf_cnt
> 0 &&
1123 TSTMP_GT(tcp_now
, tp
->rfbuf_ts
)) {
1125 rcv_bw
= tp
->rfbuf_cnt
/
1126 (int)(tcp_now
- tp
->rfbuf_ts
);
1127 if (tp
->t_bwmeas
->bw_rcvbw_max
== 0) {
1128 tp
->t_bwmeas
->bw_rcvbw_max
= rcv_bw
;
1130 tp
->t_bwmeas
->bw_rcvbw_max
= max(
1131 tp
->t_bwmeas
->bw_rcvbw_max
, rcv_bw
);
1136 tp
->rfbuf_cnt
+= pktlen
;
1141 /* Restart the measurement */
1142 tp
->rfbuf_ts
= tcp_now
;
1147 /* This function will trim the excess space added to the socket buffer
1148 * to help a slow-reading app. The ideal-size of a socket buffer depends
1149 * on the link bandwidth or it is set by an application and we aim to
1153 tcp_sbrcv_trim(struct tcpcb
*tp
, struct sockbuf
*sbrcv
)
1155 if (tcp_do_autorcvbuf
== 1 && sbrcv
->sb_idealsize
> 0 &&
1156 sbrcv
->sb_hiwat
> sbrcv
->sb_idealsize
) {
1158 /* compute the difference between ideal and current sizes */
1159 u_int32_t diff
= sbrcv
->sb_hiwat
- sbrcv
->sb_idealsize
;
1161 /* Compute the maximum advertised window for
1164 u_int32_t advwin
= tp
->rcv_adv
- tp
->rcv_nxt
;
1166 /* How much can we trim the receive socket buffer?
1167 * 1. it can not be trimmed beyond the max rcv win advertised
1168 * 2. if possible, leave 1/16 of bandwidth*delay to
1169 * avoid closing the win completely
1171 u_int32_t leave
= max(advwin
, (sbrcv
->sb_idealsize
>> 4));
1173 /* Sometimes leave can be zero, in that case leave at least
1174 * a few segments worth of space.
1177 leave
= tp
->t_maxseg
<< tcp_autorcvbuf_inc_shift
;
1180 trim
= sbrcv
->sb_hiwat
- (sbrcv
->sb_cc
+ leave
);
1181 trim
= imin(trim
, (int32_t)diff
);
1184 sbreserve(sbrcv
, (sbrcv
->sb_hiwat
- trim
));
1189 /* We may need to trim the send socket buffer size for two reasons:
1190 * 1. if the rtt seen on the connection is climbing up, we do not
1191 * want to fill the buffers any more.
1192 * 2. if the congestion win on the socket backed off, there is no need
1193 * to hold more mbufs for that connection than what the cwnd will allow.
1196 tcp_sbsnd_trim(struct sockbuf
*sbsnd
)
1198 if (((sbsnd
->sb_flags
& (SB_AUTOSIZE
| SB_TRIM
)) ==
1199 (SB_AUTOSIZE
| SB_TRIM
)) &&
1200 (sbsnd
->sb_idealsize
> 0) &&
1201 (sbsnd
->sb_hiwat
> sbsnd
->sb_idealsize
)) {
1203 if (sbsnd
->sb_cc
<= sbsnd
->sb_idealsize
) {
1204 trim
= sbsnd
->sb_hiwat
- sbsnd
->sb_idealsize
;
1206 trim
= sbsnd
->sb_hiwat
- sbsnd
->sb_cc
;
1208 sbreserve(sbsnd
, (sbsnd
->sb_hiwat
- trim
));
1210 if (sbsnd
->sb_hiwat
<= sbsnd
->sb_idealsize
) {
1211 sbsnd
->sb_flags
&= ~(SB_TRIM
);
1216 * If timestamp option was not negotiated on this connection
1217 * and this connection is on the receiving side of a stream
1218 * then we can not measure the delay on the link accurately.
1219 * Instead of enabling automatic receive socket buffer
1220 * resizing, just give more space to the receive socket buffer.
1223 tcp_sbrcv_tstmp_check(struct tcpcb
*tp
)
1225 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
1226 u_int32_t newsize
= 2 * tcp_recvspace
;
1227 struct sockbuf
*sbrcv
= &so
->so_rcv
;
1229 if ((tp
->t_flags
& (TF_REQ_TSTMP
| TF_RCVD_TSTMP
)) !=
1230 (TF_REQ_TSTMP
| TF_RCVD_TSTMP
) &&
1231 (sbrcv
->sb_flags
& SB_AUTOSIZE
) != 0) {
1232 tcp_sbrcv_reserve(tp
, sbrcv
, newsize
, 0, newsize
);
1236 /* A receiver will evaluate the flow of packets on a connection
1237 * to see if it can reduce ack traffic. The receiver will start
1238 * stretching acks if all of the following conditions are met:
1239 * 1. tcp_delack_enabled is set to 3
1240 * 2. If the bytes received in the last 100ms is greater than a threshold
1241 * defined by maxseg_unacked
1242 * 3. If the connection has not been idle for tcp_maxrcvidle period.
1243 * 4. If the connection has seen enough packets to let the slow-start
1244 * finish after connection establishment or after some packet loss.
1246 * The receiver will stop stretching acks if there is congestion/reordering
1247 * as indicated by packets on reassembly queue or an ECN. If the delayed-ack
1248 * timer fires while stretching acks, it means that the packet flow has gone
1249 * below the threshold defined by maxseg_unacked and the receiver will stop
1250 * stretching acks. The receiver gets no indication when slow-start is completed
1251 * or when the connection reaches an idle state. That is why we use
1252 * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle
1256 tcp_stretch_ack_enable(struct tcpcb
*tp
, int thflags
)
1258 if (tp
->rcv_by_unackwin
>= (maxseg_unacked
* tp
->t_maxseg
) &&
1259 TSTMP_GEQ(tp
->rcv_unackwin
, tcp_now
)) {
1260 tp
->t_flags
|= TF_STREAMING_ON
;
1262 tp
->t_flags
&= ~TF_STREAMING_ON
;
1265 /* If there has been an idle time, reset streaming detection */
1266 if (TSTMP_GT(tcp_now
, tp
->rcv_unackwin
+ tcp_maxrcvidle
)) {
1267 tp
->t_flags
&= ~TF_STREAMING_ON
;
1271 * If there are flags other than TH_ACK set, reset streaming
1274 if (thflags
& ~TH_ACK
) {
1275 tp
->t_flags
&= ~TF_STREAMING_ON
;
1278 if (tp
->t_flagsext
& TF_DISABLE_STRETCHACK
) {
1279 if (tp
->rcv_nostrack_pkts
>= TCP_STRETCHACK_ENABLE_PKTCNT
) {
1280 tp
->t_flagsext
&= ~TF_DISABLE_STRETCHACK
;
1281 tp
->rcv_nostrack_pkts
= 0;
1282 tp
->rcv_nostrack_ts
= 0;
1284 tp
->rcv_nostrack_pkts
++;
1288 if (!(tp
->t_flagsext
& (TF_NOSTRETCHACK
| TF_DISABLE_STRETCHACK
)) &&
1289 (tp
->t_flags
& TF_STREAMING_ON
) &&
1290 (!(tp
->t_flagsext
& TF_RCVUNACK_WAITSS
) ||
1291 (tp
->rcv_waitforss
>= tcp_rcvsspktcnt
))) {
1299 * Reset the state related to stretch-ack algorithm. This will make
1300 * the receiver generate an ack every other packet. The receiver
1301 * will start re-evaluating the rate at which packets come to decide
1302 * if it can benefit by lowering the ack traffic.
1305 tcp_reset_stretch_ack(struct tcpcb
*tp
)
1307 tp
->t_flags
&= ~(TF_STRETCHACK
| TF_STREAMING_ON
);
1308 tp
->rcv_by_unackwin
= 0;
1309 tp
->rcv_by_unackhalfwin
= 0;
1310 tp
->rcv_unackwin
= tcp_now
+ tcp_rcvunackwin
;
1313 * When there is packet loss or packet re-ordering or CWR due to
1314 * ECN, the sender's congestion window is reduced. In these states,
1315 * generate an ack for every other packet for some time to allow
1316 * the sender's congestion window to grow.
1318 tp
->t_flagsext
|= TF_RCVUNACK_WAITSS
;
1319 tp
->rcv_waitforss
= 0;
1323 * The last packet was a retransmission, check if this ack
1324 * indicates that the retransmission was spurious.
1326 * If the connection supports timestamps, we could use it to
1327 * detect if the last retransmit was not needed. Otherwise,
1328 * we check if the ACK arrived within RTT/2 window, then it
1329 * was a mistake to do the retransmit in the first place.
1331 * This function will return 1 if it is a spurious retransmit,
1335 tcp_detect_bad_rexmt(struct tcpcb
*tp
, struct tcphdr
*th
,
1336 struct tcpopt
*to
, u_int32_t rxtime
)
1338 int32_t tdiff
, bad_rexmt_win
;
1339 bad_rexmt_win
= (tp
->t_srtt
>> (TCP_RTT_SHIFT
+ 1));
1341 /* If the ack has ECN CE bit, then cwnd has to be adjusted */
1342 if (TCP_ECN_ENABLED(tp
) && (th
->th_flags
& TH_ECE
)) {
1345 if (TSTMP_SUPPORTED(tp
)) {
1346 if (rxtime
> 0 && (to
->to_flags
& TOF_TS
) && to
->to_tsecr
!= 0 &&
1347 TSTMP_LT(to
->to_tsecr
, rxtime
)) {
1351 if ((tp
->t_rxtshift
== 1 || (tp
->t_flagsext
& TF_SENT_TLPROBE
)) &&
1353 tdiff
= (int32_t)(tcp_now
- rxtime
);
1354 if (tdiff
< bad_rexmt_win
) {
1364 * Restore congestion window state if a spurious timeout
1368 tcp_bad_rexmt_restore_state(struct tcpcb
*tp
, struct tcphdr
*th
)
1370 if (TSTMP_SUPPORTED(tp
)) {
1371 u_int32_t fsize
, acked
;
1372 fsize
= tp
->snd_max
- th
->th_ack
;
1373 acked
= BYTES_ACKED(th
, tp
);
1376 * Implement bad retransmit recovery as
1377 * described in RFC 4015.
1379 tp
->snd_ssthresh
= tp
->snd_ssthresh_prev
;
1381 /* Initialize cwnd to the initial window */
1382 if (CC_ALGO(tp
)->cwnd_init
!= NULL
) {
1383 CC_ALGO(tp
)->cwnd_init(tp
);
1386 tp
->snd_cwnd
= fsize
+ min(acked
, tp
->snd_cwnd
);
1388 tp
->snd_cwnd
= tp
->snd_cwnd_prev
;
1389 tp
->snd_ssthresh
= tp
->snd_ssthresh_prev
;
1390 if (tp
->t_flags
& TF_WASFRECOVERY
) {
1391 ENTER_FASTRECOVERY(tp
);
1394 /* Do not use the loss flight size in this case */
1395 tp
->t_lossflightsize
= 0;
1397 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tcp_initial_cwnd(tp
));
1398 tp
->snd_recover
= tp
->snd_recover_prev
;
1399 tp
->snd_nxt
= tp
->snd_max
;
1401 /* Fix send socket buffer to reflect the change in cwnd */
1402 tcp_bad_rexmt_fix_sndbuf(tp
);
1405 * This RTT might reflect the extra delay induced
1406 * by the network. Skip using this sample for RTO
1407 * calculation and mark the connection so we can
1408 * recompute RTT when the next eligible sample is
1411 tp
->t_flagsext
|= TF_RECOMPUTE_RTT
;
1412 tp
->t_badrexmt_time
= tcp_now
;
1417 * If the previous packet was sent in retransmission timer, and it was
1418 * not needed, then restore the congestion window to the state before that
1421 * If the last packet was sent in tail loss probe timeout, check if that
1422 * recovered the last packet. If so, that will indicate a real loss and
1423 * the congestion window needs to be lowered.
1426 tcp_bad_rexmt_check(struct tcpcb
*tp
, struct tcphdr
*th
, struct tcpopt
*to
)
1428 if (tp
->t_rxtshift
> 0 &&
1429 tcp_detect_bad_rexmt(tp
, th
, to
, tp
->t_rxtstart
)) {
1430 ++tcpstat
.tcps_sndrexmitbad
;
1431 tcp_bad_rexmt_restore_state(tp
, th
);
1432 tcp_ccdbg_trace(tp
, th
, TCP_CC_BAD_REXMT_RECOVERY
);
1433 } else if ((tp
->t_flagsext
& TF_SENT_TLPROBE
) && tp
->t_tlphighrxt
> 0 &&
1434 SEQ_GEQ(th
->th_ack
, tp
->t_tlphighrxt
) &&
1435 !tcp_detect_bad_rexmt(tp
, th
, to
, tp
->t_tlpstart
)) {
1437 * check DSACK information also to make sure that
1438 * the TLP was indeed needed
1440 if (tcp_rxtseg_dsack_for_tlp(tp
)) {
1442 * received a DSACK to indicate that TLP was
1445 tcp_rxtseg_clean(tp
);
1450 * The tail loss probe recovered the last packet and
1451 * we need to adjust the congestion window to take
1452 * this loss into account.
1454 ++tcpstat
.tcps_tlp_recoverlastpkt
;
1455 if (!IN_FASTRECOVERY(tp
)) {
1456 tcp_reduce_congestion_window(tp
);
1457 EXIT_FASTRECOVERY(tp
);
1459 tcp_ccdbg_trace(tp
, th
, TCP_CC_TLP_RECOVER_LASTPACKET
);
1460 } else if (tcp_rxtseg_detect_bad_rexmt(tp
, th
->th_ack
)) {
1462 * All of the retransmitted segments were duplicated, this
1463 * can be an indication of bad fast retransmit.
1465 tcpstat
.tcps_dsack_badrexmt
++;
1466 tcp_bad_rexmt_restore_state(tp
, th
);
1467 tcp_ccdbg_trace(tp
, th
, TCP_CC_DSACK_BAD_REXMT
);
1468 tcp_rxtseg_clean(tp
);
1471 tp
->t_flagsext
&= ~(TF_SENT_TLPROBE
);
1472 tp
->t_tlphighrxt
= 0;
1476 * check if the latest ack was for a segment sent during PMTU
1477 * blackhole detection. If the timestamp on the ack is before
1478 * PMTU blackhole detection, then revert the size of the max
1479 * segment to previous size.
1481 if (tp
->t_rxtshift
> 0 && (tp
->t_flags
& TF_BLACKHOLE
) &&
1482 tp
->t_pmtud_start_ts
> 0 && TSTMP_SUPPORTED(tp
)) {
1483 if ((to
->to_flags
& TOF_TS
) && to
->to_tsecr
!= 0
1484 && TSTMP_LT(to
->to_tsecr
, tp
->t_pmtud_start_ts
)) {
1485 tcp_pmtud_revert_segment_size(tp
);
1488 if (tp
->t_pmtud_start_ts
> 0) {
1489 tp
->t_pmtud_start_ts
= 0;
1492 tp
->t_pmtud_lastseg_size
= 0;
1496 * Check if early retransmit can be attempted according to RFC 5827.
1498 * If packet reordering is detected on a connection, fast recovery will
1499 * be delayed until it is clear that the packet was lost and not reordered.
1500 * But reordering detection is done only when SACK is enabled.
1502 * On connections that do not support SACK, there is a limit on the number
1503 * of early retransmits that can be done per minute. This limit is needed
1504 * to make sure that too many packets are not retransmitted when there is
1505 * packet reordering.
1508 tcp_early_rexmt_check(struct tcpcb
*tp
, struct tcphdr
*th
)
1510 u_int32_t obytes
, snd_off
;
1512 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
1514 if ((SACK_ENABLED(tp
) || tp
->t_early_rexmt_count
< TCP_EARLY_REXMT_LIMIT
) &&
1515 SEQ_GT(tp
->snd_max
, tp
->snd_una
) &&
1516 (tp
->t_dupacks
== 1 || (SACK_ENABLED(tp
) && !TAILQ_EMPTY(&tp
->snd_holes
)))) {
1518 * If there are only a few outstanding
1519 * segments on the connection, we might need
1520 * to lower the retransmit threshold. This
1521 * will allow us to do Early Retransmit as
1522 * described in RFC 5827.
1524 if (SACK_ENABLED(tp
) &&
1525 !TAILQ_EMPTY(&tp
->snd_holes
)) {
1526 obytes
= (tp
->snd_max
- tp
->snd_fack
) +
1527 tp
->sackhint
.sack_bytes_rexmit
;
1529 obytes
= (tp
->snd_max
- tp
->snd_una
);
1533 * In order to lower retransmit threshold the
1534 * following two conditions must be met.
1535 * 1. the amount of outstanding data is less
1537 * 2. there is no unsent data ready for
1538 * transmission or the advertised window
1539 * will limit sending new segments.
1541 snd_off
= tp
->snd_max
- tp
->snd_una
;
1542 snd_len
= min(so
->so_snd
.sb_cc
, tp
->snd_wnd
) - snd_off
;
1543 if (obytes
< (tp
->t_maxseg
<< 2) &&
1547 osegs
= obytes
/ tp
->t_maxseg
;
1548 if ((osegs
* tp
->t_maxseg
) < obytes
) {
1553 * Since the connection might have already
1554 * received some dupacks, we add them to
1555 * to the outstanding segments count to get
1556 * the correct retransmit threshold.
1558 * By checking for early retransmit after
1559 * receiving some duplicate acks when SACK
1560 * is supported, the connection will
1561 * enter fast recovery even if multiple
1562 * segments are lost in the same window.
1564 osegs
+= tp
->t_dupacks
;
1567 ((osegs
- 1) > 1) ? (osegs
- 1) : 1;
1569 min(tp
->t_rexmtthresh
, tcprexmtthresh
);
1571 max(tp
->t_rexmtthresh
, tp
->t_dupacks
);
1573 if (tp
->t_early_rexmt_count
== 0) {
1574 tp
->t_early_rexmt_win
= tcp_now
;
1577 if (tp
->t_flagsext
& TF_SENT_TLPROBE
) {
1578 tcpstat
.tcps_tlp_recovery
++;
1579 tcp_ccdbg_trace(tp
, th
,
1580 TCP_CC_TLP_RECOVERY
);
1582 tcpstat
.tcps_early_rexmt
++;
1583 tp
->t_early_rexmt_count
++;
1584 tcp_ccdbg_trace(tp
, th
,
1585 TCP_CC_EARLY_RETRANSMIT
);
1592 * If we ever sent a TLP probe, the acknowledgement will trigger
1593 * early retransmit because the value of snd_fack will be close
1594 * to snd_max. This will take care of adjustments to the
1595 * congestion window. So we can reset TF_SENT_PROBE flag.
1597 tp
->t_flagsext
&= ~(TF_SENT_TLPROBE
);
1598 tp
->t_tlphighrxt
= 0;
1603 tcp_tfo_syn(struct tcpcb
*tp
, struct tcpopt
*to
)
1605 u_char out
[CCAES_BLOCK_SIZE
];
1608 if (!(to
->to_flags
& (TOF_TFO
| TOF_TFOREQ
)) ||
1609 !(tcp_fastopen
& TCP_FASTOPEN_SERVER
)) {
1613 if ((to
->to_flags
& TOF_TFOREQ
)) {
1614 tp
->t_tfo_flags
|= TFO_F_OFFER_COOKIE
;
1616 tp
->t_tfo_stats
|= TFO_S_COOKIEREQ_RECV
;
1617 tcpstat
.tcps_tfo_cookie_req_rcv
++;
1621 /* Ok, then it must be an offered cookie. We need to check that ... */
1622 tcp_tfo_gen_cookie(tp
->t_inpcb
, out
, sizeof(out
));
1624 len
= *to
->to_tfo
- TCPOLEN_FASTOPEN_REQ
;
1626 if (memcmp(out
, to
->to_tfo
, len
)) {
1627 /* Cookies are different! Let's return and offer a new cookie */
1628 tp
->t_tfo_flags
|= TFO_F_OFFER_COOKIE
;
1630 tp
->t_tfo_stats
|= TFO_S_COOKIE_INVALID
;
1631 tcpstat
.tcps_tfo_cookie_invalid
++;
1635 if (OSIncrementAtomic(&tcp_tfo_halfcnt
) >= tcp_tfo_backlog
) {
1636 /* Need to decrement again as we just increased it... */
1637 OSDecrementAtomic(&tcp_tfo_halfcnt
);
1641 tp
->t_tfo_flags
|= TFO_F_COOKIE_VALID
;
1643 tp
->t_tfo_stats
|= TFO_S_SYNDATA_RCV
;
1644 tcpstat
.tcps_tfo_syn_data_rcv
++;
1650 tcp_tfo_synack(struct tcpcb
*tp
, struct tcpopt
*to
)
1652 if (to
->to_flags
& TOF_TFO
) {
1653 unsigned char len
= *to
->to_tfo
- TCPOLEN_FASTOPEN_REQ
;
1656 * If this happens, things have gone terribly wrong. len should
1657 * have been checked in tcp_dooptions.
1659 VERIFY(len
<= TFO_COOKIE_LEN_MAX
);
1663 tcp_cache_set_cookie(tp
, to
->to_tfo
, len
);
1664 tcp_heuristic_tfo_success(tp
);
1666 tp
->t_tfo_stats
|= TFO_S_COOKIE_RCV
;
1667 tcpstat
.tcps_tfo_cookie_rcv
++;
1668 if (tp
->t_tfo_flags
& TFO_F_COOKIE_SENT
) {
1669 tcpstat
.tcps_tfo_cookie_wrong
++;
1670 tp
->t_tfo_stats
|= TFO_S_COOKIE_WRONG
;
1674 * Thus, no cookie in the response, but we either asked for one
1675 * or sent SYN+DATA. Now, we need to check whether we had to
1676 * rexmit the SYN. If that's the case, it's better to start
1677 * backing of TFO-cookie requests.
1679 if (!(tp
->t_flagsext
& TF_FASTOPEN_FORCE_ENABLE
) &&
1680 tp
->t_tfo_flags
& TFO_F_SYN_LOSS
) {
1681 tp
->t_tfo_stats
|= TFO_S_SYN_LOSS
;
1682 tcpstat
.tcps_tfo_syn_loss
++;
1684 tcp_heuristic_tfo_loss(tp
);
1686 if (tp
->t_tfo_flags
& TFO_F_COOKIE_REQ
) {
1687 tp
->t_tfo_stats
|= TFO_S_NO_COOKIE_RCV
;
1688 tcpstat
.tcps_tfo_no_cookie_rcv
++;
1691 tcp_heuristic_tfo_success(tp
);
1697 tcp_tfo_rcv_probe(struct tcpcb
*tp
, int tlen
)
1703 tp
->t_tfo_probe_state
= TFO_PROBE_PROBING
;
1706 * We send the probe out rather quickly (after one RTO). It does not
1707 * really hurt that much, it's only one additional segment on the wire.
1709 tp
->t_timer
[TCPT_KEEP
] = OFFSET_FROM_START(tp
, (TCP_REXMTVAL(tp
)));
1713 tcp_tfo_rcv_data(struct tcpcb
*tp
)
1715 /* Transition from PROBING to NONE as data has been received */
1716 if (tp
->t_tfo_probe_state
>= TFO_PROBE_PROBING
) {
1717 tp
->t_tfo_probe_state
= TFO_PROBE_NONE
;
1722 tcp_tfo_rcv_ack(struct tcpcb
*tp
, struct tcphdr
*th
)
1724 if (tp
->t_tfo_probe_state
== TFO_PROBE_PROBING
&&
1725 tp
->t_tfo_probes
> 0) {
1726 if (th
->th_seq
== tp
->rcv_nxt
) {
1727 /* No hole, so stop probing */
1728 tp
->t_tfo_probe_state
= TFO_PROBE_NONE
;
1729 } else if (SEQ_GT(th
->th_seq
, tp
->rcv_nxt
)) {
1730 /* There is a hole! Wait a bit for data... */
1731 tp
->t_tfo_probe_state
= TFO_PROBE_WAIT_DATA
;
1732 tp
->t_timer
[TCPT_KEEP
] = OFFSET_FROM_START(tp
,
1739 * Update snd_wnd information.
1742 tcp_update_window(struct tcpcb
*tp
, int thflags
, struct tcphdr
* th
,
1743 u_int32_t tiwin
, int tlen
)
1745 /* Don't look at the window if there is no ACK flag */
1746 if ((thflags
& TH_ACK
) &&
1747 (SEQ_LT(tp
->snd_wl1
, th
->th_seq
) ||
1748 (tp
->snd_wl1
== th
->th_seq
&& (SEQ_LT(tp
->snd_wl2
, th
->th_ack
) ||
1749 (tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
))))) {
1750 /* keep track of pure window updates */
1752 tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
) {
1753 tcpstat
.tcps_rcvwinupd
++;
1755 tp
->snd_wnd
= tiwin
;
1756 tp
->snd_wl1
= th
->th_seq
;
1757 tp
->snd_wl2
= th
->th_ack
;
1758 if (tp
->snd_wnd
> tp
->max_sndwnd
) {
1759 tp
->max_sndwnd
= tp
->snd_wnd
;
1762 if (tp
->t_inpcb
->inp_socket
->so_flags
& SOF_MP_SUBFLOW
) {
1763 mptcp_update_window_wakeup(tp
);
1771 tcp_handle_wakeup(struct socket
*so
, int read_wakeup
, int write_wakeup
)
1773 if (read_wakeup
!= 0) {
1776 if (write_wakeup
!= 0) {
1782 tcp_update_snd_una(struct tcpcb
*tp
, uint32_t ack
)
1785 if (SACK_ENABLED(tp
) && SEQ_LT(tp
->send_highest_sack
, tp
->snd_una
)) {
1786 tp
->send_highest_sack
= tp
->snd_una
;
1788 /* If we move our marker, we need to start fresh */
1789 tp
->t_new_dupacks
= 0;
1794 tcp_syn_data_valid(struct tcpcb
*tp
, struct tcphdr
*tcp_hdr
, int tlen
)
1801 /* Not the right sequence-number? */
1802 if (tcp_hdr
->th_seq
!= tp
->irs
) {
1806 /* We could have wrapped around, check that */
1807 if (tp
->t_inpcb
->inp_stat
->rxbytes
> INT32_MAX
) {
1815 tcp_input(struct mbuf
*m
, int off0
)
1819 struct ip
*ip
= NULL
;
1821 u_char
*optp
= NULL
;
1825 struct tcpcb
*tp
= 0;
1827 struct socket
*so
= 0;
1828 int todrop
, acked
, ourfinisacked
, needoutput
= 0;
1829 int read_wakeup
= 0;
1830 int write_wakeup
= 0;
1831 struct in_addr laddr
;
1832 struct in6_addr laddr6
;
1834 int iss
= 0, nosock
= 0;
1835 u_int32_t tiwin
, sack_bytes_acked
= 0, sack_bytes_newly_acked
= 0;
1836 struct tcpopt to
; /* options in this segment */
1840 u_char ip_ecn
= IPTOS_ECN_NOTECT
;
1841 unsigned int ifscope
;
1842 uint8_t isconnected
, isdisconnected
;
1843 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
1844 int segment_count
= m
->m_pkthdr
.seg_cnt
? : 1;
1846 u_int16_t pf_tag
= 0;
1848 struct mptcb
*mp_tp
= NULL
;
1850 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
1851 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
1852 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
1853 boolean_t recvd_dsack
= FALSE
;
1854 struct tcp_respond_args tra
;
1856 boolean_t check_cfil
= cfil_filter_present();
1857 bool findpcb_iterated
= false;
1859 * The mbuf may be freed after it has been added to the receive socket
1860 * buffer or the reassembly queue, so we reinitialize th to point to a
1861 * safe copy of the TCP header
1863 struct tcphdr saved_tcphdr
= {};
1865 * Save copy of the IPv4/IPv6 header.
1866 * Note: use array of uint32_t to silence compiler warning when casting
1867 * to a struct ip6_hdr pointer.
1869 #define MAX_IPWORDS ((sizeof(struct ip) + MAX_IPOPTLEN) / sizeof(uint32_t))
1870 uint32_t saved_hdr
[MAX_IPWORDS
];
1872 #define TCP_INC_VAR(stat, npkts) do { \
1876 if (tcp_ack_strategy
== TCP_ACK_STRATEGY_LEGACY
) {
1879 TCP_INC_VAR(tcpstat
.tcps_rcvtotal
, segment_count
);
1881 struct ip6_hdr
*ip6
= NULL
;
1883 struct proc
*kernel_proc
= current_proc();
1885 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1887 isipv6
= (mtod(m
, struct ip
*)->ip_v
== 6) ? 1 : 0;
1888 bzero((char *)&to
, sizeof(to
));
1890 if (m
->m_flags
& M_PKTHDR
) {
1891 pf_tag
= m_pftag(m
)->pftag_tag
;
1896 * Expect 32-bit aligned data pointer on
1897 * strict-align platforms
1899 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
1901 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
1902 ip6
= mtod(m
, struct ip6_hdr
*);
1903 tlen
= sizeof(*ip6
) + ntohs(ip6
->ip6_plen
) - off0
;
1904 th
= (struct tcphdr
*)(void *)((caddr_t
)ip6
+ off0
);
1906 if (tcp_input_checksum(AF_INET6
, m
, th
, off0
, tlen
)) {
1907 TCP_LOG_DROP_PKT(ip6
, th
, ifp
, "IPv6 bad tcp checksum");
1911 KERNEL_DEBUG(DBG_LAYER_BEG
, ((th
->th_dport
<< 16) | th
->th_sport
),
1912 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
1913 th
->th_seq
, th
->th_ack
, th
->th_win
);
1915 * Be proactive about unspecified IPv6 address in source.
1916 * As we use all-zero to indicate unbounded/unconnected pcb,
1917 * unspecified IPv6 address can be used to confuse us.
1919 * Note that packets with unspecified IPv6 destination is
1920 * already dropped in ip6_input.
1922 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
)) {
1924 IF_TCP_STATINC(ifp
, unspecv6
);
1925 TCP_LOG_DROP_PKT(ip6
, th
, ifp
, "src IPv6 address unspecified");
1928 DTRACE_TCP5(receive
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1929 struct ip6_hdr
*, ip6
, struct tcpcb
*, NULL
,
1930 struct tcphdr
*, th
);
1932 ip_ecn
= (ntohl(ip6
->ip6_flow
) >> 20) & IPTOS_ECN_MASK
;
1935 * Get IP and TCP header together in first mbuf.
1936 * Note: IP leaves IP header in first mbuf.
1938 if (off0
> sizeof(struct ip
)) {
1940 off0
= sizeof(struct ip
);
1942 if (m
->m_len
< sizeof(struct tcpiphdr
)) {
1943 if ((m
= m_pullup(m
, sizeof(struct tcpiphdr
))) == 0) {
1944 tcpstat
.tcps_rcvshort
++;
1949 /* Expect 32-bit aligned data pointer on strict-align platforms */
1950 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
1952 ip
= mtod(m
, struct ip
*);
1953 th
= (struct tcphdr
*)(void *)((caddr_t
)ip
+ off0
);
1956 if (tcp_input_checksum(AF_INET
, m
, th
, off0
, tlen
)) {
1957 TCP_LOG_DROP_PKT(ip
, th
, ifp
, "IPv4 bad tcp checksum");
1961 /* Re-initialization for later version check */
1962 ip
->ip_v
= IPVERSION
;
1963 ip_ecn
= (ip
->ip_tos
& IPTOS_ECN_MASK
);
1965 DTRACE_TCP5(receive
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1966 struct ip
*, ip
, struct tcpcb
*, NULL
, struct tcphdr
*, th
);
1968 KERNEL_DEBUG(DBG_LAYER_BEG
, ((th
->th_dport
<< 16) | th
->th_sport
),
1969 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
1970 th
->th_seq
, th
->th_ack
, th
->th_win
);
1973 #define TCP_LOG_HDR (isipv6 ? (void *)ip6 : (void *)ip)
1976 * Check that TCP offset makes sense,
1977 * pull out TCP options and adjust length.
1979 off
= th
->th_off
<< 2;
1980 if (off
< sizeof(struct tcphdr
) || off
> tlen
) {
1981 tcpstat
.tcps_rcvbadoff
++;
1982 IF_TCP_STATINC(ifp
, badformat
);
1983 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "bad tcp offset");
1986 tlen
-= off
; /* tlen is used instead of ti->ti_len */
1987 if (off
> sizeof(struct tcphdr
)) {
1989 IP6_EXTHDR_CHECK(m
, off0
, off
, return );
1990 ip6
= mtod(m
, struct ip6_hdr
*);
1991 th
= (struct tcphdr
*)(void *)((caddr_t
)ip6
+ off0
);
1993 if (m
->m_len
< sizeof(struct ip
) + off
) {
1994 if ((m
= m_pullup(m
, sizeof(struct ip
) + off
)) == 0) {
1995 tcpstat
.tcps_rcvshort
++;
1998 ip
= mtod(m
, struct ip
*);
1999 th
= (struct tcphdr
*)(void *)((caddr_t
)ip
+ off0
);
2002 optlen
= off
- sizeof(struct tcphdr
);
2003 optp
= (u_char
*)(th
+ 1);
2005 * Do quick retrieval of timestamp options ("options
2006 * prediction?"). If timestamp is the only option and it's
2007 * formatted as recommended in RFC 1323 appendix A, we
2008 * quickly get the values now and not bother calling
2009 * tcp_dooptions(), etc.
2011 if ((optlen
== TCPOLEN_TSTAMP_APPA
||
2012 (optlen
> TCPOLEN_TSTAMP_APPA
&&
2013 optp
[TCPOLEN_TSTAMP_APPA
] == TCPOPT_EOL
)) &&
2014 *(u_int32_t
*)(void *)optp
== htonl(TCPOPT_TSTAMP_HDR
) &&
2015 (th
->th_flags
& TH_SYN
) == 0) {
2016 to
.to_flags
|= TOF_TS
;
2017 to
.to_tsval
= ntohl(*(u_int32_t
*)(void *)(optp
+ 4));
2018 to
.to_tsecr
= ntohl(*(u_int32_t
*)(void *)(optp
+ 8));
2019 optp
= NULL
; /* we've parsed the options */
2022 thflags
= th
->th_flags
;
2025 * Drop all packets with both the SYN and FIN bits set.
2026 * This prevents e.g. nmap from identifying the TCP/IP stack.
2028 * This is a violation of the TCP specification.
2030 if ((thflags
& (TH_SYN
| TH_FIN
)) == (TH_SYN
| TH_FIN
)) {
2031 IF_TCP_STATINC(ifp
, synfin
);
2032 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "drop SYN FIN");
2037 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
2038 * until after ip6_savecontrol() is called and before other functions
2039 * which don't want those proto headers.
2040 * Because ip6_savecontrol() is going to parse the mbuf to
2041 * search for data to be passed up to user-land, it wants mbuf
2042 * parameters to be unchanged.
2044 drop_hdrlen
= off0
+ off
;
2046 /* Since this is an entry point for input processing of tcp packets, we
2047 * can update the tcp clock here.
2049 calculate_tcp_clock();
2052 * Record the interface where this segment arrived on; this does not
2053 * affect normal data output (for non-detached TCP) as it provides a
2054 * hint about which route and interface to use for sending in the
2055 * absence of a PCB, when scoped routing (and thus source interface
2056 * selection) are enabled.
2058 if ((m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
) || m
->m_pkthdr
.rcvif
== NULL
) {
2059 ifscope
= IFSCOPE_NONE
;
2061 ifscope
= m
->m_pkthdr
.rcvif
->if_index
;
2065 * Convert TCP protocol specific fields to host format.
2068 #if BYTE_ORDER != BIG_ENDIAN
2076 * Locate pcb for segment.
2080 isconnected
= FALSE
;
2081 isdisconnected
= FALSE
;
2084 inp
= in6_pcblookup_hash(&tcbinfo
, &ip6
->ip6_src
, th
->th_sport
,
2085 &ip6
->ip6_dst
, th
->th_dport
, 1,
2088 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
, th
->th_sport
,
2089 ip
->ip_dst
, th
->th_dport
, 1, m
->m_pkthdr
.rcvif
);
2093 * Use the interface scope information from the PCB for outbound
2094 * segments. If the PCB isn't present and if scoped routing is
2095 * enabled, tcp_respond will use the scope of the interface where
2096 * the segment arrived on.
2098 if (inp
!= NULL
&& (inp
->inp_flags
& INP_BOUND_IF
)) {
2099 ifscope
= inp
->inp_boundifp
->if_index
;
2103 * If the state is CLOSED (i.e., TCB does not exist) then
2104 * all data in the incoming segment is discarded.
2105 * If the TCB exists but is in CLOSED state, it is embryonic,
2106 * but should either do a listen or a connect soon.
2110 char dbuf
[MAX_IPv6_STR_LEN
], sbuf
[MAX_IPv6_STR_LEN
];
2113 inet_ntop(AF_INET6
, &ip6
->ip6_dst
, dbuf
, sizeof(dbuf
));
2114 inet_ntop(AF_INET6
, &ip6
->ip6_src
, sbuf
, sizeof(sbuf
));
2116 inet_ntop(AF_INET
, &ip
->ip_dst
, dbuf
, sizeof(dbuf
));
2117 inet_ntop(AF_INET
, &ip
->ip_src
, sbuf
, sizeof(sbuf
));
2119 switch (log_in_vain
) {
2121 if (thflags
& TH_SYN
) {
2123 "Connection attempt to TCP %s:%d from %s:%d\n",
2124 dbuf
, ntohs(th
->th_dport
),
2126 ntohs(th
->th_sport
));
2131 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
2132 dbuf
, ntohs(th
->th_dport
), sbuf
,
2133 ntohs(th
->th_sport
), thflags
);
2137 if ((thflags
& TH_SYN
) && !(thflags
& TH_ACK
) &&
2138 !(m
->m_flags
& (M_BCAST
| M_MCAST
)) &&
2139 ((isipv6
&& !IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
, &ip6
->ip6_src
)) ||
2140 (!isipv6
&& ip
->ip_dst
.s_addr
!= ip
->ip_src
.s_addr
))) {
2141 log_in_vain_log((LOG_INFO
,
2142 "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
2143 dbuf
, ntohs(th
->th_dport
),
2145 ntohs(th
->th_sport
)));
2153 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
!= IFT_LOOP
) {
2154 switch (blackhole
) {
2156 if (thflags
& TH_SYN
) {
2157 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "blackhole 1 syn for closed port");
2162 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "blackhole 2 closed port");
2165 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "blackhole closed port");
2170 IF_TCP_STATINC(ifp
, noconnnolist
);
2171 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "closed port");
2172 goto dropwithresetnosock
;
2174 so
= inp
->inp_socket
;
2176 /* This case shouldn't happen as the socket shouldn't be null
2177 * if inp_state isn't set to INPCB_STATE_DEAD
2178 * But just in case, we pretend we didn't find the socket if we hit this case
2179 * as this isn't cause for a panic (the socket might be leaked however)...
2183 printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp
);
2185 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "inp_socket NULL");
2190 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
2191 socket_unlock(so
, 1);
2192 inp
= NULL
; // pretend we didn't find it
2193 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "inp state WNT_STOPUSING");
2197 if (!isipv6
&& inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
2198 if (inp
->inp_faddr
.s_addr
!= ip
->ip_src
.s_addr
||
2199 inp
->inp_laddr
.s_addr
!= ip
->ip_dst
.s_addr
||
2200 inp
->inp_fport
!= th
->th_sport
||
2201 inp
->inp_lport
!= th
->th_dport
) {
2202 os_log_error(OS_LOG_DEFAULT
, "%s 5-tuple does not match: %u:%u %u:%u\n",
2204 ntohs(inp
->inp_fport
), ntohs(th
->th_sport
),
2205 ntohs(inp
->inp_lport
), ntohs(th
->th_dport
));
2206 if (findpcb_iterated
) {
2209 findpcb_iterated
= true;
2210 socket_unlock(so
, 1);
2214 } else if (isipv6
&& !IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
2215 if (!IN6_ARE_ADDR_EQUAL(&inp
->in6p_faddr
, &ip6
->ip6_src
) ||
2216 !IN6_ARE_ADDR_EQUAL(&inp
->in6p_laddr
, &ip6
->ip6_dst
) ||
2217 inp
->inp_fport
!= th
->th_sport
||
2218 inp
->inp_lport
!= th
->th_dport
) {
2219 os_log_error(OS_LOG_DEFAULT
, "%s 5-tuple does not match: %u:%u %u:%u\n",
2221 ntohs(inp
->inp_fport
), ntohs(th
->th_sport
),
2222 ntohs(inp
->inp_lport
), ntohs(th
->th_dport
));
2223 if (findpcb_iterated
) {
2226 findpcb_iterated
= true;
2227 socket_unlock(so
, 1);
2233 tp
= intotcpcb(inp
);
2235 IF_TCP_STATINC(ifp
, noconnlist
);
2236 TCP_LOG_DROP_PKT(TCP_LOG_HDR
, th
, ifp
, "tp is NULL");
2240 /* Now that we found the tcpcb, we can adjust the TCP timestamp */
2241 if (to
.to_flags
& TOF_TS
) {
2242 to
.to_tsecr
-= tp
->t_ts_offset
;
2245 TCP_LOG_TH_FLAGS(TCP_LOG_HDR
, th
, tp
, false, ifp
);
2247 if (tp
->t_state
== TCPS_CLOSED
) {
2248 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "tp state TCPS_CLOSED");
2253 if (so
->so_state
& SS_ISCONNECTED
) {
2254 // Connected TCP sockets have a fully-bound local and remote,
2255 // so the policy check doesn't need to override addresses
2256 if (!necp_socket_is_allowed_to_send_recv(inp
, ifp
, pf_tag
, NULL
, NULL
, NULL
, NULL
)) {
2257 TCP_LOG_DROP_NECP(TCP_LOG_HDR
, th
, intotcpcb(inp
), false);
2258 IF_TCP_STATINC(ifp
, badformat
);
2263 * If the proc_uuid_policy table has been updated since the last use
2264 * of the listening socket (i.e., the proc_uuid_policy_table_gencount
2265 * has been updated), the flags in the socket may be out of date.
2266 * If INP2_WANT_APP_POLICY is stale, inbound packets may
2267 * be dropped by NECP if the socket should now match a per-app
2269 * In order to avoid this refresh the proc_uuid_policy state to
2270 * potentially recalculate the socket's flags before checking
2273 (void) inp_update_policy(inp
);
2276 if (!necp_socket_is_allowed_to_send_recv_v6(inp
,
2277 th
->th_dport
, th
->th_sport
, &ip6
->ip6_dst
,
2278 &ip6
->ip6_src
, ifp
, pf_tag
, NULL
, NULL
, NULL
, NULL
)) {
2279 TCP_LOG_DROP_NECP(TCP_LOG_HDR
, th
, intotcpcb(inp
), false);
2280 IF_TCP_STATINC(ifp
, badformat
);
2284 if (!necp_socket_is_allowed_to_send_recv_v4(inp
,
2285 th
->th_dport
, th
->th_sport
, &ip
->ip_dst
, &ip
->ip_src
,
2286 ifp
, pf_tag
, NULL
, NULL
, NULL
, NULL
)) {
2287 TCP_LOG_DROP_NECP(TCP_LOG_HDR
, th
, intotcpcb(inp
), false);
2288 IF_TCP_STATINC(ifp
, badformat
);
2295 prev_t_state
= tp
->t_state
;
2297 /* If none of the FIN|SYN|RST|ACK flag is set, drop */
2298 if ((thflags
& TH_ACCEPT
) == 0) {
2299 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "rfc5961 TH_ACCEPT == 0");
2303 /* Unscale the window into a 32-bit value. */
2304 if ((thflags
& TH_SYN
) == 0) {
2305 tiwin
= th
->th_win
<< tp
->snd_scale
;
2310 /* Avoid processing packets while closing a listen socket */
2311 if (tp
->t_state
== TCPS_LISTEN
&&
2312 (so
->so_options
& SO_ACCEPTCONN
) == 0) {
2313 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "closing a listening socket");
2317 if (so
->so_options
& (SO_DEBUG
| SO_ACCEPTCONN
)) {
2319 if (so
->so_options
& SO_DEBUG
) {
2320 ostate
= tp
->t_state
;
2322 bcopy((char *)ip6
, (char *)tcp_saveipgen
,
2325 bcopy((char *)ip
, (char *)tcp_saveipgen
, sizeof(*ip
));
2330 if (so
->so_options
& SO_ACCEPTCONN
) {
2331 struct tcpcb
*tp0
= tp
;
2334 struct sockaddr_storage from
;
2335 struct sockaddr_storage to2
;
2336 struct inpcb
*oinp
= sotoinpcb(so
);
2337 struct ifnet
*head_ifscope
;
2338 unsigned int head_nocell
, head_recvanyif
,
2339 head_noexpensive
, head_awdl_unrestricted
,
2340 head_intcoproc_allowed
, head_external_port
,
2343 /* Get listener's bound-to-interface, if any */
2344 head_ifscope
= (inp
->inp_flags
& INP_BOUND_IF
) ?
2345 inp
->inp_boundifp
: NULL
;
2346 /* Get listener's no-cellular information, if any */
2347 head_nocell
= INP_NO_CELLULAR(inp
);
2348 /* Get listener's recv-any-interface, if any */
2349 head_recvanyif
= (inp
->inp_flags
& INP_RECV_ANYIF
);
2350 /* Get listener's no-expensive information, if any */
2351 head_noexpensive
= INP_NO_EXPENSIVE(inp
);
2352 head_noconstrained
= INP_NO_CONSTRAINED(inp
);
2353 head_awdl_unrestricted
= INP_AWDL_UNRESTRICTED(inp
);
2354 head_intcoproc_allowed
= INP_INTCOPROC_ALLOWED(inp
);
2355 head_external_port
= (inp
->inp_flags2
& INP2_EXTERNAL_PORT
);
2358 * If the state is LISTEN then ignore segment if it contains an RST.
2359 * If the segment contains an ACK then it is bad and send a RST.
2360 * If it does not contain a SYN then it is not interesting; drop it.
2361 * If it is from this socket, drop it, it must be forged.
2363 if ((thflags
& (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
) {
2364 IF_TCP_STATINC(ifp
, listbadsyn
);
2366 if (thflags
& TH_RST
) {
2367 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN with RST");
2370 if (thflags
& TH_ACK
) {
2371 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN with ACK");
2373 tcpstat
.tcps_badsyn
++;
2377 /* We come here if there is no SYN set */
2378 tcpstat
.tcps_badsyn
++;
2379 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "bad SYN");
2382 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
2383 if (th
->th_dport
== th
->th_sport
) {
2385 if (IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
,
2387 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "bad tuple same port");
2390 } else if (ip
->ip_dst
.s_addr
== ip
->ip_src
.s_addr
) {
2391 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "bad tuple same IPv4 address");
2396 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2397 * in_broadcast() should never return true on a received
2398 * packet with M_BCAST not set.
2400 * Packets with a multicast source address should also
2403 if (m
->m_flags
& (M_BCAST
| M_MCAST
)) {
2404 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "mbuf M_BCAST | M_MCAST");
2408 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
2409 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
2410 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "IN6_IS_ADDR_MULTICAST");
2413 } else if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
2414 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
2415 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
2416 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
)) {
2417 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "multicast or broadcast address");
2423 * If deprecated address is forbidden,
2424 * we do not accept SYN to deprecated interface
2425 * address to prevent any new inbound connection from
2426 * getting established.
2427 * When we do not accept SYN, we send a TCP RST,
2428 * with deprecated source address (instead of dropping
2429 * it). We compromise it as it is much better for peer
2430 * to send a RST, and RST will be the final packet
2433 * If we do not forbid deprecated addresses, we accept
2434 * the SYN packet. RFC 4862 forbids dropping SYN in
2437 if (isipv6
&& !ip6_use_deprecated
) {
2440 if (ip6_getdstifaddr_info(m
, NULL
,
2442 if (ia6_flags
& IN6_IFF_DEPRECATED
) {
2444 IF_TCP_STATINC(ifp
, deprecate6
);
2445 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "deprecated IPv6 address");
2450 if (so
->so_filt
|| check_cfil
) {
2452 struct sockaddr_in6
*sin6
= (struct sockaddr_in6
*)&from
;
2454 sin6
->sin6_len
= sizeof(*sin6
);
2455 sin6
->sin6_family
= AF_INET6
;
2456 sin6
->sin6_port
= th
->th_sport
;
2457 sin6
->sin6_flowinfo
= 0;
2458 sin6
->sin6_addr
= ip6
->ip6_src
;
2459 sin6
->sin6_scope_id
= 0;
2461 sin6
= (struct sockaddr_in6
*)&to2
;
2463 sin6
->sin6_len
= sizeof(struct sockaddr_in6
);
2464 sin6
->sin6_family
= AF_INET6
;
2465 sin6
->sin6_port
= th
->th_dport
;
2466 sin6
->sin6_flowinfo
= 0;
2467 sin6
->sin6_addr
= ip6
->ip6_dst
;
2468 sin6
->sin6_scope_id
= 0;
2470 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&from
;
2472 sin
->sin_len
= sizeof(*sin
);
2473 sin
->sin_family
= AF_INET
;
2474 sin
->sin_port
= th
->th_sport
;
2475 sin
->sin_addr
= ip
->ip_src
;
2477 sin
= (struct sockaddr_in
*)&to2
;
2479 sin
->sin_len
= sizeof(struct sockaddr_in
);
2480 sin
->sin_family
= AF_INET
;
2481 sin
->sin_port
= th
->th_dport
;
2482 sin
->sin_addr
= ip
->ip_dst
;
2487 so2
= sonewconn(so
, 0, (struct sockaddr
*)&from
);
2489 so2
= sonewconn(so
, 0, NULL
);
2492 tcpstat
.tcps_listendrop
++;
2493 if (tcp_dropdropablreq(so
)) {
2495 so2
= sonewconn(so
, 0, (struct sockaddr
*)&from
);
2497 so2
= sonewconn(so
, 0, NULL
);
2501 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, " listen drop");
2506 /* Point "inp" and "tp" in tandem to new socket */
2507 inp
= (struct inpcb
*)so2
->so_pcb
;
2508 tp
= intotcpcb(inp
);
2511 socket_unlock(so
, 0); /* Unlock but keep a reference on listener for now */
2516 * Mark socket as temporary until we're
2517 * committed to keeping it. The code at
2518 * ``drop'' and ``dropwithreset'' check the
2519 * flag dropsocket to see if the temporary
2520 * socket created here should be discarded.
2521 * We mark the socket as discardable until
2522 * we're committed to it below in TCPS_LISTEN.
2523 * There are some error conditions in which we
2524 * have to drop the temporary socket.
2528 * Inherit INP_BOUND_IF from listener; testing if
2529 * head_ifscope is non-NULL is sufficient, since it
2530 * can only be set to a non-zero value earlier if
2531 * the listener has such a flag set.
2533 if (head_ifscope
!= NULL
) {
2534 inp
->inp_flags
|= INP_BOUND_IF
;
2535 inp
->inp_boundifp
= head_ifscope
;
2537 inp
->inp_flags
&= ~INP_BOUND_IF
;
2540 * Inherit restrictions from listener.
2543 inp_set_nocellular(inp
);
2545 if (head_noexpensive
) {
2546 inp_set_noexpensive(inp
);
2548 if (head_noconstrained
) {
2549 inp_set_noconstrained(inp
);
2551 if (head_awdl_unrestricted
) {
2552 inp_set_awdl_unrestricted(inp
);
2554 if (head_intcoproc_allowed
) {
2555 inp_set_intcoproc_allowed(inp
);
2558 * Inherit {IN,IN6}_RECV_ANYIF from listener.
2560 if (head_recvanyif
) {
2561 inp
->inp_flags
|= INP_RECV_ANYIF
;
2563 inp
->inp_flags
&= ~INP_RECV_ANYIF
;
2566 if (head_external_port
) {
2567 inp
->inp_flags2
|= INP2_EXTERNAL_PORT
;
2570 inp
->in6p_laddr
= ip6
->ip6_dst
;
2572 inp
->inp_vflag
&= ~INP_IPV6
;
2573 inp
->inp_vflag
|= INP_IPV4
;
2574 inp
->inp_laddr
= ip
->ip_dst
;
2576 inp
->inp_lport
= th
->th_dport
;
2577 if (in_pcbinshash(inp
, 0) != 0) {
2579 * Undo the assignments above if we failed to
2580 * put the PCB on the hash lists.
2583 inp
->in6p_laddr
= in6addr_any
;
2585 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
2588 socket_lock(oso
, 0); /* release ref on parent */
2589 socket_unlock(oso
, 1);
2590 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, " in_pcbinshash failed");
2593 socket_lock(oso
, 0);
2596 * Inherit socket options from the listening
2598 * Note that in6p_inputopts are not (even
2599 * should not be) copied, since it stores
2600 * previously received options and is used to
2601 * detect if each new option is different than
2602 * the previous one and hence should be passed
2604 * If we copied in6p_inputopts, a user would
2605 * not be able to receive options just after
2606 * calling the accept system call.
2609 oinp
->inp_flags
& INP_CONTROLOPTS
;
2610 if (oinp
->in6p_outputopts
) {
2611 inp
->in6p_outputopts
=
2612 ip6_copypktopts(oinp
->in6p_outputopts
,
2616 inp
->inp_options
= ip_srcroute();
2617 inp
->inp_ip_tos
= oinp
->inp_ip_tos
;
2620 /* copy old policy into new socket's */
2621 if (sotoinpcb(oso
)->inp_sp
) {
2623 /* Is it a security hole here to silently fail to copy the policy? */
2624 if (inp
->inp_sp
!= NULL
) {
2625 error
= ipsec_init_policy(so
, &inp
->inp_sp
);
2627 if (error
!= 0 || ipsec_copy_policy(sotoinpcb(oso
)->inp_sp
, inp
->inp_sp
)) {
2628 printf("tcp_input: could not copy policy\n");
2632 /* inherit states from the listener */
2633 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
2634 struct tcpcb
*, tp
, int32_t, TCPS_LISTEN
);
2635 tp
->t_state
= TCPS_LISTEN
;
2636 tp
->t_flags
|= tp0
->t_flags
& (TF_NOPUSH
| TF_NOOPT
| TF_NODELAY
);
2637 tp
->t_flagsext
|= (tp0
->t_flagsext
& (TF_RXTFINDROP
| TF_NOTIMEWAIT
| TF_FASTOPEN
));
2638 tp
->t_keepinit
= tp0
->t_keepinit
;
2639 tp
->t_keepcnt
= tp0
->t_keepcnt
;
2640 tp
->t_keepintvl
= tp0
->t_keepintvl
;
2641 tp
->t_adaptive_wtimo
= tp0
->t_adaptive_wtimo
;
2642 tp
->t_adaptive_rtimo
= tp0
->t_adaptive_rtimo
;
2643 tp
->t_inpcb
->inp_ip_ttl
= tp0
->t_inpcb
->inp_ip_ttl
;
2644 if ((so
->so_flags
& SOF_NOTSENT_LOWAT
) != 0) {
2645 tp
->t_notsent_lowat
= tp0
->t_notsent_lowat
;
2647 tp
->t_inpcb
->inp_flags2
|=
2648 tp0
->t_inpcb
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
;
2650 /* now drop the reference on the listener */
2651 socket_unlock(oso
, 1);
2653 tcp_set_max_rwinscale(tp
, so
);
2657 int error
= cfil_sock_attach(so2
, (struct sockaddr
*)&to2
, (struct sockaddr
*)&from
,
2658 CFS_CONNECTION_DIR_IN
);
2660 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, " cfil_sock_attach failed");
2664 #endif /* CONTENT_FILTER */
2666 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
2669 socket_lock_assert_owned(so
);
2671 if (net_mpklog_enabled
&& (m
->m_pkthdr
.rcvif
->if_xflags
& IFXF_MPK_LOG
)) {
2672 MPKL_TCP_INPUT(tcp_mpkl_log_object
,
2673 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
2674 th
->th_seq
, th
->th_ack
, tlen
, thflags
,
2675 so
->last_pid
, so
->so_log_seqn
++);
2678 if (tp
->t_state
== TCPS_ESTABLISHED
&& tlen
> 0) {
2680 * Evaluate the rate of arrival of packets to see if the
2681 * receiver can reduce the ack traffic. The algorithm to
2682 * stretch acks will be enabled if the connection meets
2683 * certain criteria defined in tcp_stretch_ack_enable function.
2685 if ((tp
->t_flagsext
& TF_RCVUNACK_WAITSS
) != 0) {
2686 TCP_INC_VAR(tp
->rcv_waitforss
, segment_count
);
2688 if (tcp_stretch_ack_enable(tp
, thflags
)) {
2689 tp
->t_flags
|= TF_STRETCHACK
;
2690 tp
->t_flagsext
&= ~(TF_RCVUNACK_WAITSS
);
2691 tp
->rcv_waitforss
= 0;
2693 tp
->t_flags
&= ~(TF_STRETCHACK
);
2695 if (TSTMP_GT(tp
->rcv_unackwin
- (tcp_rcvunackwin
>> 1), tcp_now
)) {
2696 tp
->rcv_by_unackhalfwin
+= (tlen
+ off
);
2697 tp
->rcv_by_unackwin
+= (tlen
+ off
);
2699 tp
->rcv_unackwin
= tcp_now
+ tcp_rcvunackwin
;
2700 tp
->rcv_by_unackwin
= tp
->rcv_by_unackhalfwin
+ tlen
+ off
;
2701 tp
->rcv_by_unackhalfwin
= tlen
+ off
;
2706 * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
2707 * bother doing extensive checks for state and whatnot.
2709 if (thflags
& TH_CWR
) {
2710 tp
->ecn_flags
&= ~TE_SENDECE
;
2711 tp
->t_ecn_recv_cwr
++;
2715 * Explicit Congestion Notification - Flag that we need to send ECT if
2716 * + The IP Congestion experienced flag was set.
2717 * + Socket is in established state
2718 * + We negotiated ECN in the TCP setup
2719 * + This isn't a pure ack (tlen > 0)
2720 * + The data is in the valid window
2722 * TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
2724 if (ip_ecn
== IPTOS_ECN_CE
&& tp
->t_state
== TCPS_ESTABLISHED
&&
2725 TCP_ECN_ENABLED(tp
) && tlen
> 0 &&
2726 SEQ_GEQ(th
->th_seq
, tp
->last_ack_sent
) &&
2727 SEQ_LT(th
->th_seq
, tp
->last_ack_sent
+ tp
->rcv_wnd
)) {
2728 tp
->t_ecn_recv_ce
++;
2729 tcpstat
.tcps_ecn_recv_ce
++;
2730 INP_INC_IFNET_STAT(inp
, ecn_recv_ce
);
2731 /* Mark this connection as it received CE from network */
2732 tp
->ecn_flags
|= TE_RECV_ECN_CE
;
2733 tp
->ecn_flags
|= TE_SENDECE
;
2737 * If we received an explicit notification of congestion in
2738 * ip tos ecn bits or by the CWR bit in TCP header flags, reset
2739 * the ack-stretching state. We need to handle ECN notification if
2740 * an ECN setup SYN was sent even once.
2742 if (tp
->t_state
== TCPS_ESTABLISHED
&&
2743 (tp
->ecn_flags
& TE_SETUPSENT
) &&
2744 (ip_ecn
== IPTOS_ECN_CE
|| (thflags
& TH_CWR
))) {
2745 tcp_reset_stretch_ack(tp
);
2746 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
2747 CLEAR_IAJ_STATE(tp
);
2750 if (ip_ecn
== IPTOS_ECN_CE
&& tp
->t_state
== TCPS_ESTABLISHED
&&
2751 !TCP_ECN_ENABLED(tp
) && !(tp
->ecn_flags
& TE_CEHEURI_SET
)) {
2752 tcpstat
.tcps_ecn_fallback_ce
++;
2753 tcp_heuristic_ecn_aggressive(tp
);
2754 tp
->ecn_flags
|= TE_CEHEURI_SET
;
2757 if (tp
->t_state
== TCPS_ESTABLISHED
&& TCP_ECN_ENABLED(tp
) &&
2758 ip_ecn
== IPTOS_ECN_CE
&& !(tp
->ecn_flags
& TE_CEHEURI_SET
)) {
2759 if (inp
->inp_stat
->rxpackets
< ECN_MIN_CE_PROBES
) {
2760 tp
->t_ecn_recv_ce_pkt
++;
2761 } else if (tp
->t_ecn_recv_ce_pkt
> ECN_MAX_CE_RATIO
) {
2762 tcpstat
.tcps_ecn_fallback_ce
++;
2763 tcp_heuristic_ecn_aggressive(tp
);
2764 tp
->ecn_flags
|= TE_CEHEURI_SET
;
2765 INP_INC_IFNET_STAT(inp
, ecn_fallback_ce
);
2767 /* We tracked the first ECN_MIN_CE_PROBES segments, we
2768 * now know that the path is good.
2770 tp
->ecn_flags
|= TE_CEHEURI_SET
;
2774 /* Update rcvtime as a new segment was received on the connection */
2775 tp
->t_rcvtime
= tcp_now
;
2778 * Segment received on connection.
2779 * Reset idle time and keep-alive timer.
2781 if (TCPS_HAVEESTABLISHED(tp
->t_state
)) {
2782 tcp_keepalive_reset(tp
);
2785 mptcp_reset_keepalive(tp
);
2790 * Process options if not in LISTEN state,
2791 * else do it below (after getting remote address).
2793 if (tp
->t_state
!= TCPS_LISTEN
&& optp
) {
2794 tcp_dooptions(tp
, optp
, optlen
, th
, &to
);
2797 if (tp
->t_state
!= TCPS_LISTEN
&& (so
->so_flags
& SOF_MP_SUBFLOW
) &&
2798 mptcp_input_preproc(tp
, m
, th
, drop_hdrlen
) != 0) {
2799 tp
->t_flags
|= TF_ACKNOW
;
2800 (void) tcp_output(tp
);
2801 tcp_check_timer_state(tp
);
2802 socket_unlock(so
, 1);
2806 if (tp
->t_state
== TCPS_SYN_SENT
&& (thflags
& TH_SYN
)) {
2807 if (!(thflags
& TH_ACK
) ||
2808 (SEQ_GT(th
->th_ack
, tp
->iss
) &&
2809 SEQ_LEQ(th
->th_ack
, tp
->snd_max
))) {
2810 tcp_finalize_options(tp
, &to
, ifscope
);
2816 * Compute inter-packet arrival jitter. According to RFC 3550,
2817 * inter-packet arrival jitter is defined as the difference in
2818 * packet spacing at the receiver compared to the sender for a
2819 * pair of packets. When two packets of maximum segment size come
2820 * one after the other with consecutive sequence numbers, we
2821 * consider them as packets sent together at the sender and use
2822 * them as a pair to compute inter-packet arrival jitter. This
2823 * metric indicates the delay induced by the network components due
2824 * to queuing in edge/access routers.
2826 if (tp
->t_state
== TCPS_ESTABLISHED
&&
2827 (thflags
& (TH_SYN
| TH_FIN
| TH_RST
| TH_URG
| TH_ACK
| TH_ECE
| TH_PUSH
)) == TH_ACK
&&
2828 ((tp
->t_flags
& TF_NEEDFIN
) == 0) &&
2829 ((to
.to_flags
& TOF_TS
) == 0 ||
2830 TSTMP_GEQ(to
.to_tsval
, tp
->ts_recent
)) &&
2831 th
->th_seq
== tp
->rcv_nxt
&& LIST_EMPTY(&tp
->t_segq
)) {
2832 int seg_size
= tlen
;
2833 if (tp
->iaj_pktcnt
<= IAJ_IGNORE_PKTCNT
) {
2834 TCP_INC_VAR(tp
->iaj_pktcnt
, segment_count
);
2837 if (tp
->iaj_size
== 0 || seg_size
> tp
->iaj_size
||
2838 (seg_size
== tp
->iaj_size
&& tp
->iaj_rcv_ts
== 0)) {
2840 * State related to inter-arrival jitter is
2841 * uninitialized or we are trying to find a good
2842 * first packet to start computing the metric
2844 update_iaj_state(tp
, seg_size
, 0);
2846 if (seg_size
== tp
->iaj_size
) {
2848 * Compute inter-arrival jitter taking
2849 * this packet as the second packet
2853 if (seg_size
< tp
->iaj_size
) {
2855 * There is a smaller packet in the stream.
2856 * Some times the maximum size supported
2857 * on a path can change if there is a new
2858 * link with smaller MTU. The receiver will
2859 * not know about this change. If there
2860 * are too many packets smaller than
2861 * iaj_size, we try to learn the iaj_size
2864 TCP_INC_VAR(tp
->iaj_small_pkt
, segment_count
);
2865 if (tp
->iaj_small_pkt
> RESET_IAJ_SIZE_THRESH
) {
2866 update_iaj_state(tp
, seg_size
, 1);
2868 CLEAR_IAJ_STATE(tp
);
2871 update_iaj_state(tp
, seg_size
, 0);
2875 CLEAR_IAJ_STATE(tp
);
2877 #endif /* TRAFFIC_MGT */
2880 * Header prediction: check for the two common cases
2881 * of a uni-directional data xfer. If the packet has
2882 * no control flags, is in-sequence, the window didn't
2883 * change and we're not retransmitting, it's a
2884 * candidate. If the length is zero and the ack moved
2885 * forward, we're the sender side of the xfer. Just
2886 * free the data acked & wake any higher level process
2887 * that was blocked waiting for space. If the length
2888 * is non-zero and the ack didn't move, we're the
2889 * receiver side. If we're getting packets in-order
2890 * (the reassembly queue is empty), add the data to
2891 * the socket buffer and note that we need a delayed ack.
2892 * Make sure that the hidden state-flags are also off.
2893 * Since we check for TCPS_ESTABLISHED above, it can only
2896 if (tp
->t_state
== TCPS_ESTABLISHED
&&
2897 !(so
->so_state
& SS_CANTRCVMORE
) &&
2898 (thflags
& TH_FLAGS
) == TH_ACK
&&
2899 ((tp
->t_flags
& TF_NEEDFIN
) == 0) &&
2900 ((to
.to_flags
& TOF_TS
) == 0 ||
2901 TSTMP_GEQ(to
.to_tsval
, tp
->ts_recent
)) &&
2902 th
->th_seq
== tp
->rcv_nxt
&&
2903 tiwin
&& tiwin
== tp
->snd_wnd
&&
2904 tp
->snd_nxt
== tp
->snd_max
) {
2906 * If last ACK falls within this segment's sequence numbers,
2907 * record the timestamp.
2908 * NOTE that the test is modified according to the latest
2909 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2911 if ((to
.to_flags
& TOF_TS
) != 0 &&
2912 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
2913 tp
->ts_recent_age
= tcp_now
;
2914 tp
->ts_recent
= to
.to_tsval
;
2918 if (SEQ_GT(th
->th_ack
, tp
->snd_una
) &&
2919 SEQ_LEQ(th
->th_ack
, tp
->snd_max
) &&
2920 tp
->snd_cwnd
>= tp
->snd_ssthresh
&&
2921 (!IN_FASTRECOVERY(tp
) &&
2922 ((!(SACK_ENABLED(tp
)) &&
2923 tp
->t_dupacks
< tp
->t_rexmtthresh
) ||
2924 (SACK_ENABLED(tp
) && to
.to_nsacks
== 0 &&
2925 TAILQ_EMPTY(&tp
->snd_holes
))))) {
2927 * this is a pure ack for outstanding data.
2929 ++tcpstat
.tcps_predack
;
2931 tcp_bad_rexmt_check(tp
, th
, &to
);
2933 /* Recalculate the RTT */
2934 tcp_compute_rtt(tp
, &to
, th
);
2936 VERIFY(SEQ_GEQ(th
->th_ack
, tp
->snd_una
));
2937 acked
= BYTES_ACKED(th
, tp
);
2938 tcpstat
.tcps_rcvackpack
++;
2939 tcpstat
.tcps_rcvackbyte
+= acked
;
2942 * Handle an ack that is in sequence during
2943 * congestion avoidance phase. The
2944 * calculations in this function
2945 * assume that snd_una is not updated yet.
2947 if (CC_ALGO(tp
)->congestion_avd
!= NULL
) {
2948 CC_ALGO(tp
)->congestion_avd(tp
, th
);
2950 tcp_ccdbg_trace(tp
, th
, TCP_CC_INSEQ_ACK_RCVD
);
2951 sbdrop(&so
->so_snd
, acked
);
2952 tcp_sbsnd_trim(&so
->so_snd
);
2954 if (SEQ_GT(tp
->snd_una
, tp
->snd_recover
) &&
2955 SEQ_LEQ(th
->th_ack
, tp
->snd_recover
)) {
2956 tp
->snd_recover
= th
->th_ack
- 1;
2959 tcp_update_snd_una(tp
, th
->th_ack
);
2961 TCP_RESET_REXMT_STATE(tp
);
2964 * pull snd_wl2 up to prevent seq wrap relative
2967 tp
->snd_wl2
= th
->th_ack
;
2969 if (tp
->t_dupacks
> 0) {
2971 tp
->t_rexmtthresh
= tcprexmtthresh
;
2972 tp
->t_new_dupacks
= 0;
2975 tp
->sackhint
.sack_bytes_acked
= 0;
2978 * If all outstanding data are acked, stop
2979 * retransmit timer, otherwise restart timer
2980 * using current (possibly backed-off) value.
2981 * If process is waiting for space,
2982 * wakeup/selwakeup/signal. If data
2983 * are ready to send, let tcp_output
2984 * decide between more output or persist.
2986 if (tp
->snd_una
== tp
->snd_max
) {
2987 tp
->t_timer
[TCPT_REXMT
] = 0;
2988 tp
->t_timer
[TCPT_PTO
] = 0;
2989 } else if (tp
->t_timer
[TCPT_PERSIST
] == 0) {
2990 tp
->t_timer
[TCPT_REXMT
] = OFFSET_FROM_START(tp
, tp
->t_rxtcur
);
2992 if (!SLIST_EMPTY(&tp
->t_rxt_segments
) &&
2993 !TCP_DSACK_SEQ_IN_WINDOW(tp
,
2994 tp
->t_dsack_lastuna
, tp
->snd_una
)) {
2995 tcp_rxtseg_clean(tp
);
2998 if ((tp
->t_flagsext
& TF_MEASURESNDBW
) != 0 &&
2999 tp
->t_bwmeas
!= NULL
) {
3000 tcp_bwmeas_check(tp
);
3004 if (!SLIST_EMPTY(&tp
->t_notify_ack
)) {
3005 tcp_notify_acknowledgement(tp
, so
);
3008 if ((so
->so_snd
.sb_cc
) || (tp
->t_flags
& TF_ACKNOW
)) {
3009 (void) tcp_output(tp
);
3012 tcp_tfo_rcv_ack(tp
, th
);
3016 tcp_check_timer_state(tp
);
3018 tcp_handle_wakeup(so
, read_wakeup
, write_wakeup
);
3020 socket_unlock(so
, 1);
3021 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
3024 } else if (th
->th_ack
== tp
->snd_una
&& LIST_EMPTY(&tp
->t_segq
) &&
3025 tlen
<= tcp_sbspace(tp
)) {
3027 * this is a pure, in-sequence data packet
3028 * with nothing on the reassembly queue and
3029 * we have enough buffer space to take it.
3032 /* Clean receiver SACK report if present */
3033 if (SACK_ENABLED(tp
) && tp
->rcv_numsacks
) {
3034 tcp_clean_sackreport(tp
);
3036 ++tcpstat
.tcps_preddat
;
3037 tp
->rcv_nxt
+= tlen
;
3039 * Pull snd_wl1 up to prevent seq wrap relative to
3042 tp
->snd_wl1
= th
->th_seq
;
3044 * Pull rcv_up up to prevent seq wrap relative to
3047 tp
->rcv_up
= tp
->rcv_nxt
;
3048 TCP_INC_VAR(tcpstat
.tcps_rcvpack
, segment_count
);
3049 tcpstat
.tcps_rcvbyte
+= tlen
;
3050 if (nstat_collect
) {
3051 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
3053 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
,
3055 inp_set_activity_bitmap(inp
);
3059 * Calculate the RTT on the receiver only if the
3060 * connection is in streaming mode and the last
3061 * packet was not an end-of-write
3063 if (tp
->t_flags
& TF_STREAMING_ON
) {
3064 tcp_compute_rtt(tp
, &to
, th
);
3067 tcp_sbrcv_grow(tp
, &so
->so_rcv
, &to
, tlen
);
3070 * Add data to socket buffer.
3072 so_recv_data_stat(so
, m
, 0);
3073 m_adj(m
, drop_hdrlen
); /* delayed header drop */
3076 memcpy(&saved_hdr
, ip6
, sizeof(struct ip6_hdr
));
3077 ip6
= (struct ip6_hdr
*)&saved_hdr
[0];
3079 memcpy(&saved_hdr
, ip
, ip
->ip_hl
<< 2);
3080 ip
= (struct ip
*)&saved_hdr
[0];
3082 memcpy(&saved_tcphdr
, th
, sizeof(struct tcphdr
));
3084 if (th
->th_flags
& TH_PUSH
) {
3085 tp
->t_flagsext
|= TF_LAST_IS_PSH
;
3087 tp
->t_flagsext
&= ~TF_LAST_IS_PSH
;
3090 if (sbappendstream_rcvdemux(so
, m
)) {
3091 mptcp_handle_input(so
);
3097 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
3098 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
3099 th
->th_seq
, th
->th_ack
, th
->th_win
);
3101 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
3102 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
3103 th
->th_seq
, th
->th_ack
, th
->th_win
);
3105 TCP_INC_VAR(tp
->t_unacksegs
, segment_count
);
3106 if (DELAY_ACK(tp
, th
)) {
3107 if ((tp
->t_flags
& TF_DELACK
) == 0) {
3108 tp
->t_flags
|= TF_DELACK
;
3109 tp
->t_timer
[TCPT_DELACK
] = OFFSET_FROM_START(tp
, tcp_delack
);
3112 tp
->t_flags
|= TF_ACKNOW
;
3116 tcp_adaptive_rwtimo_check(tp
, tlen
);
3119 tcp_tfo_rcv_data(tp
);
3122 tcp_check_timer_state(tp
);
3124 tcp_handle_wakeup(so
, read_wakeup
, write_wakeup
);
3126 socket_unlock(so
, 1);
3127 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
3133 * Calculate amount of space in receive window,
3134 * and then do TCP input processing.
3135 * Receive window is amount of space in rcv queue,
3136 * but not less than advertised window.
3138 socket_lock_assert_owned(so
);
3139 win
= tcp_sbspace(tp
);
3142 } else { /* clip rcv window to 4K for modems */
3143 if (tp
->t_flags
& TF_SLOWLINK
&& slowlink_wsize
> 0) {
3144 win
= min(win
, slowlink_wsize
);
3147 tp
->rcv_wnd
= imax(win
, (int)(tp
->rcv_adv
- tp
->rcv_nxt
));
3150 * Ensure that the subflow receive window isn't greater
3151 * than the connection level receive window.
3153 if ((tp
->t_mpflags
& TMPF_MPTCP_TRUE
) && (mp_tp
= tptomptp(tp
))) {
3154 socket_lock_assert_owned(mptetoso(mp_tp
->mpt_mpte
));
3155 int64_t recwin_conn
= (int64_t)(mp_tp
->mpt_rcvadv
- mp_tp
->mpt_rcvnxt
);
3157 VERIFY(recwin_conn
< INT32_MAX
&& recwin_conn
> INT32_MIN
);
3158 if (recwin_conn
> 0 && tp
->rcv_wnd
> (uint32_t)recwin_conn
) {
3159 tp
->rcv_wnd
= (uint32_t)recwin_conn
;
3160 tcpstat
.tcps_mp_reducedwin
++;
3165 switch (tp
->t_state
) {
3167 * Initialize tp->rcv_nxt, and tp->irs, select an initial
3168 * tp->iss, and send a segment:
3169 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3170 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
3171 * Fill in remote peer address fields if not previously specified.
3172 * Enter SYN_RECEIVED state, and process any other fields of this
3173 * segment in this state.
3176 struct sockaddr_in
*sin
;
3177 struct sockaddr_in6
*sin6
;
3179 socket_lock_assert_owned(so
);
3181 /* Clear the logging flags inherited from the listening socket */
3182 tp
->t_log_flags
= 0;
3183 tp
->t_flagsext
&= ~TF_LOGGED_CONN_SUMMARY
;
3186 MALLOC(sin6
, struct sockaddr_in6
*, sizeof *sin6
,
3187 M_SONAME
, M_NOWAIT
);
3189 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "LISTEN malloc M_SONAME failed");
3192 bzero(sin6
, sizeof(*sin6
));
3193 sin6
->sin6_family
= AF_INET6
;
3194 sin6
->sin6_len
= sizeof(*sin6
);
3195 sin6
->sin6_addr
= ip6
->ip6_src
;
3196 sin6
->sin6_port
= th
->th_sport
;
3197 laddr6
= inp
->in6p_laddr
;
3198 if (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
3199 inp
->in6p_laddr
= ip6
->ip6_dst
;
3201 if (in6_pcbconnect(inp
, (struct sockaddr
*)sin6
,
3203 inp
->in6p_laddr
= laddr6
;
3204 FREE(sin6
, M_SONAME
);
3205 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, " LISTEN in6_pcbconnect failed");
3208 FREE(sin6
, M_SONAME
);
3210 socket_lock_assert_owned(so
);
3211 MALLOC(sin
, struct sockaddr_in
*, sizeof *sin
, M_SONAME
,
3214 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "LISTEN malloc M_SONAME failed");
3217 sin
->sin_family
= AF_INET
;
3218 sin
->sin_len
= sizeof(*sin
);
3219 sin
->sin_addr
= ip
->ip_src
;
3220 sin
->sin_port
= th
->th_sport
;
3221 bzero((caddr_t
)sin
->sin_zero
, sizeof(sin
->sin_zero
));
3222 laddr
= inp
->inp_laddr
;
3223 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
3224 inp
->inp_laddr
= ip
->ip_dst
;
3226 if (in_pcbconnect(inp
, (struct sockaddr
*)sin
, kernel_proc
,
3227 IFSCOPE_NONE
, NULL
)) {
3228 inp
->inp_laddr
= laddr
;
3229 FREE(sin
, M_SONAME
);
3230 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, " LISTEN in_pcbconnect failed");
3233 FREE(sin
, M_SONAME
);
3236 tcp_dooptions(tp
, optp
, optlen
, th
, &to
);
3237 tcp_finalize_options(tp
, &to
, ifscope
);
3239 if (tfo_enabled(tp
) && tcp_tfo_syn(tp
, &to
)) {
3246 tp
->iss
= tcp_new_isn(tp
);
3248 tp
->irs
= th
->th_seq
;
3249 tcp_sendseqinit(tp
);
3251 tp
->snd_recover
= tp
->snd_una
;
3253 * Initialization of the tcpcb for transaction;
3254 * set SND.WND = SEG.WND,
3255 * initialize CCsend and CCrecv.
3257 tp
->snd_wnd
= tiwin
; /* initial send-window */
3258 tp
->max_sndwnd
= tp
->snd_wnd
;
3259 tp
->t_flags
|= TF_ACKNOW
;
3260 tp
->t_unacksegs
= 0;
3261 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
3262 struct tcpcb
*, tp
, int32_t, TCPS_SYN_RECEIVED
);
3263 tp
->t_state
= TCPS_SYN_RECEIVED
;
3264 tp
->t_timer
[TCPT_KEEP
] = OFFSET_FROM_START(tp
,
3265 TCP_CONN_KEEPINIT(tp
));
3266 tp
->t_connect_time
= tcp_now
;
3267 dropsocket
= 0; /* committed to socket */
3269 if (inp
->inp_flowhash
== 0) {
3270 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
3272 /* update flowinfo - RFC 6437 */
3273 if (inp
->inp_flow
== 0 &&
3274 inp
->in6p_flags
& IN6P_AUTOFLOWLABEL
) {
3275 inp
->inp_flow
&= ~IPV6_FLOWLABEL_MASK
;
3277 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK
);
3280 /* reset the incomp processing flag */
3281 so
->so_flags
&= ~(SOF_INCOMP_INPROGRESS
);
3282 tcpstat
.tcps_accepts
++;
3283 if ((thflags
& (TH_ECE
| TH_CWR
)) == (TH_ECE
| TH_CWR
)) {
3285 tp
->ecn_flags
|= (TE_SETUPRECEIVED
| TE_SENDIPECT
);
3289 * The address and connection state are finalized
3291 TCP_LOG_CONNECT(tp
, false, 0);
3293 tcp_add_fsw_flow(tp
, ifp
);
3299 * If the state is SYN_RECEIVED and the seg contains an ACK,
3300 * but not for our SYN/ACK, send a RST.
3302 case TCPS_SYN_RECEIVED
:
3303 if ((thflags
& TH_ACK
) &&
3304 (SEQ_LEQ(th
->th_ack
, tp
->snd_una
) ||
3305 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
3306 IF_TCP_STATINC(ifp
, ooopacket
);
3307 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN_RECEIVED bad ACK");
3312 * In SYN_RECEIVED state, if we recv some SYNS with
3313 * window scale and others without, window scaling should
3314 * be disabled. Otherwise the window advertised will be
3315 * lower if we assume scaling and the other end does not.
3317 if ((thflags
& TH_SYN
) &&
3318 (tp
->irs
== th
->th_seq
) &&
3319 !(to
.to_flags
& TOF_SCALE
)) {
3320 tp
->t_flags
&= ~TF_RCVD_SCALE
;
3325 * If the state is SYN_SENT:
3326 * if seg contains an ACK, but not for our SYN, drop the input.
3327 * if seg contains a RST, then drop the connection.
3328 * if seg does not contain SYN, then drop it.
3329 * Otherwise this is an acceptable SYN segment
3330 * initialize tp->rcv_nxt and tp->irs
3331 * if seg contains ack then advance tp->snd_una
3332 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
3333 * arrange for segment to be acked (eventually)
3334 * continue processing rest of data/controls, beginning with URG
3337 if ((thflags
& TH_ACK
) &&
3338 (SEQ_LEQ(th
->th_ack
, tp
->iss
) ||
3339 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
3340 IF_TCP_STATINC(ifp
, ooopacket
);
3341 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN_SENT bad ACK");
3344 if (thflags
& TH_RST
) {
3345 if ((thflags
& TH_ACK
) != 0) {
3346 if (tfo_enabled(tp
) &&
3347 !(tp
->t_flagsext
& TF_FASTOPEN_FORCE_ENABLE
)) {
3348 tcp_heuristic_tfo_rst(tp
);
3350 if ((tp
->ecn_flags
& (TE_SETUPSENT
| TE_RCVD_SYN_RST
)) == TE_SETUPSENT
) {
3352 * On local connections, send
3353 * non-ECN syn one time before
3354 * dropping the connection
3356 if (tp
->t_flags
& TF_LOCAL
) {
3357 tp
->ecn_flags
|= TE_RCVD_SYN_RST
;
3360 tcp_heuristic_ecn_synrst(tp
);
3364 (SO_FILT_HINT_LOCKED
|
3365 SO_FILT_HINT_CONNRESET
));
3366 tp
= tcp_drop(tp
, ECONNREFUSED
);
3368 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN_SENT got RST");
3371 if ((thflags
& TH_SYN
) == 0) {
3372 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN_SENT no SYN");
3375 tp
->snd_wnd
= th
->th_win
; /* initial send window */
3376 tp
->max_sndwnd
= tp
->snd_wnd
;
3378 tp
->irs
= th
->th_seq
;
3380 if (thflags
& TH_ACK
) {
3381 tcpstat
.tcps_connects
++;
3383 if ((thflags
& (TH_ECE
| TH_CWR
)) == (TH_ECE
)) {
3384 /* ECN-setup SYN-ACK */
3385 tp
->ecn_flags
|= TE_SETUPRECEIVED
;
3386 if (TCP_ECN_ENABLED(tp
)) {
3387 tcp_heuristic_ecn_success(tp
);
3388 tcpstat
.tcps_ecn_client_success
++;
3391 if (tp
->ecn_flags
& TE_SETUPSENT
&&
3392 tp
->t_rxtshift
== 0) {
3393 tcp_heuristic_ecn_success(tp
);
3394 tcpstat
.tcps_ecn_not_supported
++;
3396 if (tp
->ecn_flags
& TE_SETUPSENT
&&
3397 tp
->t_rxtshift
> 0) {
3398 tcp_heuristic_ecn_loss(tp
);
3401 /* non-ECN-setup SYN-ACK */
3402 tp
->ecn_flags
&= ~TE_SENDIPECT
;
3405 /* Do window scaling on this connection? */
3406 if (TCP_WINDOW_SCALE_ENABLED(tp
)) {
3407 tp
->snd_scale
= tp
->requested_s_scale
;
3408 tp
->rcv_scale
= tp
->request_r_scale
;
3411 tp
->rcv_adv
+= min(tp
->rcv_wnd
, TCP_MAXWIN
<< tp
->rcv_scale
);
3412 tp
->snd_una
++; /* SYN is acked */
3413 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
)) {
3414 tp
->snd_nxt
= tp
->snd_una
;
3418 * We have sent more in the SYN than what is being
3419 * acked. (e.g., TFO)
3420 * We should restart the sending from what the receiver
3421 * has acknowledged immediately.
3423 if (SEQ_GT(tp
->snd_nxt
, th
->th_ack
)) {
3425 * rdar://problem/33214601
3426 * There is a middlebox that acks all but one
3427 * byte and still drops the data.
3429 if (!(tp
->t_flagsext
& TF_FASTOPEN_FORCE_ENABLE
) &&
3430 (tp
->t_tfo_stats
& TFO_S_SYN_DATA_SENT
) &&
3431 tp
->snd_max
== th
->th_ack
+ 1 &&
3432 tp
->snd_max
> tp
->snd_una
+ 1) {
3433 tcp_heuristic_tfo_middlebox(tp
);
3435 so
->so_error
= ENODATA
;
3437 (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_MP_SUB_ERROR
));
3439 tp
->t_tfo_stats
|= TFO_S_ONE_BYTE_PROXY
;
3442 tp
->snd_max
= tp
->snd_nxt
= th
->th_ack
;
3446 * If there's data, delay ACK; if there's also a FIN
3447 * ACKNOW will be turned on later.
3449 TCP_INC_VAR(tp
->t_unacksegs
, segment_count
);
3450 if (DELAY_ACK(tp
, th
) && tlen
!= 0) {
3451 if ((tp
->t_flags
& TF_DELACK
) == 0) {
3452 tp
->t_flags
|= TF_DELACK
;
3453 tp
->t_timer
[TCPT_DELACK
] = OFFSET_FROM_START(tp
, tcp_delack
);
3456 tp
->t_flags
|= TF_ACKNOW
;
3459 * Received <SYN,ACK> in SYN_SENT[*] state.
3461 * SYN_SENT --> ESTABLISHED
3462 * SYN_SENT* --> FIN_WAIT_1
3464 tp
->t_starttime
= tcp_now
;
3465 tcp_sbrcv_tstmp_check(tp
);
3466 if (tp
->t_flags
& TF_NEEDFIN
) {
3467 DTRACE_TCP4(state__change
, void, NULL
,
3468 struct inpcb
*, inp
,
3469 struct tcpcb
*, tp
, int32_t,
3471 tp
->t_state
= TCPS_FIN_WAIT_1
;
3472 tp
->t_flags
&= ~TF_NEEDFIN
;
3475 TCP_LOG_CONNECTION_SUMMARY(tp
);
3477 DTRACE_TCP4(state__change
, void, NULL
,
3478 struct inpcb
*, inp
, struct tcpcb
*,
3479 tp
, int32_t, TCPS_ESTABLISHED
);
3480 tp
->t_state
= TCPS_ESTABLISHED
;
3481 tp
->t_timer
[TCPT_KEEP
] =
3482 OFFSET_FROM_START(tp
,
3483 TCP_CONN_KEEPIDLE(tp
));
3484 if (nstat_collect
) {
3485 nstat_route_connect_success(
3486 inp
->inp_route
.ro_rt
);
3489 * The SYN is acknowledged but una is not
3490 * updated yet. So pass the value of
3491 * ack to compute sndbytes correctly
3493 inp_count_sndbytes(inp
, th
->th_ack
);
3495 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
3498 * Do not send the connect notification for additional
3499 * subflows until ACK for 3-way handshake arrives.
3501 if ((!(tp
->t_mpflags
& TMPF_MPTCP_TRUE
)) &&
3502 (tp
->t_mpflags
& TMPF_SENT_JOIN
)) {
3503 isconnected
= FALSE
;
3508 if ((tp
->t_tfo_flags
& (TFO_F_COOKIE_REQ
| TFO_F_COOKIE_SENT
)) ||
3509 (tp
->t_tfo_stats
& TFO_S_SYN_DATA_SENT
)) {
3510 tcp_tfo_synack(tp
, &to
);
3512 if ((tp
->t_tfo_stats
& TFO_S_SYN_DATA_SENT
) &&
3513 SEQ_LT(tp
->snd_una
, th
->th_ack
)) {
3514 tp
->t_tfo_stats
|= TFO_S_SYN_DATA_ACKED
;
3515 tcpstat
.tcps_tfo_syn_data_acked
++;
3517 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3518 so
->so_flags1
|= SOF1_TFO_REWIND
;
3521 tcp_tfo_rcv_probe(tp
, tlen
);
3526 * Received initial SYN in SYN-SENT[*] state => simul-
3528 * Do 3-way handshake:
3529 * SYN-SENT -> SYN-RECEIVED
3530 * SYN-SENT* -> SYN-RECEIVED*
3532 tp
->t_flags
|= TF_ACKNOW
;
3533 tp
->t_timer
[TCPT_REXMT
] = 0;
3534 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
3535 struct tcpcb
*, tp
, int32_t, TCPS_SYN_RECEIVED
);
3536 tp
->t_state
= TCPS_SYN_RECEIVED
;
3539 * During simultaneous open, TFO should not be used.
3540 * So, we disable it here, to prevent that data gets
3541 * sent on the SYN/ACK.
3543 tcp_disable_tfo(tp
);
3548 * Advance th->th_seq to correspond to first data byte.
3549 * If data, trim to stay within window,
3550 * dropping FIN if necessary.
3553 if (tlen
> tp
->rcv_wnd
) {
3554 todrop
= tlen
- tp
->rcv_wnd
;
3558 tcpstat
.tcps_rcvpackafterwin
++;
3559 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
3561 tp
->snd_wl1
= th
->th_seq
- 1;
3562 tp
->rcv_up
= th
->th_seq
;
3564 * Client side of transaction: already sent SYN and data.
3565 * If the remote host used T/TCP to validate the SYN,
3566 * our data will be ACK'd; if so, enter normal data segment
3567 * processing in the middle of step 5, ack processing.
3568 * Otherwise, goto step 6.
3570 if (thflags
& TH_ACK
) {
3575 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
3576 * do normal processing.
3578 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
3582 case TCPS_TIME_WAIT
:
3583 break; /* continue normal processing */
3585 /* Received a SYN while connection is already established.
3586 * This is a "half open connection and other anomalies" described
3587 * in RFC793 page 34, send an ACK so the remote reset the connection
3588 * or recovers by adjusting its sequence numbering. Sending an ACK is
3589 * in accordance with RFC 5961 Section 4.2
3591 case TCPS_ESTABLISHED
:
3592 if (thflags
& TH_SYN
&& tlen
<= 0) {
3593 /* Drop the packet silently if we have reached the limit */
3594 if (tcp_is_ack_ratelimited(tp
)) {
3595 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "ESTABLISHED rfc5961 rate limited");
3598 /* Send challenge ACK */
3599 tcpstat
.tcps_synchallenge
++;
3600 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "ESTABLISHED rfc5961 challenge ACK");
3608 * States other than LISTEN or SYN_SENT.
3609 * First check the RST flag and sequence number since reset segments
3610 * are exempt from the timestamp and connection count tests. This
3611 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
3612 * below which allowed reset segments in half the sequence space
3613 * to fall though and be processed (which gives forged reset
3614 * segments with a random sequence number a 50 percent chance of
3615 * killing a connection).
3616 * Then check timestamp, if present.
3617 * Then check the connection count, if present.
3618 * Then check that at least some bytes of segment are within
3619 * receive window. If segment begins before rcv_nxt,
3620 * drop leading data (and SYN); if nothing left, just ack.
3623 * If the RST bit is set, check the sequence number to see
3624 * if this is a valid reset segment.
3626 * In all states except SYN-SENT, all reset (RST) segments
3627 * are validated by checking their SEQ-fields. A reset is
3628 * valid if its sequence number is in the window.
3629 * Note: this does not take into account delayed ACKs, so
3630 * we should test against last_ack_sent instead of rcv_nxt.
3631 * The sequence number in the reset segment is normally an
3632 * echo of our outgoing acknowlegement numbers, but some hosts
3633 * send a reset with the sequence number at the rightmost edge
3634 * of our receive window, and we have to handle this case.
3635 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
3636 * that brute force RST attacks are possible. To combat this,
3637 * we use a much stricter check while in the ESTABLISHED state,
3638 * only accepting RSTs where the sequence number is equal to
3639 * last_ack_sent. In all other states (the states in which a
3640 * RST is more likely), the more permissive check is used.
3641 * RFC 5961 Section 3.2: if the RST bit is set, sequence # is
3642 * within the receive window and last_ack_sent == seq,
3643 * then reset the connection. Otherwise if the seq doesn't
3644 * match last_ack_sent, TCP must send challenge ACK. Perform
3645 * rate limitation when sending the challenge ACK.
3646 * If we have multiple segments in flight, the intial reset
3647 * segment sequence numbers will be to the left of last_ack_sent,
3648 * but they will eventually catch up.
3649 * In any case, it never made sense to trim reset segments to
3650 * fit the receive window since RFC 1122 says:
3651 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
3653 * A TCP SHOULD allow a received RST segment to include data.
3656 * It has been suggested that a RST segment could contain
3657 * ASCII text that encoded and explained the cause of the
3658 * RST. No standard has yet been established for such
3661 * If the reset segment passes the sequence number test examine
3663 * SYN_RECEIVED STATE:
3664 * If passive open, return to LISTEN state.
3665 * If active open, inform user that connection was refused.
3666 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
3667 * Inform user that connection was reset, and close tcb.
3668 * CLOSING, LAST_ACK STATES:
3671 * Drop the segment - see Stevens, vol. 2, p. 964 and
3674 * Radar 4803931: Allows for the case where we ACKed the FIN but
3675 * there is already a RST in flight from the peer.
3676 * In that case, accept the RST for non-established
3677 * state if it's one off from last_ack_sent.
3680 if (thflags
& TH_RST
) {
3681 if ((SEQ_GEQ(th
->th_seq
, tp
->last_ack_sent
) &&
3682 SEQ_LT(th
->th_seq
, tp
->last_ack_sent
+ tp
->rcv_wnd
)) ||
3683 (tp
->rcv_wnd
== 0 &&
3684 ((tp
->last_ack_sent
== th
->th_seq
) ||
3685 ((tp
->last_ack_sent
- 1) == th
->th_seq
)))) {
3686 if (tp
->last_ack_sent
== th
->th_seq
) {
3687 switch (tp
->t_state
) {
3688 case TCPS_SYN_RECEIVED
:
3689 IF_TCP_STATINC(ifp
, rstinsynrcv
);
3690 so
->so_error
= ECONNREFUSED
;
3693 case TCPS_ESTABLISHED
:
3694 if (TCP_ECN_ENABLED(tp
) &&
3695 tp
->snd_una
== tp
->iss
+ 1 &&
3696 SEQ_GT(tp
->snd_max
, tp
->snd_una
)) {
3698 * If the first data packet on an
3699 * ECN connection, receives a RST
3700 * increment the heuristic
3702 tcp_heuristic_ecn_droprst(tp
);
3705 case TCPS_FIN_WAIT_1
:
3706 case TCPS_CLOSE_WAIT
:
3707 case TCPS_FIN_WAIT_2
:
3708 so
->so_error
= ECONNRESET
;
3711 (SO_FILT_HINT_LOCKED
|
3712 SO_FILT_HINT_CONNRESET
));
3714 tcpstat
.tcps_drops
++;
3723 case TCPS_TIME_WAIT
:
3727 tcpstat
.tcps_badrst
++;
3728 /* Drop if we have reached the ACK limit */
3729 if (tcp_is_ack_ratelimited(tp
)) {
3730 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "ESTABLISHED rfc5961 rate limited");
3733 /* Send challenge ACK */
3734 tcpstat
.tcps_rstchallenge
++;
3735 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "ESTABLISHED rfc5961 challenge ACK");
3744 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3745 * and it's less than ts_recent, drop it.
3747 if ((to
.to_flags
& TOF_TS
) != 0 && tp
->ts_recent
&&
3748 TSTMP_LT(to
.to_tsval
, tp
->ts_recent
)) {
3749 /* Check to see if ts_recent is over 24 days old. */
3750 if ((int)(tcp_now
- tp
->ts_recent_age
) > TCP_PAWS_IDLE
) {
3752 * Invalidate ts_recent. If this segment updates
3753 * ts_recent, the age will be reset later and ts_recent
3754 * will get a valid value. If it does not, setting
3755 * ts_recent to zero will at least satisfy the
3756 * requirement that zero be placed in the timestamp
3757 * echo reply when ts_recent isn't valid. The
3758 * age isn't reset until we get a valid ts_recent
3759 * because we don't want out-of-order segments to be
3760 * dropped when ts_recent is old.
3764 tcpstat
.tcps_rcvduppack
++;
3765 tcpstat
.tcps_rcvdupbyte
+= tlen
;
3767 tcpstat
.tcps_pawsdrop
++;
3770 * PAWS-drop when ECN is being used? That indicates
3771 * that ECT-marked packets take a different path, with
3772 * different congestion-characteristics.
3774 * Only fallback when we did send less than 2GB as PAWS
3775 * really has no reason to kick in earlier.
3777 if (TCP_ECN_ENABLED(tp
) &&
3778 inp
->inp_stat
->rxbytes
< 2147483648) {
3779 INP_INC_IFNET_STAT(inp
, ecn_fallback_reorder
);
3780 tcpstat
.tcps_ecn_fallback_reorder
++;
3781 tcp_heuristic_ecn_aggressive(tp
);
3784 if (nstat_collect
) {
3785 nstat_route_rx(tp
->t_inpcb
->inp_route
.ro_rt
,
3786 1, tlen
, NSTAT_RX_FLAG_DUPLICATE
);
3787 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
3789 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
3791 tp
->t_stat
.rxduplicatebytes
+= tlen
;
3792 inp_set_activity_bitmap(inp
);
3802 * In the SYN-RECEIVED state, validate that the packet belongs to
3803 * this connection before trimming the data to fit the receive
3804 * window. Check the sequence number versus IRS since we know
3805 * the sequence numbers haven't wrapped. This is a partial fix
3806 * for the "LAND" DoS attack.
3808 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& SEQ_LT(th
->th_seq
, tp
->irs
)) {
3809 IF_TCP_STATINC(ifp
, dospacket
);
3810 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SYN_RECEIVED bad SEQ");
3815 * Check if there is old data at the beginning of the window
3816 * i.e. the sequence number is before rcv_nxt
3818 todrop
= tp
->rcv_nxt
- th
->th_seq
;
3820 boolean_t is_syn_set
= FALSE
;
3822 if (thflags
& TH_SYN
) {
3826 if (th
->th_urp
> 1) {
3834 * Following if statement from Stevens, vol. 2, p. 960.
3835 * The amount of duplicate data is greater than or equal
3836 * to the size of the segment - entire segment is duplicate
3839 || (todrop
== tlen
&& (thflags
& TH_FIN
) == 0)) {
3841 * Any valid FIN must be to the left of the window.
3842 * At this point the FIN must be a duplicate or out
3843 * of sequence; drop it.
3848 * Send an ACK to resynchronize and drop any data.
3849 * But keep on processing for RST or ACK.
3851 * If the SYN bit was originally set, then only send
3852 * an ACK if we are not rate-limiting this connection.
3855 if (!tcp_is_ack_ratelimited(tp
)) {
3856 tcpstat
.tcps_synchallenge
++;
3857 tp
->t_flags
|= TF_ACKNOW
;
3860 tp
->t_flags
|= TF_ACKNOW
;
3864 /* This could be a keepalive */
3865 soevent(so
, SO_FILT_HINT_LOCKED
|
3866 SO_FILT_HINT_KEEPALIVE
);
3869 tcpstat
.tcps_rcvduppack
++;
3870 tcpstat
.tcps_rcvdupbyte
+= todrop
;
3872 tcpstat
.tcps_rcvpartduppack
++;
3873 tcpstat
.tcps_rcvpartdupbyte
+= todrop
;
3878 * Note the duplicate data sequence space so that
3879 * it can be reported in DSACK option.
3881 tp
->t_dsack_lseq
= th
->th_seq
;
3882 tp
->t_dsack_rseq
= th
->th_seq
+ todrop
;
3883 tp
->t_flags
|= TF_ACKNOW
;
3885 if (nstat_collect
) {
3886 nstat_route_rx(tp
->t_inpcb
->inp_route
.ro_rt
, 1,
3887 todrop
, NSTAT_RX_FLAG_DUPLICATE
);
3888 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxpackets
, 1);
3889 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
, todrop
);
3890 tp
->t_stat
.rxduplicatebytes
+= todrop
;
3891 inp_set_activity_bitmap(inp
);
3893 drop_hdrlen
+= todrop
; /* drop from the top afterwards */
3894 th
->th_seq
+= todrop
;
3896 if (th
->th_urp
> todrop
) {
3897 th
->th_urp
-= todrop
;
3905 * If new data are received on a connection after the user
3906 * processes are gone, then RST the other end.
3907 * Send also a RST when we received a data segment after we've
3908 * sent our FIN when the socket is defunct.
3909 * Note that an MPTCP subflow socket would have SS_NOFDREF set
3910 * by default. So, if it's an MPTCP-subflow we rather check the
3911 * MPTCP-level's socket state for SS_NOFDREF.
3914 boolean_t close_it
= FALSE
;
3916 if (!(so
->so_flags
& SOF_MP_SUBFLOW
) && (so
->so_state
& SS_NOFDREF
) &&
3917 tp
->t_state
> TCPS_CLOSE_WAIT
) {
3918 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SS_NOFDREF");
3922 if ((so
->so_flags
& SOF_MP_SUBFLOW
) && (mptetoso(tptomptp(tp
)->mpt_mpte
)->so_state
& SS_NOFDREF
) &&
3923 tp
->t_state
> TCPS_CLOSE_WAIT
) {
3924 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SOF_MP_SUBFLOW SS_NOFDREF");
3928 if ((so
->so_flags
& SOF_DEFUNCT
) && tp
->t_state
> TCPS_FIN_WAIT_1
) {
3929 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SOF_DEFUNCT");
3933 if (so
->so_state
& SS_CANTRCVMORE
) {
3934 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "SS_CANTRCVMORE");
3940 tcpstat
.tcps_rcvafterclose
++;
3941 IF_TCP_STATINC(ifp
, cleanup
);
3947 * If segment ends after window, drop trailing data
3948 * (and PUSH and FIN); if nothing left, just ACK.
3950 todrop
= (th
->th_seq
+ tlen
) - (tp
->rcv_nxt
+ tp
->rcv_wnd
);
3952 tcpstat
.tcps_rcvpackafterwin
++;
3953 if (todrop
>= tlen
) {
3954 tcpstat
.tcps_rcvbyteafterwin
+= tlen
;
3956 * If a new connection request is received
3957 * while in TIME_WAIT, drop the old connection
3958 * and start over if the sequence numbers
3959 * are above the previous ones.
3961 if (thflags
& TH_SYN
&&
3962 tp
->t_state
== TCPS_TIME_WAIT
&&
3963 SEQ_GT(th
->th_seq
, tp
->rcv_nxt
)) {
3964 iss
= tcp_new_isn(tp
);
3966 socket_unlock(so
, 1);
3970 * If window is closed can only take segments at
3971 * window edge, and have to drop data and PUSH from
3972 * incoming segments. Continue processing, but
3973 * remember to ack. Otherwise, drop segment
3976 if (tp
->rcv_wnd
== 0 && th
->th_seq
== tp
->rcv_nxt
) {
3977 tp
->t_flags
|= TF_ACKNOW
;
3978 tcpstat
.tcps_rcvwinprobe
++;
3983 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
3987 thflags
&= ~(TH_PUSH
| TH_FIN
);
3991 * If last ACK falls within this segment's sequence numbers,
3992 * record its timestamp.
3994 * 1) That the test incorporates suggestions from the latest
3995 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
3996 * 2) That updating only on newer timestamps interferes with
3997 * our earlier PAWS tests, so this check should be solely
3998 * predicated on the sequence space of this segment.
3999 * 3) That we modify the segment boundary check to be
4000 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
4001 * instead of RFC1323's
4002 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
4003 * This modified check allows us to overcome RFC1323's
4004 * limitations as described in Stevens TCP/IP Illustrated
4005 * Vol. 2 p.869. In such cases, we can still calculate the
4006 * RTT correctly when RCV.NXT == Last.ACK.Sent.
4008 if ((to
.to_flags
& TOF_TS
) != 0 &&
4009 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
) &&
4010 SEQ_LEQ(tp
->last_ack_sent
, th
->th_seq
+ tlen
+
4011 ((thflags
& (TH_SYN
| TH_FIN
)) != 0))) {
4012 tp
->ts_recent_age
= tcp_now
;
4013 tp
->ts_recent
= to
.to_tsval
;
4017 * Stevens: If a SYN is in the window, then this is an
4018 * error and we send an RST and drop the connection.
4020 * RFC 5961 Section 4.2
4021 * Send challenge ACK for any SYN in synchronized state
4022 * Perform rate limitation in doing so.
4024 if (thflags
& TH_SYN
) {
4025 if (!tcp_syn_data_valid(tp
, th
, tlen
)) {
4026 tcpstat
.tcps_badsyn
++;
4027 /* Drop if we have reached ACK limit */
4028 if (tcp_is_ack_ratelimited(tp
)) {
4029 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "rfc5961 bad SYN rate limited");
4032 /* Send challenge ACK */
4033 tcpstat
.tcps_synchallenge
++;
4034 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "rfc5961 bad SYN challenge ack");
4039 * Received SYN (/ACK) with data.
4040 * Move sequence number along to process the data.
4048 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
4049 * flag is on (half-synchronized state), then queue data for
4050 * later processing; else drop segment and return.
4052 if ((thflags
& TH_ACK
) == 0) {
4053 if (tp
->t_state
== TCPS_SYN_RECEIVED
) {
4054 if ((tfo_enabled(tp
))) {
4056 * So, we received a valid segment while in
4058 * As this cannot be an RST (see that if a bit
4059 * higher), and it does not have the ACK-flag
4060 * set, we want to retransmit the SYN/ACK.
4061 * Thus, we have to reset snd_nxt to snd_una to
4062 * trigger the going back to sending of the
4063 * SYN/ACK. This is more consistent with the
4064 * behavior of tcp_output(), which expects
4065 * to send the segment that is pointed to by
4068 tp
->snd_nxt
= tp
->snd_una
;
4071 * We need to make absolutely sure that we are
4072 * going to reply upon a duplicate SYN-segment.
4074 if (th
->th_flags
& TH_SYN
) {
4080 } else if (tp
->t_flags
& TF_ACKNOW
) {
4081 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "bad ACK");
4084 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "bad ACK");
4093 switch (tp
->t_state
) {
4095 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
4096 * ESTABLISHED state and continue processing.
4097 * The ACK was checked above.
4099 case TCPS_SYN_RECEIVED
:
4101 tcpstat
.tcps_connects
++;
4103 /* Do window scaling? */
4104 if (TCP_WINDOW_SCALE_ENABLED(tp
)) {
4105 tp
->snd_scale
= tp
->requested_s_scale
;
4106 tp
->rcv_scale
= tp
->request_r_scale
;
4107 tp
->snd_wnd
= th
->th_win
<< tp
->snd_scale
;
4108 tp
->max_sndwnd
= tp
->snd_wnd
;
4109 tiwin
= tp
->snd_wnd
;
4113 * SYN-RECEIVED -> ESTABLISHED
4114 * SYN-RECEIVED* -> FIN-WAIT-1
4116 tp
->t_starttime
= tcp_now
;
4117 tcp_sbrcv_tstmp_check(tp
);
4118 if (tp
->t_flags
& TF_NEEDFIN
) {
4119 DTRACE_TCP4(state__change
, void, NULL
,
4120 struct inpcb
*, inp
,
4121 struct tcpcb
*, tp
, int32_t, TCPS_FIN_WAIT_1
);
4122 tp
->t_state
= TCPS_FIN_WAIT_1
;
4123 tp
->t_flags
&= ~TF_NEEDFIN
;
4125 TCP_LOG_CONNECTION_SUMMARY(tp
);
4127 DTRACE_TCP4(state__change
, void, NULL
,
4128 struct inpcb
*, inp
,
4129 struct tcpcb
*, tp
, int32_t, TCPS_ESTABLISHED
);
4130 tp
->t_state
= TCPS_ESTABLISHED
;
4131 tp
->t_timer
[TCPT_KEEP
] = OFFSET_FROM_START(tp
,
4132 TCP_CONN_KEEPIDLE(tp
));
4133 if (nstat_collect
) {
4134 nstat_route_connect_success(
4135 tp
->t_inpcb
->inp_route
.ro_rt
);
4139 * The SYN is acknowledged but una is not updated
4140 * yet. So pass the value of ack to compute
4141 * sndbytes correctly
4143 inp_count_sndbytes(inp
, th
->th_ack
);
4145 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
4147 * If segment contains data or ACK, will call tcp_reass()
4148 * later; if not, do so now to pass queued data to user.
4150 if (tlen
== 0 && (thflags
& TH_FIN
) == 0) {
4152 memcpy(&saved_hdr
, ip6
, sizeof(struct ip6_hdr
));
4153 ip6
= (struct ip6_hdr
*)&saved_hdr
[0];
4155 memcpy(&saved_hdr
, ip
, ip
->ip_hl
<< 2);
4156 ip
= (struct ip
*)&saved_hdr
[0];
4158 memcpy(&saved_tcphdr
, th
, sizeof(struct tcphdr
));
4159 (void) tcp_reass(tp
, (struct tcphdr
*)0, &tlen
,
4160 NULL
, ifp
, &read_wakeup
);
4163 tp
->snd_wl1
= th
->th_seq
- 1;
4167 * Do not send the connect notification for additional subflows
4168 * until ACK for 3-way handshake arrives.
4170 if ((!(tp
->t_mpflags
& TMPF_MPTCP_TRUE
)) &&
4171 (tp
->t_mpflags
& TMPF_SENT_JOIN
)) {
4172 isconnected
= FALSE
;
4176 if ((tp
->t_tfo_flags
& TFO_F_COOKIE_VALID
)) {
4177 /* Done this when receiving the SYN */
4178 isconnected
= FALSE
;
4180 OSDecrementAtomic(&tcp_tfo_halfcnt
);
4182 /* Panic if something has gone terribly wrong. */
4183 VERIFY(tcp_tfo_halfcnt
>= 0);
4185 tp
->t_tfo_flags
&= ~TFO_F_COOKIE_VALID
;
4189 * In case there is data in the send-queue (e.g., TFO is being
4190 * used, or connectx+data has been done), then if we would
4191 * "FALLTHROUGH", we would handle this ACK as if data has been
4192 * acknowledged. But, we have to prevent this. And this
4193 * can be prevented by increasing snd_una by 1, so that the
4194 * SYN is not considered as data (snd_una++ is actually also
4195 * done in SYN_SENT-state as part of the regular TCP stack).
4197 * In case there is data on this ack as well, the data will be
4198 * handled by the label "dodata" right after step6.
4200 if (so
->so_snd
.sb_cc
) {
4201 tp
->snd_una
++; /* SYN is acked */
4202 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
)) {
4203 tp
->snd_nxt
= tp
->snd_una
;
4207 * No duplicate-ACK handling is needed. So, we
4208 * directly advance to processing the ACK (aka,
4209 * updating the RTT estimation,...)
4211 * But, we first need to handle eventual SACKs,
4212 * because TFO will start sending data with the
4213 * SYN/ACK, so it might be that the client
4214 * includes a SACK with its ACK.
4216 if (SACK_ENABLED(tp
) &&
4217 (to
.to_nsacks
> 0 || !TAILQ_EMPTY(&tp
->snd_holes
))) {
4218 tcp_sack_doack(tp
, &to
, th
, &sack_bytes_acked
, &sack_bytes_newly_acked
);
4227 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
4228 * ACKs. If the ack is in the range
4229 * tp->snd_una < th->th_ack <= tp->snd_max
4230 * then advance tp->snd_una to th->th_ack and drop
4231 * data from the retransmission queue. If this ACK reflects
4232 * more up to date window information we update our window information.
4234 case TCPS_ESTABLISHED
:
4235 case TCPS_FIN_WAIT_1
:
4236 case TCPS_FIN_WAIT_2
:
4237 case TCPS_CLOSE_WAIT
:
4240 case TCPS_TIME_WAIT
:
4241 if (SEQ_GT(th
->th_ack
, tp
->snd_max
)) {
4242 tcpstat
.tcps_rcvacktoomuch
++;
4243 if (tcp_is_ack_ratelimited(tp
)) {
4244 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "rfc5961 rcvacktoomuch");
4250 if (SEQ_LT(th
->th_ack
, tp
->snd_una
- tp
->max_sndwnd
)) {
4251 if (tcp_is_ack_ratelimited(tp
)) {
4252 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "rfc5961 bad ACK");
4258 if (SACK_ENABLED(tp
) && to
.to_nsacks
> 0) {
4259 recvd_dsack
= tcp_sack_process_dsack(tp
, &to
, th
);
4261 * If DSACK is received and this packet has no
4262 * other SACK information, it can be dropped.
4263 * We do not want to treat it as a duplicate ack.
4266 SEQ_LEQ(th
->th_ack
, tp
->snd_una
) &&
4267 to
.to_nsacks
== 0) {
4268 tcp_bad_rexmt_check(tp
, th
, &to
);
4273 if (SACK_ENABLED(tp
) &&
4274 (to
.to_nsacks
> 0 || !TAILQ_EMPTY(&tp
->snd_holes
))) {
4275 tcp_sack_doack(tp
, &to
, th
, &sack_bytes_acked
, &sack_bytes_newly_acked
);
4279 if (tp
->t_mpuna
&& SEQ_GEQ(th
->th_ack
, tp
->t_mpuna
)) {
4280 if (tp
->t_mpflags
& TMPF_PREESTABLISHED
) {
4281 /* MP TCP establishment succeeded */
4283 if (tp
->t_mpflags
& TMPF_JOINED_FLOW
) {
4284 if (tp
->t_mpflags
& TMPF_SENT_JOIN
) {
4286 ~TMPF_PREESTABLISHED
;
4290 tp
->t_timer
[TCPT_JACK_RXMT
] = 0;
4291 tp
->t_mprxtshift
= 0;
4294 isconnected
= FALSE
;
4303 tcp_tfo_rcv_ack(tp
, th
);
4306 * If we have outstanding data (other than
4307 * a window probe), this is a completely
4308 * duplicate ack and the ack is the biggest we've seen.
4310 * Need to accommodate a change in window on duplicate acks
4311 * to allow operating systems that update window during
4312 * recovery with SACK
4314 if (SEQ_LEQ(th
->th_ack
, tp
->snd_una
)) {
4315 if (tlen
== 0 && (tiwin
== tp
->snd_wnd
||
4316 (to
.to_nsacks
> 0 && sack_bytes_acked
> 0))) {
4317 uint32_t old_dupacks
;
4319 * If both ends send FIN at the same time,
4320 * then the ack will be a duplicate ack
4321 * but we have to process the FIN. Check
4322 * for this condition and process the FIN
4323 * instead of the dupack
4325 if ((thflags
& TH_FIN
) &&
4326 !TCPS_HAVERCVDFIN(tp
->t_state
)) {
4330 old_dupacks
= tp
->t_dupacks
;
4333 * MPTCP options that are ignored must
4334 * not be treated as duplicate ACKs.
4336 if (to
.to_flags
& TOF_MPTCP
) {
4340 if ((isconnected
) && (tp
->t_mpflags
& TMPF_JOINED_FLOW
)) {
4341 mptcplog((LOG_DEBUG
, "MPTCP "
4342 "Sockets: bypass ack recovery\n"),
4344 MPTCP_LOGLVL_VERBOSE
);
4349 * If a duplicate acknowledgement was seen
4350 * after ECN, it indicates packet loss in
4351 * addition to ECN. Reset INRECOVERY flag
4352 * so that we can process partial acks
4355 if (tp
->ecn_flags
& TE_INRECOVERY
) {
4356 tp
->ecn_flags
&= ~TE_INRECOVERY
;
4359 tcpstat
.tcps_rcvdupack
++;
4360 if (SACK_ENABLED(tp
) && tcp_do_better_lr
) {
4361 tp
->t_dupacks
+= max(1, sack_bytes_acked
/ tp
->t_maxseg
);
4366 tp
->sackhint
.sack_bytes_acked
+= sack_bytes_acked
;
4368 if (SACK_ENABLED(tp
) && tcp_do_better_lr
) {
4369 tp
->t_new_dupacks
+= (sack_bytes_newly_acked
/ tp
->t_maxseg
);
4371 if (tp
->t_new_dupacks
>= tp
->t_rexmtthresh
&& IN_FASTRECOVERY(tp
)) {
4372 /* Let's restart the retransmission */
4373 tcp_sack_lost_rexmit(tp
);
4376 * If the current tcp cc module has
4377 * defined a hook for tasks to run
4378 * before entering FR, call it
4380 if (CC_ALGO(tp
)->pre_fr
!= NULL
) {
4381 CC_ALGO(tp
)->pre_fr(tp
);
4384 ENTER_FASTRECOVERY(tp
);
4386 if (tp
->t_flags
& TF_SENTFIN
) {
4387 tp
->snd_recover
= tp
->snd_max
- 1;
4389 tp
->snd_recover
= tp
->snd_max
;
4393 if (TCP_ECN_ENABLED(tp
)) {
4394 tp
->ecn_flags
|= TE_SENDCWR
;
4397 if (tp
->t_flagsext
& TF_CWND_NONVALIDATED
) {
4398 tcp_cc_adjust_nonvalidated_cwnd(tp
);
4400 tp
->snd_cwnd
= tp
->snd_ssthresh
;
4406 * Check if we need to reset the limit on
4409 if (tp
->t_early_rexmt_count
> 0 &&
4411 (tp
->t_early_rexmt_win
+
4412 TCP_EARLY_REXMT_WIN
))) {
4413 tp
->t_early_rexmt_count
= 0;
4417 * Is early retransmit needed? We check for
4418 * this when the connection is waiting for
4419 * duplicate acks to enter fast recovery.
4421 if (!IN_FASTRECOVERY(tp
)) {
4422 tcp_early_rexmt_check(tp
, th
);
4426 * If we've seen exactly rexmt threshold
4427 * of duplicate acks, assume a packet
4428 * has been dropped and retransmit it.
4429 * Kludge snd_nxt & the congestion
4430 * window so we send only this one
4433 * We know we're losing at the current
4434 * window size so do congestion avoidance
4435 * (set ssthresh to half the current window
4436 * and pull our congestion window back to
4437 * the new ssthresh).
4439 * Dup acks mean that packets have left the
4440 * network (they're now cached at the receiver)
4441 * so bump cwnd by the amount in the receiver
4442 * to keep a constant cwnd packets in the
4445 if (tp
->t_timer
[TCPT_REXMT
] == 0 ||
4446 (th
->th_ack
!= tp
->snd_una
&& sack_bytes_acked
== 0)) {
4448 tp
->t_rexmtthresh
= tcprexmtthresh
;
4449 tp
->t_new_dupacks
= 0;
4450 } else if ((tp
->t_dupacks
> tp
->t_rexmtthresh
&& (!tcp_do_better_lr
|| old_dupacks
>= tp
->t_rexmtthresh
)) ||
4451 IN_FASTRECOVERY(tp
)) {
4453 * If this connection was seeing packet
4454 * reordering, then recovery might be
4455 * delayed to disambiguate between
4456 * reordering and loss
4458 if (SACK_ENABLED(tp
) && !IN_FASTRECOVERY(tp
) &&
4460 (TF_PKTS_REORDERED
| TF_DELAY_RECOVERY
)) ==
4461 (TF_PKTS_REORDERED
| TF_DELAY_RECOVERY
)) {
4463 * Since the SACK information is already
4464 * updated, this ACK will be dropped
4470 * Dup acks mean that packets have left the
4471 * network (they're now cached at the receiver)
4472 * so bump cwnd by the amount in the receiver
4473 * to keep a constant cwnd packets in the
4476 if (SACK_ENABLED(tp
) && IN_FASTRECOVERY(tp
)) {
4480 * Compute the amount of data in flight first.
4481 * We can inject new data into the pipe iff
4482 * we have less than snd_ssthres worth of data in
4485 awnd
= (tp
->snd_nxt
- tp
->snd_fack
) + tp
->sackhint
.sack_bytes_rexmit
;
4486 if (awnd
< tp
->snd_ssthresh
) {
4487 tp
->snd_cwnd
+= tp
->t_maxseg
;
4488 if (tp
->snd_cwnd
> tp
->snd_ssthresh
) {
4489 tp
->snd_cwnd
= tp
->snd_ssthresh
;
4493 tp
->snd_cwnd
+= tp
->t_maxseg
;
4496 /* Process any window updates */
4497 if (tiwin
> tp
->snd_wnd
) {
4498 tcp_update_window(tp
, thflags
,
4501 tcp_ccdbg_trace(tp
, th
,
4502 TCP_CC_IN_FASTRECOVERY
);
4504 (void) tcp_output(tp
);
4507 } else if ((!tcp_do_better_lr
&& tp
->t_dupacks
== tp
->t_rexmtthresh
) ||
4508 (tcp_do_better_lr
&& tp
->t_dupacks
>= tp
->t_rexmtthresh
)) {
4509 tcp_seq onxt
= tp
->snd_nxt
;
4512 * If we're doing sack, check to
4513 * see if we're already in sack
4514 * recovery. If we're not doing sack,
4515 * check to see if we're in newreno
4518 if (SACK_ENABLED(tp
)) {
4519 if (IN_FASTRECOVERY(tp
)) {
4522 } else if (tp
->t_flagsext
& TF_DELAY_RECOVERY
) {
4526 if (SEQ_LEQ(th
->th_ack
, tp
->snd_recover
)) {
4531 if (tp
->t_flags
& TF_SENTFIN
) {
4532 tp
->snd_recover
= tp
->snd_max
- 1;
4534 tp
->snd_recover
= tp
->snd_max
;
4536 tp
->t_timer
[TCPT_PTO
] = 0;
4540 * If the connection has seen pkt
4541 * reordering, delay recovery until
4542 * it is clear that the packet
4545 if (SACK_ENABLED(tp
) &&
4547 (TF_PKTS_REORDERED
| TF_DELAY_RECOVERY
))
4548 == TF_PKTS_REORDERED
&&
4549 !IN_FASTRECOVERY(tp
) &&
4550 tp
->t_reorderwin
> 0 &&
4551 (tp
->t_state
== TCPS_ESTABLISHED
||
4552 tp
->t_state
== TCPS_FIN_WAIT_1
)) {
4553 tp
->t_timer
[TCPT_DELAYFR
] =
4554 OFFSET_FROM_START(tp
,
4556 tp
->t_flagsext
|= TF_DELAY_RECOVERY
;
4557 tcpstat
.tcps_delay_recovery
++;
4558 tcp_ccdbg_trace(tp
, th
,
4559 TCP_CC_DELAY_FASTRECOVERY
);
4563 tcp_rexmt_save_state(tp
);
4565 * If the current tcp cc module has
4566 * defined a hook for tasks to run
4567 * before entering FR, call it
4569 if (CC_ALGO(tp
)->pre_fr
!= NULL
) {
4570 CC_ALGO(tp
)->pre_fr(tp
);
4572 ENTER_FASTRECOVERY(tp
);
4573 tp
->t_timer
[TCPT_REXMT
] = 0;
4574 if (TCP_ECN_ENABLED(tp
)) {
4575 tp
->ecn_flags
|= TE_SENDCWR
;
4578 if (SACK_ENABLED(tp
)) {
4579 tcpstat
.tcps_sack_recovery_episode
++;
4580 tp
->t_sack_recovery_episode
++;
4581 tp
->sack_newdata
= tp
->snd_nxt
;
4582 if (tcp_do_better_lr
) {
4583 tp
->snd_cwnd
= tp
->snd_ssthresh
;
4585 tp
->snd_cwnd
= tp
->t_maxseg
;
4587 tp
->t_flagsext
&= ~TF_CWND_NONVALIDATED
;
4589 /* Process any window updates */
4590 if (tiwin
> tp
->snd_wnd
) {
4591 tcp_update_window(tp
, thflags
, th
, tiwin
, tlen
);
4594 tcp_ccdbg_trace(tp
, th
, TCP_CC_ENTER_FASTRECOVERY
);
4595 (void) tcp_output(tp
);
4598 tp
->snd_nxt
= th
->th_ack
;
4599 tp
->snd_cwnd
= tp
->t_maxseg
;
4601 /* Process any window updates */
4602 if (tiwin
> tp
->snd_wnd
) {
4603 tcp_update_window(tp
, thflags
, th
, tiwin
, tlen
);
4606 (void) tcp_output(tp
);
4607 if (tp
->t_flagsext
& TF_CWND_NONVALIDATED
) {
4608 tcp_cc_adjust_nonvalidated_cwnd(tp
);
4610 tp
->snd_cwnd
= tp
->snd_ssthresh
+ tp
->t_maxseg
* tp
->t_dupacks
;
4612 if (SEQ_GT(onxt
, tp
->snd_nxt
)) {
4616 tcp_ccdbg_trace(tp
, th
, TCP_CC_ENTER_FASTRECOVERY
);
4618 } else if (ALLOW_LIMITED_TRANSMIT(tp
) &&
4619 (!(SACK_ENABLED(tp
)) || sack_bytes_acked
> 0) &&
4620 (so
->so_snd
.sb_cc
- (tp
->snd_max
- tp
->snd_una
)) > 0) {
4621 u_int32_t incr
= (tp
->t_maxseg
* tp
->t_dupacks
);
4623 /* Use Limited Transmit algorithm on the first two
4624 * duplicate acks when there is new data to transmit
4626 tp
->snd_cwnd
+= incr
;
4627 tcpstat
.tcps_limited_txt
++;
4628 (void) tcp_output(tp
);
4630 tcp_ccdbg_trace(tp
, th
, TCP_CC_LIMITED_TRANSMIT
);
4632 /* Reset snd_cwnd back to normal */
4633 tp
->snd_cwnd
-= incr
;
4639 * If the congestion window was inflated to account
4640 * for the other side's cached packets, retract it.
4642 if (IN_FASTRECOVERY(tp
)) {
4643 if (SEQ_LT(th
->th_ack
, tp
->snd_recover
)) {
4645 * If we received an ECE and entered
4646 * recovery, the subsequent ACKs should
4647 * not be treated as partial acks.
4649 if (tp
->ecn_flags
& TE_INRECOVERY
) {
4653 if (SACK_ENABLED(tp
)) {
4654 tcp_sack_partialack(tp
, th
);
4656 tcp_newreno_partial_ack(tp
, th
);
4658 tcp_ccdbg_trace(tp
, th
, TCP_CC_PARTIAL_ACK
);
4660 if (tcp_cubic_minor_fixes
) {
4663 EXIT_FASTRECOVERY(tp
);
4664 if (CC_ALGO(tp
)->post_fr
!= NULL
) {
4665 CC_ALGO(tp
)->post_fr(tp
, th
);
4668 tcp_clear_pipeack_state(tp
);
4669 tcp_ccdbg_trace(tp
, th
,
4670 TCP_CC_EXIT_FASTRECOVERY
);
4672 } else if ((tp
->t_flagsext
&
4673 (TF_PKTS_REORDERED
| TF_DELAY_RECOVERY
))
4674 == (TF_PKTS_REORDERED
| TF_DELAY_RECOVERY
)) {
4676 * If the ack acknowledges upto snd_recover or if
4677 * it acknowledges all the snd holes, exit
4678 * recovery and cancel the timer. Otherwise,
4679 * this is a partial ack. Wait for recovery timer
4680 * to enter recovery. The snd_holes have already
4683 if (SEQ_GEQ(th
->th_ack
, tp
->snd_recover
) ||
4684 TAILQ_EMPTY(&tp
->snd_holes
)) {
4685 tp
->t_timer
[TCPT_DELAYFR
] = 0;
4686 tp
->t_flagsext
&= ~TF_DELAY_RECOVERY
;
4687 EXIT_FASTRECOVERY(tp
);
4688 tcp_ccdbg_trace(tp
, th
,
4689 TCP_CC_EXIT_FASTRECOVERY
);
4693 * We were not in fast recovery. Reset the
4694 * duplicate ack counter.
4697 tp
->t_rexmtthresh
= tcprexmtthresh
;
4698 tp
->t_new_dupacks
= 0;
4702 VERIFY(SEQ_GEQ(th
->th_ack
, tp
->snd_una
));
4703 acked
= BYTES_ACKED(th
, tp
);
4704 tcpstat
.tcps_rcvackpack
++;
4705 tcpstat
.tcps_rcvackbyte
+= acked
;
4708 * If the last packet was a retransmit, make sure
4709 * it was not spurious.
4711 * This will also take care of congestion window
4712 * adjustment if a last packet was recovered due to a
4715 tcp_bad_rexmt_check(tp
, th
, &to
);
4717 /* Recalculate the RTT */
4718 tcp_compute_rtt(tp
, &to
, th
);
4721 * If all outstanding data is acked, stop retransmit
4722 * timer and remember to restart (more output or persist).
4723 * If there is more data to be acked, restart retransmit
4724 * timer, using current (possibly backed-off) value.
4726 TCP_RESET_REXMT_STATE(tp
);
4727 TCPT_RANGESET(tp
->t_rxtcur
, TCP_REXMTVAL(tp
),
4728 tp
->t_rttmin
, TCPTV_REXMTMAX
,
4729 TCP_ADD_REXMTSLOP(tp
));
4730 if (th
->th_ack
== tp
->snd_max
) {
4731 tp
->t_timer
[TCPT_REXMT
] = 0;
4732 tp
->t_timer
[TCPT_PTO
] = 0;
4734 } else if (tp
->t_timer
[TCPT_PERSIST
] == 0) {
4735 tp
->t_timer
[TCPT_REXMT
] = OFFSET_FROM_START(tp
,
4739 if ((prev_t_state
== TCPS_SYN_SENT
||
4740 prev_t_state
== TCPS_SYN_RECEIVED
) &&
4741 tp
->t_state
== TCPS_ESTABLISHED
) {
4742 TCP_LOG_RTT_INFO(tp
);
4746 * If no data (only SYN) was ACK'd, skip rest of ACK
4754 * When outgoing data has been acked (except the SYN+data), we
4755 * mark this connection as "sending good" for TFO.
4757 if ((tp
->t_tfo_stats
& TFO_S_SYN_DATA_SENT
) &&
4758 !(tp
->t_tfo_flags
& TFO_F_NO_SNDPROBING
) &&
4759 !(th
->th_flags
& TH_SYN
)) {
4760 tp
->t_tfo_flags
|= TFO_F_NO_SNDPROBING
;
4764 * If TH_ECE is received, make sure that ECN is enabled
4765 * on that connection and we have sent ECT on data packets.
4767 if ((thflags
& TH_ECE
) != 0 && TCP_ECN_ENABLED(tp
) &&
4768 (tp
->ecn_flags
& TE_SENDIPECT
)) {
4770 * Reduce the congestion window if we haven't
4773 if (!IN_FASTRECOVERY(tp
)) {
4774 tcp_reduce_congestion_window(tp
);
4775 tp
->ecn_flags
|= (TE_INRECOVERY
| TE_SENDCWR
);
4777 * Also note that the connection received
4780 tp
->ecn_flags
|= TE_RECV_ECN_ECE
;
4781 INP_INC_IFNET_STAT(inp
, ecn_recv_ece
);
4782 tcpstat
.tcps_ecn_recv_ece
++;
4783 tcp_ccdbg_trace(tp
, th
, TCP_CC_ECN_RCVD
);
4788 * When new data is acked, open the congestion window.
4789 * The specifics of how this is achieved are up to the
4790 * congestion control algorithm in use for this connection.
4792 * The calculations in this function assume that snd_una is
4795 if (!IN_FASTRECOVERY(tp
) && !exiting_fr
) {
4796 if (CC_ALGO(tp
)->ack_rcvd
!= NULL
) {
4797 CC_ALGO(tp
)->ack_rcvd(tp
, th
);
4799 tcp_ccdbg_trace(tp
, th
, TCP_CC_ACK_RCVD
);
4801 if (acked
> so
->so_snd
.sb_cc
) {
4802 tp
->snd_wnd
-= so
->so_snd
.sb_cc
;
4803 sbdrop(&so
->so_snd
, (int)so
->so_snd
.sb_cc
);
4806 sbdrop(&so
->so_snd
, acked
);
4807 tcp_sbsnd_trim(&so
->so_snd
);
4808 tp
->snd_wnd
-= acked
;
4811 /* detect una wraparound */
4812 if (!IN_FASTRECOVERY(tp
) &&
4813 SEQ_GT(tp
->snd_una
, tp
->snd_recover
) &&
4814 SEQ_LEQ(th
->th_ack
, tp
->snd_recover
)) {
4815 tp
->snd_recover
= th
->th_ack
- 1;
4818 if (IN_FASTRECOVERY(tp
) &&
4819 SEQ_GEQ(th
->th_ack
, tp
->snd_recover
)) {
4820 EXIT_FASTRECOVERY(tp
);
4823 tcp_update_snd_una(tp
, th
->th_ack
);
4825 if (SACK_ENABLED(tp
)) {
4826 if (SEQ_GT(tp
->snd_una
, tp
->snd_recover
)) {
4827 tp
->snd_recover
= tp
->snd_una
;
4830 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
)) {
4831 tp
->snd_nxt
= tp
->snd_una
;
4833 if (!SLIST_EMPTY(&tp
->t_rxt_segments
) &&
4834 !TCP_DSACK_SEQ_IN_WINDOW(tp
, tp
->t_dsack_lastuna
,
4836 tcp_rxtseg_clean(tp
);
4838 if ((tp
->t_flagsext
& TF_MEASURESNDBW
) != 0 &&
4839 tp
->t_bwmeas
!= NULL
) {
4840 tcp_bwmeas_check(tp
);
4845 if (!SLIST_EMPTY(&tp
->t_notify_ack
)) {
4846 tcp_notify_acknowledgement(tp
, so
);
4849 switch (tp
->t_state
) {
4851 * In FIN_WAIT_1 STATE in addition to the processing
4852 * for the ESTABLISHED state if our FIN is now acknowledged
4853 * then enter FIN_WAIT_2.
4855 case TCPS_FIN_WAIT_1
:
4856 if (ourfinisacked
) {
4858 * If we can't receive any more
4859 * data, then closing user can proceed.
4860 * Starting the TCPT_2MSL timer is contrary to the
4861 * specification, but if we don't get a FIN
4862 * we'll hang forever.
4864 if (so
->so_state
& SS_CANTRCVMORE
) {
4865 tp
->t_timer
[TCPT_2MSL
] = OFFSET_FROM_START(tp
,
4866 TCP_CONN_MAXIDLE(tp
));
4867 isconnected
= FALSE
;
4868 isdisconnected
= TRUE
;
4870 DTRACE_TCP4(state__change
, void, NULL
,
4871 struct inpcb
*, inp
,
4873 int32_t, TCPS_FIN_WAIT_2
);
4874 tp
->t_state
= TCPS_FIN_WAIT_2
;
4875 /* fall through and make sure we also recognize
4876 * data ACKed with the FIN
4882 * In CLOSING STATE in addition to the processing for
4883 * the ESTABLISHED state if the ACK acknowledges our FIN
4884 * then enter the TIME-WAIT state, otherwise ignore
4888 if (ourfinisacked
) {
4889 DTRACE_TCP4(state__change
, void, NULL
,
4890 struct inpcb
*, inp
,
4892 int32_t, TCPS_TIME_WAIT
);
4893 tp
->t_state
= TCPS_TIME_WAIT
;
4894 tcp_canceltimers(tp
);
4895 if (tp
->t_flagsext
& TF_NOTIMEWAIT
) {
4896 tp
->t_flags
|= TF_CLOSING
;
4898 add_to_time_wait(tp
, 2 * tcp_msl
);
4900 isconnected
= FALSE
;
4901 isdisconnected
= TRUE
;
4906 * In LAST_ACK, we may still be waiting for data to drain
4907 * and/or to be acked, as well as for the ack of our FIN.
4908 * If our FIN is now acknowledged, delete the TCB,
4909 * enter the closed state and return.
4912 if (ourfinisacked
) {
4919 * In TIME_WAIT state the only thing that should arrive
4920 * is a retransmission of the remote FIN. Acknowledge
4921 * it and restart the finack timer.
4923 case TCPS_TIME_WAIT
:
4924 add_to_time_wait(tp
, 2 * tcp_msl
);
4929 * If there is a SACK option on the ACK and we
4930 * haven't seen any duplicate acks before, count
4931 * it as a duplicate ack even if the cumulative
4932 * ack is advanced. If the receiver delayed an
4933 * ack and detected loss afterwards, then the ack
4934 * will advance cumulative ack and will also have
4935 * a SACK option. So counting it as one duplicate
4938 if (tp
->t_state
== TCPS_ESTABLISHED
&&
4939 SACK_ENABLED(tp
) && sack_bytes_acked
> 0 &&
4940 to
.to_nsacks
> 0 && tp
->t_dupacks
== 0 &&
4941 SEQ_LEQ(th
->th_ack
, tp
->snd_una
) && tlen
== 0 &&
4942 !(tp
->t_flagsext
& TF_PKTS_REORDERED
)) {
4943 tcpstat
.tcps_sack_ackadv
++;
4944 goto process_dupack
;
4950 * Update window information.
4952 if (tcp_update_window(tp
, thflags
, th
, tiwin
, tlen
)) {
4957 * Process segments with URG.
4959 if ((thflags
& TH_URG
) && th
->th_urp
&&
4960 TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
4962 * This is a kludge, but if we receive and accept
4963 * random urgent pointers, we'll crash in
4964 * soreceive. It's hard to imagine someone
4965 * actually wanting to send this much urgent data.
4967 if (th
->th_urp
+ so
->so_rcv
.sb_cc
> sb_max
) {
4968 th
->th_urp
= 0; /* XXX */
4969 thflags
&= ~TH_URG
; /* XXX */
4970 goto dodata
; /* XXX */
4973 * If this segment advances the known urgent pointer,
4974 * then mark the data stream. This should not happen
4975 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
4976 * a FIN has been received from the remote side.
4977 * In these states we ignore the URG.
4979 * According to RFC961 (Assigned Protocols),
4980 * the urgent pointer points to the last octet
4981 * of urgent data. We continue, however,
4982 * to consider it to indicate the first octet
4983 * of data past the urgent section as the original
4984 * spec states (in one of two places).
4986 if (SEQ_GT(th
->th_seq
+ th
->th_urp
, tp
->rcv_up
)) {
4987 tp
->rcv_up
= th
->th_seq
+ th
->th_urp
;
4988 so
->so_oobmark
= so
->so_rcv
.sb_cc
+
4989 (tp
->rcv_up
- tp
->rcv_nxt
) - 1;
4990 if (so
->so_oobmark
== 0) {
4991 so
->so_state
|= SS_RCVATMARK
;
4994 tp
->t_oobflags
&= ~(TCPOOB_HAVEDATA
| TCPOOB_HADDATA
);
4997 * Remove out of band data so doesn't get presented to user.
4998 * This can happen independent of advancing the URG pointer,
4999 * but if two URG's are pending at once, some out-of-band
5000 * data may creep in... ick.
5002 if (th
->th_urp
<= (u_int32_t
)tlen
5004 && (so
->so_options
& SO_OOBINLINE
) == 0
5007 tcp_pulloutofband(so
, th
, m
,
5008 drop_hdrlen
); /* hdr drop is delayed */
5012 * If no out of band data is expected,
5013 * pull receive urgent pointer along
5014 * with the receive window.
5016 if (SEQ_GT(tp
->rcv_nxt
, tp
->rcv_up
)) {
5017 tp
->rcv_up
= tp
->rcv_nxt
;
5022 /* Set socket's connect or disconnect state correcly before doing data.
5023 * The following might unlock the socket if there is an upcall or a socket
5028 } else if (isdisconnected
) {
5029 soisdisconnected(so
);
5032 /* Let's check the state of pcb just to make sure that it did not get closed
5033 * when we unlocked above
5035 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
5036 /* Just drop the packet that we are processing and return */
5037 TCP_LOG_DROP_PCB(TCP_LOG_HDR
, th
, tp
, false, "INPCB_STATE_DEAD");
5042 * Process the segment text, merging it into the TCP sequencing queue,
5043 * and arranging for acknowledgment of receipt if necessary.
5044 * This process logically involves adjusting tp->rcv_wnd as data
5045 * is presented to the user (this happens in tcp_usrreq.c,
5046 * case PRU_RCVD). If a FIN has already been received on this
5047 * connection then we just ignore the text.
5049 * If we are in SYN-received state and got a valid TFO cookie, we want
5050 * to process the data.
5052 if ((tlen
|| (thflags
& TH_FIN
)) &&
5053 TCPS_HAVERCVDFIN(tp
->t_state
) == 0 &&
5054 (TCPS_HAVEESTABLISHED(tp
->t_state
) ||
5055 (tp
->t_state
== TCPS_SYN_RECEIVED
&&
5056 (tp
->t_tfo_flags
& TFO_F_COOKIE_VALID
)))) {
5057 tcp_seq save_start
= th
->th_seq
;
5058 tcp_seq save_end
= th
->th_seq
+ tlen
;
5059 m_adj(m
, drop_hdrlen
); /* delayed header drop */
5061 * Insert segment which includes th into TCP reassembly queue
5062 * with control block tp. Set thflags to whether reassembly now
5063 * includes a segment with FIN. This handles the common case
5064 * inline (segment is the next to be received on an established
5065 * connection, and the queue is empty), avoiding linkage into
5066 * and removal from the queue and repetition of various
5068 * Set DELACK for segments received in order, but ack
5069 * immediately when segments are out of order (so
5070 * fast retransmit can work).
5072 if (th
->th_seq
== tp
->rcv_nxt
&& LIST_EMPTY(&tp
->t_segq
)) {
5073 TCP_INC_VAR(tp
->t_unacksegs
, segment_count
);
5075 * Calculate the RTT on the receiver only if the
5076 * connection is in streaming mode and the last
5077 * packet was not an end-of-write
5079 if (tp
->t_flags
& TF_STREAMING_ON
) {
5080 tcp_compute_rtt(tp
, &to
, th
);
5083 if (DELAY_ACK(tp
, th
) &&
5084 ((tp
->t_flags
& TF_ACKNOW
) == 0)) {
5085 if ((tp
->t_flags
& TF_DELACK
) == 0) {
5086 tp
->t_flags
|= TF_DELACK
;
5087 tp
->t_timer
[TCPT_DELACK
] =
5088 OFFSET_FROM_START(tp
, tcp_delack
);
5091 tp
->t_flags
|= TF_ACKNOW
;
5093 tp
->rcv_nxt
+= tlen
;
5094 thflags
= th
->th_flags
& TH_FIN
;
5095 TCP_INC_VAR(tcpstat
.tcps_rcvpack
, segment_count
);
5096 tcpstat
.tcps_rcvbyte
+= tlen
;
5097 if (nstat_collect
) {
5098 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
5100 INP_ADD_STAT(inp
, cell
, wifi
, wired
,
5102 inp_set_activity_bitmap(inp
);
5104 tcp_sbrcv_grow(tp
, &so
->so_rcv
, &to
, tlen
);
5105 so_recv_data_stat(so
, m
, drop_hdrlen
);
5108 memcpy(&saved_hdr
, ip6
, sizeof(struct ip6_hdr
));
5109 ip6
= (struct ip6_hdr
*)&saved_hdr
[0];
5111 memcpy(&saved_hdr
, ip
, ip
->ip_hl
<< 2);
5112 ip
= (struct ip
*)&saved_hdr
[0];
5114 memcpy(&saved_tcphdr
, th
, sizeof(struct tcphdr
));
5116 if (th
->th_flags
& TH_PUSH
) {
5117 tp
->t_flagsext
|= TF_LAST_IS_PSH
;
5119 tp
->t_flagsext
&= ~TF_LAST_IS_PSH
;
5122 if (sbappendstream_rcvdemux(so
, m
)) {
5128 memcpy(&saved_hdr
, ip6
, sizeof(struct ip6_hdr
));
5129 ip6
= (struct ip6_hdr
*)&saved_hdr
[0];
5131 memcpy(&saved_hdr
, ip
, ip
->ip_hl
<< 2);
5132 ip
= (struct ip
*)&saved_hdr
[0];
5135 if (tcp_autotune_reorder
) {
5136 tcp_sbrcv_grow(tp
, &so
->so_rcv
, &to
, tlen
);
5139 memcpy(&saved_tcphdr
, th
, sizeof(struct tcphdr
));
5140 thflags
= tcp_reass(tp
, th
, &tlen
, m
, ifp
, &read_wakeup
);
5142 tp
->t_flags
|= TF_ACKNOW
;
5145 if ((tlen
> 0 || (th
->th_flags
& TH_FIN
)) && SACK_ENABLED(tp
)) {
5146 if (th
->th_flags
& TH_FIN
) {
5149 tcp_update_sack_list(tp
, save_start
, save_end
);
5152 tcp_adaptive_rwtimo_check(tp
, tlen
);
5155 tcp_tfo_rcv_data(tp
);
5158 if (tp
->t_flags
& TF_DELACK
) {
5160 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
5161 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
5162 th
->th_seq
, th
->th_ack
, th
->th_win
);
5164 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
5165 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
5166 th
->th_seq
, th
->th_ack
, th
->th_win
);
5170 if ((so
->so_flags
& SOF_MP_SUBFLOW
) && tlen
== 0 &&
5171 (m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP_DFIN
) &&
5172 (m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP
)) {
5173 m_adj(m
, drop_hdrlen
); /* delayed header drop */
5175 * 0-length DATA_FIN. The rlen is actually 0. We special-case the
5176 * byte consumed by the dfin in mptcp_input and mptcp_reass_present
5178 m
->m_pkthdr
.mp_rlen
= 0;
5179 mptcp_input(tptomptp(tp
)->mpt_mpte
, m
);
5180 tp
->t_flags
|= TF_ACKNOW
;
5188 * If FIN is received ACK the FIN and let the user know
5189 * that the connection is closing.
5191 if (thflags
& TH_FIN
) {
5192 if (TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
5195 * If connection is half-synchronized
5196 * (ie NEEDSYN flag on) then delay ACK,
5197 * so it may be piggybacked when SYN is sent.
5198 * Otherwise, since we received a FIN then no
5199 * more input can be expected, send ACK now.
5201 TCP_INC_VAR(tp
->t_unacksegs
, segment_count
);
5202 tp
->t_flags
|= TF_ACKNOW
;
5205 switch (tp
->t_state
) {
5207 * In SYN_RECEIVED and ESTABLISHED STATES
5208 * enter the CLOSE_WAIT state.
5210 case TCPS_SYN_RECEIVED
:
5211 tp
->t_starttime
= tcp_now
;
5213 case TCPS_ESTABLISHED
:
5214 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
5215 struct tcpcb
*, tp
, int32_t, TCPS_CLOSE_WAIT
);
5216 tp
->t_state
= TCPS_CLOSE_WAIT
;
5220 * If still in FIN_WAIT_1 STATE FIN has not been acked so
5221 * enter the CLOSING state.
5223 case TCPS_FIN_WAIT_1
:
5224 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
5225 struct tcpcb
*, tp
, int32_t, TCPS_CLOSING
);
5226 tp
->t_state
= TCPS_CLOSING
;
5230 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5231 * starting the time-wait timer, turning off the other
5234 case TCPS_FIN_WAIT_2
:
5235 DTRACE_TCP4(state__change
, void, NULL
,
5236 struct inpcb
*, inp
,
5238 int32_t, TCPS_TIME_WAIT
);
5239 tp
->t_state
= TCPS_TIME_WAIT
;
5240 tcp_canceltimers(tp
);
5241 tp
->t_flags
|= TF_ACKNOW
;
5242 if (tp
->t_flagsext
& TF_NOTIMEWAIT
) {
5243 tp
->t_flags
|= TF_CLOSING
;
5245 add_to_time_wait(tp
, 2 * tcp_msl
);
5247 soisdisconnected(so
);
5251 * In TIME_WAIT state restart the 2 MSL time_wait timer.
5253 case TCPS_TIME_WAIT
:
5254 add_to_time_wait(tp
, 2 * tcp_msl
);
5259 if (so
->so_options
& SO_DEBUG
) {
5260 tcp_trace(TA_INPUT
, ostate
, tp
, (void *)tcp_saveipgen
,
5266 mptcp_handle_input(so
);
5270 * Return any desired output.
5272 if (needoutput
|| (tp
->t_flags
& TF_ACKNOW
)) {
5273 (void) tcp_output(tp
);
5276 tcp_check_timer_state(tp
);
5278 tcp_handle_wakeup(so
, read_wakeup
, write_wakeup
);
5280 socket_unlock(so
, 1);
5281 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
5286 * Generate an ACK dropping incoming segment if it occupies
5287 * sequence space, where the ACK reflects our state.
5289 * We can now skip the test for the RST flag since all
5290 * paths to this code happen after packets containing
5291 * RST have been dropped.
5293 * In the SYN-RECEIVED state, don't send an ACK unless the
5294 * segment we received passes the SYN-RECEIVED ACK test.
5295 * If it fails send a RST. This breaks the loop in the
5296 * "LAND" DoS attack, and also prevents an ACK storm
5297 * between two listening ports that have been sent forged
5298 * SYN segments, each with the source address of the other.
5300 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& (thflags
& TH_ACK
) &&
5301 (SEQ_GT(tp
->snd_una
, th
->th_ack
) ||
5302 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
5303 IF_TCP_STATINC(ifp
, dospacket
);
5307 if (so
->so_options
& SO_DEBUG
) {
5308 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
5313 tp
->t_flags
|= TF_ACKNOW
;
5315 (void) tcp_output(tp
);
5317 tcp_handle_wakeup(so
, read_wakeup
, write_wakeup
);
5319 /* Don't need to check timer state as we should have done it during tcp_output */
5320 socket_unlock(so
, 1);
5321 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
5323 dropwithresetnosock
:
5327 * Generate a RST, dropping incoming segment.
5328 * Make ACK acceptable to originator of segment.
5329 * Don't bother to respond if destination was broadcast/multicast.
5331 if ((thflags
& TH_RST
) || m
->m_flags
& (M_BCAST
| M_MCAST
)) {
5335 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
5336 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
5339 } else if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
5340 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
5341 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
5342 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
)) {
5345 /* IPv6 anycast check is done at tcp6_input() */
5348 if (tp
== 0 || (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
)) {
5349 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
5353 bzero(&tra
, sizeof(tra
));
5354 tra
.ifscope
= ifscope
;
5355 tra
.awdl_unrestricted
= 1;
5356 tra
.intcoproc_allowed
= 1;
5357 if (thflags
& TH_ACK
) {
5358 /* mtod() below is safe as long as hdr dropping is delayed */
5359 tcp_respond(tp
, mtod(m
, void *), th
, m
, (tcp_seq
)0, th
->th_ack
,
5362 if (thflags
& TH_SYN
) {
5365 /* mtod() below is safe as long as hdr dropping is delayed */
5366 tcp_respond(tp
, mtod(m
, void *), th
, m
, th
->th_seq
+ tlen
,
5367 (tcp_seq
)0, TH_RST
| TH_ACK
, &tra
);
5369 /* destroy temporarily created socket */
5372 socket_unlock(so
, 1);
5373 } else if ((inp
!= NULL
) && (nosock
== 0)) {
5374 tcp_handle_wakeup(so
, read_wakeup
, write_wakeup
);
5376 socket_unlock(so
, 1);
5378 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
5384 * Drop space held by incoming segment and return.
5387 if (tp
== 0 || (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
)) {
5388 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
5393 /* destroy temporarily created socket */
5396 socket_unlock(so
, 1);
5397 } else if (nosock
== 0) {
5398 tcp_handle_wakeup(so
, read_wakeup
, write_wakeup
);
5400 socket_unlock(so
, 1);
5402 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
5407 * Parse TCP options and place in tcpopt.
5410 tcp_dooptions(struct tcpcb
*tp
, u_char
*cp
, int cnt
, struct tcphdr
*th
,
5416 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
5418 if (opt
== TCPOPT_EOL
) {
5421 if (opt
== TCPOPT_NOP
) {
5428 if (optlen
< 2 || optlen
> cnt
) {
5437 if (optlen
!= TCPOLEN_MAXSEG
) {
5440 if (!(th
->th_flags
& TH_SYN
)) {
5443 bcopy((char *) cp
+ 2, (char *) &mss
, sizeof(mss
));
5446 to
->to_flags
|= TOF_MSS
;
5450 if (optlen
!= TCPOLEN_WINDOW
) {
5453 if (!(th
->th_flags
& TH_SYN
)) {
5456 to
->to_flags
|= TOF_SCALE
;
5457 to
->to_requested_s_scale
= min(cp
[2], TCP_MAX_WINSHIFT
);
5460 case TCPOPT_TIMESTAMP
:
5461 if (optlen
!= TCPOLEN_TIMESTAMP
) {
5464 to
->to_flags
|= TOF_TS
;
5465 bcopy((char *)cp
+ 2,
5466 (char *)&to
->to_tsval
, sizeof(to
->to_tsval
));
5467 NTOHL(to
->to_tsval
);
5468 bcopy((char *)cp
+ 6,
5469 (char *)&to
->to_tsecr
, sizeof(to
->to_tsecr
));
5470 NTOHL(to
->to_tsecr
);
5471 to
->to_tsecr
-= tp
->t_ts_offset
;
5472 /* Re-enable sending Timestamps if we received them */
5473 if (!(tp
->t_flags
& TF_REQ_TSTMP
)) {
5474 tp
->t_flags
|= TF_REQ_TSTMP
;
5477 case TCPOPT_SACK_PERMITTED
:
5478 if (optlen
!= TCPOLEN_SACK_PERMITTED
) {
5481 if (th
->th_flags
& TH_SYN
) {
5482 to
->to_flags
|= TOF_SACK
;
5486 if (optlen
<= 2 || (optlen
- 2) % TCPOLEN_SACK
!= 0) {
5489 to
->to_nsacks
= (optlen
- 2) / TCPOLEN_SACK
;
5490 to
->to_sacks
= cp
+ 2;
5491 tcpstat
.tcps_sack_rcv_blocks
++;
5494 case TCPOPT_FASTOPEN
:
5495 if (optlen
== TCPOLEN_FASTOPEN_REQ
) {
5496 if (tp
->t_state
!= TCPS_LISTEN
) {
5500 to
->to_flags
|= TOF_TFOREQ
;
5502 if (optlen
< TCPOLEN_FASTOPEN_REQ
||
5503 (optlen
- TCPOLEN_FASTOPEN_REQ
) > TFO_COOKIE_LEN_MAX
||
5504 (optlen
- TCPOLEN_FASTOPEN_REQ
) < TFO_COOKIE_LEN_MIN
) {
5507 if (tp
->t_state
!= TCPS_LISTEN
&&
5508 tp
->t_state
!= TCPS_SYN_SENT
) {
5512 to
->to_flags
|= TOF_TFO
;
5513 to
->to_tfo
= cp
+ 1;
5518 case TCPOPT_MULTIPATH
:
5519 tcp_do_mptcp_options(tp
, cp
, th
, to
, optlen
);
5527 tcp_finalize_options(struct tcpcb
*tp
, struct tcpopt
*to
, unsigned int ifscope
)
5529 if (to
->to_flags
& TOF_TS
) {
5530 tp
->t_flags
|= TF_RCVD_TSTMP
;
5531 tp
->ts_recent
= to
->to_tsval
;
5532 tp
->ts_recent_age
= tcp_now
;
5534 if (to
->to_flags
& TOF_MSS
) {
5535 tcp_mss(tp
, to
->to_mss
, ifscope
);
5537 if (SACK_ENABLED(tp
)) {
5538 if (!(to
->to_flags
& TOF_SACK
)) {
5539 tp
->t_flagsext
&= ~(TF_SACK_ENABLE
);
5541 tp
->t_flags
|= TF_SACK_PERMIT
;
5544 if (to
->to_flags
& TOF_SCALE
) {
5545 tp
->t_flags
|= TF_RCVD_SCALE
;
5546 tp
->requested_s_scale
= to
->to_requested_s_scale
;
5548 /* Re-enable window scaling, if the option is received */
5549 if (tp
->request_r_scale
> 0) {
5550 tp
->t_flags
|= TF_REQ_SCALE
;
5556 * Pull out of band byte out of a segment so
5557 * it doesn't appear in the user's data queue.
5558 * It is still reflected in the segment length for
5559 * sequencing purposes.
5561 * @param off delayed to be droped hdrlen
5564 tcp_pulloutofband(struct socket
*so
, struct tcphdr
*th
, struct mbuf
*m
, int off
)
5566 int cnt
= off
+ th
->th_urp
- 1;
5569 if (m
->m_len
> cnt
) {
5570 char *cp
= mtod(m
, caddr_t
) + cnt
;
5571 struct tcpcb
*tp
= sototcpcb(so
);
5574 tp
->t_oobflags
|= TCPOOB_HAVEDATA
;
5575 bcopy(cp
+ 1, cp
, (unsigned)(m
->m_len
- cnt
- 1));
5577 if (m
->m_flags
& M_PKTHDR
) {
5588 panic("tcp_pulloutofband");
5592 get_base_rtt(struct tcpcb
*tp
)
5594 struct rtentry
*rt
= tp
->t_inpcb
->inp_route
.ro_rt
;
5595 return (rt
== NULL
) ? 0 : rt
->rtt_min
;
5598 /* Each value of RTT base represents the minimum RTT seen in a minute.
5599 * We keep upto N_RTT_BASE minutes worth of history.
5602 update_base_rtt(struct tcpcb
*tp
, uint32_t rtt
)
5604 u_int32_t base_rtt
, i
;
5607 if ((rt
= tp
->t_inpcb
->inp_route
.ro_rt
) == NULL
) {
5610 if (rt
->rtt_expire_ts
== 0) {
5612 if (rt
->rtt_expire_ts
!= 0) {
5616 rt
->rtt_expire_ts
= tcp_now
;
5618 rt
->rtt_hist
[0] = rtt
;
5626 * If the recv side is being throttled, check if the
5627 * current RTT is closer to the base RTT seen in
5628 * first (recent) two slots. If so, unthrottle the stream.
5630 if ((tp
->t_flagsext
& TF_RECV_THROTTLE
) &&
5631 (int)(tcp_now
- tp
->t_recv_throttle_ts
) >= TCP_RECV_THROTTLE_WIN
) {
5632 base_rtt
= rt
->rtt_min
;
5633 if (tp
->t_rttcur
<= (base_rtt
+ target_qdelay
)) {
5634 tp
->t_flagsext
&= ~TF_RECV_THROTTLE
;
5635 tp
->t_recv_throttle_ts
= 0;
5638 #endif /* TRAFFIC_MGT */
5639 if ((int)(tcp_now
- rt
->rtt_expire_ts
) >=
5640 TCP_RTT_HISTORY_EXPIRE_TIME
) {
5642 /* check the condition again to avoid race */
5643 if ((int)(tcp_now
- rt
->rtt_expire_ts
) >=
5644 TCP_RTT_HISTORY_EXPIRE_TIME
) {
5646 if (rt
->rtt_index
>= NRTT_HIST
) {
5649 rt
->rtt_hist
[rt
->rtt_index
] = rtt
;
5650 rt
->rtt_expire_ts
= tcp_now
;
5652 rt
->rtt_hist
[rt
->rtt_index
] =
5653 min(rt
->rtt_hist
[rt
->rtt_index
], rtt
);
5655 /* forget the old value and update minimum */
5657 for (i
= 0; i
< NRTT_HIST
; ++i
) {
5658 if (rt
->rtt_hist
[i
] != 0 &&
5659 (rt
->rtt_min
== 0 ||
5660 rt
->rtt_hist
[i
] < rt
->rtt_min
)) {
5661 rt
->rtt_min
= rt
->rtt_hist
[i
];
5666 rt
->rtt_hist
[rt
->rtt_index
] =
5667 min(rt
->rtt_hist
[rt
->rtt_index
], rtt
);
5668 if (rt
->rtt_min
== 0) {
5671 rt
->rtt_min
= min(rt
->rtt_min
, rtt
);
5677 * If we have a timestamp reply, update smoothed RTT. If no timestamp is
5678 * present but transmit timer is running and timed sequence number was
5679 * acked, update smoothed RTT.
5681 * If timestamps are supported, a receiver can update RTT even if
5682 * there is no outstanding data.
5684 * Some boxes send broken timestamp replies during the SYN+ACK phase,
5685 * ignore timestamps of 0or we could calculate a huge RTT and blow up
5686 * the retransmit timer.
5689 tcp_compute_rtt(struct tcpcb
*tp
, struct tcpopt
*to
, struct tcphdr
*th
)
5692 VERIFY(to
!= NULL
&& th
!= NULL
);
5693 if (tp
->t_rtttime
!= 0 && SEQ_GT(th
->th_ack
, tp
->t_rtseq
)) {
5694 u_int32_t pipe_ack_val
;
5695 rtt
= tcp_now
- tp
->t_rtttime
;
5697 * Compute pipe ack -- the amount of data acknowledged
5700 if (SEQ_GT(th
->th_ack
, tp
->t_pipeack_lastuna
)) {
5701 pipe_ack_val
= th
->th_ack
- tp
->t_pipeack_lastuna
;
5702 /* Update the sample */
5703 tp
->t_pipeack_sample
[tp
->t_pipeack_ind
++] =
5705 tp
->t_pipeack_ind
%= TCP_PIPEACK_SAMPLE_COUNT
;
5707 /* Compute the max of the pipeack samples */
5708 pipe_ack_val
= tcp_get_max_pipeack(tp
);
5709 tp
->t_pipeack
= (pipe_ack_val
>
5710 tcp_initial_cwnd(tp
)) ?
5713 /* start another measurement */
5716 if (((to
->to_flags
& TOF_TS
) != 0) &&
5717 (to
->to_tsecr
!= 0) &&
5718 TSTMP_GEQ(tcp_now
, to
->to_tsecr
)) {
5719 tcp_xmit_timer(tp
, (tcp_now
- to
->to_tsecr
),
5720 to
->to_tsecr
, th
->th_ack
);
5721 } else if (rtt
> 0) {
5722 tcp_xmit_timer(tp
, rtt
, 0, th
->th_ack
);
5727 * Collect new round-trip time estimate and update averages and
5731 tcp_xmit_timer(struct tcpcb
*tp
, int rtt
,
5732 u_int32_t tsecr
, tcp_seq th_ack
)
5735 int old_srtt
= tp
->t_srtt
;
5736 int old_rttvar
= tp
->t_rttvar
;
5737 bool log_rtt
= false;
5740 * On AWDL interface, the initial RTT measurement on SYN
5741 * can be wrong due to peer caching. Avoid the first RTT
5742 * measurement as it might skew up the RTO.
5743 * <rdar://problem/28739046>
5745 if (tp
->t_inpcb
->inp_last_outifp
!= NULL
&&
5746 (tp
->t_inpcb
->inp_last_outifp
->if_eflags
& IFEF_AWDL
) &&
5747 th_ack
== tp
->iss
+ 1) {
5751 if (tp
->t_flagsext
& TF_RECOMPUTE_RTT
) {
5752 if (SEQ_GT(th_ack
, tp
->snd_una
) &&
5753 SEQ_LEQ(th_ack
, tp
->snd_max
) &&
5755 TSTMP_GEQ(tsecr
, tp
->t_badrexmt_time
))) {
5757 * We received a new ACK after a
5758 * spurious timeout. Adapt retransmission
5759 * timer as described in rfc 4015.
5761 tp
->t_flagsext
&= ~(TF_RECOMPUTE_RTT
);
5762 tp
->t_badrexmt_time
= 0;
5763 tp
->t_srtt
= max(tp
->t_srtt_prev
, rtt
);
5764 tp
->t_srtt
= tp
->t_srtt
<< TCP_RTT_SHIFT
;
5765 tp
->t_rttvar
= max(tp
->t_rttvar_prev
, (rtt
>> 1));
5766 tp
->t_rttvar
= tp
->t_rttvar
<< TCP_RTTVAR_SHIFT
;
5768 if (tp
->t_rttbest
> (tp
->t_srtt
+ tp
->t_rttvar
)) {
5769 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
5778 tcpstat
.tcps_rttupdated
++;
5783 update_base_rtt(tp
, rtt
);
5786 if (tp
->t_srtt
!= 0) {
5788 * srtt is stored as fixed point with 5 bits after the
5789 * binary point (i.e., scaled by 32). The following magic
5790 * is equivalent to the smoothing algorithm in rfc793 with
5791 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
5794 * Freebsd adjusts rtt to origin 0 by subtracting 1
5795 * from the provided rtt value. This was required because
5796 * of the way t_rtttime was initiailised to 1 before.
5797 * Since we changed t_rtttime to be based on
5798 * tcp_now, this extra adjustment is not needed.
5800 delta
= (rtt
<< TCP_DELTA_SHIFT
)
5801 - (tp
->t_srtt
>> (TCP_RTT_SHIFT
- TCP_DELTA_SHIFT
));
5803 if ((tp
->t_srtt
+= delta
) <= 0) {
5808 * We accumulate a smoothed rtt variance (actually, a
5809 * smoothed mean difference), then set the retransmit
5810 * timer to smoothed rtt + 4 times the smoothed variance.
5811 * rttvar is stored as fixed point with 4 bits after the
5812 * binary point (scaled by 16). The following is
5813 * equivalent to rfc793 smoothing with an alpha of .75
5814 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
5815 * rfc793's wired-in beta.
5820 delta
-= tp
->t_rttvar
>> (TCP_RTTVAR_SHIFT
- TCP_DELTA_SHIFT
);
5821 if ((tp
->t_rttvar
+= delta
) <= 0) {
5824 if (tp
->t_rttbest
== 0 ||
5825 tp
->t_rttbest
> (tp
->t_srtt
+ tp
->t_rttvar
)) {
5826 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
5830 * No rtt measurement yet - use the unsmoothed rtt.
5831 * Set the variance to half the rtt (so our first
5832 * retransmit happens at 3*rtt).
5834 tp
->t_srtt
= rtt
<< TCP_RTT_SHIFT
;
5835 tp
->t_rttvar
= rtt
<< (TCP_RTTVAR_SHIFT
- 1);
5836 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
5840 nstat_route_rtt(tp
->t_inpcb
->inp_route
.ro_rt
, tp
->t_srtt
,
5844 * the retransmit should happen at rtt + 4 * rttvar.
5845 * Because of the way we do the smoothing, srtt and rttvar
5846 * will each average +1/2 tick of bias. When we compute
5847 * the retransmit timer, we want 1/2 tick of rounding and
5848 * 1 extra tick because of +-1/2 tick uncertainty in the
5849 * firing of the timer. The bias will give us exactly the
5850 * 1.5 tick we need. But, because the bias is
5851 * statistical, we have to test that we don't drop below
5852 * the minimum feasible timer (which is 2 ticks).
5854 TCPT_RANGESET(tp
->t_rxtcur
, TCP_REXMTVAL(tp
),
5855 max(tp
->t_rttmin
, rtt
+ 2), TCPTV_REXMTMAX
,
5856 TCP_ADD_REXMTSLOP(tp
));
5859 * We received an ack for a packet that wasn't retransmitted;
5860 * it is probably safe to discard any error indications we've
5861 * received recently. This isn't quite right, but close enough
5862 * for now (a route might have failed after we sent a segment,
5863 * and the return path might not be symmetrical).
5865 tp
->t_softerror
= 0;
5868 TCP_LOG_RTT_INFO(tp
);
5871 TCP_LOG_RTT_CHANGE(tp
, old_srtt
, old_rttvar
);
5874 static inline unsigned int
5875 tcp_maxmtu(struct rtentry
*rt
)
5877 unsigned int maxmtu
;
5878 int interface_mtu
= 0;
5880 RT_LOCK_ASSERT_HELD(rt
);
5881 interface_mtu
= rt
->rt_ifp
->if_mtu
;
5883 if (rt_key(rt
)->sa_family
== AF_INET
&&
5884 INTF_ADJUST_MTU_FOR_CLAT46(rt
->rt_ifp
)) {
5885 interface_mtu
= IN6_LINKMTU(rt
->rt_ifp
);
5886 /* Further adjust the size for CLAT46 expansion */
5887 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
5890 if (rt
->rt_rmx
.rmx_mtu
== 0) {
5891 maxmtu
= interface_mtu
;
5893 maxmtu
= MIN(rt
->rt_rmx
.rmx_mtu
, interface_mtu
);
5899 static inline unsigned int
5900 tcp_maxmtu6(struct rtentry
*rt
)
5902 unsigned int maxmtu
;
5903 struct nd_ifinfo
*ndi
= NULL
;
5905 RT_LOCK_ASSERT_HELD(rt
);
5906 if ((ndi
= ND_IFINFO(rt
->rt_ifp
)) != NULL
&& !ndi
->initialized
) {
5910 lck_mtx_lock(&ndi
->lock
);
5912 if (rt
->rt_rmx
.rmx_mtu
== 0) {
5913 maxmtu
= IN6_LINKMTU(rt
->rt_ifp
);
5915 maxmtu
= MIN(rt
->rt_rmx
.rmx_mtu
, IN6_LINKMTU(rt
->rt_ifp
));
5918 lck_mtx_unlock(&ndi
->lock
);
5925 get_maxmtu(struct rtentry
*rt
)
5927 unsigned int maxmtu
= 0;
5929 RT_LOCK_ASSERT_NOTHELD(rt
);
5933 if (rt_key(rt
)->sa_family
== AF_INET6
) {
5934 maxmtu
= tcp_maxmtu6(rt
);
5936 maxmtu
= tcp_maxmtu(rt
);
5945 * Determine a reasonable value for maxseg size.
5946 * If the route is known, check route for mtu.
5947 * If none, use an mss that can be handled on the outgoing
5948 * interface without forcing IP to fragment; if bigger than
5949 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
5950 * to utilize large mbufs. If no route is found, route has no mtu,
5951 * or the destination isn't local, use a default, hopefully conservative
5952 * size (usually 512 or the default IP max size, but no more than the mtu
5953 * of the interface), as we can't discover anything about intervening
5954 * gateways or networks. We also initialize the congestion/slow start
5955 * window. While looking at the routing entry, we also initialize
5956 * other path-dependent parameters from pre-set or cached values
5957 * in the routing entry.
5959 * Also take into account the space needed for options that we
5960 * send regularly. Make maxseg shorter by that amount to assure
5961 * that we can send maxseg amount of data even when the options
5962 * are present. Store the upper limit of the length of options plus
5965 * NOTE that this routine is only called when we process an incoming
5966 * segment, for outgoing segments only tcp_mssopt is called.
5970 tcp_mss(struct tcpcb
*tp
, int offer
, unsigned int input_ifscope
)
5978 int origoffer
= offer
;
5979 u_int32_t sb_max_corrected
;
5986 so
= inp
->inp_socket
;
5988 * Nothing left to send after the socket is defunct or TCP is in the closed state
5990 if ((so
->so_state
& SS_DEFUNCT
) || tp
->t_state
== TCPS_CLOSED
) {
5994 isipv6
= ((inp
->inp_vflag
& INP_IPV6
) != 0) ? 1 : 0;
5995 min_protoh
= isipv6
? sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
)
5996 : sizeof(struct tcpiphdr
);
5999 rt
= tcp_rtlookup6(inp
, input_ifscope
);
6001 rt
= tcp_rtlookup(inp
, input_ifscope
);
6003 isnetlocal
= (tp
->t_flags
& TF_LOCAL
);
6006 tp
->t_maxopd
= tp
->t_maxseg
= isipv6
? tcp_v6mssdflt
: tcp_mssdflt
;
6011 * Slower link window correction:
6012 * If a value is specificied for slowlink_wsize use it for
6013 * PPP links believed to be on a serial modem (speed <128Kbps).
6014 * Excludes 9600bps as it is the default value adversized
6015 * by pseudo-devices over ppp.
6017 if (ifp
->if_type
== IFT_PPP
&& slowlink_wsize
> 0 &&
6018 ifp
->if_baudrate
> 9600 && ifp
->if_baudrate
<= 128000) {
6019 tp
->t_flags
|= TF_SLOWLINK
;
6023 * Offer == -1 means that we didn't receive SYN yet. Use 0 then.
6026 offer
= rt
->rt_rmx
.rmx_filler
[0];
6029 * Offer == 0 means that there was no MSS on the SYN segment,
6030 * in this case we use tcp_mssdflt.
6033 offer
= isipv6
? tcp_v6mssdflt
: tcp_mssdflt
;
6036 * Prevent DoS attack with too small MSS. Round up
6037 * to at least minmss.
6039 offer
= max(offer
, tcp_minmss
);
6041 * Sanity check: make sure that maxopd will be large
6042 * enough to allow some data on segments even is the
6043 * all the option space is used (40bytes). Otherwise
6044 * funny things may happen in tcp_output.
6046 offer
= max(offer
, 64);
6048 rt
->rt_rmx
.rmx_filler
[0] = offer
;
6051 * While we're here, check if there's an initial rtt
6052 * or rttvar. Convert from the route-table units
6053 * to scaled multiples of the slow timeout timer.
6055 if (tp
->t_srtt
== 0 && (rtt
= rt
->rt_rmx
.rmx_rtt
) != 0) {
6056 tcp_getrt_rtt(tp
, rt
);
6058 tp
->t_rttmin
= isnetlocal
? tcp_TCPTV_MIN
: TCPTV_REXMTMIN
;
6061 mss
= (isipv6
? tcp_maxmtu6(rt
) : tcp_maxmtu(rt
));
6064 // At this point, the mss is just the MTU. Adjust if necessary.
6065 mss
= necp_socket_get_effective_mtu(inp
, mss
);
6070 if (rt
->rt_rmx
.rmx_mtu
== 0) {
6073 mss
= min(mss
, tcp_v6mssdflt
);
6075 } else if (!isnetlocal
) {
6076 mss
= min(mss
, tcp_mssdflt
);
6080 mss
= min(mss
, offer
);
6082 * maxopd stores the maximum length of data AND options
6083 * in a segment; maxseg is the amount of data in a normal
6084 * segment. We need to store this value (maxopd) apart
6085 * from maxseg, because now every segment carries options
6086 * and thus we normally have somewhat less data in segments.
6091 * origoffer==-1 indicates, that no segments were received yet.
6092 * In this case we just guess.
6094 if ((tp
->t_flags
& (TF_REQ_TSTMP
| TF_NOOPT
)) == TF_REQ_TSTMP
&&
6096 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
)) {
6097 mss
-= TCPOLEN_TSTAMP_APPA
;
6101 mss
-= mptcp_adj_mss(tp
, FALSE
);
6106 * Calculate corrected value for sb_max; ensure to upgrade the
6107 * numerator for large sb_max values else it will overflow.
6109 sb_max_corrected
= (sb_max
* (u_int64_t
)MCLBYTES
) / (MSIZE
+ MCLBYTES
);
6112 * If there's a pipesize (ie loopback), change the socket
6113 * buffer to that size only if it's bigger than the current
6114 * sockbuf size. Make the socket buffers an integral
6115 * number of mss units; if the mss is larger than
6116 * the socket buffer, decrease the mss.
6119 bufsize
= rt
->rt_rmx
.rmx_sendpipe
;
6120 if (bufsize
< so
->so_snd
.sb_hiwat
)
6122 bufsize
= so
->so_snd
.sb_hiwat
;
6123 if (bufsize
< mss
) {
6126 bufsize
= (((bufsize
+ (u_int64_t
)mss
- 1) / (u_int64_t
)mss
) * (u_int64_t
)mss
);
6127 if (bufsize
> sb_max_corrected
) {
6128 bufsize
= sb_max_corrected
;
6130 (void)sbreserve(&so
->so_snd
, bufsize
);
6134 ASSERT(tp
->t_maxseg
);
6137 * Update MSS using recommendation from link status report. This is
6140 tcp_update_mss_locked(so
, ifp
);
6143 bufsize
= rt
->rt_rmx
.rmx_recvpipe
;
6144 if (bufsize
< so
->so_rcv
.sb_hiwat
)
6146 bufsize
= so
->so_rcv
.sb_hiwat
;
6147 if (bufsize
> mss
) {
6148 bufsize
= (((bufsize
+ (u_int64_t
)mss
- 1) / (u_int64_t
)mss
) * (u_int64_t
)mss
);
6149 if (bufsize
> sb_max_corrected
) {
6150 bufsize
= sb_max_corrected
;
6152 (void)sbreserve(&so
->so_rcv
, bufsize
);
6155 set_tcp_stream_priority(so
);
6157 if (rt
->rt_rmx
.rmx_ssthresh
) {
6159 * There's some sort of gateway or interface
6160 * buffer limit on the path. Use this to set
6161 * slow-start threshold, but set the threshold to
6162 * no less than 2*mss.
6164 tp
->snd_ssthresh
= max(2 * mss
, rt
->rt_rmx
.rmx_ssthresh
);
6165 tcpstat
.tcps_usedssthresh
++;
6167 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
6171 * Set the slow-start flight size depending on whether this
6172 * is a local network or not.
6174 if (CC_ALGO(tp
)->cwnd_init
!= NULL
) {
6175 CC_ALGO(tp
)->cwnd_init(tp
);
6178 tcp_ccdbg_trace(tp
, NULL
, TCP_CC_CWND_INIT
);
6180 /* Route locked during lookup above */
6185 * Determine the MSS option to send on an outgoing SYN.
6188 tcp_mssopt(struct tcpcb
*tp
)
6195 isipv6
= ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) ? 1 : 0;
6196 min_protoh
= isipv6
? sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
)
6197 : sizeof(struct tcpiphdr
);
6200 rt
= tcp_rtlookup6(tp
->t_inpcb
, IFSCOPE_NONE
);
6202 rt
= tcp_rtlookup(tp
->t_inpcb
, IFSCOPE_NONE
);
6205 return isipv6
? tcp_v6mssdflt
: tcp_mssdflt
;
6208 * Slower link window correction:
6209 * If a value is specificied for slowlink_wsize use it for PPP links
6210 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
6211 * it is the default value adversized by pseudo-devices over ppp.
6213 if (rt
->rt_ifp
->if_type
== IFT_PPP
&& slowlink_wsize
> 0 &&
6214 rt
->rt_ifp
->if_baudrate
> 9600 && rt
->rt_ifp
->if_baudrate
<= 128000) {
6215 tp
->t_flags
|= TF_SLOWLINK
;
6218 mss
= (isipv6
? tcp_maxmtu6(rt
) : tcp_maxmtu(rt
));
6219 /* Route locked during lookup above */
6223 // At this point, the mss is just the MTU. Adjust if necessary.
6224 mss
= necp_socket_get_effective_mtu(tp
->t_inpcb
, mss
);
6227 return mss
- min_protoh
;
6231 * On a partial ack arrives, force the retransmission of the
6232 * next unacknowledged segment. Do not clear tp->t_dupacks.
6233 * By setting snd_nxt to th_ack, this forces retransmission timer to
6237 tcp_newreno_partial_ack(struct tcpcb
*tp
, struct tcphdr
*th
)
6239 tcp_seq onxt
= tp
->snd_nxt
;
6240 u_int32_t ocwnd
= tp
->snd_cwnd
;
6241 tp
->t_timer
[TCPT_REXMT
] = 0;
6242 tp
->t_timer
[TCPT_PTO
] = 0;
6244 tp
->snd_nxt
= th
->th_ack
;
6246 * Set snd_cwnd to one segment beyond acknowledged offset
6247 * (tp->snd_una has not yet been updated when this function
6250 tp
->snd_cwnd
= tp
->t_maxseg
+ BYTES_ACKED(th
, tp
);
6251 (void) tcp_output(tp
);
6252 tp
->snd_cwnd
= ocwnd
;
6253 if (SEQ_GT(onxt
, tp
->snd_nxt
)) {
6257 * Partial window deflation. Relies on fact that tp->snd_una
6260 if (tp
->snd_cwnd
> BYTES_ACKED(th
, tp
)) {
6261 tp
->snd_cwnd
-= BYTES_ACKED(th
, tp
);
6265 tp
->snd_cwnd
+= tp
->t_maxseg
;
6269 * Drop a random TCP connection that hasn't been serviced yet and
6270 * is eligible for discard. There is a one in qlen chance that
6271 * we will return a null, saying that there are no dropable
6272 * requests. In this case, the protocol specific code should drop
6273 * the new request. This insures fairness.
6275 * The listening TCP socket "head" must be locked
6278 tcp_dropdropablreq(struct socket
*head
)
6280 struct socket
*so
, *sonext
;
6281 unsigned int i
, j
, qlen
;
6282 static u_int32_t rnd
= 0;
6283 static u_int64_t old_runtime
;
6284 static unsigned int cur_cnt
, old_cnt
;
6286 struct inpcb
*inp
= NULL
;
6289 if ((head
->so_options
& SO_ACCEPTCONN
) == 0) {
6293 if (TAILQ_EMPTY(&head
->so_incomp
)) {
6297 so_acquire_accept_list(head
, NULL
);
6298 socket_unlock(head
, 0);
6301 * Check if there is any socket in the incomp queue
6302 * that is closed because of a reset from the peer and is
6303 * waiting to be garbage collected. If so, pick that as
6306 TAILQ_FOREACH_SAFE(so
, &head
->so_incomp
, so_list
, sonext
) {
6307 inp
= sotoinpcb(so
);
6308 tp
= intotcpcb(inp
);
6309 if (tp
!= NULL
&& tp
->t_state
== TCPS_CLOSED
&&
6310 so
->so_head
!= NULL
&&
6311 (so
->so_state
& (SS_INCOMP
| SS_CANTSENDMORE
| SS_CANTRCVMORE
)) ==
6312 (SS_INCOMP
| SS_CANTSENDMORE
| SS_CANTRCVMORE
)) {
6314 * The listen socket is already locked but we
6315 * can lock this socket here without lock ordering
6316 * issues because it is in the incomp queue and
6317 * is not visible to others.
6319 if (socket_try_lock(so
)) {
6328 so
= TAILQ_FIRST(&head
->so_incomp
);
6330 now_sec
= net_uptime();
6331 if ((i
= (now_sec
- old_runtime
)) != 0) {
6332 old_runtime
= now_sec
;
6333 old_cnt
= cur_cnt
/ i
;
6337 qlen
= head
->so_incqlen
;
6339 rnd
= RandomULong();
6342 if (++cur_cnt
> qlen
|| old_cnt
> qlen
) {
6343 rnd
= (314159 * rnd
+ 66329) & 0xffff;
6344 j
= ((qlen
+ 1) * rnd
) >> 16;
6347 so
= TAILQ_NEXT(so
, so_list
);
6350 /* Find a connection that is not already closing (or being served) */
6352 inp
= (struct inpcb
*)so
->so_pcb
;
6354 sonext
= TAILQ_NEXT(so
, so_list
);
6356 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
6358 * Avoid the issue of a socket being accepted
6359 * by one input thread and being dropped by
6360 * another input thread. If we can't get a hold
6361 * on this mutex, then grab the next socket in
6364 if (socket_try_lock(so
)) {
6366 if ((so
->so_usecount
== 2) &&
6367 (so
->so_state
& SS_INCOMP
) &&
6368 !(so
->so_flags
& SOF_INCOMP_INPROGRESS
)) {
6372 * don't use if being accepted or
6373 * used in any other way
6375 in_pcb_checkstate(inp
, WNT_RELEASE
, 1);
6376 socket_unlock(so
, 1);
6380 * do not try to lock the inp in
6381 * in_pcb_checkstate because the lock
6382 * is already held in some other thread.
6383 * Only drop the inp_wntcnt reference.
6385 in_pcb_checkstate(inp
, WNT_RELEASE
, 1);
6391 socket_lock(head
, 0);
6392 so_release_accept_list(head
);
6396 /* Makes sure socket is still in the right state to be discarded */
6398 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
6399 socket_unlock(so
, 1);
6400 socket_lock(head
, 0);
6401 so_release_accept_list(head
);
6406 if (so
->so_usecount
!= 2 || !(so
->so_state
& SS_INCOMP
)) {
6407 /* do not discard: that socket is being accepted */
6408 socket_unlock(so
, 1);
6409 socket_lock(head
, 0);
6410 so_release_accept_list(head
);
6414 socket_lock(head
, 0);
6415 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
6418 so
->so_state
&= ~SS_INCOMP
;
6419 so
->so_flags
|= SOF_OVERFLOW
;
6421 so_release_accept_list(head
);
6422 socket_unlock(head
, 0);
6424 socket_lock_assert_owned(so
);
6428 if (inp
->inp_wantcnt
> 0 && inp
->inp_wantcnt
!= WNT_STOPUSING
) {
6430 * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE
6431 * doesn't require a lock, it could have happened while
6432 * we are holding the lock. This pcb will have to
6433 * be garbage collected later.
6434 * Release the reference held for so_incomp queue
6436 VERIFY(so
->so_usecount
> 0);
6438 socket_unlock(so
, 1);
6441 * Unlock this socket and leave the reference on.
6442 * We need to acquire the pcbinfo lock in order to
6443 * fully dispose it off
6445 socket_unlock(so
, 0);
6447 lck_rw_lock_exclusive(tcbinfo
.ipi_lock
);
6450 /* Release the reference held for so_incomp queue */
6451 VERIFY(so
->so_usecount
> 0);
6454 if (so
->so_usecount
!= 1 ||
6455 (inp
->inp_wantcnt
> 0 &&
6456 inp
->inp_wantcnt
!= WNT_STOPUSING
)) {
6458 * There is an extra wantcount or usecount
6459 * that must have been added when the socket
6460 * was unlocked. This socket will have to be
6461 * garbage collected later
6463 socket_unlock(so
, 1);
6465 /* Drop the reference held for this function */
6466 VERIFY(so
->so_usecount
> 0);
6471 lck_rw_done(tcbinfo
.ipi_lock
);
6473 tcpstat
.tcps_drops
++;
6475 socket_lock(head
, 0);
6479 /* Set background congestion control on a socket */
6481 tcp_set_background_cc(struct socket
*so
)
6483 tcp_set_new_cc(so
, TCP_CC_ALGO_BACKGROUND_INDEX
);
6486 /* Set foreground congestion control on a socket */
6488 tcp_set_foreground_cc(struct socket
*so
)
6490 if (tcp_use_newreno
) {
6491 tcp_set_new_cc(so
, TCP_CC_ALGO_NEWRENO_INDEX
);
6493 tcp_set_new_cc(so
, TCP_CC_ALGO_CUBIC_INDEX
);
6498 tcp_set_new_cc(struct socket
*so
, uint16_t cc_index
)
6500 struct inpcb
*inp
= sotoinpcb(so
);
6501 struct tcpcb
*tp
= intotcpcb(inp
);
6502 u_char old_cc_index
= 0;
6503 if (tp
->tcp_cc_index
!= cc_index
) {
6504 old_cc_index
= tp
->tcp_cc_index
;
6506 if (CC_ALGO(tp
)->cleanup
!= NULL
) {
6507 CC_ALGO(tp
)->cleanup(tp
);
6509 tp
->tcp_cc_index
= cc_index
;
6511 tcp_cc_allocate_state(tp
);
6513 if (CC_ALGO(tp
)->switch_to
!= NULL
) {
6514 CC_ALGO(tp
)->switch_to(tp
, old_cc_index
);
6517 tcp_ccdbg_trace(tp
, NULL
, TCP_CC_CHANGE_ALGO
);
6522 tcp_set_recv_bg(struct socket
*so
)
6524 if (!IS_TCP_RECV_BG(so
)) {
6525 so
->so_flags1
|= SOF1_TRAFFIC_MGT_TCP_RECVBG
;
6530 tcp_clear_recv_bg(struct socket
*so
)
6532 if (IS_TCP_RECV_BG(so
)) {
6533 so
->so_flags1
&= ~(SOF1_TRAFFIC_MGT_TCP_RECVBG
);
6538 inp_fc_throttle_tcp(struct inpcb
*inp
)
6540 struct tcpcb
*tp
= inp
->inp_ppcb
;
6542 if (!tcp_flow_control_response
) {
6547 * Back off the slow-start threshold and enter
6548 * congestion avoidance phase
6550 if (CC_ALGO(tp
)->pre_fr
!= NULL
) {
6551 CC_ALGO(tp
)->pre_fr(tp
);
6556 inp_fc_unthrottle_tcp(struct inpcb
*inp
)
6558 struct tcpcb
*tp
= inp
->inp_ppcb
;
6560 if (tcp_flow_control_response
) {
6561 if (CC_ALGO(tp
)->post_fr
!= NULL
) {
6562 CC_ALGO(tp
)->post_fr(tp
, NULL
);
6565 tp
->t_bytes_acked
= 0;
6568 * Reset retransmit shift as we know that the reason
6569 * for delay in sending a packet is due to flow
6570 * control on the outgoing interface. There is no need
6571 * to backoff retransmit timer.
6573 TCP_RESET_REXMT_STATE(tp
);
6575 tp
->t_flagsext
&= ~TF_CWND_NONVALIDATED
;
6578 * Start the output stream again. Since we are
6579 * not retransmitting data, do not reset the
6580 * retransmit timer or rtt calculation.
6587 * Back off the slow-start threshold and enter
6588 * congestion avoidance phase
6590 if (CC_ALGO(tp
)->pre_fr
!= NULL
) {
6591 CC_ALGO(tp
)->pre_fr(tp
);
6594 tp
->snd_cwnd
= tp
->snd_ssthresh
;
6595 tp
->t_flagsext
&= ~TF_CWND_NONVALIDATED
;
6597 * Restart counting for ABC as we changed the
6598 * congestion window just now.
6600 tp
->t_bytes_acked
= 0;
6602 /* Reset retransmit shift as we know that the reason
6603 * for delay in sending a packet is due to flow
6604 * control on the outgoing interface. There is no need
6605 * to backoff retransmit timer.
6607 TCP_RESET_REXMT_STATE(tp
);
6610 * Start the output stream again. Since we are
6611 * not retransmitting data, do not reset the
6612 * retransmit timer or rtt calculation.
6618 tcp_getstat SYSCTL_HANDLER_ARGS
6620 #pragma unused(oidp, arg1, arg2)
6623 struct tcpstat
*stat
;
6625 #if XNU_TARGET_OS_OSX
6626 struct tcpstat zero_stat
;
6628 if (tcp_disable_access_to_stats
&&
6629 !kauth_cred_issuser(kauth_cred_get())) {
6630 bzero(&zero_stat
, sizeof(zero_stat
));
6634 #endif /* XNU_TARGET_OS_OSX */
6636 if (req
->oldptr
== 0) {
6637 req
->oldlen
= (size_t)sizeof(struct tcpstat
);
6640 error
= SYSCTL_OUT(req
, stat
, MIN(sizeof(tcpstat
), req
->oldlen
));
6646 * Checksum extended TCP header and data.
6649 tcp_input_checksum(int af
, struct mbuf
*m
, struct tcphdr
*th
, int off
, int tlen
)
6651 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
6655 struct ip
*ip
= mtod(m
, struct ip
*);
6656 struct ipovly
*ipov
= (struct ipovly
*)ip
;
6658 /* ip_stripoptions() must have been called before we get here */
6659 ASSERT((ip
->ip_hl
<< 2) == sizeof(*ip
));
6661 if ((hwcksum_rx
|| (ifp
->if_flags
& IFF_LOOPBACK
) ||
6662 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) &&
6663 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
)) {
6664 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
) {
6665 th
->th_sum
= m
->m_pkthdr
.csum_rx_val
;
6667 uint32_t sum
= m
->m_pkthdr
.csum_rx_val
;
6668 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
6669 int32_t trailer
= (m_pktlen(m
) - (off
+ tlen
));
6672 * Perform 1's complement adjustment of octets
6673 * that got included/excluded in the hardware-
6674 * calculated checksum value. Ignore cases
6675 * where the value already includes the entire
6676 * IP header span, as the sum for those octets
6677 * would already be 0 by the time we get here;
6678 * IP has already performed its header checksum
6679 * checks. If we do need to adjust, restore
6680 * the original fields in the IP header when
6681 * computing the adjustment value. Also take
6682 * care of any trailing bytes and subtract out
6683 * their partial sum.
6685 ASSERT(trailer
>= 0);
6686 if ((m
->m_pkthdr
.csum_flags
& CSUM_PARTIAL
) &&
6687 ((start
!= 0 && start
!= off
) || trailer
)) {
6688 uint32_t swbytes
= (uint32_t)trailer
;
6691 ip
->ip_len
+= sizeof(*ip
);
6692 #if BYTE_ORDER != BIG_ENDIAN
6695 #endif /* BYTE_ORDER != BIG_ENDIAN */
6697 /* callee folds in sum */
6698 sum
= m_adj_sum16(m
, start
, off
,
6701 swbytes
+= (off
- start
);
6703 swbytes
+= (start
- off
);
6707 #if BYTE_ORDER != BIG_ENDIAN
6710 #endif /* BYTE_ORDER != BIG_ENDIAN */
6711 ip
->ip_len
-= sizeof(*ip
);
6715 tcp_in_cksum_stats(swbytes
);
6722 /* callee folds in sum */
6723 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
,
6725 sum
+ htonl(tlen
+ IPPROTO_TCP
));
6727 th
->th_sum
^= 0xffff;
6733 bcopy(ipov
->ih_x1
, b
, sizeof(ipov
->ih_x1
));
6734 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
6735 ip_sum
= ipov
->ih_len
;
6736 ipov
->ih_len
= (u_short
)tlen
;
6737 #if BYTE_ORDER != BIG_ENDIAN
6738 HTONS(ipov
->ih_len
);
6740 len
= sizeof(struct ip
) + tlen
;
6741 th
->th_sum
= in_cksum(m
, len
);
6742 bcopy(b
, ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
6743 ipov
->ih_len
= ip_sum
;
6745 tcp_in_cksum_stats(len
);
6750 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
6752 if ((hwcksum_rx
|| (ifp
->if_flags
& IFF_LOOPBACK
) ||
6753 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) &&
6754 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
)) {
6755 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
) {
6756 th
->th_sum
= m
->m_pkthdr
.csum_rx_val
;
6758 uint32_t sum
= m
->m_pkthdr
.csum_rx_val
;
6759 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
6760 int32_t trailer
= (m_pktlen(m
) - (off
+ tlen
));
6763 * Perform 1's complement adjustment of octets
6764 * that got included/excluded in the hardware-
6765 * calculated checksum value. Also take care
6766 * of any trailing bytes and subtract out their
6769 ASSERT(trailer
>= 0);
6770 if ((m
->m_pkthdr
.csum_flags
& CSUM_PARTIAL
) &&
6771 (start
!= off
|| trailer
!= 0)) {
6772 uint16_t s
= 0, d
= 0;
6773 uint32_t swbytes
= (uint32_t)trailer
;
6775 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
6776 s
= ip6
->ip6_src
.s6_addr16
[1];
6777 ip6
->ip6_src
.s6_addr16
[1] = 0;
6779 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
6780 d
= ip6
->ip6_dst
.s6_addr16
[1];
6781 ip6
->ip6_dst
.s6_addr16
[1] = 0;
6784 /* callee folds in sum */
6785 sum
= m_adj_sum16(m
, start
, off
,
6788 swbytes
+= (off
- start
);
6790 swbytes
+= (start
- off
);
6793 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
6794 ip6
->ip6_src
.s6_addr16
[1] = s
;
6796 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
6797 ip6
->ip6_dst
.s6_addr16
[1] = d
;
6801 tcp_in6_cksum_stats(swbytes
);
6808 th
->th_sum
= in6_pseudo(
6809 &ip6
->ip6_src
, &ip6
->ip6_dst
,
6810 sum
+ htonl(tlen
+ IPPROTO_TCP
));
6812 th
->th_sum
^= 0xffff;
6814 tcp_in6_cksum_stats(tlen
);
6815 th
->th_sum
= in6_cksum(m
, IPPROTO_TCP
, off
, tlen
);
6824 if (th
->th_sum
!= 0) {
6825 tcpstat
.tcps_rcvbadsum
++;
6826 IF_TCP_STATINC(ifp
, badformat
);
6834 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_STATS
, stats
,
6835 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, tcp_getstat
,
6836 "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
6839 sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
6841 #pragma unused(arg1, arg2)
6843 int error
, val
= tcprexmtthresh
;
6845 error
= sysctl_handle_int(oidp
, &val
, 0, req
);
6846 if (error
|| !req
->newptr
) {
6851 * Constrain the number of duplicate ACKs
6852 * to consider for TCP fast retransmit
6856 if (val
< 2 || val
> 3) {
6860 tcprexmtthresh
= val
;
6865 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, rexmt_thresh
, CTLTYPE_INT
| CTLFLAG_RW
|
6866 CTLFLAG_LOCKED
, &tcprexmtthresh
, 0, &sysctl_rexmtthresh
, "I",
6867 "Duplicate ACK Threshold for Fast Retransmit");