]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/hibernate_i386.c
xnu-6153.11.26.tar.gz
[apple/xnu.git] / osfmk / i386 / hibernate_i386.c
1 /*
2 * Copyright (c) 2004-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <kern/machine.h>
30 #include <kern/misc_protos.h>
31 #include <kern/thread.h>
32 #include <kern/processor.h>
33 #include <kern/kalloc.h>
34 #include <mach/machine.h>
35 #include <mach/processor_info.h>
36 #include <mach/mach_types.h>
37 #include <i386/pmap.h>
38 #include <kern/cpu_data.h>
39 #include <IOKit/IOPlatformExpert.h>
40
41 #include <pexpert/i386/efi.h>
42
43 #include <IOKit/IOHibernatePrivate.h>
44 #include <vm/vm_page.h>
45 #include <i386/i386_lowmem.h>
46 #include <san/kasan.h>
47
48 extern ppnum_t max_ppnum;
49
50 #define MAX_BANKS 32
51
52 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
53
54 hibernate_page_list_t *
55 hibernate_page_list_allocate(boolean_t log)
56 {
57 ppnum_t base, num;
58 vm_size_t size;
59 uint32_t bank, num_banks;
60 uint32_t pages, page_count;
61 hibernate_page_list_t * list;
62 hibernate_bitmap_t * bitmap;
63
64 EfiMemoryRange * mptr;
65 uint32_t mcount, msize, i;
66 hibernate_bitmap_t dram_ranges[MAX_BANKS];
67 boot_args * args = (boot_args *) PE_state.bootArgs;
68 uint32_t non_os_pagecount;
69 ppnum_t pnmax = max_ppnum;
70
71 mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap);
72 if (args->MemoryMapDescriptorSize == 0) {
73 panic("Invalid memory map descriptor size");
74 }
75 msize = args->MemoryMapDescriptorSize;
76 mcount = args->MemoryMapSize / msize;
77
78 #if KASAN
79 /* adjust max page number to include stolen memory */
80 if (atop(shadow_ptop) > pnmax) {
81 pnmax = (ppnum_t)atop(shadow_ptop);
82 }
83 #endif
84
85 num_banks = 0;
86 non_os_pagecount = 0;
87 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
88 base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
89 num = (ppnum_t) mptr->NumberOfPages;
90
91 #if KASAN
92 if (i == shadow_stolen_idx) {
93 /*
94 * Add all stolen pages to the bitmap. Later we will prune the unused
95 * pages.
96 */
97 num += shadow_pages_total;
98 }
99 #endif
100
101 if (base > pnmax) {
102 continue;
103 }
104 if ((base + num - 1) > pnmax) {
105 num = pnmax - base + 1;
106 }
107 if (!num) {
108 continue;
109 }
110
111 switch (mptr->Type) {
112 // any kind of dram
113 case kEfiACPIMemoryNVS:
114 case kEfiPalCode:
115 non_os_pagecount += num;
116
117 // OS used dram
118 case kEfiLoaderCode:
119 case kEfiLoaderData:
120 case kEfiBootServicesCode:
121 case kEfiBootServicesData:
122 case kEfiConventionalMemory:
123
124 for (bank = 0; bank < num_banks; bank++) {
125 if (dram_ranges[bank].first_page <= base) {
126 continue;
127 }
128 if ((base + num) == dram_ranges[bank].first_page) {
129 dram_ranges[bank].first_page = base;
130 num = 0;
131 }
132 break;
133 }
134 if (!num) {
135 break;
136 }
137
138 if (bank && (base == (1 + dram_ranges[bank - 1].last_page))) {
139 bank--;
140 } else {
141 num_banks++;
142 if (num_banks >= MAX_BANKS) {
143 break;
144 }
145 bcopy(&dram_ranges[bank],
146 &dram_ranges[bank + 1],
147 (num_banks - bank - 1) * sizeof(hibernate_bitmap_t));
148 dram_ranges[bank].first_page = base;
149 }
150 dram_ranges[bank].last_page = base + num - 1;
151 break;
152
153 // runtime services will be restarted, so no save
154 case kEfiRuntimeServicesCode:
155 case kEfiRuntimeServicesData:
156 // contents are volatile once the platform expert starts
157 case kEfiACPIReclaimMemory:
158 // non dram
159 case kEfiReservedMemoryType:
160 case kEfiUnusableMemory:
161 case kEfiMemoryMappedIO:
162 case kEfiMemoryMappedIOPortSpace:
163 default:
164 break;
165 }
166 }
167
168 if (num_banks >= MAX_BANKS) {
169 HIBLOG("%s error, num_banks exceed MAX_BANKS(0x%x)\n", __FUNCTION__, MAX_BANKS);
170 return NULL;
171 }
172
173 // size the hibernation bitmap
174
175 size = sizeof(hibernate_page_list_t);
176 page_count = 0;
177 for (bank = 0; bank < num_banks; bank++) {
178 pages = dram_ranges[bank].last_page + 1 - dram_ranges[bank].first_page;
179 page_count += pages;
180 size += sizeof(hibernate_bitmap_t) + ((pages + 31) >> 5) * sizeof(uint32_t);
181 }
182
183 list = (hibernate_page_list_t *)kalloc(size);
184 if (!list) {
185 return list;
186 }
187
188 list->list_size = (uint32_t)size;
189 list->page_count = page_count;
190 list->bank_count = num_banks;
191
192 // convert to hibernation bitmap.
193
194 bitmap = &list->bank_bitmap[0];
195 for (bank = 0; bank < num_banks; bank++) {
196 bitmap->first_page = dram_ranges[bank].first_page;
197 bitmap->last_page = dram_ranges[bank].last_page;
198 bitmap->bitmapwords = (bitmap->last_page + 1
199 - bitmap->first_page + 31) >> 5;
200 if (log) {
201 kprintf("hib bank[%d]: 0x%x000 end 0x%xfff\n",
202 bank, bitmap->first_page, bitmap->last_page);
203 }
204 bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords];
205 }
206 if (log) {
207 printf("efi pagecount %d\n", non_os_pagecount);
208 }
209
210 return list;
211 }
212
213 // mark pages not to be saved, but available for scratch usage during restore
214
215 void
216 hibernate_page_list_setall_machine( __unused hibernate_page_list_t * page_list,
217 __unused hibernate_page_list_t * page_list_wired,
218 __unused boolean_t preflight,
219 __unused uint32_t * pagesOut)
220 {
221 }
222
223 // mark pages not to be saved and not for scratch usage during restore
224 void
225 hibernate_page_list_set_volatile( hibernate_page_list_t * page_list,
226 hibernate_page_list_t * page_list_wired,
227 uint32_t * pagesOut)
228 {
229 boot_args * args = (boot_args *) PE_state.bootArgs;
230
231 if (args->efiRuntimeServicesPageStart) {
232 hibernate_set_page_state(page_list, page_list_wired,
233 args->efiRuntimeServicesPageStart, args->efiRuntimeServicesPageCount,
234 kIOHibernatePageStateFree);
235 *pagesOut -= args->efiRuntimeServicesPageCount;
236 }
237 }
238
239 kern_return_t
240 hibernate_processor_setup(IOHibernateImageHeader * header)
241 {
242 boot_args * args = (boot_args *) PE_state.bootArgs;
243
244 cpu_datap(0)->cpu_hibernate = 1;
245 header->processorFlags = 0;
246
247 header->runtimePages = args->efiRuntimeServicesPageStart;
248 header->runtimePageCount = args->efiRuntimeServicesPageCount;
249 header->runtimeVirtualPages = args->efiRuntimeServicesVirtualPageStart;
250 header->performanceDataStart = args->performanceDataStart;
251 header->performanceDataSize = args->performanceDataSize;
252
253 return KERN_SUCCESS;
254 }
255
256 static boolean_t hibernate_vm_locks_safe;
257
258 void
259 hibernate_vm_lock(void)
260 {
261 if (current_cpu_datap()->cpu_hibernate) {
262 hibernate_vm_lock_queues();
263 hibernate_vm_locks_safe = TRUE;
264 }
265 }
266
267 void
268 hibernate_vm_unlock(void)
269 {
270 assert(FALSE == ml_get_interrupts_enabled());
271 if (current_cpu_datap()->cpu_hibernate) {
272 hibernate_vm_unlock_queues();
273 }
274 ml_set_is_quiescing(TRUE);
275 }
276
277 // ACPI calls hibernate_vm_lock(), interrupt disable, hibernate_vm_unlock() on sleep,
278 // hibernate_vm_lock_end() and interrupt enable on wake.
279 // VM locks are safely single threaded between hibernate_vm_lock() and hibernate_vm_lock_end().
280
281 void
282 hibernate_vm_lock_end(void)
283 {
284 assert(FALSE == ml_get_interrupts_enabled());
285 hibernate_vm_locks_safe = FALSE;
286 ml_set_is_quiescing(FALSE);
287 }
288
289 boolean_t
290 hibernate_vm_locks_are_safe(void)
291 {
292 assert(FALSE == ml_get_interrupts_enabled());
293 return hibernate_vm_locks_safe;
294 }