]>
git.saurik.com Git - apple/xnu.git/blob - EXTERNAL_HEADERS/corecrypto/ccn.h
1 /* Copyright (c) (2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020) Apple Inc. All rights reserved.
3 * corecrypto is licensed under Apple Inc.’s Internal Use License Agreement (which
4 * is contained in the License.txt file distributed with corecrypto) and only to
5 * people who accept that license. IMPORTANT: Any license rights granted to you by
6 * Apple Inc. (if any) are limited to internal use within your organization only on
7 * devices and computers you own or control, for the sole purpose of verifying the
8 * security characteristics and correct functioning of the Apple Software. You may
9 * not, directly or indirectly, redistribute the Apple Software or any portions thereof.
12 #ifndef _CORECRYPTO_CCN_H_
13 #define _CORECRYPTO_CCN_H_
15 #include <corecrypto/cc.h>
19 typedef uint8_t cc_byte
;
20 typedef size_t cc_size
;
22 #if CCN_UNIT_SIZE == 8
23 typedef uint64_t cc_unit
; // 64 bit unit
24 typedef int64_t cc_int
;
25 #define CCN_LOG2_BITS_PER_UNIT 6 // 2^6 = 64 bits
26 #define CC_UNIT_C(x) UINT64_C(x)
27 #if CCN_UINT128_SUPPORT_FOR_64BIT_ARCH
28 typedef unsigned cc_dunit
__attribute__((mode(TI
))); // 128 bit double width unit
29 typedef signed cc_dint
__attribute__((mode(TI
)));
31 typedef struct cc_dunit
{
32 uint64_t l
; //do not change the order of the variables. cc_dunit must be little endian
36 typedef struct cc_dint
{
42 #elif CCN_UNIT_SIZE == 4
43 typedef uint32_t cc_unit
; // 32 bit unit
44 typedef uint64_t cc_dunit
; // 64 bit double width unit
45 typedef int64_t cc_dint
;
46 typedef int32_t cc_int
;
47 #define CCN_LOG2_BITS_PER_UNIT 5 // 2^5 = 32 bits
48 #define CC_UNIT_C(x) UINT32_C(x)
50 #elif CCN_UNIT_SIZE == 2
51 typedef uint16_t cc_unit
; // 16 bit unit
52 typedef uint32_t cc_dunit
; // 32 bit double width unit
53 #define CCN_LOG2_BITS_PER_UNIT 4 // 2^4 = 16 bits
54 #define CC_UNIT_C(x) UINT16_C(x)
56 #elif CCN_UNIT_SIZE == 1
57 typedef uint8_t cc_unit
; // 8 bit unit
58 typedef uint16_t cc_dunit
; // 16 bit double width unit
59 #define CCN_LOG2_BITS_PER_UNIT 3 // 2^3 = 8 bits
60 #define CC_UNIT_C(x) UINT8_C(x)
63 #error invalid CCN_UNIT_SIZE
66 #define CCN_UNIT_BITS (sizeof(cc_unit) * 8)
67 #define CCN_UNIT_MASK ((cc_unit)~0)
68 #define CCN_UNIT_LOWER_HALF_MASK ((CCN_UNIT_MASK) >> (CCN_UNIT_BITS/2))
69 #define CCN_UNIT_UPPER_HALF_MASK (~CCN_UNIT_LOWER_HALF_MASK)
70 #define CCN_UNIT_HALF_BITS (CCN_UNIT_BITS / 2)
73 cc_unit
*start
; // First cc_unit of the workspace
74 cc_unit
*end
; // address and beyond NOT TO BE TOUCHED
77 /* Conversions between n sizeof and bits */
79 /* Returns the sizeof a ccn vector of length _n_ units. */
80 #define ccn_sizeof_n(_n_) (sizeof(cc_unit) * (_n_))
82 /* Returns the count (n) of a ccn vector that can represent _bits_. */
83 #define ccn_nof(_bits_) (((_bits_) + CCN_UNIT_BITS - 1) >> CCN_LOG2_BITS_PER_UNIT)
85 /* Returns the sizeof a ccn vector that can represent _bits_. */
86 #define ccn_sizeof(_bits_) (ccn_sizeof_n(ccn_nof(_bits_)))
88 /* Returns the count (n) of a ccn vector that can represent _size_ bytes. */
89 #define ccn_nof_size(_size_) (((_size_) + CCN_UNIT_SIZE - 1) / CCN_UNIT_SIZE)
91 #define ccn_nof_sizeof(_expr_) ccn_nof_size(sizeof (_expr_))
93 /* Return the max number of bits a ccn vector of _n_ units can hold. */
94 #define ccn_bitsof_n(_n_) ((_n_) * CCN_UNIT_BITS)
96 /* Return the max number of bits a ccn vector of _size_ bytes can hold. */
97 #define ccn_bitsof_size(_size_) ((_size_) * 8)
99 /* Return the size of a ccn of size bytes in bytes. */
100 #define ccn_sizeof_size(_size_) ccn_sizeof_n(ccn_nof_size(_size_))
102 /* Returns the value of bit _k_ of _ccn_, both are only evaluated once. */
103 #define ccn_bit(_ccn_, _k_) ({size_t __k = (size_t)(_k_); \
104 1 & ((_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] >> (__k & (CCN_UNIT_BITS - 1)));})
106 /* Set the value of bit _k_ of _ccn_ to the value _v_ */
107 #define ccn_set_bit(_ccn_, _k_, _v_) ({size_t __k = (size_t)(_k_); \
109 (_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] |= CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1)); \
111 (_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] &= ~(CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1))); \
114 /* Macros for making ccn constants. You must use list of CCN64_C() instances
115 separated by commas, with an optional smaller sized CCN32_C, CCN16_C, or
116 CCN8_C() instance at the end of the list, when making macros to declare
117 larger sized constants. */
118 #define CCN8_C(a0) CC_UNIT_C(0x##a0)
120 #if CCN_UNIT_SIZE >= 2
121 #define CCN16_C(a1,a0) CC_UNIT_C(0x##a1##a0)
122 #define ccn16_v(a0) (a0)
123 #elif CCN_UNIT_SIZE == 1
124 #define CCN16_C(a1,a0) CCN8_C(a0),CCN8_C(a1)
125 #define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
128 #if CCN_UNIT_SIZE >= 4
129 #define CCN32_C(a3,a2,a1,a0) CC_UNIT_C(0x##a3##a2##a1##a0)
130 #define ccn32_v(a0) (a0)
132 #define CCN32_C(a3,a2,a1,a0) CCN16_C(a1,a0),CCN16_C(a3,a2)
133 #define ccn32_v(a0) ccn16_v(a0 & UINT16_C(0xffff)),ccn16_v(a0 >> 16)
136 #if CCN_UNIT_SIZE == 8
137 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CC_UNIT_C(0x##a7##a6##a5##a4##a3##a2##a1##a0)
138 #define CCN40_C(a4,a3,a2,a1,a0) CC_UNIT_C(0x##a4##a3##a2##a1##a0)
139 #define ccn64_v(a0) (a0)
140 //#define ccn64_32(a1,a0) ((a1 << 32) | a0)
141 //#define ccn_uint64(a,i) (a[i])
143 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN32_C(a7,a6,a5,a4)
144 #define CCN40_C(a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN8_C(a4)
145 #define ccn64_v(a0) ccn32_v((uint64_t)a0 & UINT32_C(0xffffffff)),ccn32_v((uint64_t)a0 >> 32)
146 //#define ccn64_32(a1,a0) ccn32_v(a0),ccn32_v(a1)
147 //#define ccn_uint64(a,i) ((uint64_t)ccn_uint32(a, i << 1 + 1) << 32 | (uint64_t)ccn_uint32(a, i << 1))
150 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
151 64 bit units respectively. */
152 #if CCN_UNIT_SIZE == 8
153 /* #define ccn_uint16(a,i) ((i & 3) == 3 ? ((uint16_t)(a[i >> 2] >> 48)) : \
154 (i & 3) == 2 ? ((uint16_t)(a[i >> 2] >> 32) & UINT16_C(0xffff)) : \
155 (i & 3) == 1 ? ((uint16_t)(a[i >> 2] >> 16) & UINT16_C(0xffff)) : \
156 ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
158 //#define ccn_uint32(a,i) (i & 1 ? ((uint32_t)(a[i >> 1] >> 32)) : ((uint32_t)(a[i >> 1] & UINT32_C(0xffffffff))))
159 #elif CCN_UNIT_SIZE == 4
160 //#define ccn16_v(a0) (a0)
161 //#define ccn32_v(a0) (a0)
162 //#define ccn_uint16(a,i) (i & 1 ? ((uint16_t)(a[i >> 1] >> 16)) : ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
163 //#define ccn_uint32(a,i) (a[i])
164 #elif CCN_UNIT_SIZE == 2
165 //#define ccn16_v(a0) (a0)
166 //#define ccn32_v(a0,a1) (a1,a0)
167 //#define ccn_uint16(a,i) (a[i])
168 //#define ccn_uint32(a,i) (((uint32_t)a[i << 1 + 1]) << 16 | (uint32_t)a[i << 1]))
169 #elif CCN_UNIT_SIZE == 1
170 //#define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
171 //#define ccn_uint16(a,i) ((uint16_t)((a[i << 1 + 1] << 8) | a[i << 1]))
172 //#define ccn_uint32(a,i) ((uint32_t)ccn_uint16(a, i << 1 + 1) << 16 | (uint32_t)ccn_uint16(a, i << 1))
175 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
176 64 bit units respectively. */
177 #if CCN_UNIT_SIZE == 8
179 #define ccn64_32(a1,a0) (((const cc_unit)a1) << 32 | ((const cc_unit)a0))
180 #define ccn32_32(a0) a0
181 #if __LITTLE_ENDIAN__
182 #define ccn32_32_parse(p,i) (((const uint32_t *)p)[i])
184 #define ccn32_32_parse(p,i) (((const uint32_t *)p)[i^1])
186 #define ccn32_32_null 0
188 #define ccn64_64(a0) a0
189 #define ccn64_64_parse(p,i) p[i]
190 #define ccn64_64_null 0
192 #elif CCN_UNIT_SIZE == 4
194 #define ccn32_32(a0) a0
195 #define ccn32_32_parse(p,i) p[i]
196 #define ccn32_32_null 0
197 #define ccn64_32(a1,a0) ccn32_32(a0),ccn32_32(a1)
199 #define ccn64_64(a1,a0) a0,a1
200 #define ccn64_64_parse(p,i) p[1+(i<<1)],p[i<<1]
201 #define ccn64_64_null 0,0
203 #elif CCN_UNIT_SIZE == 2
205 #define ccn32_32(a1,a0) a0,a1
206 #define ccn32_32_parse(p,i) p[1+(i<<1)],p[i<<1]
207 #define ccn32_32_null 0,0
208 #define ccn64_32(a3,a2,a1,a0) ccn32_32(a1,a0),ccn32_32(a3,a2)
210 #define ccn64_64(a3,a2,a1,a0) a0,a1,a2,a3
211 #define ccn64_64_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
212 #define ccn64_64_null 0,0,0,0
214 #elif CCN_UNIT_SIZE == 1
216 #define ccn32_32(a3,a2,a1,a0) a0,a1,a2,a3
217 #define ccn32_32_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
218 #define ccn32_32_null 0,0,0,0
219 #define ccn64_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn32_32(a3,a2,a1,a0),ccn32_32(a7,a6,a5,a4)
221 #define ccn64_64(a7,a6,a5,a4,a3,a2,a1,a0) a0,a1,a2,a3,a4,a5,a6,a7
222 #define ccn64_64_parse(p,i) p[7+(i<<3)],p[6+(i<<3)],p[5+(i<<3)],p[4+(i<<3)],p[3+(i<<3)],p[2+(i<<3)],p[1+(i<<3)],p[i<<3]
223 #define ccn64_64_null 0,0,0,0,0,0,0,0
228 /* Macros to construct fixed size ccn arrays from 64 or 32 bit quantities. */
229 #define ccn192_64(a2,a1,a0) ccn64_64(a0),ccn64_64(a1),ccn64_64(a2)
230 #define ccn192_32(a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4)
231 #define ccn224_32(a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn32_32(a6)
232 #define ccn256_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6)
233 #define ccn384_32(a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6),ccn64_32(a9,a8),ccn64_32(a11,a10)
236 #define CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
237 CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0),\
238 CCN64_C(b7,b6,b5,b4,b3,b2,b1,b0),\
239 CCN64_C(c7,c6,c5,c4,c3,c2,c1,c0)
241 #define CCN200_C(d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
242 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
245 #define CCN224_C(d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
246 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
249 #define CCN232_C(d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
250 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
251 CCN40_C(d4,d3,d2,d1,d0)
253 #define CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
254 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
255 CCN64_C(d7,d6,d5,d4,d3,d2,d1,d0)
257 #define CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
258 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
259 CCN64_C(e7,e6,e5,e4,e3,e2,e1,e0),\
260 CCN64_C(f7,f6,f5,f4,f3,f2,f1,f0)
262 #define CCN528_C(i1,i0,h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
263 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
264 CCN256_C(h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0),\
267 #define CCN192_N ccn_nof(192)
268 #define CCN224_N ccn_nof(224)
269 #define CCN256_N ccn_nof(256)
270 #define CCN384_N ccn_nof(384)
271 #define CCN512_N ccn_nof(512)
272 #define CCN521_N ccn_nof(521)
274 /* Return the number of used units after stripping leading 0 units. */
275 CC_PURE
CC_NONNULL((2))
276 cc_size
ccn_n(cc_size n
, const cc_unit
*s
) __asm__("_ccn_n");
278 /* s >> k -> r return bits shifted out of least significant word in the higest order bits of
279 the retuned value. For example if CCN_UNIT_SIZE == 1, then (0b1101 1110)>>4 returns (0b1110 0000)
280 and sets r==(0b0000 1101).
281 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
282 the _multi version doesn't return the shifted bits, but does support multiple
285 cc_unit
ccn_shift_right(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
) __asm__("_ccn_shift_right");
287 /* s == 0 -> return 0 | s > 0 -> return index (starting at 1) of most
288 * significant bit that is 1.
289 * { N bit } N = n * sizeof(cc_unit) * 8
291 * Runs in constant time, independent of the value of `s`.
294 size_t ccn_bitlen(cc_size n
, const cc_unit
*s
);
296 /* s == 0 -> return true | s != 0 -> return false
297 { N bit } N = n * sizeof(cc_unit) * 8 */
298 #define ccn_is_zero(_n_, _s_) (!ccn_n(_n_, _s_))
300 /* s == 1 -> return true | s != 1 -> return false
301 { N bit } N = n * sizeof(cc_unit) * 8 */
302 #define ccn_is_one(_n_, _s_) (ccn_n(_n_, _s_) == 1 && _s_[0] == 1)
304 #define ccn_is_zero_or_one(_n_, _s_) (((_n_)==0) || ((ccn_n(_n_, _s_) <= 1) && (_s_[0] <= 1)))
306 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
307 { N bit, N bit -> int } N = n * sizeof(cc_unit) * 8 */
308 CC_PURE
CC_NONNULL((2, 3))
309 int ccn_cmp(cc_size n
, const cc_unit
*s
, const cc_unit
*t
) __asm__("_ccn_cmp");
311 /*! @function ccn_cmpn
312 @abstract Compares the values of two big ints of different lengths.
314 @discussion The execution time does not depend on the values of either s or t.
315 The function does not hide ns, nt, or whether ns > nt.
317 @param ns Length of s
318 @param s First integer
319 @param nt Length of t
320 @param t Second integer
322 @return 1 if s > t, -1 if s < t, 0 otherwise.
325 int ccn_cmpn(cc_size ns
, const cc_unit
*s
, cc_size nt
, const cc_unit
*t
);
327 /* s - t -> r return 1 iff t > s
328 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
329 CC_NONNULL((2, 3, 4))
330 cc_unit
ccn_sub(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
) __asm__("_ccn_sub");
332 /* s - v -> r return 1 iff v > s return 0 otherwise.
333 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
335 cc_unit
ccn_sub1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, cc_unit v
);
337 /* s - t -> r return 1 iff t > s
338 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
340 CC_NONNULL((2, 3, 5))
341 cc_unit
ccn_subn(cc_size n
, cc_unit
*r
, const cc_unit
*s
,
342 cc_size nt
, const cc_unit
*t
) {
344 return ccn_sub1(n
- nt
, r
+ nt
, s
+ nt
, ccn_sub(nt
, r
, s
, t
));
348 /* s + t -> r return carry if result doesn't fit in n bits.
349 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
350 CC_NONNULL((2, 3, 4))
351 cc_unit
ccn_add(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
) __asm__("_ccn_add");
353 /* s + v -> r return carry if result doesn't fit in n bits.
354 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
356 cc_unit
ccn_add1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, cc_unit v
);
358 /* s + t -> r return carry if result doesn't fit in n bits
359 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
361 CC_NONNULL((2, 3, 5))
362 cc_unit
ccn_addn(cc_size n
, cc_unit
*r
, const cc_unit
*s
,
363 cc_size nt
, const cc_unit
*t
) {
365 return ccn_add1(n
- nt
, r
+ nt
, s
+ nt
, ccn_add(nt
, r
, s
, t
));
369 /* s * t -> r_2n r_2n must not overlap with s nor t
370 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8
371 { N bit, N bit -> 2N bit } N = ccn_bitsof(n) */
372 CC_NONNULL((2, 3, 4))
373 void ccn_mul(cc_size n
, cc_unit
*r_2n
, const cc_unit
*s
, const cc_unit
*t
) __asm__("_ccn_mul");
375 /* s[0..n) * v -> r[0..n)+return value
376 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
378 cc_unit
ccn_mul1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit v
);
380 /* s[0..n) * v + r[0..n) -> r[0..n)+return value
381 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
383 cc_unit
ccn_addmul1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit v
);
387 @function ccn_read_uint
388 @abstract Copy big endian integer and represent it in cc_units
390 @param n Input allocated size of the cc_unit output array r
391 @param r Ouput cc_unit array for unsigned integer
392 @param data_nbytes Input byte size of data
393 @param data Input unsigned integer represented in big endian
395 @result r is initialized with the big unsigned number
397 @return 0 if no error, !=0 if the big number cannot be represented in the allocated cc_unit array.
399 @discussion The execution pattern of this function depends on both n and data_nbytes but not on data values except the handling
404 int ccn_read_uint(cc_size n
, cc_unit
*r
, size_t data_nbytes
, const uint8_t *data
);
406 /* r = (data, len) treated as a big endian byte array, return -1 if data
407 doesn't fit in r, return 0 otherwise.
408 ccn_read_uint strips leading zeroes and doesn't care about sign. */
409 #define ccn_read_int(n, r, data_size, data) ccn_read_uint(n, r, data_size, data)
412 @function ccn_write_uint_size
413 @abstract Compute the minimum size required to store an big integer
415 @param n Input size of the cc_unit array representing the input
416 @param s Input cc_unit array
418 @result Return value is the exact byte size of the big integer
421 The execution flow is independent on the value of the big integer.
422 However, the use of the returned value may leak the position of the most significant byte
424 CC_PURE
CC_NONNULL((2)) size_t ccn_write_uint_size(cc_size n
, const cc_unit
*s
);
427 @function ccn_write_uint
428 @abstract Serialize the big integer into a big endian byte buffer
430 @param n Input size of the cc_unit array representing the input
431 @param s Input cc_unit array
432 @param out_size Size of the output buffer
433 @param out Output byte array of size at least out_size
435 @discussion This function writes exactly
436 MIN(out_size,ccn_write_uint_size(n,s)) bytes truncating to keep the
437 most significant bytes when out_size<ccn_write_uint_size(n,s). The
438 execution flow of function is based on the position of the most
439 significant byte as well as input sizes.
444 void ccn_write_uint(cc_size n
, const cc_unit
*s
, size_t out_size
, void *out
);
447 @function ccn_write_uint_padded_ct
448 @abstract Serialize the big integer into a big endian byte buffer
450 @param n Input size of the cc_unit array representing the input
451 @param s Input cc_unit array
452 @param out_size Size of the output buffer
453 @param out Output byte array of size at least out_size
455 @return number of leading zero bytes in case of success, a negative error value in case of failure
457 @result This function writes exactly out_size byte, padding with zeroes when necessary.
458 This function DOES NOT support truncation and returns an error if out_size < ccn_write_uint_size
460 @discussion The execution flow of function is independent on the value of the big integer
461 However, the processing of the return value by the caller may expose the position of
462 the most significant byte
465 int ccn_write_uint_padded_ct(cc_size n
, const cc_unit
*s
, size_t out_size
, uint8_t *out
);
468 @function ccn_write_uint_padded
469 @abstract Serialize the big integer into a big endian byte buffer
470 Not recommended, for most cases ccn_write_uint_padded_ct is more appropriate
471 Sensitive big integers are exposed since the processing expose the position of the MS byte
473 @param n Input size of the cc_unit array representing the input
474 @param s Input cc_unit array
475 @param out_size Size of the output buffer
476 @param out Output byte array of size at least out_size
478 @return number of leading zero bytes
480 @result This function writes exactly out_size byte, padding with zeroes when necessary.
481 This function DOES support truncation when out_size<ccn_write_uint_size()
483 @discussion The execution flow of this function DEPENDS on the position of the most significant byte in
484 case truncation is required.
487 CC_INLINE
CC_NONNULL((2, 4)) size_t ccn_write_uint_padded(cc_size n
, const cc_unit
*s
, size_t out_size
, uint8_t *out
)
490 // Try first the non-truncation case
491 int offset_int
= ccn_write_uint_padded_ct(n
, s
, out_size
, out
);
492 if (offset_int
>= 0) {
494 offset
= (size_t)offset_int
;
496 // Truncation case, execution depends on the position of the MSByte
497 ccn_write_uint(n
, s
, out_size
, out
);
503 /* Return actual size in bytes needed to serialize s as int
504 (adding leading zero if high bit is set). */
505 CC_PURE
CC_NONNULL((2))
506 size_t ccn_write_int_size(cc_size n
, const cc_unit
*s
);
508 /* Serialize s, to out.
509 First byte of byte stream is the m.s. byte of s,
510 regardless of the size of cc_unit.
512 No assumption is made about the alignment of out.
514 The out_size argument should be the value returned from ccn_write_int_size,
515 and is also the exact number of bytes this function will write to out.
516 If out_size if less than the value returned by ccn_write_int_size, only the
517 first out_size non-zero most significant octets of s will be written. */
519 void ccn_write_int(cc_size n
, const cc_unit
*s
, size_t out_size
, void *out
);
522 { n bit -> n bit } */
524 void ccn_set(cc_size n
, cc_unit
*r
, const cc_unit
*s
);
526 CC_INLINE
CC_NONNULL((2))
527 void ccn_zero(cc_size n
, cc_unit
*r
) {
528 cc_clear(ccn_sizeof_n(n
),r
);
531 CC_INLINE
CC_NONNULL((2))
532 void ccn_clear(cc_size n
, cc_unit
*r
) {
533 cc_clear(ccn_sizeof_n(n
),r
);
537 void ccn_zero_multi(cc_size n
, cc_unit
*r
, ...);
539 CC_INLINE
CC_NONNULL((2))
540 void ccn_seti(cc_size n
, cc_unit
*r
, cc_unit v
) {
543 ccn_zero(n
- 1, r
+ 1);
546 CC_INLINE
CC_NONNULL((2, 4))
547 void ccn_setn(cc_size n
, cc_unit
*r
, const cc_size s_size
, const cc_unit
*s
) {
551 ccn_set(s_size
, r
, s
);
552 ccn_zero(n
- s_size
, r
+ s_size
);
555 #define CC_SWAP_HOST_BIG_64(x) \
556 ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
557 (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
558 (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
559 (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
560 (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
561 (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
562 (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
563 (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
564 #define CC_SWAP_HOST_BIG_32(x) \
565 ((((x) & 0xff000000) >> 24) | \
566 (((x) & 0x00ff0000) >> 8) | \
567 (((x) & 0x0000ff00) << 8) | \
568 (((x) & 0x000000ff) << 24))
569 #define CC_SWAP_HOST_BIG_16(x) \
570 ((((x) & 0xff00) >> 8) | \
571 (((x) & 0x00ff) << 8))
573 /* This should probably move if we move ccn_swap out of line. */
574 #if CCN_UNIT_SIZE == 8
575 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_64(x)
576 #elif CCN_UNIT_SIZE == 4
577 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_32(x)
578 #elif CCN_UNIT_SIZE == 2
579 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_16(x)
580 #elif CCN_UNIT_SIZE == 1
581 #define CC_UNIT_TO_BIG(x) (x)
583 #error unsupported CCN_UNIT_SIZE
586 /* Swap units in r in place from cc_unit vector byte order to big endian byte order (or back). */
587 CC_INLINE
CC_NONNULL((2))
588 void ccn_swap(cc_size n
, cc_unit
*r
) {
590 for (e
= r
+ n
- 1; r
< e
; ++r
, --e
) {
591 cc_unit t
= CC_UNIT_TO_BIG(*r
);
592 *r
= CC_UNIT_TO_BIG(*e
);
596 *r
= CC_UNIT_TO_BIG(*r
);
599 CC_INLINE
CC_NONNULL((2, 3, 4))
600 void ccn_xor(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
) {
608 void ccn_print(cc_size n
, const cc_unit
*s
);
610 void ccn_lprint(cc_size n
, const char *label
, const cc_unit
*s
);
612 /* Forward declaration so we don't depend on ccrng.h. */
616 CC_INLINE
CC_NONNULL((2, 3))
617 int ccn_random(cc_size n
, cc_unit
*r
, struct ccrng_state
*rng
) {
618 return (RNG
)->generate((RNG
), ccn_sizeof_n(n
), (unsigned char *)r
);
621 #define ccn_random(_n_,_r_,_ccrng_ctx_) \
622 ccrng_generate(_ccrng_ctx_, ccn_sizeof_n(_n_), (unsigned char *)_r_)
625 /* Make a ccn of size ccn_nof(nbits) units with up to nbits sized random value. */
627 int ccn_random_bits(cc_size nbits
, cc_unit
*r
, struct ccrng_state
*rng
);
630 int ccn_div_euclid(cc_size nq
, cc_unit
*q
, cc_size nr
, cc_unit
*r
, cc_size na
, const cc_unit
*a
, cc_size nd
, const cc_unit
*d
);
632 #define ccn_div(nq, q, na, a, nd, d) ccn_div_euclid(nq, q, 0, NULL, na, a, nd, d)
633 #define ccn_mod(nr, r, na, a, nd, d) ccn_div_euclid(0 , NULL, nr, r, na, a, nd, d)
635 #endif /* _CORECRYPTO_CCN_H_ */