]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/cpuid.c
xnu-1228.12.14.tar.gz
[apple/xnu.git] / osfmk / i386 / cpuid.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 #include <platforms.h>
32 #include <mach_kdb.h>
33 #include <vm/vm_page.h>
34 #include <pexpert/pexpert.h>
35
36 #include "cpuid.h"
37 #if MACH_KDB
38 #include <i386/db_machdep.h>
39 #include <ddb/db_aout.h>
40 #include <ddb/db_access.h>
41 #include <ddb/db_sym.h>
42 #include <ddb/db_variables.h>
43 #include <ddb/db_command.h>
44 #include <ddb/db_output.h>
45 #include <ddb/db_expr.h>
46 #endif
47
48 #define min(a,b) ((a) < (b) ? (a) : (b))
49 #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
50
51 #define bit(n) (1UL << (n))
52 #define bitmask(h,l) ((bit(h)|(bit(h)-1)) & ~(bit(l)-1))
53 #define bitfield(x,h,l) (((x) & bitmask(h,l)) >> l)
54
55 /*
56 * CPU identification routines.
57 */
58
59 static i386_cpu_info_t *cpuid_cpu_infop = NULL;
60 static i386_cpu_info_t cpuid_cpu_info;
61
62 /* this function is Intel-specific */
63 static void
64 cpuid_set_cache_info( i386_cpu_info_t * info_p )
65 {
66 uint32_t cpuid_result[4];
67 uint32_t reg[4];
68 uint32_t index;
69 uint32_t linesizes[LCACHE_MAX];
70 unsigned int i;
71 unsigned int j;
72 boolean_t cpuid_deterministic_supported = FALSE;
73
74 bzero( linesizes, sizeof(linesizes) );
75
76 /* Get processor cache descriptor info using leaf 2. We don't use
77 * this internally, but must publish it for KEXTs.
78 */
79 do_cpuid(2, cpuid_result);
80 for (j = 0; j < 4; j++) {
81 if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
82 continue;
83 ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j];
84 }
85 /* first byte gives number of cpuid calls to get all descriptors */
86 for (i = 1; i < info_p->cache_info[0]; i++) {
87 if (i*16 > sizeof(info_p->cache_info))
88 break;
89 do_cpuid(2, cpuid_result);
90 for (j = 0; j < 4; j++) {
91 if ((cpuid_result[j] >> 31) == 1)
92 continue;
93 ((uint32_t *) info_p->cache_info)[4*i+j] =
94 cpuid_result[j];
95 }
96 }
97
98 /*
99 * Get cache info using leaf 4, the "deterministic cache parameters."
100 * Most processors Mac OS X supports implement this flavor of CPUID.
101 * Loop over each cache on the processor.
102 */
103 do_cpuid(0, cpuid_result);
104 if (cpuid_result[eax] >= 4)
105 cpuid_deterministic_supported = TRUE;
106
107 for (index = 0; cpuid_deterministic_supported; index++) {
108 cache_type_t type = Lnone;
109 uint32_t cache_type;
110 uint32_t cache_level;
111 uint32_t cache_sharing;
112 uint32_t cache_linesize;
113 uint32_t cache_sets;
114 uint32_t cache_associativity;
115 uint32_t cache_size;
116 uint32_t cache_partitions;
117 uint32_t colors;
118
119 reg[eax] = 4; /* cpuid request 4 */
120 reg[ecx] = index; /* index starting at 0 */
121 cpuid(reg);
122 //kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]);
123 cache_type = bitfield(reg[eax], 4, 0);
124 if (cache_type == 0)
125 break; /* no more caches */
126 cache_level = bitfield(reg[eax], 7, 5);
127 cache_sharing = bitfield(reg[eax], 25, 14) + 1;
128 info_p->cpuid_cores_per_package
129 = bitfield(reg[eax], 31, 26) + 1;
130 cache_linesize = bitfield(reg[ebx], 11, 0) + 1;
131 cache_partitions = bitfield(reg[ebx], 21, 12) + 1;
132 cache_associativity = bitfield(reg[ebx], 31, 22) + 1;
133 cache_sets = bitfield(reg[ecx], 31, 0) + 1;
134
135 /* Map type/levels returned by CPUID into cache_type_t */
136 switch (cache_level) {
137 case 1:
138 type = cache_type == 1 ? L1D :
139 cache_type == 2 ? L1I :
140 Lnone;
141 break;
142 case 2:
143 type = cache_type == 3 ? L2U :
144 Lnone;
145 break;
146 case 3:
147 type = cache_type == 3 ? L3U :
148 Lnone;
149 break;
150 default:
151 type = Lnone;
152 }
153
154 /* The total size of a cache is:
155 * ( linesize * sets * associativity )
156 */
157 if (type != Lnone) {
158 cache_size = cache_linesize * cache_sets * cache_associativity;
159 info_p->cache_size[type] = cache_size;
160 info_p->cache_sharing[type] = cache_sharing;
161 info_p->cache_partitions[type] = cache_partitions;
162 linesizes[type] = cache_linesize;
163
164 /* Compute the number of page colors for this cache,
165 * which is:
166 * ( linesize * sets ) / page_size
167 *
168 * To help visualize this, consider two views of a
169 * physical address. To the cache, it is composed
170 * of a line offset, a set selector, and a tag.
171 * To VM, it is composed of a page offset, a page
172 * color, and other bits in the pageframe number:
173 *
174 * +-----------------+---------+--------+
175 * cache: | tag | set | offset |
176 * +-----------------+---------+--------+
177 *
178 * +-----------------+-------+----------+
179 * VM: | don't care | color | pg offset|
180 * +-----------------+-------+----------+
181 *
182 * The color is those bits in (set+offset) not covered
183 * by the page offset.
184 */
185 colors = ( cache_linesize * cache_sets ) >> 12;
186
187 if ( colors > vm_cache_geometry_colors )
188 vm_cache_geometry_colors = colors;
189 }
190 }
191
192 /*
193 * If deterministic cache parameters are not available, use
194 * something else
195 */
196 if (info_p->cpuid_cores_per_package == 0) {
197 info_p->cpuid_cores_per_package = 1;
198
199 /* cpuid define in 1024 quantities */
200 info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024;
201 info_p->cache_sharing[L2U] = 1;
202 info_p->cache_partitions[L2U] = 1;
203
204 linesizes[L2U] = info_p->cpuid_cache_linesize;
205 }
206
207 /*
208 * What linesize to publish? We use the L2 linesize if any,
209 * else the L1D.
210 */
211 if ( linesizes[L2U] )
212 info_p->cache_linesize = linesizes[L2U];
213 else if (linesizes[L1D])
214 info_p->cache_linesize = linesizes[L1D];
215 else panic("no linesize");
216
217 /*
218 * Extract and publish TLB information.
219 */
220 for (i = 1; i < sizeof(info_p->cache_info); i++) {
221 uint8_t desc = info_p->cache_info[i];
222
223 switch (desc) {
224 case CPUID_CACHE_ITLB_4K_32_4:
225 info_p->cpuid_itlb_small = 32;
226 break;
227 case CPUID_CACHE_ITLB_4M_2:
228 info_p->cpuid_itlb_large = 2;
229 break;
230 case CPUID_CACHE_DTLB_4K_64_4:
231 info_p->cpuid_dtlb_small = 64;
232 break;
233 case CPUID_CACHE_DTLB_4M_8_4:
234 info_p->cpuid_dtlb_large = 8;
235 break;
236 case CPUID_CACHE_DTLB_4M_32_4:
237 info_p->cpuid_dtlb_large = 32;
238 break;
239 case CPUID_CACHE_ITLB_64:
240 info_p->cpuid_itlb_small = 64;
241 info_p->cpuid_itlb_large = 64;
242 break;
243 case CPUID_CACHE_ITLB_128:
244 info_p->cpuid_itlb_small = 128;
245 info_p->cpuid_itlb_large = 128;
246 break;
247 case CPUID_CACHE_ITLB_256:
248 info_p->cpuid_itlb_small = 256;
249 info_p->cpuid_itlb_large = 256;
250 break;
251 case CPUID_CACHE_DTLB_64:
252 info_p->cpuid_dtlb_small = 64;
253 info_p->cpuid_dtlb_large = 64;
254 break;
255 case CPUID_CACHE_DTLB_128:
256 info_p->cpuid_dtlb_small = 128;
257 info_p->cpuid_dtlb_large = 128;
258 break;
259 case CPUID_CACHE_DTLB_256:
260 info_p->cpuid_dtlb_small = 256;
261 info_p->cpuid_dtlb_large = 256;
262 break;
263 case CPUID_CACHE_ITLB_4M2M_7:
264 info_p->cpuid_itlb_large = 7;
265 break;
266 case CPUID_CACHE_DTLB_4K_16_4:
267 info_p->cpuid_dtlb_small = 16;
268 break;
269 case CPUID_CACHE_DTLB_4M2M_32_4:
270 info_p->cpuid_dtlb_large = 32;
271 break;
272 case CPUID_CACHE_ITLB_4K_128_4:
273 info_p->cpuid_itlb_small = 128;
274 break;
275 case CPUID_CACHE_ITLB_4M_8:
276 info_p->cpuid_itlb_large = 8;
277 break;
278 case CPUID_CACHE_DTLB_4K_128_4:
279 info_p->cpuid_dtlb_small = 128;
280 break;
281 case CPUID_CACHE_DTLB_4K_256_4:
282 info_p->cpuid_dtlb_small = 256;
283 break;
284 }
285 }
286 }
287
288 static void
289 cpuid_set_generic_info(i386_cpu_info_t *info_p)
290 {
291 uint32_t cpuid_reg[4];
292 uint32_t max_extid;
293 char str[128], *p;
294
295 /* do cpuid 0 to get vendor */
296 do_cpuid(0, cpuid_reg);
297 bcopy((char *)&cpuid_reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
298 bcopy((char *)&cpuid_reg[ecx], &info_p->cpuid_vendor[8], 4);
299 bcopy((char *)&cpuid_reg[edx], &info_p->cpuid_vendor[4], 4);
300 info_p->cpuid_vendor[12] = 0;
301
302 /* get extended cpuid results */
303 do_cpuid(0x80000000, cpuid_reg);
304 max_extid = cpuid_reg[eax];
305
306 /* check to see if we can get brand string */
307 if (max_extid >= 0x80000004) {
308 /*
309 * The brand string 48 bytes (max), guaranteed to
310 * be NUL terminated.
311 */
312 do_cpuid(0x80000002, cpuid_reg);
313 bcopy((char *)cpuid_reg, &str[0], 16);
314 do_cpuid(0x80000003, cpuid_reg);
315 bcopy((char *)cpuid_reg, &str[16], 16);
316 do_cpuid(0x80000004, cpuid_reg);
317 bcopy((char *)cpuid_reg, &str[32], 16);
318 for (p = str; *p != '\0'; p++) {
319 if (*p != ' ') break;
320 }
321 strlcpy(info_p->cpuid_brand_string,
322 p, sizeof(info_p->cpuid_brand_string));
323
324 if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
325 min(sizeof(info_p->cpuid_brand_string),
326 strlen(CPUID_STRING_UNKNOWN) + 1))) {
327 /*
328 * This string means we have a firmware-programmable brand string,
329 * and the firmware couldn't figure out what sort of CPU we have.
330 */
331 info_p->cpuid_brand_string[0] = '\0';
332 }
333 }
334
335 /* Get cache and addressing info. */
336 if (max_extid >= 0x80000006) {
337 do_cpuid(0x80000006, cpuid_reg);
338 info_p->cpuid_cache_linesize = bitfield(cpuid_reg[ecx], 7, 0);
339 info_p->cpuid_cache_L2_associativity =
340 bitfield(cpuid_reg[ecx],15,12);
341 info_p->cpuid_cache_size = bitfield(cpuid_reg[ecx],31,16);
342 do_cpuid(0x80000008, cpuid_reg);
343 info_p->cpuid_address_bits_physical =
344 bitfield(cpuid_reg[eax], 7, 0);
345 info_p->cpuid_address_bits_virtual =
346 bitfield(cpuid_reg[eax],15, 8);
347 }
348
349 /* get processor signature and decode */
350 do_cpuid(1, cpuid_reg);
351 info_p->cpuid_signature = cpuid_reg[eax];
352 info_p->cpuid_stepping = bitfield(cpuid_reg[eax], 3, 0);
353 info_p->cpuid_model = bitfield(cpuid_reg[eax], 7, 4);
354 info_p->cpuid_family = bitfield(cpuid_reg[eax], 11, 8);
355 info_p->cpuid_type = bitfield(cpuid_reg[eax], 13, 12);
356 info_p->cpuid_extmodel = bitfield(cpuid_reg[eax], 19, 16);
357 info_p->cpuid_extfamily = bitfield(cpuid_reg[eax], 27, 20);
358 info_p->cpuid_brand = bitfield(cpuid_reg[ebx], 7, 0);
359 info_p->cpuid_features = quad(cpuid_reg[ecx], cpuid_reg[edx]);
360
361 /* Fold extensions into family/model */
362 if (info_p->cpuid_family == 0x0f)
363 info_p->cpuid_family += info_p->cpuid_extfamily;
364 if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06)
365 info_p->cpuid_model += (info_p->cpuid_extmodel << 4);
366
367 if (info_p->cpuid_features & CPUID_FEATURE_HTT)
368 info_p->cpuid_logical_per_package =
369 bitfield(cpuid_reg[ebx], 23, 16);
370 else
371 info_p->cpuid_logical_per_package = 1;
372
373 if (max_extid >= 0x80000001) {
374 do_cpuid(0x80000001, cpuid_reg);
375 info_p->cpuid_extfeatures =
376 quad(cpuid_reg[ecx], cpuid_reg[edx]);
377 }
378
379 /* Fold in the Invariant TSC feature bit, if present */
380 if (max_extid >= 0x80000007) {
381 do_cpuid(0x80000007, cpuid_reg);
382 info_p->cpuid_extfeatures |=
383 cpuid_reg[edx] & CPUID_EXTFEATURE_TSCI;
384 }
385
386 /* Find the microcode version number a.k.a. signature a.k.a. BIOS ID */
387 info_p->cpuid_microcode_version =
388 (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
389
390 if (info_p->cpuid_model == CPUID_MODEL_NEHALEM) {
391 /*
392 * For Nehalem, find the number of enabled cores and threads
393 * (which determines whether SMT/Hyperthreading is active).
394 */
395 uint64_t msr_core_thread_count = rdmsr64(MSR_CORE_THREAD_COUNT);
396 info_p->core_count = bitfield(msr_core_thread_count, 31, 16);
397 info_p->thread_count = bitfield(msr_core_thread_count, 15, 0);
398 }
399
400 if (info_p->cpuid_features & CPUID_FEATURE_MONITOR) {
401 /*
402 * Extract the Monitor/Mwait Leaf info:
403 */
404 do_cpuid(5, cpuid_reg);
405 info_p->cpuid_mwait_linesize_min = cpuid_reg[eax];
406 info_p->cpuid_mwait_linesize_max = cpuid_reg[ebx];
407 info_p->cpuid_mwait_extensions = cpuid_reg[ecx];
408 info_p->cpuid_mwait_sub_Cstates = cpuid_reg[edx];
409
410 /*
411 * And the thermal and Power Leaf while we're at it:
412 */
413 do_cpuid(6, cpuid_reg);
414 info_p->cpuid_thermal_sensor =
415 bitfield(cpuid_reg[eax], 0, 0);
416 info_p->cpuid_thermal_dynamic_acceleration =
417 bitfield(cpuid_reg[eax], 1, 1);
418 info_p->cpuid_thermal_thresholds =
419 bitfield(cpuid_reg[ebx], 3, 0);
420 info_p->cpuid_thermal_ACNT_MCNT =
421 bitfield(cpuid_reg[ecx], 0, 0);
422
423 /*
424 * And the Architectural Performance Monitoring Leaf:
425 */
426 do_cpuid(0xa, cpuid_reg);
427 info_p->cpuid_arch_perf_version =
428 bitfield(cpuid_reg[eax], 7, 0);
429 info_p->cpuid_arch_perf_number =
430 bitfield(cpuid_reg[eax],15, 8);
431 info_p->cpuid_arch_perf_width =
432 bitfield(cpuid_reg[eax],23,16);
433 info_p->cpuid_arch_perf_events_number =
434 bitfield(cpuid_reg[eax],31,24);
435 info_p->cpuid_arch_perf_events =
436 cpuid_reg[ebx];
437 info_p->cpuid_arch_perf_fixed_number =
438 bitfield(cpuid_reg[edx], 4, 0);
439 info_p->cpuid_arch_perf_fixed_width =
440 bitfield(cpuid_reg[edx],12, 5);
441
442 }
443
444 return;
445 }
446
447 void
448 cpuid_set_info(void)
449 {
450 bzero((void *)&cpuid_cpu_info, sizeof(cpuid_cpu_info));
451
452 cpuid_set_generic_info(&cpuid_cpu_info);
453
454 /* verify we are running on a supported CPU */
455 if ((strncmp(CPUID_VID_INTEL, cpuid_cpu_info.cpuid_vendor,
456 min(strlen(CPUID_STRING_UNKNOWN) + 1,
457 sizeof(cpuid_cpu_info.cpuid_vendor)))) ||
458 (cpuid_cpu_info.cpuid_family != 6) ||
459 (cpuid_cpu_info.cpuid_model < 13))
460 panic("Unsupported CPU");
461
462 cpuid_cpu_info.cpuid_cpu_type = CPU_TYPE_X86;
463 cpuid_cpu_info.cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
464
465 cpuid_set_cache_info(&cpuid_cpu_info);
466
467 if (cpuid_cpu_info.core_count == 0) {
468 cpuid_cpu_info.core_count =
469 cpuid_cpu_info.cpuid_cores_per_package;
470 cpuid_cpu_info.thread_count =
471 cpuid_cpu_info.cpuid_logical_per_package;
472 }
473
474 cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */
475 }
476
477 static struct {
478 uint64_t mask;
479 const char *name;
480 } feature_map[] = {
481 {CPUID_FEATURE_FPU, "FPU",},
482 {CPUID_FEATURE_VME, "VME",},
483 {CPUID_FEATURE_DE, "DE",},
484 {CPUID_FEATURE_PSE, "PSE",},
485 {CPUID_FEATURE_TSC, "TSC",},
486 {CPUID_FEATURE_MSR, "MSR",},
487 {CPUID_FEATURE_PAE, "PAE",},
488 {CPUID_FEATURE_MCE, "MCE",},
489 {CPUID_FEATURE_CX8, "CX8",},
490 {CPUID_FEATURE_APIC, "APIC",},
491 {CPUID_FEATURE_SEP, "SEP",},
492 {CPUID_FEATURE_MTRR, "MTRR",},
493 {CPUID_FEATURE_PGE, "PGE",},
494 {CPUID_FEATURE_MCA, "MCA",},
495 {CPUID_FEATURE_CMOV, "CMOV",},
496 {CPUID_FEATURE_PAT, "PAT",},
497 {CPUID_FEATURE_PSE36, "PSE36",},
498 {CPUID_FEATURE_PSN, "PSN",},
499 {CPUID_FEATURE_CLFSH, "CLFSH",},
500 {CPUID_FEATURE_DS, "DS",},
501 {CPUID_FEATURE_ACPI, "ACPI",},
502 {CPUID_FEATURE_MMX, "MMX",},
503 {CPUID_FEATURE_FXSR, "FXSR",},
504 {CPUID_FEATURE_SSE, "SSE",},
505 {CPUID_FEATURE_SSE2, "SSE2",},
506 {CPUID_FEATURE_SS, "SS",},
507 {CPUID_FEATURE_HTT, "HTT",},
508 {CPUID_FEATURE_TM, "TM",},
509 {CPUID_FEATURE_SSE3, "SSE3"},
510 {CPUID_FEATURE_MONITOR, "MON"},
511 {CPUID_FEATURE_DSCPL, "DSCPL"},
512 {CPUID_FEATURE_VMX, "VMX"},
513 {CPUID_FEATURE_SMX, "SMX"},
514 {CPUID_FEATURE_EST, "EST"},
515 {CPUID_FEATURE_TM2, "TM2"},
516 {CPUID_FEATURE_SSSE3, "SSSE3"},
517 {CPUID_FEATURE_CID, "CID"},
518 {CPUID_FEATURE_CX16, "CX16"},
519 {CPUID_FEATURE_xTPR, "TPR"},
520 {CPUID_FEATURE_PDCM, "PDCM"},
521 {CPUID_FEATURE_SSE4_1, "SSE4.1"},
522 {CPUID_FEATURE_SSE4_2, "SSE4.2"},
523 {CPUID_FEATURE_xAPIC, "xAPIC"},
524 {CPUID_FEATURE_POPCNT, "POPCNT"},
525 {0, 0}
526 },
527 extfeature_map[] = {
528 {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"},
529 {CPUID_EXTFEATURE_XD, "XD"},
530 {CPUID_EXTFEATURE_EM64T, "EM64T"},
531 {CPUID_EXTFEATURE_LAHF, "LAHF"},
532 {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"},
533 {CPUID_EXTFEATURE_TSCI, "TSCI"},
534 {0, 0}
535 };
536
537 i386_cpu_info_t *
538 cpuid_info(void)
539 {
540 /* Set-up the cpuid_info stucture lazily */
541 if (cpuid_cpu_infop == NULL) {
542 cpuid_set_info();
543 cpuid_cpu_infop = &cpuid_cpu_info;
544 }
545 return cpuid_cpu_infop;
546 }
547
548 char *
549 cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len)
550 {
551 int len = -1;
552 char *p = buf;
553 int i;
554
555 for (i = 0; feature_map[i].mask != 0; i++) {
556 if ((features & feature_map[i].mask) == 0)
557 continue;
558 if (len > 0)
559 *p++ = ' ';
560 len = min(strlen(feature_map[i].name), (buf_len-1) - (p-buf));
561 if (len == 0)
562 break;
563 bcopy(feature_map[i].name, p, len);
564 p += len;
565 }
566 *p = '\0';
567 return buf;
568 }
569
570 char *
571 cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len)
572 {
573 int len = -1;
574 char *p = buf;
575 int i;
576
577 for (i = 0; extfeature_map[i].mask != 0; i++) {
578 if ((extfeatures & extfeature_map[i].mask) == 0)
579 continue;
580 if (len > 0)
581 *p++ = ' ';
582 len = min(strlen(extfeature_map[i].name), (buf_len-1)-(p-buf));
583 if (len == 0)
584 break;
585 bcopy(extfeature_map[i].name, p, len);
586 p += len;
587 }
588 *p = '\0';
589 return buf;
590 }
591
592
593 #if CONFIG_NO_KPRINTF_STRINGS
594 void
595 cpuid_feature_display(
596 __unused const char *header)
597 {
598 }
599
600 void
601 cpuid_extfeature_display(
602 __unused const char *header)
603 {
604 }
605
606 void
607 cpuid_cpu_display(
608 __unused const char *header)
609 {
610 }
611 #else /* CONFIG_NO_KPRINTF_STRINGS */
612 void
613 cpuid_feature_display(
614 const char *header)
615 {
616 char buf[256];
617
618 kprintf("%s: %s\n", header,
619 cpuid_get_feature_names(cpuid_features(),
620 buf, sizeof(buf)));
621 if (cpuid_features() & CPUID_FEATURE_HTT) {
622 #define s_if_plural(n) ((n > 1) ? "s" : "")
623 kprintf(" HTT: %d core%s per package;"
624 " %d logical cpu%s per package\n",
625 cpuid_cpu_info.cpuid_cores_per_package,
626 s_if_plural(cpuid_cpu_info.cpuid_cores_per_package),
627 cpuid_cpu_info.cpuid_logical_per_package,
628 s_if_plural(cpuid_cpu_info.cpuid_logical_per_package));
629 }
630 }
631
632 void
633 cpuid_extfeature_display(
634 const char *header)
635 {
636 char buf[256];
637
638 kprintf("%s: %s\n", header,
639 cpuid_get_extfeature_names(cpuid_extfeatures(),
640 buf, sizeof(buf)));
641 }
642
643 void
644 cpuid_cpu_display(
645 const char *header)
646 {
647 if (cpuid_cpu_info.cpuid_brand_string[0] != '\0') {
648 kprintf("%s: %s\n", header, cpuid_cpu_info.cpuid_brand_string);
649 }
650 }
651 #endif /* !CONFIG_NO_KPRINTF_STRINGS */
652
653 unsigned int
654 cpuid_family(void)
655 {
656 return cpuid_info()->cpuid_family;
657 }
658
659 cpu_type_t
660 cpuid_cputype(void)
661 {
662 return cpuid_info()->cpuid_cpu_type;
663 }
664
665 cpu_subtype_t
666 cpuid_cpusubtype(void)
667 {
668 return cpuid_info()->cpuid_cpu_subtype;
669 }
670
671 uint64_t
672 cpuid_features(void)
673 {
674 static int checked = 0;
675 char fpu_arg[20] = { 0 };
676
677 (void) cpuid_info();
678 if (!checked) {
679 /* check for boot-time fpu limitations */
680 if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) {
681 printf("limiting fpu features to: %s\n", fpu_arg);
682 if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
683 printf("no sse or sse2\n");
684 cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
685 } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
686 printf("no sse2\n");
687 cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE2);
688 }
689 }
690 checked = 1;
691 }
692 return cpuid_cpu_info.cpuid_features;
693 }
694
695 uint64_t
696 cpuid_extfeatures(void)
697 {
698 return cpuid_info()->cpuid_extfeatures;
699 }
700
701
702 #if MACH_KDB
703
704 /*
705 * Display the cpuid
706 * *
707 * cp
708 */
709 void
710 db_cpuid(__unused db_expr_t addr,
711 __unused int have_addr,
712 __unused db_expr_t count,
713 __unused char *modif)
714 {
715
716 uint32_t i, mid;
717 uint32_t cpid[4];
718
719 do_cpuid(0, cpid); /* Get the first cpuid which is the number of
720 * basic ids */
721 db_printf("%08X - %08X %08X %08X %08X\n",
722 0, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
723
724 mid = cpid[eax]; /* Set the number */
725 for (i = 1; i <= mid; i++) { /* Dump 'em out */
726 do_cpuid(i, cpid); /* Get the next */
727 db_printf("%08X - %08X %08X %08X %08X\n",
728 i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
729 }
730 db_printf("\n");
731
732 do_cpuid(0x80000000, cpid); /* Get the first extended cpuid which
733 * is the number of extended ids */
734 db_printf("%08X - %08X %08X %08X %08X\n",
735 0x80000000, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
736
737 mid = cpid[eax]; /* Set the number */
738 for (i = 0x80000001; i <= mid; i++) { /* Dump 'em out */
739 do_cpuid(i, cpid); /* Get the next */
740 db_printf("%08X - %08X %08X %08X %08X\n",
741 i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
742 }
743 }
744
745 #endif