]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/sched_proto.c
xnu-6153.11.26.tar.gz
[apple/xnu.git] / osfmk / kern / sched_proto.c
1 /*
2 * Copyright (c) 2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <mach/mach_types.h>
30 #include <mach/machine.h>
31 #include <mach/policy.h>
32 #include <mach/sync_policy.h>
33 #include <mach/thread_act.h>
34
35 #include <machine/machine_routines.h>
36 #include <machine/sched_param.h>
37 #include <machine/machine_cpu.h>
38
39 #include <kern/kern_types.h>
40 #include <kern/clock.h>
41 #include <kern/counters.h>
42 #include <kern/cpu_number.h>
43 #include <kern/cpu_data.h>
44 #include <kern/debug.h>
45 #include <kern/macro_help.h>
46 #include <kern/machine.h>
47 #include <kern/misc_protos.h>
48 #include <kern/processor.h>
49 #include <kern/queue.h>
50 #include <kern/sched.h>
51 #include <kern/sched_prim.h>
52 #include <kern/syscall_subr.h>
53 #include <kern/task.h>
54 #include <kern/thread.h>
55
56 #include <vm/pmap.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_map.h>
59
60 #include <mach/sdt.h>
61
62 #include <sys/kdebug.h>
63
64 static void
65 sched_proto_init(void);
66
67 static void
68 sched_proto_timebase_init(void);
69
70 static void
71 sched_proto_processor_init(processor_t processor);
72
73 static void
74 sched_proto_pset_init(processor_set_t pset);
75
76 static void
77 sched_proto_maintenance_continuation(void);
78
79 static thread_t
80 sched_proto_choose_thread(processor_t processor,
81 int priority,
82 ast_t reason);
83
84 static thread_t
85 sched_proto_steal_thread(processor_set_t pset);
86
87 static int
88 sched_proto_compute_priority(thread_t thread);
89
90 static processor_t
91 sched_proto_choose_processor( processor_set_t pset,
92 processor_t processor,
93 thread_t thread);
94
95
96 static boolean_t
97 sched_proto_processor_enqueue(
98 processor_t processor,
99 thread_t thread,
100 sched_options_t options);
101
102 static void
103 sched_proto_processor_queue_shutdown(
104 processor_t processor);
105
106 static boolean_t
107 sched_proto_processor_queue_remove(
108 processor_t processor,
109 thread_t thread);
110
111 static boolean_t
112 sched_proto_processor_queue_empty(processor_t processor);
113
114 static boolean_t
115 sched_proto_processor_queue_has_priority(processor_t processor,
116 int priority,
117 boolean_t gte);
118
119 static boolean_t
120 sched_proto_priority_is_urgent(int priority);
121
122 static ast_t
123 sched_proto_processor_csw_check(processor_t processor);
124
125 static uint32_t
126 sched_proto_initial_quantum_size(thread_t thread);
127
128 static sched_mode_t
129 sched_proto_initial_thread_sched_mode(task_t parent_task);
130
131 static boolean_t
132 sched_proto_can_update_priority(thread_t thread);
133
134 static void
135 sched_proto_update_priority(thread_t thread);
136
137 static void
138 sched_proto_lightweight_update_priority(thread_t thread);
139
140 static void
141 sched_proto_quantum_expire(thread_t thread);
142
143 static int
144 sched_proto_processor_runq_count(processor_t processor);
145
146 static uint64_t
147 sched_proto_processor_runq_stats_count_sum(processor_t processor);
148
149 static int
150 sched_proto_processor_bound_count(processor_t processor);
151
152 static void
153 sched_proto_thread_update_scan(sched_update_scan_context_t scan_context);
154
155
156 const struct sched_dispatch_table sched_proto_dispatch = {
157 .sched_name = "proto",
158 .init = sched_proto_init,
159 .timebase_init = sched_proto_timebase_init,
160 .processor_init = sched_proto_processor_init,
161 .pset_init = sched_proto_pset_init,
162 .maintenance_continuation = sched_proto_maintenance_continuation,
163 .choose_thread = sched_proto_choose_thread,
164 .steal_thread_enabled = sched_steal_thread_DISABLED,
165 .steal_thread = sched_proto_steal_thread,
166 .compute_timeshare_priority = sched_proto_compute_priority,
167 .choose_processor = sched_proto_choose_processor,
168 .processor_enqueue = sched_proto_processor_enqueue,
169 .processor_queue_shutdown = sched_proto_processor_queue_shutdown,
170 .processor_queue_remove = sched_proto_processor_queue_remove,
171 .processor_queue_empty = sched_proto_processor_queue_empty,
172 .priority_is_urgent = sched_proto_priority_is_urgent,
173 .processor_csw_check = sched_proto_processor_csw_check,
174 .processor_queue_has_priority = sched_proto_processor_queue_has_priority,
175 .initial_quantum_size = sched_proto_initial_quantum_size,
176 .initial_thread_sched_mode = sched_proto_initial_thread_sched_mode,
177 .can_update_priority = sched_proto_can_update_priority,
178 .update_priority = sched_proto_update_priority,
179 .lightweight_update_priority = sched_proto_lightweight_update_priority,
180 .quantum_expire = sched_proto_quantum_expire,
181 .processor_runq_count = sched_proto_processor_runq_count,
182 .processor_runq_stats_count_sum = sched_proto_processor_runq_stats_count_sum,
183 .processor_bound_count = sched_proto_processor_bound_count,
184 .thread_update_scan = sched_proto_thread_update_scan,
185 .multiple_psets_enabled = TRUE,
186 .sched_groups_enabled = FALSE,
187 .avoid_processor_enabled = FALSE,
188 .thread_avoid_processor = NULL,
189 .processor_balance = sched_SMT_balance,
190
191 .rt_runq = sched_rtglobal_runq,
192 .rt_init = sched_rtglobal_init,
193 .rt_queue_shutdown = sched_rtglobal_queue_shutdown,
194 .rt_runq_scan = sched_rtglobal_runq_scan,
195 .rt_runq_count_sum = sched_rtglobal_runq_count_sum,
196
197 .qos_max_parallelism = sched_qos_max_parallelism,
198 .check_spill = sched_check_spill,
199 .ipi_policy = sched_ipi_policy,
200 .thread_should_yield = sched_thread_should_yield,
201 .run_count_incr = sched_run_incr,
202 .run_count_decr = sched_run_decr,
203 .update_thread_bucket = sched_update_thread_bucket,
204 .pset_made_schedulable = sched_pset_made_schedulable,
205 };
206
207 static struct run_queue *global_runq;
208 static struct run_queue global_runq_storage;
209
210 #define GLOBAL_RUNQ ((processor_t)-2)
211 decl_simple_lock_data(static, global_runq_lock);
212
213 extern int max_unsafe_quanta;
214
215 static uint32_t proto_quantum_us;
216 static uint32_t proto_quantum;
217
218 static uint32_t runqueue_generation;
219
220 static processor_t proto_processor;
221
222 static uint64_t sched_proto_tick_deadline;
223 static uint32_t sched_proto_tick;
224
225 static void
226 sched_proto_init(void)
227 {
228 proto_quantum_us = 10 * 1000;
229
230 printf("standard proto timeslicing quantum is %d us\n", proto_quantum_us);
231
232 simple_lock_init(&global_runq_lock, 0);
233 global_runq = &global_runq_storage;
234 run_queue_init(global_runq);
235 runqueue_generation = 0;
236
237 proto_processor = master_processor;
238 }
239
240 static void
241 sched_proto_timebase_init(void)
242 {
243 uint64_t abstime;
244
245 /* standard timeslicing quantum */
246 clock_interval_to_absolutetime_interval(
247 proto_quantum_us, NSEC_PER_USEC, &abstime);
248 assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
249 proto_quantum = (uint32_t)abstime;
250
251 thread_depress_time = 1 * proto_quantum;
252 default_timeshare_computation = proto_quantum / 2;
253 default_timeshare_constraint = proto_quantum;
254
255 max_unsafe_computation = max_unsafe_quanta * proto_quantum;
256 sched_safe_duration = 2 * max_unsafe_quanta * proto_quantum;
257 }
258
259 static void
260 sched_proto_processor_init(processor_t processor __unused)
261 {
262 /* No per-processor state */
263 }
264
265 static void
266 sched_proto_pset_init(processor_set_t pset __unused)
267 {
268 }
269
270 static void
271 sched_proto_maintenance_continuation(void)
272 {
273 uint64_t abstime = mach_absolute_time();
274
275 sched_proto_tick++;
276
277 /* Every 8 seconds, switch to another processor */
278 if ((sched_proto_tick & 0x7) == 0) {
279 processor_t new_processor;
280
281 new_processor = proto_processor->processor_list;
282 if (new_processor == PROCESSOR_NULL) {
283 proto_processor = master_processor;
284 } else {
285 proto_processor = new_processor;
286 }
287 }
288
289
290 /*
291 * Compute various averages.
292 */
293 compute_averages(1);
294
295 if (sched_proto_tick_deadline == 0) {
296 sched_proto_tick_deadline = abstime;
297 }
298
299 clock_deadline_for_periodic_event(sched_one_second_interval, abstime,
300 &sched_proto_tick_deadline);
301
302 assert_wait_deadline((event_t)sched_proto_maintenance_continuation, THREAD_UNINT, sched_proto_tick_deadline);
303 thread_block((thread_continue_t)sched_proto_maintenance_continuation);
304 /*NOTREACHED*/
305 }
306
307 static thread_t
308 sched_proto_choose_thread(processor_t processor,
309 int priority,
310 ast_t reason __unused)
311 {
312 run_queue_t rq = global_runq;
313 circle_queue_t queue;
314 int pri, count;
315 thread_t thread;
316
317
318 simple_lock(&global_runq_lock, LCK_GRP_NULL);
319
320 queue = rq->queues + rq->highq;
321 pri = rq->highq;
322 count = rq->count;
323
324 /*
325 * Since we don't depress priorities, a high priority thread
326 * may get selected over and over again. Put a runqueue
327 * generation number in the thread structure so that we
328 * can ensure that we've cycled through all runnable tasks
329 * before coming back to a high priority thread. This isn't
330 * perfect, especially if the number of runnable threads always
331 * stays high, but is a workable approximation
332 */
333
334 while (count > 0 && pri >= priority) {
335 cqe_foreach_element_safe(thread, queue, runq_links) {
336 if ((thread->bound_processor == PROCESSOR_NULL ||
337 thread->bound_processor == processor) &&
338 runqueue_generation != thread->runqueue_generation) {
339 circle_dequeue(queue, &thread->runq_links);
340
341 thread->runq = PROCESSOR_NULL;
342 thread->runqueue_generation = runqueue_generation;
343 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
344 rq->count--;
345 if (circle_queue_empty(queue)) {
346 bitmap_clear(rq->bitmap, pri);
347 rq->highq = bitmap_first(rq->bitmap, NRQS);
348 }
349
350 simple_unlock(&global_runq_lock);
351 return thread;
352 }
353 count--;
354
355 thread = (thread_t)queue_next((queue_entry_t)thread);
356 }
357
358 queue--; pri--;
359 }
360
361 runqueue_generation++;
362
363 simple_unlock(&global_runq_lock);
364 return THREAD_NULL;
365 }
366
367 static thread_t
368 sched_proto_steal_thread(processor_set_t pset)
369 {
370 pset_unlock(pset);
371
372 return THREAD_NULL;
373 }
374
375 static int
376 sched_proto_compute_priority(thread_t thread)
377 {
378 return thread->base_pri;
379 }
380
381 static processor_t
382 sched_proto_choose_processor( processor_set_t pset,
383 processor_t processor,
384 thread_t thread __unused)
385 {
386 processor = proto_processor;
387
388 /*
389 * Check that the correct processor set is
390 * returned locked.
391 */
392 if (pset != processor->processor_set) {
393 pset_unlock(pset);
394
395 pset = processor->processor_set;
396 pset_lock(pset);
397 }
398
399 return processor;
400 }
401
402 static boolean_t
403 sched_proto_processor_enqueue(
404 processor_t processor __unused,
405 thread_t thread,
406 sched_options_t options)
407 {
408 run_queue_t rq = global_runq;
409 boolean_t result;
410
411 simple_lock(&global_runq_lock, LCK_GRP_NULL);
412 result = run_queue_enqueue(rq, thread, options);
413 thread->runq = GLOBAL_RUNQ;
414 simple_unlock(&global_runq_lock);
415
416 return result;
417 }
418
419 static void
420 sched_proto_processor_queue_shutdown(
421 processor_t processor)
422 {
423 /* With a global runqueue, just stop choosing this processor */
424 (void)processor;
425 }
426
427 static boolean_t
428 sched_proto_processor_queue_remove(
429 processor_t processor,
430 thread_t thread)
431 {
432 void * rqlock;
433 run_queue_t rq;
434
435 rqlock = &global_runq_lock;
436 rq = global_runq;
437
438 simple_lock(rqlock, LCK_GRP_NULL);
439 if (processor == thread->runq) {
440 /*
441 * Thread is on a run queue and we have a lock on
442 * that run queue.
443 */
444 run_queue_remove(rq, thread);
445 } else {
446 /*
447 * The thread left the run queue before we could
448 * lock the run queue.
449 */
450 assert(thread->runq == PROCESSOR_NULL);
451 processor = PROCESSOR_NULL;
452 }
453
454 simple_unlock(rqlock);
455
456 return processor != PROCESSOR_NULL;
457 }
458
459 static boolean_t
460 sched_proto_processor_queue_empty(processor_t processor __unused)
461 {
462 boolean_t result;
463
464 result = (global_runq->count == 0);
465
466 return result;
467 }
468
469 static boolean_t
470 sched_proto_processor_queue_has_priority(processor_t processor __unused,
471 int priority,
472 boolean_t gte)
473 {
474 boolean_t result;
475
476 simple_lock(&global_runq_lock, LCK_GRP_NULL);
477
478 if (gte) {
479 result = global_runq->highq >= priority;
480 } else {
481 result = global_runq->highq > priority;
482 }
483
484 simple_unlock(&global_runq_lock);
485
486 return result;
487 }
488
489 /* Implement sched_preempt_pri in code */
490 static boolean_t
491 sched_proto_priority_is_urgent(int priority)
492 {
493 if (priority <= BASEPRI_FOREGROUND) {
494 return FALSE;
495 }
496
497 if (priority < MINPRI_KERNEL) {
498 return TRUE;
499 }
500
501 if (priority >= BASEPRI_PREEMPT) {
502 return TRUE;
503 }
504
505 return FALSE;
506 }
507
508 static ast_t
509 sched_proto_processor_csw_check(processor_t processor)
510 {
511 run_queue_t runq;
512 int count, urgency;
513
514 runq = global_runq;
515 count = runq->count;
516 urgency = runq->urgency;
517
518 if (count > 0) {
519 if (urgency > 0) {
520 return AST_PREEMPT | AST_URGENT;
521 }
522
523 return AST_PREEMPT;
524 }
525
526 if (proto_processor != processor) {
527 return AST_PREEMPT;
528 }
529
530 return AST_NONE;
531 }
532
533 static uint32_t
534 sched_proto_initial_quantum_size(thread_t thread __unused)
535 {
536 return proto_quantum;
537 }
538
539 static sched_mode_t
540 sched_proto_initial_thread_sched_mode(task_t parent_task)
541 {
542 if (parent_task == kernel_task) {
543 return TH_MODE_FIXED;
544 } else {
545 return TH_MODE_TIMESHARE;
546 }
547 }
548
549 static boolean_t
550 sched_proto_can_update_priority(thread_t thread __unused)
551 {
552 return FALSE;
553 }
554
555 static void
556 sched_proto_update_priority(thread_t thread __unused)
557 {
558 }
559
560 static void
561 sched_proto_lightweight_update_priority(thread_t thread __unused)
562 {
563 }
564
565 static void
566 sched_proto_quantum_expire(thread_t thread __unused)
567 {
568 }
569
570 static int
571 sched_proto_processor_runq_count(processor_t processor)
572 {
573 if (master_processor == processor) {
574 return global_runq->count;
575 } else {
576 return 0;
577 }
578 }
579
580 static uint64_t
581 sched_proto_processor_runq_stats_count_sum(processor_t processor)
582 {
583 if (master_processor == processor) {
584 return global_runq->runq_stats.count_sum;
585 } else {
586 return 0ULL;
587 }
588 }
589
590 static int
591 sched_proto_processor_bound_count(__unused processor_t processor)
592 {
593 return 0;
594 }
595
596 static void
597 sched_proto_thread_update_scan(__unused sched_update_scan_context_t scan_context)
598 {
599 }