2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
31 #include <vm/vm_page.h>
32 #include <pexpert/pexpert.h>
34 #include <i386/cpu_threads.h>
35 #include <i386/cpuid.h>
36 #include <i386/machine_routines.h>
38 int force_tecs_at_idle
;
39 int tecs_mode_supported
;
41 static boolean_t cpuid_dbg
53 #define min(a, b) ((a) < (b) ? (a) : (b))
54 #define quad(hi, lo) (((uint64_t)(hi)) << 32 | (lo))
57 * Leaf 2 cache descriptor encodings.
60 _NULL_
, /* NULL (empty) descriptor */
63 STLB
, /* Shared second-level unified TLB */
64 PREFETCH
/* Prefetch size */
65 } cpuid_leaf2_desc_type_t
;
68 NA
, /* Not Applicable */
69 FULLY
, /* Fully-associative */
70 TRACE
, /* Trace Cache (P4 only) */
71 INST
, /* Instruction TLB */
73 DATA0
, /* Data TLB, 1st level */
74 DATA1
, /* Data TLB, 2nd level */
75 L1
, /* L1 (unified) cache */
76 L1_INST
, /* L1 Instruction cache */
77 L1_DATA
, /* L1 Data cache */
78 L2
, /* L2 (unified) cache */
79 L3
, /* L3 (unified) cache */
80 L2_2LINESECTOR
, /* L2 (unified) cache with 2 lines per sector */
81 L3_2LINESECTOR
, /* L3(unified) cache with 2 lines per sector */
82 SMALL
, /* Small page TLB */
83 LARGE
, /* Large page TLB */
84 BOTH
/* Small and Large page TLB */
85 } cpuid_leaf2_qualifier_t
;
87 typedef struct cpuid_cache_descriptor
{
88 uint8_t value
; /* descriptor code */
89 uint8_t type
; /* cpuid_leaf2_desc_type_t */
90 uint8_t level
; /* level of cache/TLB hierachy */
91 uint8_t ways
; /* wayness of cache */
92 uint16_t size
; /* cachesize or TLB pagesize */
93 uint16_t entries
; /* number of TLB entries or linesize */
94 } cpuid_cache_descriptor_t
;
97 * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
103 * Intel cache descriptor table:
105 static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table
[] = {
106 // -------------------------------------------------------
107 // value type level ways size entries
108 // -------------------------------------------------------
109 { 0x00, _NULL_
, NA
, NA
, NA
, NA
},
110 { 0x01, TLB
, INST
, 4, SMALL
, 32 },
111 { 0x02, TLB
, INST
, FULLY
, LARGE
, 2 },
112 { 0x03, TLB
, DATA
, 4, SMALL
, 64 },
113 { 0x04, TLB
, DATA
, 4, LARGE
, 8 },
114 { 0x05, TLB
, DATA1
, 4, LARGE
, 32 },
115 { 0x06, CACHE
, L1_INST
, 4, 8 * K
, 32 },
116 { 0x08, CACHE
, L1_INST
, 4, 16 * K
, 32 },
117 { 0x09, CACHE
, L1_INST
, 4, 32 * K
, 64 },
118 { 0x0A, CACHE
, L1_DATA
, 2, 8 * K
, 32 },
119 { 0x0B, TLB
, INST
, 4, LARGE
, 4 },
120 { 0x0C, CACHE
, L1_DATA
, 4, 16 * K
, 32 },
121 { 0x0D, CACHE
, L1_DATA
, 4, 16 * K
, 64 },
122 { 0x0E, CACHE
, L1_DATA
, 6, 24 * K
, 64 },
123 { 0x21, CACHE
, L2
, 8, 256 * K
, 64 },
124 { 0x22, CACHE
, L3_2LINESECTOR
, 4, 512 * K
, 64 },
125 { 0x23, CACHE
, L3_2LINESECTOR
, 8, 1 * M
, 64 },
126 { 0x25, CACHE
, L3_2LINESECTOR
, 8, 2 * M
, 64 },
127 { 0x29, CACHE
, L3_2LINESECTOR
, 8, 4 * M
, 64 },
128 { 0x2C, CACHE
, L1_DATA
, 8, 32 * K
, 64 },
129 { 0x30, CACHE
, L1_INST
, 8, 32 * K
, 64 },
130 { 0x40, CACHE
, L2
, NA
, 0, NA
},
131 { 0x41, CACHE
, L2
, 4, 128 * K
, 32 },
132 { 0x42, CACHE
, L2
, 4, 256 * K
, 32 },
133 { 0x43, CACHE
, L2
, 4, 512 * K
, 32 },
134 { 0x44, CACHE
, L2
, 4, 1 * M
, 32 },
135 { 0x45, CACHE
, L2
, 4, 2 * M
, 32 },
136 { 0x46, CACHE
, L3
, 4, 4 * M
, 64 },
137 { 0x47, CACHE
, L3
, 8, 8 * M
, 64 },
138 { 0x48, CACHE
, L2
, 12, 3 * M
, 64 },
139 { 0x49, CACHE
, L2
, 16, 4 * M
, 64 },
140 { 0x4A, CACHE
, L3
, 12, 6 * M
, 64 },
141 { 0x4B, CACHE
, L3
, 16, 8 * M
, 64 },
142 { 0x4C, CACHE
, L3
, 12, 12 * M
, 64 },
143 { 0x4D, CACHE
, L3
, 16, 16 * M
, 64 },
144 { 0x4E, CACHE
, L2
, 24, 6 * M
, 64 },
145 { 0x4F, TLB
, INST
, NA
, SMALL
, 32 },
146 { 0x50, TLB
, INST
, NA
, BOTH
, 64 },
147 { 0x51, TLB
, INST
, NA
, BOTH
, 128 },
148 { 0x52, TLB
, INST
, NA
, BOTH
, 256 },
149 { 0x55, TLB
, INST
, FULLY
, BOTH
, 7 },
150 { 0x56, TLB
, DATA0
, 4, LARGE
, 16 },
151 { 0x57, TLB
, DATA0
, 4, SMALL
, 16 },
152 { 0x59, TLB
, DATA0
, FULLY
, SMALL
, 16 },
153 { 0x5A, TLB
, DATA0
, 4, LARGE
, 32 },
154 { 0x5B, TLB
, DATA
, NA
, BOTH
, 64 },
155 { 0x5C, TLB
, DATA
, NA
, BOTH
, 128 },
156 { 0x5D, TLB
, DATA
, NA
, BOTH
, 256 },
157 { 0x60, CACHE
, L1
, 16 * K
, 8, 64 },
158 { 0x61, CACHE
, L1
, 4, 8 * K
, 64 },
159 { 0x62, CACHE
, L1
, 4, 16 * K
, 64 },
160 { 0x63, CACHE
, L1
, 4, 32 * K
, 64 },
161 { 0x70, CACHE
, TRACE
, 8, 12 * K
, NA
},
162 { 0x71, CACHE
, TRACE
, 8, 16 * K
, NA
},
163 { 0x72, CACHE
, TRACE
, 8, 32 * K
, NA
},
164 { 0x76, TLB
, INST
, NA
, BOTH
, 8 },
165 { 0x78, CACHE
, L2
, 4, 1 * M
, 64 },
166 { 0x79, CACHE
, L2_2LINESECTOR
, 8, 128 * K
, 64 },
167 { 0x7A, CACHE
, L2_2LINESECTOR
, 8, 256 * K
, 64 },
168 { 0x7B, CACHE
, L2_2LINESECTOR
, 8, 512 * K
, 64 },
169 { 0x7C, CACHE
, L2_2LINESECTOR
, 8, 1 * M
, 64 },
170 { 0x7D, CACHE
, L2
, 8, 2 * M
, 64 },
171 { 0x7F, CACHE
, L2
, 2, 512 * K
, 64 },
172 { 0x80, CACHE
, L2
, 8, 512 * K
, 64 },
173 { 0x82, CACHE
, L2
, 8, 256 * K
, 32 },
174 { 0x83, CACHE
, L2
, 8, 512 * K
, 32 },
175 { 0x84, CACHE
, L2
, 8, 1 * M
, 32 },
176 { 0x85, CACHE
, L2
, 8, 2 * M
, 32 },
177 { 0x86, CACHE
, L2
, 4, 512 * K
, 64 },
178 { 0x87, CACHE
, L2
, 8, 1 * M
, 64 },
179 { 0xB0, TLB
, INST
, 4, SMALL
, 128 },
180 { 0xB1, TLB
, INST
, 4, LARGE
, 8 },
181 { 0xB2, TLB
, INST
, 4, SMALL
, 64 },
182 { 0xB3, TLB
, DATA
, 4, SMALL
, 128 },
183 { 0xB4, TLB
, DATA1
, 4, SMALL
, 256 },
184 { 0xB5, TLB
, DATA1
, 8, SMALL
, 64 },
185 { 0xB6, TLB
, DATA1
, 8, SMALL
, 128 },
186 { 0xBA, TLB
, DATA1
, 4, BOTH
, 64 },
187 { 0xC1, STLB
, DATA1
, 8, SMALL
, 1024},
188 { 0xCA, STLB
, DATA1
, 4, SMALL
, 512 },
189 { 0xD0, CACHE
, L3
, 4, 512 * K
, 64 },
190 { 0xD1, CACHE
, L3
, 4, 1 * M
, 64 },
191 { 0xD2, CACHE
, L3
, 4, 2 * M
, 64 },
192 { 0xD3, CACHE
, L3
, 4, 4 * M
, 64 },
193 { 0xD4, CACHE
, L3
, 4, 8 * M
, 64 },
194 { 0xD6, CACHE
, L3
, 8, 1 * M
, 64 },
195 { 0xD7, CACHE
, L3
, 8, 2 * M
, 64 },
196 { 0xD8, CACHE
, L3
, 8, 4 * M
, 64 },
197 { 0xD9, CACHE
, L3
, 8, 8 * M
, 64 },
198 { 0xDA, CACHE
, L3
, 8, 12 * M
, 64 },
199 { 0xDC, CACHE
, L3
, 12, 1536 * K
, 64 },
200 { 0xDD, CACHE
, L3
, 12, 3 * M
, 64 },
201 { 0xDE, CACHE
, L3
, 12, 6 * M
, 64 },
202 { 0xDF, CACHE
, L3
, 12, 12 * M
, 64 },
203 { 0xE0, CACHE
, L3
, 12, 18 * M
, 64 },
204 { 0xE2, CACHE
, L3
, 16, 2 * M
, 64 },
205 { 0xE3, CACHE
, L3
, 16, 4 * M
, 64 },
206 { 0xE4, CACHE
, L3
, 16, 8 * M
, 64 },
207 { 0xE5, CACHE
, L3
, 16, 16 * M
, 64 },
208 { 0xE6, CACHE
, L3
, 16, 24 * M
, 64 },
209 { 0xF0, PREFETCH
, NA
, NA
, 64, NA
},
210 { 0xF1, PREFETCH
, NA
, NA
, 128, NA
},
211 { 0xFF, CACHE
, NA
, NA
, 0, NA
}
213 #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
214 sizeof(cpuid_cache_descriptor_t))
216 boolean_t cpuid_tsx_disabled
= false; /* true if XNU disabled TSX */
217 boolean_t cpuid_tsx_supported
= false;
219 static void do_cwas(i386_cpu_info_t
*cpuinfo
, boolean_t on_slave
);
220 static void cpuid_do_precpuid_was(void);
222 #if DEBUG || DEVELOPMENT
223 static void cpuid_vmm_detect_pv_interface(i386_vmm_info_t
*info_p
, const char *signature
,
224 bool (*)(i386_vmm_info_t
*, const uint32_t, const uint32_t));
225 static bool cpuid_vmm_detect_applepv_features(i386_vmm_info_t
*info_p
, const uint32_t base
, const uint32_t max_leaf
);
226 #endif /* DEBUG || DEVELOPMENT */
228 static inline cpuid_cache_descriptor_t
*
229 cpuid_leaf2_find(uint8_t value
)
233 for (i
= 0; i
< INTEL_LEAF2_DESC_NUM
; i
++) {
234 if (intel_cpuid_leaf2_descriptor_table
[i
].value
== value
) {
235 return &intel_cpuid_leaf2_descriptor_table
[i
];
242 * CPU identification routines.
245 static i386_cpu_info_t cpuid_cpu_info
;
246 static i386_cpu_info_t
*cpuid_cpu_infop
= NULL
;
249 cpuid_fn(uint32_t selector
, uint32_t *result
)
251 do_cpuid(selector
, result
);
252 DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n",
253 selector
, result
[0], result
[1], result
[2], result
[3]);
256 static const char *cache_type_str
[LCACHE_MAX
] = {
257 "Lnone", "L1I", "L1D", "L2U", "L3U"
261 do_cwas(i386_cpu_info_t
*cpuinfo
, boolean_t on_slave
)
263 extern int force_thread_policy_tecs
;
264 cwa_classifier_e wa_reqd
;
267 * Workaround for reclaiming perf counter 3 due to TSX memory ordering erratum.
268 * This workaround does not support being forcibly set (since an MSR must be
269 * enumerated, lest we #GP when forced to access it.)
271 * Note that if disabling TSX is supported, disablement is prefered over forcing
272 * TSX transactions to abort.
274 if (cpuid_wa_required(CPU_INTEL_TSXDA
) == CWA_ON
) {
275 /* This must be executed on all logical processors */
276 wrmsr64(MSR_IA32_TSX_CTRL
, MSR_IA32_TSXCTRL_TSX_CPU_CLEAR
| MSR_IA32_TSXCTRL_RTM_DISABLE
);
277 } else if (cpuid_wa_required(CPU_INTEL_TSXFA
) == CWA_ON
) {
278 /* This must be executed on all logical processors */
279 wrmsr64(MSR_IA32_TSX_FORCE_ABORT
,
280 rdmsr64(MSR_IA32_TSX_FORCE_ABORT
) | MSR_IA32_TSXFA_RTM_FORCE_ABORT
);
283 if (((wa_reqd
= cpuid_wa_required(CPU_INTEL_SRBDS
)) & CWA_ON
) != 0 &&
284 ((wa_reqd
& CWA_FORCE_ON
) == CWA_ON
||
285 (cpuinfo
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_SRBDS_CTRL
) != 0)) {
286 /* This must be executed on all logical processors */
287 uint64_t mcuoptctrl
= rdmsr64(MSR_IA32_MCU_OPT_CTRL
);
288 mcuoptctrl
|= MSR_IA32_MCUOPTCTRL_RNGDS_MITG_DIS
;
289 wrmsr64(MSR_IA32_MCU_OPT_CTRL
, mcuoptctrl
);
296 switch (cpuid_wa_required(CPU_INTEL_SEGCHK
)) {
298 force_thread_policy_tecs
= 1;
300 /* If hyperthreaded, enable idle workaround */
301 if (cpuinfo
->thread_count
> cpuinfo
->core_count
) {
302 force_tecs_at_idle
= 1;
307 tecs_mode_supported
= 1;
312 tecs_mode_supported
= 0;
313 force_tecs_at_idle
= 0;
314 force_thread_policy_tecs
= 0;
325 do_cwas(cpuid_info(), TRUE
);
328 /* this function is Intel-specific */
330 cpuid_set_cache_info( i386_cpu_info_t
* info_p
)
332 uint32_t cpuid_result
[4];
335 uint32_t linesizes
[LCACHE_MAX
];
338 boolean_t cpuid_deterministic_supported
= FALSE
;
340 DBG("cpuid_set_cache_info(%p)\n", info_p
);
342 bzero( linesizes
, sizeof(linesizes
));
344 /* Get processor cache descriptor info using leaf 2. We don't use
345 * this internally, but must publish it for KEXTs.
347 cpuid_fn(2, cpuid_result
);
348 for (j
= 0; j
< 4; j
++) {
349 if ((cpuid_result
[j
] >> 31) == 1) { /* bit31 is validity */
352 ((uint32_t *)(void *)info_p
->cache_info
)[j
] = cpuid_result
[j
];
354 /* first byte gives number of cpuid calls to get all descriptors */
355 for (i
= 1; i
< info_p
->cache_info
[0]; i
++) {
356 if (i
* 16 > sizeof(info_p
->cache_info
)) {
359 cpuid_fn(2, cpuid_result
);
360 for (j
= 0; j
< 4; j
++) {
361 if ((cpuid_result
[j
] >> 31) == 1) {
364 ((uint32_t *)(void *)info_p
->cache_info
)[4 * i
+ j
] =
370 * Get cache info using leaf 4, the "deterministic cache parameters."
371 * Most processors Mac OS X supports implement this flavor of CPUID.
372 * Loop over each cache on the processor.
374 cpuid_fn(0, cpuid_result
);
375 if (cpuid_result
[eax
] >= 4) {
376 cpuid_deterministic_supported
= TRUE
;
379 for (index
= 0; cpuid_deterministic_supported
; index
++) {
380 cache_type_t type
= Lnone
;
382 uint32_t cache_level
;
383 uint32_t cache_sharing
;
384 uint32_t cache_linesize
;
386 uint32_t cache_associativity
;
388 uint32_t cache_partitions
;
391 reg
[eax
] = 4; /* cpuid request 4 */
392 reg
[ecx
] = index
; /* index starting at 0 */
394 DBG("cpuid(4) index=%d eax=0x%x\n", index
, reg
[eax
]);
395 cache_type
= bitfield32(reg
[eax
], 4, 0);
396 if (cache_type
== 0) {
397 break; /* no more caches */
399 cache_level
= bitfield32(reg
[eax
], 7, 5);
400 cache_sharing
= bitfield32(reg
[eax
], 25, 14) + 1;
401 info_p
->cpuid_cores_per_package
402 = bitfield32(reg
[eax
], 31, 26) + 1;
403 cache_linesize
= bitfield32(reg
[ebx
], 11, 0) + 1;
404 cache_partitions
= bitfield32(reg
[ebx
], 21, 12) + 1;
405 cache_associativity
= bitfield32(reg
[ebx
], 31, 22) + 1;
406 cache_sets
= bitfield32(reg
[ecx
], 31, 0) + 1;
408 /* Map type/levels returned by CPUID into cache_type_t */
409 switch (cache_level
) {
411 type
= cache_type
== 1 ? L1D
:
412 cache_type
== 2 ? L1I
:
416 type
= cache_type
== 3 ? L2U
:
420 type
= cache_type
== 3 ? L3U
:
427 /* The total size of a cache is:
428 * ( linesize * sets * associativity * partitions )
431 cache_size
= cache_linesize
* cache_sets
*
432 cache_associativity
* cache_partitions
;
433 info_p
->cache_size
[type
] = cache_size
;
434 info_p
->cache_sharing
[type
] = cache_sharing
;
435 info_p
->cache_partitions
[type
] = cache_partitions
;
436 linesizes
[type
] = cache_linesize
;
438 DBG(" cache_size[%s] : %d\n",
439 cache_type_str
[type
], cache_size
);
440 DBG(" cache_sharing[%s] : %d\n",
441 cache_type_str
[type
], cache_sharing
);
442 DBG(" cache_partitions[%s]: %d\n",
443 cache_type_str
[type
], cache_partitions
);
446 * Overwrite associativity determined via
447 * CPUID.0x80000006 -- this leaf is more
451 info_p
->cpuid_cache_L2_associativity
= cache_associativity
;
454 * Adjust #sets to account for the N CBos
455 * This is because addresses are hashed across CBos
457 if (type
== L3U
&& info_p
->core_count
) {
458 cache_sets
= cache_sets
/ info_p
->core_count
;
461 /* Compute the number of page colors for this cache,
463 * ( linesize * sets ) / page_size
465 * To help visualize this, consider two views of a
466 * physical address. To the cache, it is composed
467 * of a line offset, a set selector, and a tag.
468 * To VM, it is composed of a page offset, a page
469 * color, and other bits in the pageframe number:
471 * +-----------------+---------+--------+
472 * cache: | tag | set | offset |
473 * +-----------------+---------+--------+
475 * +-----------------+-------+----------+
476 * VM: | don't care | color | pg offset|
477 * +-----------------+-------+----------+
479 * The color is those bits in (set+offset) not covered
480 * by the page offset.
482 colors
= (cache_linesize
* cache_sets
) >> 12;
484 if (colors
> vm_cache_geometry_colors
) {
485 vm_cache_geometry_colors
= colors
;
489 DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors
);
492 * If deterministic cache parameters are not available, use
495 if (info_p
->cpuid_cores_per_package
== 0) {
496 info_p
->cpuid_cores_per_package
= 1;
498 /* cpuid define in 1024 quantities */
499 info_p
->cache_size
[L2U
] = info_p
->cpuid_cache_size
* 1024;
500 info_p
->cache_sharing
[L2U
] = 1;
501 info_p
->cache_partitions
[L2U
] = 1;
503 linesizes
[L2U
] = info_p
->cpuid_cache_linesize
;
505 DBG(" cache_size[L2U] : %d\n",
506 info_p
->cache_size
[L2U
]);
507 DBG(" cache_sharing[L2U] : 1\n");
508 DBG(" cache_partitions[L2U]: 1\n");
509 DBG(" linesizes[L2U] : %d\n",
510 info_p
->cpuid_cache_linesize
);
514 * What linesize to publish? We use the L2 linesize if any,
517 if (linesizes
[L2U
]) {
518 info_p
->cache_linesize
= linesizes
[L2U
];
519 } else if (linesizes
[L1D
]) {
520 info_p
->cache_linesize
= linesizes
[L1D
];
522 panic("no linesize");
524 DBG(" cache_linesize : %d\n", info_p
->cache_linesize
);
527 * Extract and publish TLB information from Leaf 2 descriptors.
529 DBG(" %ld leaf2 descriptors:\n", sizeof(info_p
->cache_info
));
530 for (i
= 1; i
< sizeof(info_p
->cache_info
); i
++) {
531 cpuid_cache_descriptor_t
*descp
;
536 DBG(" 0x%02x", info_p
->cache_info
[i
]);
537 descp
= cpuid_leaf2_find(info_p
->cache_info
[i
]);
542 switch (descp
->type
) {
544 page
= (descp
->size
== SMALL
) ? TLB_SMALL
: TLB_LARGE
;
545 /* determine I or D: */
546 switch (descp
->level
) {
558 /* determine level: */
559 switch (descp
->level
) {
566 info_p
->cpuid_tlb
[id
][page
][level
] = descp
->entries
;
569 info_p
->cpuid_stlb
= descp
->entries
;
576 cpuid_set_generic_info(i386_cpu_info_t
*info_p
)
581 DBG("cpuid_set_generic_info(%p)\n", info_p
);
583 /* do cpuid 0 to get vendor */
585 info_p
->cpuid_max_basic
= reg
[eax
];
586 bcopy((char *)®
[ebx
], &info_p
->cpuid_vendor
[0], 4); /* ug */
587 bcopy((char *)®
[ecx
], &info_p
->cpuid_vendor
[8], 4);
588 bcopy((char *)®
[edx
], &info_p
->cpuid_vendor
[4], 4);
589 info_p
->cpuid_vendor
[12] = 0;
591 /* get extended cpuid results */
592 cpuid_fn(0x80000000, reg
);
593 info_p
->cpuid_max_ext
= reg
[eax
];
595 /* check to see if we can get brand string */
596 if (info_p
->cpuid_max_ext
>= 0x80000004) {
598 * The brand string 48 bytes (max), guaranteed to
601 cpuid_fn(0x80000002, reg
);
602 bcopy((char *)reg
, &str
[0], 16);
603 cpuid_fn(0x80000003, reg
);
604 bcopy((char *)reg
, &str
[16], 16);
605 cpuid_fn(0x80000004, reg
);
606 bcopy((char *)reg
, &str
[32], 16);
607 for (p
= str
; *p
!= '\0'; p
++) {
612 strlcpy(info_p
->cpuid_brand_string
,
613 p
, sizeof(info_p
->cpuid_brand_string
));
615 if (!strncmp(info_p
->cpuid_brand_string
, CPUID_STRING_UNKNOWN
,
616 min(sizeof(info_p
->cpuid_brand_string
),
617 strlen(CPUID_STRING_UNKNOWN
) + 1))) {
619 * This string means we have a firmware-programmable brand string,
620 * and the firmware couldn't figure out what sort of CPU we have.
622 info_p
->cpuid_brand_string
[0] = '\0';
626 /* Get cache and addressing info. */
627 if (info_p
->cpuid_max_ext
>= 0x80000006) {
629 cpuid_fn(0x80000006, reg
);
630 info_p
->cpuid_cache_linesize
= bitfield32(reg
[ecx
], 7, 0);
631 assoc
= bitfield32(reg
[ecx
], 15, 12);
633 * L2 associativity is encoded, though in an insufficiently
634 * descriptive fashion, e.g. 24-way is mapped to 16-way.
635 * Represent a fully associative cache as 0xFFFF.
636 * Overwritten by associativity as determined via CPUID.4
641 } else if (assoc
== 8) {
643 } else if (assoc
== 0xF) {
646 info_p
->cpuid_cache_L2_associativity
= assoc
;
647 info_p
->cpuid_cache_size
= bitfield32(reg
[ecx
], 31, 16);
648 cpuid_fn(0x80000008, reg
);
649 info_p
->cpuid_address_bits_physical
=
650 bitfield32(reg
[eax
], 7, 0);
651 info_p
->cpuid_address_bits_virtual
=
652 bitfield32(reg
[eax
], 15, 8);
656 * Get processor signature and decode
657 * and bracket this with the approved procedure for reading the
658 * the microcode version number a.k.a. signature a.k.a. BIOS ID
660 wrmsr64(MSR_IA32_BIOS_SIGN_ID
, 0);
662 info_p
->cpuid_microcode_version
=
663 (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID
) >> 32);
664 info_p
->cpuid_signature
= reg
[eax
];
665 info_p
->cpuid_stepping
= bitfield32(reg
[eax
], 3, 0);
666 info_p
->cpuid_model
= bitfield32(reg
[eax
], 7, 4);
667 info_p
->cpuid_family
= bitfield32(reg
[eax
], 11, 8);
668 info_p
->cpuid_type
= bitfield32(reg
[eax
], 13, 12);
669 info_p
->cpuid_extmodel
= bitfield32(reg
[eax
], 19, 16);
670 info_p
->cpuid_extfamily
= bitfield32(reg
[eax
], 27, 20);
671 info_p
->cpuid_brand
= bitfield32(reg
[ebx
], 7, 0);
672 info_p
->cpuid_features
= quad(reg
[ecx
], reg
[edx
]);
674 /* Get "processor flag"; necessary for microcode update matching */
675 info_p
->cpuid_processor_flag
= (rdmsr64(MSR_IA32_PLATFORM_ID
) >> 50) & 0x7;
677 /* Fold extensions into family/model */
678 if (info_p
->cpuid_family
== 0x0f) {
679 info_p
->cpuid_family
+= info_p
->cpuid_extfamily
;
681 if (info_p
->cpuid_family
== 0x0f || info_p
->cpuid_family
== 0x06) {
682 info_p
->cpuid_model
+= (info_p
->cpuid_extmodel
<< 4);
685 if (info_p
->cpuid_features
& CPUID_FEATURE_HTT
) {
686 info_p
->cpuid_logical_per_package
=
687 bitfield32(reg
[ebx
], 23, 16);
689 info_p
->cpuid_logical_per_package
= 1;
692 if (info_p
->cpuid_max_ext
>= 0x80000001) {
693 cpuid_fn(0x80000001, reg
);
694 info_p
->cpuid_extfeatures
=
695 quad(reg
[ecx
], reg
[edx
]);
698 DBG(" max_basic : %d\n", info_p
->cpuid_max_basic
);
699 DBG(" max_ext : 0x%08x\n", info_p
->cpuid_max_ext
);
700 DBG(" vendor : %s\n", info_p
->cpuid_vendor
);
701 DBG(" brand_string : %s\n", info_p
->cpuid_brand_string
);
702 DBG(" signature : 0x%08x\n", info_p
->cpuid_signature
);
703 DBG(" stepping : %d\n", info_p
->cpuid_stepping
);
704 DBG(" model : %d\n", info_p
->cpuid_model
);
705 DBG(" family : %d\n", info_p
->cpuid_family
);
706 DBG(" type : %d\n", info_p
->cpuid_type
);
707 DBG(" extmodel : %d\n", info_p
->cpuid_extmodel
);
708 DBG(" extfamily : %d\n", info_p
->cpuid_extfamily
);
709 DBG(" brand : %d\n", info_p
->cpuid_brand
);
710 DBG(" features : 0x%016llx\n", info_p
->cpuid_features
);
711 DBG(" extfeatures : 0x%016llx\n", info_p
->cpuid_extfeatures
);
712 DBG(" logical_per_package : %d\n", info_p
->cpuid_logical_per_package
);
713 DBG(" microcode_version : 0x%08x\n", info_p
->cpuid_microcode_version
);
715 /* Fold in the Invariant TSC feature bit, if present */
716 if (info_p
->cpuid_max_ext
>= 0x80000007) {
717 cpuid_fn(0x80000007, reg
);
718 info_p
->cpuid_extfeatures
|=
719 reg
[edx
] & (uint32_t)CPUID_EXTFEATURE_TSCI
;
720 DBG(" extfeatures : 0x%016llx\n",
721 info_p
->cpuid_extfeatures
);
724 if (info_p
->cpuid_max_basic
>= 0x5) {
725 cpuid_mwait_leaf_t
*cmp
= &info_p
->cpuid_mwait_leaf
;
728 * Extract the Monitor/Mwait Leaf info:
731 cmp
->linesize_min
= reg
[eax
];
732 cmp
->linesize_max
= reg
[ebx
];
733 cmp
->extensions
= reg
[ecx
];
734 cmp
->sub_Cstates
= reg
[edx
];
735 info_p
->cpuid_mwait_leafp
= cmp
;
737 DBG(" Monitor/Mwait Leaf:\n");
738 DBG(" linesize_min : %d\n", cmp
->linesize_min
);
739 DBG(" linesize_max : %d\n", cmp
->linesize_max
);
740 DBG(" extensions : %d\n", cmp
->extensions
);
741 DBG(" sub_Cstates : 0x%08x\n", cmp
->sub_Cstates
);
744 if (info_p
->cpuid_max_basic
>= 0x6) {
745 cpuid_thermal_leaf_t
*ctp
= &info_p
->cpuid_thermal_leaf
;
748 * The thermal and Power Leaf:
751 ctp
->sensor
= bitfield32(reg
[eax
], 0, 0);
752 ctp
->dynamic_acceleration
= bitfield32(reg
[eax
], 1, 1);
753 ctp
->invariant_APIC_timer
= bitfield32(reg
[eax
], 2, 2);
754 ctp
->core_power_limits
= bitfield32(reg
[eax
], 4, 4);
755 ctp
->fine_grain_clock_mod
= bitfield32(reg
[eax
], 5, 5);
756 ctp
->package_thermal_intr
= bitfield32(reg
[eax
], 6, 6);
757 ctp
->thresholds
= bitfield32(reg
[ebx
], 3, 0);
758 ctp
->ACNT_MCNT
= bitfield32(reg
[ecx
], 0, 0);
759 ctp
->hardware_feedback
= bitfield32(reg
[ecx
], 1, 1);
760 ctp
->energy_policy
= bitfield32(reg
[ecx
], 3, 3);
761 info_p
->cpuid_thermal_leafp
= ctp
;
763 DBG(" Thermal/Power Leaf:\n");
764 DBG(" sensor : %d\n", ctp
->sensor
);
765 DBG(" dynamic_acceleration : %d\n", ctp
->dynamic_acceleration
);
766 DBG(" invariant_APIC_timer : %d\n", ctp
->invariant_APIC_timer
);
767 DBG(" core_power_limits : %d\n", ctp
->core_power_limits
);
768 DBG(" fine_grain_clock_mod : %d\n", ctp
->fine_grain_clock_mod
);
769 DBG(" package_thermal_intr : %d\n", ctp
->package_thermal_intr
);
770 DBG(" thresholds : %d\n", ctp
->thresholds
);
771 DBG(" ACNT_MCNT : %d\n", ctp
->ACNT_MCNT
);
772 DBG(" ACNT2 : %d\n", ctp
->hardware_feedback
);
773 DBG(" energy_policy : %d\n", ctp
->energy_policy
);
776 if (info_p
->cpuid_max_basic
>= 0xa) {
777 cpuid_arch_perf_leaf_t
*capp
= &info_p
->cpuid_arch_perf_leaf
;
780 * Architectural Performance Monitoring Leaf:
783 capp
->version
= bitfield32(reg
[eax
], 7, 0);
784 capp
->number
= bitfield32(reg
[eax
], 15, 8);
785 capp
->width
= bitfield32(reg
[eax
], 23, 16);
786 capp
->events_number
= bitfield32(reg
[eax
], 31, 24);
787 capp
->events
= reg
[ebx
];
788 capp
->fixed_number
= bitfield32(reg
[edx
], 4, 0);
789 capp
->fixed_width
= bitfield32(reg
[edx
], 12, 5);
790 info_p
->cpuid_arch_perf_leafp
= capp
;
792 DBG(" Architectural Performance Monitoring Leaf:\n");
793 DBG(" version : %d\n", capp
->version
);
794 DBG(" number : %d\n", capp
->number
);
795 DBG(" width : %d\n", capp
->width
);
796 DBG(" events_number : %d\n", capp
->events_number
);
797 DBG(" events : %d\n", capp
->events
);
798 DBG(" fixed_number : %d\n", capp
->fixed_number
);
799 DBG(" fixed_width : %d\n", capp
->fixed_width
);
802 if (info_p
->cpuid_max_basic
>= 0xd) {
803 cpuid_xsave_leaf_t
*xsp
;
807 xsp
= &info_p
->cpuid_xsave_leaf
[0];
808 info_p
->cpuid_xsave_leafp
= xsp
;
809 xsp
->extended_state
[eax
] = 0xd;
810 xsp
->extended_state
[ecx
] = 0;
811 cpuid(xsp
->extended_state
);
812 DBG(" XSAVE Main leaf:\n");
813 DBG(" EAX : 0x%x\n", xsp
->extended_state
[eax
]);
814 DBG(" EBX : 0x%x\n", xsp
->extended_state
[ebx
]);
815 DBG(" ECX : 0x%x\n", xsp
->extended_state
[ecx
]);
816 DBG(" EDX : 0x%x\n", xsp
->extended_state
[edx
]);
818 xsp
= &info_p
->cpuid_xsave_leaf
[1];
819 xsp
->extended_state
[eax
] = 0xd;
820 xsp
->extended_state
[ecx
] = 1;
821 cpuid(xsp
->extended_state
);
822 DBG(" XSAVE Sub-leaf1:\n");
823 DBG(" EAX : 0x%x\n", xsp
->extended_state
[eax
]);
824 DBG(" EBX : 0x%x\n", xsp
->extended_state
[ebx
]);
825 DBG(" ECX : 0x%x\n", xsp
->extended_state
[ecx
]);
826 DBG(" EDX : 0x%x\n", xsp
->extended_state
[edx
]);
829 if (info_p
->cpuid_model
>= CPUID_MODEL_IVYBRIDGE
) {
834 info_p
->cpuid_leaf7_features
= quad(reg
[ecx
], reg
[ebx
]);
835 info_p
->cpuid_leaf7_extfeatures
= reg
[edx
];
837 cpuid_tsx_supported
= (reg
[ebx
] & (CPUID_LEAF7_FEATURE_HLE
| CPUID_LEAF7_FEATURE_RTM
)) != 0;
839 DBG(" Feature Leaf7:\n");
840 DBG(" EBX : 0x%x\n", reg
[ebx
]);
841 DBG(" ECX : 0x%x\n", reg
[ecx
]);
842 DBG(" EDX : 0x%x\n", reg
[edx
]);
845 if (info_p
->cpuid_max_basic
>= 0x15) {
847 * TCS/CCC frequency leaf:
850 info_p
->cpuid_tsc_leaf
.denominator
= reg
[eax
];
851 info_p
->cpuid_tsc_leaf
.numerator
= reg
[ebx
];
853 DBG(" TSC/CCC Information Leaf:\n");
854 DBG(" numerator : 0x%x\n", reg
[ebx
]);
855 DBG(" denominator : 0x%x\n", reg
[eax
]);
862 cpuid_set_cpufamily(i386_cpu_info_t
*info_p
)
864 uint32_t cpufamily
= CPUFAMILY_UNKNOWN
;
866 switch (info_p
->cpuid_family
) {
868 switch (info_p
->cpuid_model
) {
870 cpufamily
= CPUFAMILY_INTEL_PENRYN
;
872 case CPUID_MODEL_NEHALEM
:
873 case CPUID_MODEL_FIELDS
:
874 case CPUID_MODEL_DALES
:
875 case CPUID_MODEL_NEHALEM_EX
:
876 cpufamily
= CPUFAMILY_INTEL_NEHALEM
;
878 case CPUID_MODEL_DALES_32NM
:
879 case CPUID_MODEL_WESTMERE
:
880 case CPUID_MODEL_WESTMERE_EX
:
881 cpufamily
= CPUFAMILY_INTEL_WESTMERE
;
883 case CPUID_MODEL_SANDYBRIDGE
:
884 case CPUID_MODEL_JAKETOWN
:
885 cpufamily
= CPUFAMILY_INTEL_SANDYBRIDGE
;
887 case CPUID_MODEL_IVYBRIDGE
:
888 case CPUID_MODEL_IVYBRIDGE_EP
:
889 cpufamily
= CPUFAMILY_INTEL_IVYBRIDGE
;
891 case CPUID_MODEL_HASWELL
:
892 case CPUID_MODEL_HASWELL_EP
:
893 case CPUID_MODEL_HASWELL_ULT
:
894 case CPUID_MODEL_CRYSTALWELL
:
895 cpufamily
= CPUFAMILY_INTEL_HASWELL
;
897 case CPUID_MODEL_BROADWELL
:
898 case CPUID_MODEL_BRYSTALWELL
:
899 cpufamily
= CPUFAMILY_INTEL_BROADWELL
;
901 case CPUID_MODEL_SKYLAKE
:
902 case CPUID_MODEL_SKYLAKE_DT
:
903 case CPUID_MODEL_SKYLAKE_W
:
904 cpufamily
= CPUFAMILY_INTEL_SKYLAKE
;
906 case CPUID_MODEL_KABYLAKE
:
907 case CPUID_MODEL_KABYLAKE_DT
:
908 cpufamily
= CPUFAMILY_INTEL_KABYLAKE
;
910 case CPUID_MODEL_ICELAKE
:
911 case CPUID_MODEL_ICELAKE_H
:
912 case CPUID_MODEL_ICELAKE_DT
:
913 cpufamily
= CPUFAMILY_INTEL_ICELAKE
;
919 info_p
->cpuid_cpufamily
= cpufamily
;
920 DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p
, cpufamily
);
924 * Must be invoked either when executing single threaded, or with
925 * independent synchronization.
930 i386_cpu_info_t
*info_p
= &cpuid_cpu_info
;
931 boolean_t enable_x86_64h
= TRUE
;
933 /* Perform pre-cpuid workarounds (since their effects impact values returned via cpuid) */
934 cpuid_do_precpuid_was();
936 cpuid_set_generic_info(info_p
);
938 /* verify we are running on a supported CPU */
939 if ((strncmp(CPUID_VID_INTEL
, info_p
->cpuid_vendor
,
940 min(strlen(CPUID_STRING_UNKNOWN
) + 1,
941 sizeof(info_p
->cpuid_vendor
)))) ||
942 (cpuid_set_cpufamily(info_p
) == CPUFAMILY_UNKNOWN
)) {
943 panic("Unsupported CPU");
946 info_p
->cpuid_cpu_type
= CPU_TYPE_X86
;
948 if (!PE_parse_boot_argn("-enable_x86_64h", &enable_x86_64h
, sizeof(enable_x86_64h
))) {
949 boolean_t disable_x86_64h
= FALSE
;
951 if (PE_parse_boot_argn("-disable_x86_64h", &disable_x86_64h
, sizeof(disable_x86_64h
))) {
952 enable_x86_64h
= FALSE
;
956 if (enable_x86_64h
&&
957 ((info_p
->cpuid_features
& CPUID_X86_64_H_FEATURE_SUBSET
) == CPUID_X86_64_H_FEATURE_SUBSET
) &&
958 ((info_p
->cpuid_extfeatures
& CPUID_X86_64_H_EXTFEATURE_SUBSET
) == CPUID_X86_64_H_EXTFEATURE_SUBSET
) &&
959 ((info_p
->cpuid_leaf7_features
& CPUID_X86_64_H_LEAF7_FEATURE_SUBSET
) == CPUID_X86_64_H_LEAF7_FEATURE_SUBSET
)) {
960 info_p
->cpuid_cpu_subtype
= CPU_SUBTYPE_X86_64_H
;
962 info_p
->cpuid_cpu_subtype
= CPU_SUBTYPE_X86_ARCH1
;
964 /* cpuid_set_cache_info must be invoked after set_generic_info */
967 * Find the number of enabled cores and threads
968 * (which determines whether SMT/Hyperthreading is active).
972 * Not all VMMs emulate MSR_CORE_THREAD_COUNT (0x35).
974 if (0 != (info_p
->cpuid_features
& CPUID_FEATURE_VMM
) &&
975 PE_parse_boot_argn("-nomsr35h", NULL
, 0)) {
976 info_p
->core_count
= 1;
977 info_p
->thread_count
= 1;
978 cpuid_set_cache_info(info_p
);
980 switch (info_p
->cpuid_cpufamily
) {
981 case CPUFAMILY_INTEL_PENRYN
:
982 cpuid_set_cache_info(info_p
);
983 info_p
->core_count
= info_p
->cpuid_cores_per_package
;
984 info_p
->thread_count
= info_p
->cpuid_logical_per_package
;
986 case CPUFAMILY_INTEL_WESTMERE
: {
988 * This should be the same as Nehalem but an A0 silicon bug returns
989 * invalid data in the top 12 bits. Hence, we use only bits [19..16]
990 * rather than [31..16] for core count - which actually can't exceed 8.
992 uint64_t msr
= rdmsr64(MSR_CORE_THREAD_COUNT
);
994 /* Provide a non-zero default for some VMMs */
997 info_p
->core_count
= bitfield32((uint32_t)msr
, 19, 16);
998 info_p
->thread_count
= bitfield32((uint32_t)msr
, 15, 0);
999 cpuid_set_cache_info(info_p
);
1003 uint64_t msr
= rdmsr64(MSR_CORE_THREAD_COUNT
);
1005 /* Provide a non-zero default for some VMMs */
1006 msr
= (1 << 16) | 1;
1008 info_p
->core_count
= bitfield32((uint32_t)msr
, 31, 16);
1009 info_p
->thread_count
= bitfield32((uint32_t)msr
, 15, 0);
1010 cpuid_set_cache_info(info_p
);
1016 DBG("cpuid_set_info():\n");
1017 DBG(" core_count : %d\n", info_p
->core_count
);
1018 DBG(" thread_count : %d\n", info_p
->thread_count
);
1019 DBG(" cpu_type: 0x%08x\n", info_p
->cpuid_cpu_type
);
1020 DBG(" cpu_subtype: 0x%08x\n", info_p
->cpuid_cpu_subtype
);
1022 info_p
->cpuid_model_string
= ""; /* deprecated */
1025 i386_lbr_init(info_p
, true);
1027 do_cwas(info_p
, FALSE
);
1030 static struct table
{
1034 {CPUID_FEATURE_FPU
, "FPU"},
1035 {CPUID_FEATURE_VME
, "VME"},
1036 {CPUID_FEATURE_DE
, "DE"},
1037 {CPUID_FEATURE_PSE
, "PSE"},
1038 {CPUID_FEATURE_TSC
, "TSC"},
1039 {CPUID_FEATURE_MSR
, "MSR"},
1040 {CPUID_FEATURE_PAE
, "PAE"},
1041 {CPUID_FEATURE_MCE
, "MCE"},
1042 {CPUID_FEATURE_CX8
, "CX8"},
1043 {CPUID_FEATURE_APIC
, "APIC"},
1044 {CPUID_FEATURE_SEP
, "SEP"},
1045 {CPUID_FEATURE_MTRR
, "MTRR"},
1046 {CPUID_FEATURE_PGE
, "PGE"},
1047 {CPUID_FEATURE_MCA
, "MCA"},
1048 {CPUID_FEATURE_CMOV
, "CMOV"},
1049 {CPUID_FEATURE_PAT
, "PAT"},
1050 {CPUID_FEATURE_PSE36
, "PSE36"},
1051 {CPUID_FEATURE_PSN
, "PSN"},
1052 {CPUID_FEATURE_CLFSH
, "CLFSH"},
1053 {CPUID_FEATURE_DS
, "DS"},
1054 {CPUID_FEATURE_ACPI
, "ACPI"},
1055 {CPUID_FEATURE_MMX
, "MMX"},
1056 {CPUID_FEATURE_FXSR
, "FXSR"},
1057 {CPUID_FEATURE_SSE
, "SSE"},
1058 {CPUID_FEATURE_SSE2
, "SSE2"},
1059 {CPUID_FEATURE_SS
, "SS"},
1060 {CPUID_FEATURE_HTT
, "HTT"},
1061 {CPUID_FEATURE_TM
, "TM"},
1062 {CPUID_FEATURE_PBE
, "PBE"},
1063 {CPUID_FEATURE_SSE3
, "SSE3"},
1064 {CPUID_FEATURE_PCLMULQDQ
, "PCLMULQDQ"},
1065 {CPUID_FEATURE_DTES64
, "DTES64"},
1066 {CPUID_FEATURE_MONITOR
, "MON"},
1067 {CPUID_FEATURE_DSCPL
, "DSCPL"},
1068 {CPUID_FEATURE_VMX
, "VMX"},
1069 {CPUID_FEATURE_SMX
, "SMX"},
1070 {CPUID_FEATURE_EST
, "EST"},
1071 {CPUID_FEATURE_TM2
, "TM2"},
1072 {CPUID_FEATURE_SSSE3
, "SSSE3"},
1073 {CPUID_FEATURE_CID
, "CID"},
1074 {CPUID_FEATURE_FMA
, "FMA"},
1075 {CPUID_FEATURE_CX16
, "CX16"},
1076 {CPUID_FEATURE_xTPR
, "TPR"},
1077 {CPUID_FEATURE_PDCM
, "PDCM"},
1078 {CPUID_FEATURE_SSE4_1
, "SSE4.1"},
1079 {CPUID_FEATURE_SSE4_2
, "SSE4.2"},
1080 {CPUID_FEATURE_x2APIC
, "x2APIC"},
1081 {CPUID_FEATURE_MOVBE
, "MOVBE"},
1082 {CPUID_FEATURE_POPCNT
, "POPCNT"},
1083 {CPUID_FEATURE_AES
, "AES"},
1084 {CPUID_FEATURE_VMM
, "VMM"},
1085 {CPUID_FEATURE_PCID
, "PCID"},
1086 {CPUID_FEATURE_XSAVE
, "XSAVE"},
1087 {CPUID_FEATURE_OSXSAVE
, "OSXSAVE"},
1088 {CPUID_FEATURE_SEGLIM64
, "SEGLIM64"},
1089 {CPUID_FEATURE_TSCTMR
, "TSCTMR"},
1090 {CPUID_FEATURE_AVX1_0
, "AVX1.0"},
1091 {CPUID_FEATURE_RDRAND
, "RDRAND"},
1092 {CPUID_FEATURE_F16C
, "F16C"},
1095 extfeature_map
[] = {
1096 {CPUID_EXTFEATURE_SYSCALL
, "SYSCALL"},
1097 {CPUID_EXTFEATURE_XD
, "XD"},
1098 {CPUID_EXTFEATURE_1GBPAGE
, "1GBPAGE"},
1099 {CPUID_EXTFEATURE_EM64T
, "EM64T"},
1100 {CPUID_EXTFEATURE_LAHF
, "LAHF"},
1101 {CPUID_EXTFEATURE_LZCNT
, "LZCNT"},
1102 {CPUID_EXTFEATURE_PREFETCHW
, "PREFETCHW"},
1103 {CPUID_EXTFEATURE_RDTSCP
, "RDTSCP"},
1104 {CPUID_EXTFEATURE_TSCI
, "TSCI"},
1107 leaf7_feature_map
[] = {
1108 {CPUID_LEAF7_FEATURE_RDWRFSGS
, "RDWRFSGS"},
1109 {CPUID_LEAF7_FEATURE_TSCOFF
, "TSC_THREAD_OFFSET"},
1110 {CPUID_LEAF7_FEATURE_SGX
, "SGX"},
1111 {CPUID_LEAF7_FEATURE_BMI1
, "BMI1"},
1112 {CPUID_LEAF7_FEATURE_HLE
, "HLE"},
1113 {CPUID_LEAF7_FEATURE_AVX2
, "AVX2"},
1114 {CPUID_LEAF7_FEATURE_FDPEO
, "FDPEO"},
1115 {CPUID_LEAF7_FEATURE_SMEP
, "SMEP"},
1116 {CPUID_LEAF7_FEATURE_BMI2
, "BMI2"},
1117 {CPUID_LEAF7_FEATURE_ERMS
, "ERMS"},
1118 {CPUID_LEAF7_FEATURE_INVPCID
, "INVPCID"},
1119 {CPUID_LEAF7_FEATURE_RTM
, "RTM"},
1120 {CPUID_LEAF7_FEATURE_PQM
, "PQM"},
1121 {CPUID_LEAF7_FEATURE_FPU_CSDS
, "FPU_CSDS"},
1122 {CPUID_LEAF7_FEATURE_MPX
, "MPX"},
1123 {CPUID_LEAF7_FEATURE_PQE
, "PQE"},
1124 {CPUID_LEAF7_FEATURE_AVX512F
, "AVX512F"},
1125 {CPUID_LEAF7_FEATURE_AVX512DQ
, "AVX512DQ"},
1126 {CPUID_LEAF7_FEATURE_RDSEED
, "RDSEED"},
1127 {CPUID_LEAF7_FEATURE_ADX
, "ADX"},
1128 {CPUID_LEAF7_FEATURE_SMAP
, "SMAP"},
1129 {CPUID_LEAF7_FEATURE_AVX512IFMA
, "AVX512IFMA"},
1130 {CPUID_LEAF7_FEATURE_CLFSOPT
, "CLFSOPT"},
1131 {CPUID_LEAF7_FEATURE_CLWB
, "CLWB"},
1132 {CPUID_LEAF7_FEATURE_IPT
, "IPT"},
1133 {CPUID_LEAF7_FEATURE_AVX512CD
, "AVX512CD"},
1134 {CPUID_LEAF7_FEATURE_SHA
, "SHA"},
1135 {CPUID_LEAF7_FEATURE_AVX512BW
, "AVX512BW"},
1136 {CPUID_LEAF7_FEATURE_AVX512VL
, "AVX512VL"},
1137 {CPUID_LEAF7_FEATURE_PREFETCHWT1
, "PREFETCHWT1"},
1138 {CPUID_LEAF7_FEATURE_AVX512VBMI
, "AVX512VBMI"},
1139 {CPUID_LEAF7_FEATURE_UMIP
, "UMIP"},
1140 {CPUID_LEAF7_FEATURE_PKU
, "PKU"},
1141 {CPUID_LEAF7_FEATURE_OSPKE
, "OSPKE"},
1142 {CPUID_LEAF7_FEATURE_WAITPKG
, "WAITPKG"},
1143 {CPUID_LEAF7_FEATURE_GFNI
, "GFNI"},
1144 {CPUID_LEAF7_FEATURE_VAES
, "VAES"},
1145 {CPUID_LEAF7_FEATURE_VPCLMULQDQ
, "VPCLMULQDQ"},
1146 {CPUID_LEAF7_FEATURE_AVX512VNNI
, "AVX512VNNI"},
1147 {CPUID_LEAF7_FEATURE_AVX512BITALG
, "AVX512BITALG"},
1148 {CPUID_LEAF7_FEATURE_AVX512VPCDQ
, "AVX512VPOPCNTDQ"},
1149 {CPUID_LEAF7_FEATURE_RDPID
, "RDPID"},
1150 {CPUID_LEAF7_FEATURE_CLDEMOTE
, "CLDEMOTE"},
1151 {CPUID_LEAF7_FEATURE_MOVDIRI
, "MOVDIRI"},
1152 {CPUID_LEAF7_FEATURE_MOVDIRI64B
, "MOVDIRI64B"},
1153 {CPUID_LEAF7_FEATURE_SGXLC
, "SGXLC"},
1156 leaf7_extfeature_map
[] = {
1157 { CPUID_LEAF7_EXTFEATURE_AVX5124VNNIW
, "AVX5124VNNIW" },
1158 { CPUID_LEAF7_EXTFEATURE_AVX5124FMAPS
, "AVX5124FMAPS" },
1159 { CPUID_LEAF7_EXTFEATURE_FSREPMOV
, "FSREPMOV" },
1160 { CPUID_LEAF7_EXTFEATURE_MDCLEAR
, "MDCLEAR" },
1161 { CPUID_LEAF7_EXTFEATURE_TSXFA
, "TSXFA" },
1162 { CPUID_LEAF7_EXTFEATURE_IBRS
, "IBRS" },
1163 { CPUID_LEAF7_EXTFEATURE_STIBP
, "STIBP" },
1164 { CPUID_LEAF7_EXTFEATURE_L1DF
, "L1DF" },
1165 { CPUID_LEAF7_EXTFEATURE_ACAPMSR
, "ACAPMSR" },
1166 { CPUID_LEAF7_EXTFEATURE_CCAPMSR
, "CCAPMSR" },
1167 { CPUID_LEAF7_EXTFEATURE_SSBD
, "SSBD" },
1172 cpuid_get_names(struct table
*map
, uint64_t bits
, char *buf
, unsigned buf_len
)
1178 for (i
= 0; map
[i
].mask
!= 0; i
++) {
1179 if ((bits
& map
[i
].mask
) == 0) {
1182 if (len
&& ((size_t) (p
- buf
) < (buf_len
- 1))) {
1185 len
= min(strlen(map
[i
].name
), (size_t)((buf_len
- 1) - (p
- buf
)));
1189 bcopy(map
[i
].name
, p
, len
);
1199 /* Set-up the cpuid_info stucture lazily */
1200 if (cpuid_cpu_infop
== NULL
) {
1201 PE_parse_boot_argn("-cpuid", &cpuid_dbg
, sizeof(cpuid_dbg
));
1203 cpuid_cpu_infop
= &cpuid_cpu_info
;
1205 return cpuid_cpu_infop
;
1209 cpuid_get_feature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1211 return cpuid_get_names(feature_map
, features
, buf
, buf_len
);
1215 cpuid_get_extfeature_names(uint64_t extfeatures
, char *buf
, unsigned buf_len
)
1217 return cpuid_get_names(extfeature_map
, extfeatures
, buf
, buf_len
);
1221 cpuid_get_leaf7_feature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1223 return cpuid_get_names(leaf7_feature_map
, features
, buf
, buf_len
);
1227 cpuid_get_leaf7_extfeature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1229 return cpuid_get_names(leaf7_extfeature_map
, features
, buf
, buf_len
);
1233 cpuid_feature_display(
1238 kprintf("%s: %s", header
,
1239 cpuid_get_feature_names(cpuid_features(), buf
, sizeof(buf
)));
1240 if (cpuid_leaf7_features()) {
1241 kprintf(" %s", cpuid_get_leaf7_feature_names(
1242 cpuid_leaf7_features(), buf
, sizeof(buf
)));
1244 if (cpuid_leaf7_extfeatures()) {
1245 kprintf(" %s", cpuid_get_leaf7_extfeature_names(
1246 cpuid_leaf7_extfeatures(), buf
, sizeof(buf
)));
1249 if (cpuid_features() & CPUID_FEATURE_HTT
) {
1250 #define s_if_plural(n) ((n > 1) ? "s" : "")
1251 kprintf(" HTT: %d core%s per package;"
1252 " %d logical cpu%s per package\n",
1253 cpuid_cpu_infop
->cpuid_cores_per_package
,
1254 s_if_plural(cpuid_cpu_infop
->cpuid_cores_per_package
),
1255 cpuid_cpu_infop
->cpuid_logical_per_package
,
1256 s_if_plural(cpuid_cpu_infop
->cpuid_logical_per_package
));
1261 cpuid_extfeature_display(
1266 kprintf("%s: %s\n", header
,
1267 cpuid_get_extfeature_names(cpuid_extfeatures(),
1275 if (cpuid_cpu_infop
->cpuid_brand_string
[0] != '\0') {
1276 kprintf("%s: %s\n", header
, cpuid_cpu_infop
->cpuid_brand_string
);
1283 return cpuid_info()->cpuid_family
;
1287 cpuid_cpufamily(void)
1289 return cpuid_info()->cpuid_cpufamily
;
1295 return cpuid_info()->cpuid_cpu_type
;
1299 cpuid_cpusubtype(void)
1301 return cpuid_info()->cpuid_cpu_subtype
;
1305 cpuid_features(void)
1307 static int checked
= 0;
1308 char fpu_arg
[20] = { 0 };
1310 (void) cpuid_info();
1312 /* check for boot-time fpu limitations */
1313 if (PE_parse_boot_argn("_fpu", &fpu_arg
[0], sizeof(fpu_arg
))) {
1314 printf("limiting fpu features to: %s\n", fpu_arg
);
1315 if (!strncmp("387", fpu_arg
, sizeof("387")) || !strncmp("mmx", fpu_arg
, sizeof("mmx"))) {
1316 printf("no sse or sse2\n");
1317 cpuid_cpu_infop
->cpuid_features
&= ~(CPUID_FEATURE_SSE
| CPUID_FEATURE_SSE2
| CPUID_FEATURE_FXSR
);
1318 } else if (!strncmp("sse", fpu_arg
, sizeof("sse"))) {
1319 printf("no sse2\n");
1320 cpuid_cpu_infop
->cpuid_features
&= ~(CPUID_FEATURE_SSE2
);
1325 return cpuid_cpu_infop
->cpuid_features
;
1329 cpuid_extfeatures(void)
1331 return cpuid_info()->cpuid_extfeatures
;
1335 cpuid_leaf7_features(void)
1337 return cpuid_info()->cpuid_leaf7_features
;
1341 cpuid_leaf7_extfeatures(void)
1343 return cpuid_info()->cpuid_leaf7_extfeatures
;
1347 cpuid_vmm_family_string(void)
1349 switch (cpuid_vmm_info()->cpuid_vmm_family
) {
1350 case CPUID_VMM_FAMILY_NONE
:
1353 case CPUID_VMM_FAMILY_VMWARE
:
1356 case CPUID_VMM_FAMILY_PARALLELS
:
1359 case CPUID_VMM_FAMILY_HYVE
:
1362 case CPUID_VMM_FAMILY_HVF
:
1365 case CPUID_VMM_FAMILY_KVM
:
1368 case CPUID_VMM_FAMILY_UNKNOWN
:
1371 return "Unknown VMM";
1375 static i386_vmm_info_t
*_cpuid_vmm_infop
= NULL
;
1376 static i386_vmm_info_t _cpuid_vmm_info
;
1379 cpuid_init_vmm_info(i386_vmm_info_t
*info_p
)
1381 uint32_t reg
[4], maxbasic_regs
[4];
1382 uint32_t max_vmm_leaf
;
1384 bzero(info_p
, sizeof(*info_p
));
1386 if (!cpuid_vmm_present()) {
1390 DBG("cpuid_init_vmm_info(%p)\n", info_p
);
1393 * Get the highest basic leaf value, then save the cpuid details for that leaf
1394 * for comparison with the [ostensible] VMM leaf.
1397 cpuid_fn(reg
[eax
], maxbasic_regs
);
1399 /* do cpuid 0x40000000 to get VMM vendor */
1400 cpuid_fn(0x40000000, reg
);
1403 * If leaf 0x40000000 is non-existent, cpuid will return the values as
1404 * if the highest basic leaf was requested, so compare to those values
1405 * we just retrieved to see if no vmm is present.
1407 if (bcmp(reg
, maxbasic_regs
, sizeof(reg
)) == 0) {
1408 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_NONE
;
1409 DBG(" vmm_vendor : NONE\n");
1413 max_vmm_leaf
= reg
[eax
];
1414 bcopy((char *)®
[ebx
], &info_p
->cpuid_vmm_vendor
[0], 4);
1415 bcopy((char *)®
[ecx
], &info_p
->cpuid_vmm_vendor
[4], 4);
1416 bcopy((char *)®
[edx
], &info_p
->cpuid_vmm_vendor
[8], 4);
1417 info_p
->cpuid_vmm_vendor
[12] = '\0';
1419 if (0 == strcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_VMWARE
)) {
1420 /* VMware identification string: kb.vmware.com/kb/1009458 */
1421 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_VMWARE
;
1422 } else if (0 == bcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_PARALLELS
, 12)) {
1423 /* Parallels identification string */
1424 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_PARALLELS
;
1425 } else if (0 == bcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_HYVE
, 12)) {
1426 /* bhyve/xhyve identification string */
1427 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_HYVE
;
1428 } else if (0 == bcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_HVF
, 12)) {
1429 /* HVF identification string */
1430 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_HVF
;
1431 } else if (0 == bcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_KVM
, 12)) {
1432 /* KVM identification string */
1433 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_KVM
;
1435 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_UNKNOWN
;
1438 /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */
1439 if (max_vmm_leaf
>= 0x40000010) {
1440 cpuid_fn(0x40000010, reg
);
1442 info_p
->cpuid_vmm_tsc_frequency
= reg
[eax
];
1443 info_p
->cpuid_vmm_bus_frequency
= reg
[ebx
];
1446 #if DEBUG || DEVELOPMENT
1447 cpuid_vmm_detect_pv_interface(info_p
, APPLEPV_SIGNATURE
, &cpuid_vmm_detect_applepv_features
);
1450 DBG(" vmm_vendor : %s\n", info_p
->cpuid_vmm_vendor
);
1451 DBG(" vmm_family : %u\n", info_p
->cpuid_vmm_family
);
1452 DBG(" vmm_bus_frequency : %u\n", info_p
->cpuid_vmm_bus_frequency
);
1453 DBG(" vmm_tsc_frequency : %u\n", info_p
->cpuid_vmm_tsc_frequency
);
1457 cpuid_vmm_present(void)
1459 return (cpuid_features() & CPUID_FEATURE_VMM
) ? TRUE
: FALSE
;
1463 cpuid_vmm_info(void)
1465 if (_cpuid_vmm_infop
== NULL
) {
1466 cpuid_init_vmm_info(&_cpuid_vmm_info
);
1467 _cpuid_vmm_infop
= &_cpuid_vmm_info
;
1469 return _cpuid_vmm_infop
;
1473 cpuid_vmm_family(void)
1475 return cpuid_vmm_info()->cpuid_vmm_family
;
1478 #if DEBUG || DEVELOPMENT
1480 cpuid_vmm_get_applepv_features(void)
1482 return cpuid_vmm_info()->cpuid_vmm_applepv_features
;
1484 #endif /* DEBUG || DEVELOPMENT */
1487 cpuid_wa_required(cpu_wa_e wa
)
1489 i386_cpu_info_t
*info_p
= &cpuid_cpu_info
;
1490 static uint64_t bootarg_cpu_wa_enables
= 0;
1491 static uint64_t bootarg_cpu_wa_disables
= 0;
1492 static int bootargs_overrides_processed
= 0;
1495 if (!bootargs_overrides_processed
) {
1496 if (!PE_parse_boot_argn("cwae", &bootarg_cpu_wa_enables
, sizeof(bootarg_cpu_wa_enables
))) {
1497 bootarg_cpu_wa_enables
= 0;
1500 if (!PE_parse_boot_argn("cwad", &bootarg_cpu_wa_disables
, sizeof(bootarg_cpu_wa_disables
))) {
1501 bootarg_cpu_wa_disables
= 0;
1503 bootargs_overrides_processed
= 1;
1506 if (bootarg_cpu_wa_enables
& (1 << wa
)) {
1507 return CWA_FORCE_ON
;
1510 if (bootarg_cpu_wa_disables
& (1 << wa
)) {
1511 return CWA_FORCE_OFF
;
1515 case CPU_INTEL_SEGCHK
:
1516 /* First, check to see if this CPU requires the workaround */
1517 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_ACAPMSR
) != 0) {
1518 /* We have ARCHCAP, so check it for either RDCL_NO or MDS_NO */
1519 uint64_t archcap_msr
= rdmsr64(MSR_IA32_ARCH_CAPABILITIES
);
1520 if ((archcap_msr
& (MSR_IA32_ARCH_CAPABILITIES_RDCL_NO
| MSR_IA32_ARCH_CAPABILITIES_MDS_NO
)) != 0) {
1521 /* Workaround not needed */
1526 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_MDCLEAR
) != 0) {
1531 * If the CPU supports the ARCHCAP MSR and neither the RDCL_NO bit nor the MDS_NO
1532 * bit are set, OR the CPU does not support the ARCHCAP MSR and the CPU does
1533 * not enumerate the presence of the enhanced VERW instruction, report
1534 * that the workaround should not be enabled.
1538 case CPU_INTEL_TSXFA
:
1540 * Note that if TSX was disabled in cpuid_do_precpuid_was(), the cached cpuid
1541 * info will indicate that RTM is *not* supported and this workaround will not
1545 * Otherwise, if the CPU supports both TSX(HLE) and FORCE_ABORT, return that
1546 * the workaround should be enabled.
1548 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_TSXFA
) != 0 &&
1549 (info_p
->cpuid_leaf7_features
& CPUID_LEAF7_FEATURE_RTM
) != 0) {
1554 case CPU_INTEL_TSXDA
:
1556 * Since this workaround might be requested before cpuid_set_info() is complete,
1557 * we need to invoke cpuid directly when looking for the required bits.
1560 if (reg
[edx
] & CPUID_LEAF7_EXTFEATURE_ACAPMSR
) {
1561 uint64_t archcap_msr
= rdmsr64(MSR_IA32_ARCH_CAPABILITIES
);
1563 * If this CPU supports TSX (HLE being the proxy for TSX detection) AND it does
1564 * not include a hardware fix for TAA and it supports the TSX_CTRL MSR, disable TSX entirely.
1565 * (Note this can be overridden (above) if the cwad boot-arg's value has bit 2 set.)
1567 if ((reg
[ebx
] & CPUID_LEAF7_FEATURE_HLE
) != 0 &&
1568 (archcap_msr
& (MSR_IA32_ARCH_CAPABILITIES_TAA_NO
| MSR_IA32_ARCH_CAPABILITIES_TSX_CTRL
))
1569 == MSR_IA32_ARCH_CAPABILITIES_TSX_CTRL
) {
1575 case CPU_INTEL_SRBDS
:
1577 * SRBDS mitigations are enabled by default. CWA_ON returned here indicates
1578 * the caller should disable the mitigation. Mitigations should be disabled
1579 * at least for CPUs that advertise MDS_NO *and* (either TAA_NO is set OR TSX
1580 * has been disabled).
1582 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_SRBDS_CTRL
) != 0) {
1583 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_ACAPMSR
) != 0) {
1584 uint64_t archcap_msr
= rdmsr64(MSR_IA32_ARCH_CAPABILITIES
);
1585 if ((archcap_msr
& MSR_IA32_ARCH_CAPABILITIES_MDS_NO
) != 0 &&
1586 ((archcap_msr
& MSR_IA32_ARCH_CAPABILITIES_TAA_NO
) != 0 ||
1587 cpuid_tsx_disabled
)) {
1602 cpuid_do_precpuid_was(void)
1605 * Note that care must be taken not to use any data from the cached cpuid data since it is
1606 * likely uninitialized at this point. That includes calling functions that make use of
1607 * that data as well.
1610 /* Note the TSX disablement, we do not support force-on since it depends on MSRs being present */
1611 if (cpuid_wa_required(CPU_INTEL_TSXDA
) == CWA_ON
) {
1612 /* This must be executed on all logical processors */
1613 wrmsr64(MSR_IA32_TSX_CTRL
, MSR_IA32_TSXCTRL_TSX_CPU_CLEAR
| MSR_IA32_TSXCTRL_RTM_DISABLE
);
1614 cpuid_tsx_disabled
= true;
1619 #if DEBUG || DEVELOPMENT
1622 * Hunt for Apple Paravirtualization support in the hypervisor class leaves [0x4000_0000-0x4001_0000].
1623 * Hypervisor interfaces are expected to be found at 0x100 boundaries for compatibility.
1627 cpuid_vmm_detect_applepv_features(i386_vmm_info_t
*info_p
, const uint32_t base
, const uint32_t max_leaf
)
1629 if ((max_leaf
- base
) < APPLEPV_LEAF_INDEX_MAX
) {
1634 * Issue cpuid to make sure the interface supports "AH#1" features.
1635 * This avoids a possible collision with "Hv#1" used by Hyper-V.
1639 cpuid_fn(base
+ APPLEPV_INTERFACE_LEAF_INDEX
, reg
);
1640 memcpy(&interface
[0], ®
[eax
], 4);
1641 interface
[4] = '\0';
1642 if (0 == strcmp(interface
, APPLEPV_INTERFACE
)) {
1643 cpuid_fn(base
+ APPLEPV_FEATURES_LEAF_INDEX
, reg
);
1644 info_p
->cpuid_vmm_applepv_features
= quad(reg
[ecx
], reg
[edx
]);
1651 cpuid_vmm_detect_pv_interface(i386_vmm_info_t
*info_p
, const char *signature
,
1652 bool (*searcher
)(i386_vmm_info_t
*, const uint32_t, const uint32_t))
1655 if (PE_parse_boot_argn("hcalls", &hcalls
, sizeof(hcalls
)) &&
1662 * Look for PV interface matching signature
1664 for (uint32_t base
= 0x40000100; base
< 0x40010000; base
+= 0x100) {
1668 cpuid_fn(base
, reg
);
1669 memcpy(&vendor
[0], ®
[ebx
], 4);
1670 memcpy(&vendor
[4], ®
[ecx
], 4);
1671 memcpy(&vendor
[8], ®
[edx
], 4);
1673 if ((0 == strcmp(vendor
, signature
)) &&
1674 (reg
[eax
] - base
) < 0x100 &&
1675 (*searcher
)(info_p
, base
, reg
[eax
])) {
1681 #endif /* DEBUG || DEVELOPMENT */