]>
git.saurik.com Git - apple/xnu.git/blob - EXTERNAL_HEADERS/corecrypto/ccn.h
5 * Created on 11/16/2010
7 * Copyright (c) 2010,2011,2012,2013,2014,2015 Apple Inc. All rights reserved.
11 #ifndef _CORECRYPTO_CCN_H_
12 #define _CORECRYPTO_CCN_H_
14 #include <corecrypto/cc.h>
18 typedef uint8_t cc_byte
;
19 typedef size_t cc_size
;
21 #if CCN_UNIT_SIZE == 8
22 typedef uint64_t cc_unit
; // 64 bit unit
23 typedef int64_t cc_int
;
24 #define CCN_LOG2_BITS_PER_UNIT 6 // 2^6 = 64 bits
25 #define CC_UNIT_C(x) UINT64_C(x)
26 #if CCN_UINT128_SUPPORT_FOR_64BIT_ARCH
27 typedef unsigned cc_dunit
__attribute__((mode(TI
))); // 128 bit double width unit
28 typedef signed cc_dint
__attribute__((mode(TI
)));
30 typedef struct cc_dunit
{
31 uint64_t l
; //do not change the order of the variables. cc_dunit must be little endian
35 typedef struct cc_dint
{
41 #elif CCN_UNIT_SIZE == 4
42 typedef uint32_t cc_unit
; // 32 bit unit
43 typedef uint64_t cc_dunit
; // 64 bit double width unit
44 typedef int64_t cc_dint
;
45 typedef int32_t cc_int
;
46 #define CCN_LOG2_BITS_PER_UNIT 5 // 2^5 = 32 bits
47 #define CC_UNIT_C(x) UINT32_C(x)
49 #elif CCN_UNIT_SIZE == 2
50 typedef uint16_t cc_unit
; // 16 bit unit
51 typedef uint32_t cc_dunit
; // 32 bit double width unit
52 #define CCN_LOG2_BITS_PER_UNIT 4 // 2^4 = 16 bits
53 #define CC_UNIT_C(x) UINT16_C(x)
55 #elif CCN_UNIT_SIZE == 1
56 typedef uint8_t cc_unit
; // 8 bit unit
57 typedef uint16_t cc_dunit
; // 16 bit double width unit
58 #define CCN_LOG2_BITS_PER_UNIT 3 // 2^3 = 8 bits
59 #define CC_UNIT_C(x) UINT8_C(x)
62 #error invalid CCN_UNIT_SIZE
65 // All mp types have units in little endian unit order.
66 typedef cc_unit
*ccn_t
; // n unit long mp
67 typedef cc_unit
*ccnp1_t
; // n + 1 unit long mp
68 typedef cc_unit
*cc2n_t
; // 2 * n unit long mp
69 typedef cc_unit
*cc2np2_t
; // 2 * n + 2 unit long mp
70 typedef const cc_unit
*ccn_in_t
; // n unit long mp
71 typedef const cc_unit
*ccnp1_in_t
; // n + 1 unit long mp
72 typedef const cc_unit
*cc2n_in_t
; // 2 * n unit long mp
73 typedef const cc_unit
*cc2np2_in_t
; // 2 * n + 2 unit long mp
75 #define CCN_UNIT_BITS (sizeof(cc_unit) * 8)
76 #define CCN_UNIT_MASK ((cc_unit)~0)
79 cc_unit
*start
; // First cc_unit of the workspace
80 cc_unit
*end
; // address and beyond NOT TO BE TOUCHED
83 /* Conversions between n sizeof and bits */
85 /* Returns the sizeof a ccn vector of length _n_ units. */
86 #define ccn_sizeof_n(_n_) (sizeof(cc_unit) * (_n_))
88 /* Returns the count (n) of a ccn vector that can represent _bits_. */
89 #define ccn_nof(_bits_) (((_bits_) + CCN_UNIT_BITS - 1) >> CCN_LOG2_BITS_PER_UNIT)
91 /* Returns the sizeof a ccn vector that can represent _bits_. */
92 #define ccn_sizeof(_bits_) (ccn_sizeof_n(ccn_nof(_bits_)))
94 /* Returns the count (n) of a ccn vector that can represent _size_ bytes. */
95 #define ccn_nof_size(_size_) (((_size_) + CCN_UNIT_SIZE - 1) / CCN_UNIT_SIZE)
97 /* Return the max number of bits a ccn vector of _n_ units can hold. */
98 #define ccn_bitsof_n(_n_) ((_n_) * CCN_UNIT_BITS)
100 /* Return the max number of bits a ccn vector of _size_ bytes can hold. */
101 #define ccn_bitsof_size(_size_) ((_size_) * 8)
103 /* Return the size of a ccn of size bytes in bytes. */
104 #define ccn_sizeof_size(_size_) ccn_sizeof_n(ccn_nof_size(_size_))
106 /* Returns the value of bit _k_ of _ccn_, both are only evaluated once. */
107 #define ccn_bit(_ccn_, _k_) ({__typeof__ (_k_) __k = (_k_); \
108 1 & ((_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] >> (__k & (CCN_UNIT_BITS - 1)));})
110 /* Set the value of bit _k_ of _ccn_ to the value _v_ */
111 #define ccn_set_bit(_ccn_, _k_, _v_) ({__typeof__ (_k_) __k = (_k_); \
113 (_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] |= CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1)); \
115 (_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] &= ~(CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1))); \
118 /* Macros for making ccn constants. You must use list of CCN64_C() instances
119 separated by commas, with an optional smaller sized CCN32_C, CCN16_C, or
120 CCN8_C() instance at the end of the list, when making macros to declare
121 larger sized constants. */
122 #define CCN8_C(a0) CC_UNIT_C(0x##a0)
124 #if CCN_UNIT_SIZE >= 2
125 #define CCN16_C(a1,a0) CC_UNIT_C(0x##a1##a0)
126 #define ccn16_v(a0) (a0)
127 #elif CCN_UNIT_SIZE == 1
128 #define CCN16_C(a1,a0) CCN8_C(a0),CCN8_C(a1)
129 #define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
132 #if CCN_UNIT_SIZE >= 4
133 #define CCN32_C(a3,a2,a1,a0) CC_UNIT_C(0x##a3##a2##a1##a0)
134 #define ccn32_v(a0) (a0)
136 #define CCN32_C(a3,a2,a1,a0) CCN16_C(a1,a0),CCN16_C(a3,a2)
137 #define ccn32_v(a0) ccn16_v(a0 & UINT16_C(0xffff)),ccn16_v(a0 >> 16)
140 #if CCN_UNIT_SIZE == 8
141 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CC_UNIT_C(0x##a7##a6##a5##a4##a3##a2##a1##a0)
142 #define CCN40_C(a4,a3,a2,a1,a0) CC_UNIT_C(0x##a4##a3##a2##a1##a0)
143 #define ccn64_v(a0) (a0)
144 //#define ccn64_32(a1,a0) ((a1 << 32) | a0)
145 //#define ccn_uint64(a,i) (a[i])
147 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN32_C(a7,a6,a5,a4)
148 #define CCN40_C(a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN8_C(a4)
149 #define ccn64_v(a0) ccn32_v((uint64_t)a0 & UINT32_C(0xffffffff)),ccn32_v((uint64_t)a0 >> 32)
150 //#define ccn64_32(a1,a0) ccn32_v(a0),ccn32_v(a1)
151 //#define ccn_uint64(a,i) ((uint64_t)ccn_uint32(a, i << 1 + 1) << 32 | (uint64_t)ccn_uint32(a, i << 1))
154 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
155 64 bit units respectively. */
156 #if CCN_UNIT_SIZE == 8
157 /* #define ccn_uint16(a,i) ((i & 3) == 3 ? ((uint16_t)(a[i >> 2] >> 48)) : \
158 (i & 3) == 2 ? ((uint16_t)(a[i >> 2] >> 32) & UINT16_C(0xffff)) : \
159 (i & 3) == 1 ? ((uint16_t)(a[i >> 2] >> 16) & UINT16_C(0xffff)) : \
160 ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
162 //#define ccn_uint32(a,i) (i & 1 ? ((uint32_t)(a[i >> 1] >> 32)) : ((uint32_t)(a[i >> 1] & UINT32_C(0xffffffff))))
163 #elif CCN_UNIT_SIZE == 4
164 //#define ccn16_v(a0) (a0)
165 //#define ccn32_v(a0) (a0)
166 //#define ccn_uint16(a,i) (i & 1 ? ((uint16_t)(a[i >> 1] >> 16)) : ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
167 //#define ccn_uint32(a,i) (a[i])
168 #elif CCN_UNIT_SIZE == 2
169 //#define ccn16_v(a0) (a0)
170 //#define ccn32_v(a0,a1) (a1,a0)
171 //#define ccn_uint16(a,i) (a[i])
172 //#define ccn_uint32(a,i) (((uint32_t)a[i << 1 + 1]) << 16 | (uint32_t)a[i << 1]))
173 #elif CCN_UNIT_SIZE == 1
174 //#define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
175 //#define ccn_uint16(a,i) ((uint16_t)((a[i << 1 + 1] << 8) | a[i << 1]))
176 //#define ccn_uint32(a,i) ((uint32_t)ccn_uint16(a, i << 1 + 1) << 16 | (uint32_t)ccn_uint16(a, i << 1))
179 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
180 64 bit units respectively. */
181 #if CCN_UNIT_SIZE == 8
183 #define ccn64_32(a1,a0) (((const cc_unit)a1) << 32 | ((const cc_unit)a0))
184 #define ccn32_32(a0) a0
185 #if __LITTLE_ENDIAN__
186 #define ccn32_32_parse(p,i) (((const uint32_t *)p)[i])
188 #define ccn32_32_parse(p,i) (((const uint32_t *)p)[i^1])
190 #define ccn32_32_null 0
192 #define ccn64_64(a0) a0
193 #define ccn64_64_parse(p,i) p[i]
194 #define ccn64_64_null 0
196 #elif CCN_UNIT_SIZE == 4
198 #define ccn32_32(a0) a0
199 #define ccn32_32_parse(p,i) p[i]
200 #define ccn32_32_null 0
201 #define ccn64_32(a1,a0) ccn32_32(a0),ccn32_32(a1)
203 #define ccn64_64(a1,a0) a0,a1
204 #define ccn64_64_parse(p,i) p[1+(i<<1)],p[i<<1]
205 #define ccn64_64_null 0,0
207 #elif CCN_UNIT_SIZE == 2
209 #define ccn32_32(a1,a0) a0,a1
210 #define ccn32_32_parse(p,i) p[1+(i<<1)],p[i<<1]
211 #define ccn32_32_null 0,0
212 #define ccn64_32(a3,a2,a1,a0) ccn32_32(a1,a0),ccn32_32(a3,a2)
214 #define ccn64_64(a3,a2,a1,a0) a0,a1,a2,a3
215 #define ccn64_64_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
216 #define ccn64_64_null 0,0,0,0
218 #elif CCN_UNIT_SIZE == 1
220 #define ccn32_32(a3,a2,a1,a0) a0,a1,a2,a3
221 #define ccn32_32_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
222 #define ccn32_32_null 0,0,0,0
223 #define ccn64_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn32_32(a3,a2,a1,a0),ccn32_32(a7,a6,a5,a4)
225 #define ccn64_64(a7,a6,a5,a4,a3,a2,a1,a0) a0,a1,a2,a3,a4,a5,a6,a7
226 #define ccn64_64_parse(p,i) p[7+(i<<3)],p[6+(i<<3)],p[5+(i<<3)],p[4+(i<<3)],p[3+(i<<3)],p[2+(i<<3)],p[1+(i<<3)],p[i<<3]
227 #define ccn64_64_null 0,0,0,0,0,0,0,0
232 /* Macros to construct fixed size ccn arrays from 64 or 32 bit quantities. */
233 #define ccn192_64(a2,a1,a0) ccn64_64(a0),ccn64_64(a1),ccn64_64(a2)
234 #define ccn224_32(a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn32_32(a6)
235 #define ccn256_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6)
236 #define ccn384_32(a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6),ccn64_32(a9,a8),ccn64_32(a11,a10)
239 #define CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
240 CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0),\
241 CCN64_C(b7,b6,b5,b4,b3,b2,b1,b0),\
242 CCN64_C(c7,c6,c5,c4,c3,c2,c1,c0)
244 #define CCN200_C(d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
245 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
248 #define CCN224_C(d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
249 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
252 #define CCN232_C(d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
253 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
254 CCN40_C(d4,d3,d2,d1,d0)
256 #define CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
257 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
258 CCN64_C(d7,d6,d5,d4,d3,d2,d1,d0)
260 #define CCN264_C(e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
261 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
264 #define CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
265 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
266 CCN64_C(e7,e6,e5,e4,e3,e2,e1,e0),\
267 CCN64_C(f7,f6,f5,f4,f3,f2,f1,f0)
269 #define CCN392_C(g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
270 CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
273 #define CCN528_C(i1,i0,h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
274 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
275 CCN256_C(h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0),\
278 #define CCN192_N ccn_nof(192)
279 #define CCN224_N ccn_nof(224)
280 #define CCN256_N ccn_nof(256)
281 #define CCN384_N ccn_nof(384)
282 #define CCN512_N ccn_nof(512)
283 #define CCN521_N ccn_nof(521)
285 /* Return the number of used units after stripping leading 0 units. */
287 cc_size
ccn_n(cc_size n
, const cc_unit
*s
);
289 /* s >> k -> r return bits shifted out of least significant word in bits [0, n>
290 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
291 the _multi version doesn't return the shifted bits, but does support multiple
294 cc_unit
ccn_shift_right(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
);
296 void ccn_shift_right_multi(cc_size n
, cc_unit
*r
,const cc_unit
*s
, size_t k
);
298 /* s << k -> r return bits shifted out of most significant word in bits [0, n>
299 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
300 the _multi version doesn't return the shifted bits, but does support multiple
303 cc_unit
ccn_shift_left(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
);
305 void ccn_shift_left_multi(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
);
307 /* s == 0 -> return 0 | s > 0 -> return index (starting at 1) of most
308 significant bit that is 1.
309 { N bit } N = n * sizeof(cc_unit) * 8 */
311 size_t ccn_bitlen(cc_size n
, const cc_unit
*s
);
313 /* Returns the number of bits which are zero before the first one bit
314 counting from least to most significant bit. */
316 size_t ccn_trailing_zeros(cc_size n
, const cc_unit
*s
);
318 /* s == 0 -> return true | s != 0 -> return false
319 { N bit } N = n * sizeof(cc_unit) * 8 */
320 #define ccn_is_zero(_n_, _s_) (!ccn_n(_n_, _s_))
322 /* s == 1 -> return true | s != 1 -> return false
323 { N bit } N = n * sizeof(cc_unit) * 8 */
324 #define ccn_is_one(_n_, _s_) (ccn_n(_n_, _s_) == 1 && _s_[0] == 1)
326 #define ccn_is_zero_or_one(_n_, _s_) (((_n_)==0) || ((ccn_n(_n_, _s_) <= 1) && (_s_[0] <= 1)))
328 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
329 { N bit, N bit -> int } N = n * sizeof(cc_unit) * 8 */
330 CC_PURE
CC_NONNULL((2, 3))
331 int ccn_cmp(cc_size n
, const cc_unit
*s
, const cc_unit
*t
);
333 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
334 { N bit, M bit -> int } N = ns * sizeof(cc_unit) * 8 M = nt * sizeof(cc_unit) * 8 */
335 CC_INLINE
CC_NONNULL((2, 4))
336 int ccn_cmpn(cc_size ns
, const cc_unit
*s
,
337 cc_size nt
, const cc_unit
*t
) {
340 } else if (ns
< nt
) {
343 return ccn_cmp(ns
, s
, t
);
346 /* s - t -> r return 1 iff t > s
347 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
348 CC_NONNULL((2, 3, 4))
349 cc_unit
ccn_sub(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
351 /* |s - t| -> r return 1 iff t > s, 0 otherwise */
352 cc_unit
ccn_abs(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
354 /* s - v -> r return 1 iff v > s return 0 otherwise.
355 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
357 cc_unit
ccn_sub1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, cc_unit v
);
359 /* s - t -> r return 1 iff t > s
360 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
362 CC_NONNULL((2, 3, 5))
363 cc_unit
ccn_subn(cc_size n
, cc_unit
*r
, const cc_unit
*s
,
364 cc_size nt
, const cc_unit
*t
) {
366 return ccn_sub1(n
- nt
, r
+ nt
, s
+ nt
, ccn_sub(nt
, r
, s
, t
));
370 /* s + t -> r return carry if result doesn't fit in n bits.
371 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
372 CC_NONNULL((2, 3, 4))
373 cc_unit
ccn_add(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
375 /* s + v -> r return carry if result doesn't fit in n bits.
376 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
378 cc_unit
ccn_add1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, cc_unit v
);
380 /* s + t -> r return carry if result doesn't fit in n bits
381 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
383 CC_NONNULL((2, 3, 5))
384 cc_unit
ccn_addn(cc_size n
, cc_unit
*r
, const cc_unit
*s
,
385 cc_size nt
, const cc_unit
*t
) {
387 return ccn_add1(n
- nt
, r
+ nt
, s
+ nt
, ccn_add(nt
, r
, s
, t
));
391 CC_NONNULL((2, 3, 4))
392 void ccn_lcm(cc_size n
, cc_unit
*r2n
, const cc_unit
*s
, const cc_unit
*t
);
395 /* s * t -> r_2n r_2n must not overlap with s nor t
396 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8
397 { N bit, N bit -> 2N bit } N = ccn_bitsof(n) */
398 CC_NONNULL((2, 3, 4))
399 void ccn_mul(cc_size n
, cc_unit
*r_2n
, const cc_unit
*s
, const cc_unit
*t
);
401 /* s * t -> r_2n r_2n must not overlap with s nor t
402 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8
403 { N bit, N bit -> 2N bit } N = ccn_bitsof(n)
404 Provide a workspace for potential speedup */
405 CC_NONNULL((1, 3, 4, 5))
406 void ccn_mul_ws(cc_ws_t ws
, cc_size count
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
408 /* s[0..n) * v -> r[0..n)+return value
409 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
411 cc_unit
ccn_mul1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit v
);
413 /* s[0..n) * v + r[0..n) -> r[0..n)+return value
414 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
416 cc_unit
ccn_addmul1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit v
);
420 {2 * n bit, n bit -> n bit } n = count * sizeof(cc_unit) * 8 */
421 CC_NONNULL((2, 3, 4))
422 void ccn_mod(cc_size n
, cc_unit
*r
, const cc_unit
*a_2n
, const cc_unit
*d
);
426 N bit, N bit -> N bit */
427 CC_NONNULL((2, 3, 4))
428 void ccn_gcd(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
431 N bit, N bit -> O bit */
432 CC_NONNULL((2, 4, 6))
433 void ccn_gcdn(cc_size rn
, cc_unit
*r
, cc_size sn
, const cc_unit
*s
, cc_size tn
, const cc_unit
*t
);
435 /* r = (data, len) treated as a big endian byte array, return -1 if data
436 doesn't fit in r, return 0 otherwise. */
438 int ccn_read_uint(cc_size n
, cc_unit
*r
, size_t data_size
, const uint8_t *data
);
440 /* r = (data, len) treated as a big endian byte array, return -1 if data
441 doesn't fit in r, return 0 otherwise.
442 ccn_read_uint strips leading zeroes and doesn't care about sign. */
443 #define ccn_read_int(n, r, data_size, data) ccn_read_uint(n, r, data_size, data)
445 /* Return actual size in bytes needed to serialize s. */
447 size_t ccn_write_uint_size(cc_size n
, const cc_unit
*s
);
449 /* Serialize s, to out.
450 First byte of byte stream is the m.s. byte of s,
451 regardless of the size of cc_unit.
453 No assumption is made about the alignment of out.
455 The out_size argument should be the value returned from ccn_write_uint_size,
456 and is also the exact number of bytes this function will write to out.
457 If out_size if less than the value returned by ccn_write_uint_size, only the
458 first out_size non-zero most significant octets of s will be written. */
460 void ccn_write_uint(cc_size n
, const cc_unit
*s
, size_t out_size
, void *out
);
463 CC_INLINE
CC_NONNULL((2, 4))
464 cc_size
ccn_write_uint_padded(cc_size n
, const cc_unit
* s
, size_t out_size
, uint8_t* to
)
466 size_t bytesInKey
= ccn_write_uint_size(n
, s
);
467 cc_size offset
= (out_size
> bytesInKey
) ? out_size
- bytesInKey
: 0;
470 ccn_write_uint(n
, s
, out_size
- offset
, to
+ offset
);
476 /* Return actual size in bytes needed to serialize s as int
477 (adding leading zero if high bit is set). */
479 size_t ccn_write_int_size(cc_size n
, const cc_unit
*s
);
481 /* Serialize s, to out.
482 First byte of byte stream is the m.s. byte of s,
483 regardless of the size of cc_unit.
485 No assumption is made about the alignment of out.
487 The out_size argument should be the value returned from ccn_write_int_size,
488 and is also the exact number of bytes this function will write to out.
489 If out_size if less than the value returned by ccn_write_int_size, only the
490 first out_size non-zero most significant octets of s will be written. */
492 void ccn_write_int(cc_size n
, const cc_unit
*s
, size_t out_size
, void *out
);
494 #if CCN_DEDICATED_SQR
497 { n bit -> 2 * n bit } */
499 void ccn_sqr(cc_size n
, cc_unit
*r
, const cc_unit
*s
);
502 { n bit -> 2 * n bit } */
503 CC_NONNULL((1, 3, 4))
504 void ccn_sqr_ws(cc_ws_t ws
, cc_size n
, cc_unit
*r
, const cc_unit
*s
);
509 { n bit -> 2 * n bit } */
510 CC_INLINE
CC_NONNULL((2, 3))
511 void ccn_sqr(cc_size n
, cc_unit
*r
, const cc_unit
*s
) {
516 { n bit -> 2 * n bit } */
517 CC_INLINE
CC_NONNULL((2, 3, 4))
518 void ccn_sqr_ws(cc_ws_t ws
, cc_size n
, cc_unit
*r
, const cc_unit
*s
) {
519 ccn_mul_ws(ws
, n
, r
, s
, s
);
525 { n bit -> n bit } */
527 void ccn_set(cc_size n
, cc_unit
*r
, const cc_unit
*s
);
529 CC_INLINE CC_NONNULL2
530 void ccn_zero(cc_size n
, cc_unit
*r
) {
531 cc_zero(ccn_sizeof_n(n
),r
);
534 CC_INLINE CC_NONNULL2
535 void ccn_clear(cc_size n
, cc_unit
*r
) {
536 cc_clear(ccn_sizeof_n(n
),r
);
540 void ccn_zero_multi(cc_size n
, cc_unit
*r
, ...);
542 CC_INLINE CC_NONNULL2
543 void ccn_seti(cc_size n
, cc_unit
*r
, cc_unit v
) {
546 ccn_zero(n
- 1, r
+ 1);
549 CC_INLINE
CC_NONNULL((2, 4))
550 void ccn_setn(cc_size n
, cc_unit
*r
, const cc_size s_size
, const cc_unit
*s
) {
551 /* FIXME: assert not available in kernel.
556 ccn_set(s_size
, r
, s
);
557 ccn_zero(n
- s_size
, r
+ s_size
);
560 #define CC_SWAP_HOST_BIG_64(x) \
561 ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
562 (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
563 (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
564 (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
565 (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
566 (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
567 (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
568 (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
569 #define CC_SWAP_HOST_BIG_32(x) \
570 ((((x) & 0xff000000) >> 24) | \
571 (((x) & 0x00ff0000) >> 8) | \
572 (((x) & 0x0000ff00) << 8) | \
573 (((x) & 0x000000ff) << 24))
574 #define CC_SWAP_HOST_BIG_16(x) \
575 ((((x) & 0xff00) >> 8) | \
576 (((x) & 0x00ff) << 8))
578 /* This should probably move if we move ccn_swap out of line. */
579 #if CCN_UNIT_SIZE == 8
580 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_64(x)
581 #elif CCN_UNIT_SIZE == 4
582 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_32(x)
583 #elif CCN_UNIT_SIZE == 2
584 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_16(x)
585 #elif CCN_UNIT_SIZE == 1
586 #define CC_UNIT_TO_BIG(x) (x)
588 #error unsupported CCN_UNIT_SIZE
591 /* Swap units in r in place from cc_unit vector byte order to big endian byte order (or back). */
592 CC_INLINE CC_NONNULL2
593 void ccn_swap(cc_size n
, cc_unit
*r
) {
595 for (e
= r
+ n
- 1; r
< e
; ++r
, --e
) {
596 cc_unit t
= CC_UNIT_TO_BIG(*r
);
597 *r
= CC_UNIT_TO_BIG(*e
);
601 *r
= CC_UNIT_TO_BIG(*r
);
604 CC_INLINE
CC_NONNULL((2, 3, 4))
605 void ccn_xor(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
) {
613 void ccn_print(cc_size n
, const cc_unit
*s
);
615 void ccn_lprint(cc_size n
, const char *label
, const cc_unit
*s
);
617 /* Forward declaration so we don't depend on ccrng.h. */
621 CC_INLINE
CC_NONNULL((2, 3))
622 int ccn_random(cc_size n
, cc_unit
*r
, struct ccrng_state
*rng
) {
623 return (RNG
)->generate((RNG
), ccn_sizeof_n(n
), (unsigned char *)r
);
626 #define ccn_random(_n_,_r_,_ccrng_ctx_) \
627 ccrng_generate(_ccrng_ctx_, ccn_sizeof_n(_n_), (unsigned char *)_r_)
630 /* Make a ccn of size ccn_nof(nbits) units with up to nbits sized random value. */
632 int ccn_random_bits(cc_size nbits
, cc_unit
*r
, struct ccrng_state
*rng
);
635 @brief ccn_make_recip(cc_size nd, cc_unit *recip, const cc_unit *d) computes the reciprocal of d: recip = 2^2b/d where b=bitlen(d)
637 @param nd length of array d
638 @param recip returned reciprocal of size nd+1
639 @param d input number d
642 int ccn_make_recip(cc_size nd
, cc_unit
*recip
, const cc_unit
*d
);
645 int ccn_div_euclid(cc_size nq
, cc_unit
*q
, cc_size nr
, cc_unit
*r
, cc_size na
, const cc_unit
*a
, cc_size nd
, const cc_unit
*d
);
647 #define ccn_div(nq, q, na, a, nd, d) ccn_div_euclid(nq, q, 0, NULL, na, a, nd, d)
648 #define ccn_mod(nr, r, na, a, nd, d) ccn_div_euclid(0 , NULL, nr, r, na, a, nd, d)
650 #endif /* _CORECRYPTO_CCN_H_ */