]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/hibernate_i386.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / hibernate_i386.c
1 /*
2 * Copyright (c) 2004-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*!
29 * i386/x86_64-specific functions required to support hibernation entry, and also to
30 * support hibernation exit after wired pages have already been restored.
31 */
32
33 #include <kern/machine.h>
34 #include <kern/misc_protos.h>
35 #include <kern/thread.h>
36 #include <kern/processor.h>
37 #include <kern/kalloc.h>
38 #include <mach/machine.h>
39 #include <mach/processor_info.h>
40 #include <mach/mach_types.h>
41 #include <i386/pmap.h>
42 #include <kern/cpu_data.h>
43 #include <IOKit/IOPlatformExpert.h>
44
45 #include <pexpert/i386/efi.h>
46
47 #include <IOKit/IOHibernatePrivate.h>
48 #include <machine/pal_hibernate.h>
49 #include <vm/vm_page.h>
50 #include <i386/i386_lowmem.h>
51 #include <san/kasan.h>
52
53 extern ppnum_t max_ppnum;
54
55 #define MAX_BANKS 32
56
57 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
58
59 hibernate_page_list_t *
60 hibernate_page_list_allocate(boolean_t log)
61 {
62 ppnum_t base, num;
63 vm_size_t size;
64 uint32_t bank, num_banks;
65 uint32_t pages, page_count;
66 hibernate_page_list_t * list;
67 hibernate_bitmap_t * bitmap;
68
69 EfiMemoryRange * mptr;
70 uint32_t mcount, msize, i;
71 hibernate_bitmap_t dram_ranges[MAX_BANKS];
72 boot_args * args = (boot_args *) PE_state.bootArgs;
73 uint32_t non_os_pagecount;
74 ppnum_t pnmax = max_ppnum;
75
76 mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap);
77 if (args->MemoryMapDescriptorSize == 0) {
78 panic("Invalid memory map descriptor size");
79 }
80 msize = args->MemoryMapDescriptorSize;
81 mcount = args->MemoryMapSize / msize;
82
83 #if KASAN
84 /* adjust max page number to include stolen memory */
85 if (atop(shadow_ptop) > pnmax) {
86 pnmax = (ppnum_t)atop(shadow_ptop);
87 }
88 #endif
89
90 num_banks = 0;
91 non_os_pagecount = 0;
92 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
93 base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
94 num = (ppnum_t) mptr->NumberOfPages;
95
96 #if KASAN
97 if (i == shadow_stolen_idx) {
98 /*
99 * Add all stolen pages to the bitmap. Later we will prune the unused
100 * pages.
101 */
102 num += shadow_pages_total;
103 }
104 #endif
105
106 if (base > pnmax) {
107 continue;
108 }
109 if ((base + num - 1) > pnmax) {
110 num = pnmax - base + 1;
111 }
112 if (!num) {
113 continue;
114 }
115
116 switch (mptr->Type) {
117 // any kind of dram
118 case kEfiACPIMemoryNVS:
119 case kEfiPalCode:
120 non_os_pagecount += num;
121 OS_FALLTHROUGH;
122
123 // OS used dram
124 case kEfiLoaderCode:
125 case kEfiLoaderData:
126 case kEfiBootServicesCode:
127 case kEfiBootServicesData:
128 case kEfiConventionalMemory:
129
130 for (bank = 0; bank < num_banks; bank++) {
131 if (dram_ranges[bank].first_page <= base) {
132 continue;
133 }
134 if ((base + num) == dram_ranges[bank].first_page) {
135 dram_ranges[bank].first_page = base;
136 num = 0;
137 }
138 break;
139 }
140 if (!num) {
141 break;
142 }
143
144 if (bank && (base == (1 + dram_ranges[bank - 1].last_page))) {
145 bank--;
146 } else {
147 num_banks++;
148 if (num_banks >= MAX_BANKS) {
149 break;
150 }
151 bcopy(&dram_ranges[bank],
152 &dram_ranges[bank + 1],
153 (num_banks - bank - 1) * sizeof(hibernate_bitmap_t));
154 dram_ranges[bank].first_page = base;
155 }
156 dram_ranges[bank].last_page = base + num - 1;
157 break;
158
159 // runtime services will be restarted, so no save
160 case kEfiRuntimeServicesCode:
161 case kEfiRuntimeServicesData:
162 // contents are volatile once the platform expert starts
163 case kEfiACPIReclaimMemory:
164 // non dram
165 case kEfiReservedMemoryType:
166 case kEfiUnusableMemory:
167 case kEfiMemoryMappedIO:
168 case kEfiMemoryMappedIOPortSpace:
169 default:
170 break;
171 }
172 }
173
174 if (num_banks >= MAX_BANKS) {
175 HIBLOG("%s error, num_banks exceed MAX_BANKS(0x%x)\n", __FUNCTION__, MAX_BANKS);
176 return NULL;
177 }
178
179 // size the hibernation bitmap
180
181 size = sizeof(hibernate_page_list_t);
182 page_count = 0;
183 for (bank = 0; bank < num_banks; bank++) {
184 pages = dram_ranges[bank].last_page + 1 - dram_ranges[bank].first_page;
185 page_count += pages;
186 size += sizeof(hibernate_bitmap_t) + ((pages + 31) >> 5) * sizeof(uint32_t);
187 }
188
189 list = (hibernate_page_list_t *)kalloc(size);
190 if (!list) {
191 return list;
192 }
193
194 list->list_size = (uint32_t)size;
195 list->page_count = page_count;
196 list->bank_count = num_banks;
197
198 // convert to hibernation bitmap.
199
200 bitmap = &list->bank_bitmap[0];
201 for (bank = 0; bank < num_banks; bank++) {
202 bitmap->first_page = dram_ranges[bank].first_page;
203 bitmap->last_page = dram_ranges[bank].last_page;
204 bitmap->bitmapwords = (bitmap->last_page + 1
205 - bitmap->first_page + 31) >> 5;
206 if (log) {
207 kprintf("hib bank[%d]: 0x%x000 end 0x%xfff\n",
208 bank, bitmap->first_page, bitmap->last_page);
209 }
210 bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords];
211 }
212 if (log) {
213 printf("efi pagecount %d\n", non_os_pagecount);
214 }
215
216 return list;
217 }
218
219 // mark pages not to be saved, but available for scratch usage during restore
220
221 void
222 hibernate_page_list_setall_machine( __unused hibernate_page_list_t * page_list,
223 __unused hibernate_page_list_t * page_list_wired,
224 __unused boolean_t preflight,
225 __unused uint32_t * pagesOut)
226 {
227 }
228
229 // mark pages not to be saved and not for scratch usage during restore
230 void
231 hibernate_page_list_set_volatile( hibernate_page_list_t * page_list,
232 hibernate_page_list_t * page_list_wired,
233 uint32_t * pagesOut)
234 {
235 boot_args * args = (boot_args *) PE_state.bootArgs;
236
237 if (args->efiRuntimeServicesPageStart) {
238 hibernate_set_page_state(page_list, page_list_wired,
239 args->efiRuntimeServicesPageStart, args->efiRuntimeServicesPageCount,
240 kIOHibernatePageStateFree);
241 *pagesOut -= args->efiRuntimeServicesPageCount;
242 }
243 }
244
245 kern_return_t
246 hibernate_processor_setup(IOHibernateImageHeader * header)
247 {
248 boot_args * args = (boot_args *) PE_state.bootArgs;
249
250 cpu_datap(0)->cpu_hibernate = 1;
251 header->processorFlags = 0;
252
253 header->runtimePages = args->efiRuntimeServicesPageStart;
254 header->runtimePageCount = args->efiRuntimeServicesPageCount;
255 header->runtimeVirtualPages = args->efiRuntimeServicesVirtualPageStart;
256 header->performanceDataStart = args->performanceDataStart;
257 header->performanceDataSize = args->performanceDataSize;
258
259 return KERN_SUCCESS;
260 }
261
262 static boolean_t hibernate_vm_locks_safe;
263
264 void
265 hibernate_vm_lock(void)
266 {
267 if (current_cpu_datap()->cpu_hibernate) {
268 hibernate_vm_lock_queues();
269 hibernate_vm_locks_safe = TRUE;
270 }
271 }
272
273 void
274 hibernate_vm_unlock(void)
275 {
276 assert(FALSE == ml_get_interrupts_enabled());
277 if (current_cpu_datap()->cpu_hibernate) {
278 hibernate_vm_unlock_queues();
279 }
280 ml_set_is_quiescing(TRUE);
281 }
282
283 // ACPI calls hibernate_vm_lock(), interrupt disable, hibernate_vm_unlock() on sleep,
284 // hibernate_vm_lock_end() and interrupt enable on wake.
285 // VM locks are safely single threaded between hibernate_vm_lock() and hibernate_vm_lock_end().
286
287 void
288 hibernate_vm_lock_end(void)
289 {
290 assert(FALSE == ml_get_interrupts_enabled());
291 hibernate_vm_locks_safe = FALSE;
292 ml_set_is_quiescing(FALSE);
293 }
294
295 boolean_t
296 hibernate_vm_locks_are_safe(void)
297 {
298 assert(FALSE == ml_get_interrupts_enabled());
299 return hibernate_vm_locks_safe;
300 }
301
302 void
303 pal_hib_write_hook(void)
304 {
305 }