]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/mp_desc.c
xnu-6153.81.5.tar.gz
[apple/xnu.git] / osfmk / i386 / mp_desc.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 */
59
60 #include <kern/cpu_number.h>
61 #include <kern/kalloc.h>
62 #include <kern/cpu_data.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <mach/vm_map.h>
66 #include <mach/machine/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_map.h>
69
70 #include <i386/bit_routines.h>
71 #include <i386/mp_desc.h>
72 #include <i386/misc_protos.h>
73 #include <i386/mp.h>
74 #include <i386/pmap.h>
75 #include <i386/postcode.h>
76 #include <i386/pmap_internal.h>
77 #if CONFIG_MCA
78 #include <i386/machine_check.h>
79 #endif
80
81 #include <kern/misc_protos.h>
82
83 #if MONOTONIC
84 #include <kern/monotonic.h>
85 #endif /* MONOTONIC */
86 #include <san/kasan.h>
87
88 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
89 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
90
91 // Declare macros that will declare the externs
92 #define TRAP(n, name) extern void *name ;
93 #define TRAP_ERR(n, name) extern void *name ;
94 #define TRAP_SPC(n, name) extern void *name ;
95 #define TRAP_IST1(n, name) extern void *name ;
96 #define TRAP_IST2(n, name) extern void *name ;
97 #define INTERRUPT(n) extern void *_intr_ ## n ;
98 #define USER_TRAP(n, name) extern void *name ;
99 #define USER_TRAP_SPC(n, name) extern void *name ;
100
101 // Include the table to declare the externs
102 #include "../x86_64/idt_table.h"
103
104 // Undef the macros, then redefine them so we can declare the table
105 #undef TRAP
106 #undef TRAP_ERR
107 #undef TRAP_SPC
108 #undef TRAP_IST1
109 #undef TRAP_IST2
110 #undef INTERRUPT
111 #undef USER_TRAP
112 #undef USER_TRAP_SPC
113
114 #define TRAP(n, name) \
115 [n] = { \
116 (uintptr_t)&name, \
117 KERNEL64_CS, \
118 0, \
119 K_INTR_GATE, \
120 0 \
121 },
122
123 #define TRAP_ERR TRAP
124 #define TRAP_SPC TRAP
125
126 #define TRAP_IST1(n, name) \
127 [n] = { \
128 (uintptr_t)&name, \
129 KERNEL64_CS, \
130 1, \
131 K_INTR_GATE, \
132 0 \
133 },
134
135 #define TRAP_IST2(n, name) \
136 [n] = { \
137 (uintptr_t)&name, \
138 KERNEL64_CS, \
139 2, \
140 K_INTR_GATE, \
141 0 \
142 },
143
144 #define INTERRUPT(n) \
145 [n] = { \
146 (uintptr_t)&_intr_ ## n,\
147 KERNEL64_CS, \
148 0, \
149 K_INTR_GATE, \
150 0 \
151 },
152
153 #define USER_TRAP(n, name) \
154 [n] = { \
155 (uintptr_t)&name, \
156 KERNEL64_CS, \
157 0, \
158 U_INTR_GATE, \
159 0 \
160 },
161
162 #define USER_TRAP_SPC USER_TRAP
163
164 // Declare the table using the macros we just set up
165 struct fake_descriptor64 master_idt64[IDTSZ]
166 __attribute__ ((section("__HIB,__desc")))
167 __attribute__ ((aligned(PAGE_SIZE))) = {
168 #include "../x86_64/idt_table.h"
169 };
170
171 /*
172 * First cpu`s interrupt stack.
173 */
174 extern uint32_t low_intstack[]; /* bottom */
175 extern uint32_t low_eintstack[]; /* top */
176
177 /*
178 * Per-cpu data area pointers.
179 */
180 cpu_data_t cpshadows[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
181 cpu_data_t scdatas[MAX_CPUS] __attribute__((aligned(64))) = {
182 [0].cpu_this = &scdatas[0],
183 [0].cpu_nanotime = &pal_rtc_nanotime_info,
184 [0].cpu_int_stack_top = (vm_offset_t) low_eintstack,
185 [0].cd_shadow = &cpshadows[0]
186 };
187 cpu_data_t *cpu_data_master = &scdatas[0];
188
189 cpu_data_t *cpu_data_ptr[MAX_CPUS] = {[0] = &scdatas[0] };
190
191 decl_simple_lock_data(, ncpus_lock); /* protects real_ncpus */
192 unsigned int real_ncpus = 1;
193 unsigned int max_ncpus = MAX_CPUS;
194
195 extern void hi64_sysenter(void);
196 extern void hi64_syscall(void);
197
198 typedef struct {
199 struct real_descriptor pcldts[LDTSZ];
200 } cldt_t;
201
202 cpu_desc_table64_t scdtables[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
203 cpu_fault_stack_t scfstks[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
204
205 cldt_t *dyn_ldts;
206
207 /*
208 * Multiprocessor i386/i486 systems use a separate copy of the
209 * GDT, IDT, LDT, and kernel TSS per processor. The first three
210 * are separate to avoid lock contention: the i386 uses locked
211 * memory cycles to access the descriptor tables. The TSS is
212 * separate since each processor needs its own kernel stack,
213 * and since using a TSS marks it busy.
214 */
215
216 /*
217 * Allocate and initialize the per-processor descriptor tables.
218 */
219
220 /*
221 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
222 * When switching to 64-bit mode this replaces KERNEL_LDT entry
223 * and the following empty slot. This enables the LDT to be referenced
224 * in the uber-space remapping window on the kernel.
225 */
226 struct fake_descriptor64 kernel_ldt_desc64 = {
227 .offset64 = 0,
228 .lim_or_seg = LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
229 .size_or_IST = 0,
230 .access = ACC_P | ACC_PL_K | ACC_LDT,
231 .reserved = 0
232 };
233
234 /*
235 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
236 * It is follows pattern of the KERNEL_LDT.
237 */
238 struct fake_descriptor64 kernel_tss_desc64 = {
239 .offset64 = 0,
240 .lim_or_seg = sizeof(struct x86_64_tss) - 1,
241 .size_or_IST = 0,
242 .access = ACC_P | ACC_PL_K | ACC_TSS,
243 .reserved = 0
244 };
245
246 /*
247 * Convert a descriptor from fake to real format.
248 *
249 * Fake descriptor format:
250 * bytes 0..3 base 31..0
251 * bytes 4..5 limit 15..0
252 * byte 6 access byte 2 | limit 19..16
253 * byte 7 access byte 1
254 *
255 * Real descriptor format:
256 * bytes 0..1 limit 15..0
257 * bytes 2..3 base 15..0
258 * byte 4 base 23..16
259 * byte 5 access byte 1
260 * byte 6 access byte 2 | limit 19..16
261 * byte 7 base 31..24
262 *
263 * Fake gate format:
264 * bytes 0..3 offset
265 * bytes 4..5 selector
266 * byte 6 word count << 4 (to match fake descriptor)
267 * byte 7 access byte 1
268 *
269 * Real gate format:
270 * bytes 0..1 offset 15..0
271 * bytes 2..3 selector
272 * byte 4 word count
273 * byte 5 access byte 1
274 * bytes 6..7 offset 31..16
275 */
276 void
277 fix_desc(void *d, int num_desc)
278 {
279 uint8_t *desc = (uint8_t*) d;
280
281 do {
282 if ((desc[7] & 0x14) == 0x04) { /* gate */
283 uint32_t offset;
284 uint16_t selector;
285 uint8_t wordcount;
286 uint8_t acc;
287
288 offset = *((uint32_t*)(desc));
289 selector = *((uint32_t*)(desc + 4));
290 wordcount = desc[6] >> 4;
291 acc = desc[7];
292
293 *((uint16_t*)desc) = offset & 0xFFFF;
294 *((uint16_t*)(desc + 2)) = selector;
295 desc[4] = wordcount;
296 desc[5] = acc;
297 *((uint16_t*)(desc + 6)) = offset >> 16;
298 } else { /* descriptor */
299 uint32_t base;
300 uint16_t limit;
301 uint8_t acc1, acc2;
302
303 base = *((uint32_t*)(desc));
304 limit = *((uint16_t*)(desc + 4));
305 acc2 = desc[6];
306 acc1 = desc[7];
307
308 *((uint16_t*)(desc)) = limit;
309 *((uint16_t*)(desc + 2)) = base & 0xFFFF;
310 desc[4] = (base >> 16) & 0xFF;
311 desc[5] = acc1;
312 desc[6] = acc2;
313 desc[7] = base >> 24;
314 }
315 desc += 8;
316 } while (--num_desc);
317 }
318
319 void
320 fix_desc64(void *descp, int count)
321 {
322 struct fake_descriptor64 *fakep;
323 union {
324 struct real_gate64 gate;
325 struct real_descriptor64 desc;
326 } real;
327 int i;
328
329 fakep = (struct fake_descriptor64 *) descp;
330
331 for (i = 0; i < count; i++, fakep++) {
332 /*
333 * Construct the real decriptor locally.
334 */
335
336 bzero((void *) &real, sizeof(real));
337
338 switch (fakep->access & ACC_TYPE) {
339 case 0:
340 break;
341 case ACC_CALL_GATE:
342 case ACC_INTR_GATE:
343 case ACC_TRAP_GATE:
344 real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
345 real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
346 real.gate.IST = fakep->size_or_IST & 0x7;
347 real.gate.access8 = fakep->access;
348 real.gate.offset_high16 = (uint16_t)((fakep->offset64 >> 16) & 0xFFFF);
349 real.gate.offset_top32 = (uint32_t)(fakep->offset64 >> 32);
350 break;
351 default: /* Otherwise */
352 real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
353 real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
354 real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
355 real.desc.access8 = fakep->access;
356 real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
357 real.desc.granularity4 = fakep->size_or_IST;
358 real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
359 real.desc.base_top32 = (uint32_t)(fakep->offset64 >> 32);
360 }
361
362 /*
363 * Now copy back over the fake structure.
364 */
365 bcopy((void *) &real, (void *) fakep, sizeof(real));
366 }
367 }
368
369 extern unsigned mldtsz;
370 void
371 cpu_desc_init(cpu_data_t *cdp)
372 {
373 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
374
375 if (cdp == cpu_data_master) {
376 /*
377 * Populate the double-mapped 'u' and base 'b' fields in the
378 * KTSS with I/G/LDT and sysenter stack data.
379 */
380 cdi->cdi_ktssu = (void *)DBLMAP(&master_ktss64);
381 cdi->cdi_ktssb = (void *)&master_ktss64;
382 cdi->cdi_sstku = (vm_offset_t) DBLMAP(&master_sstk.top);
383 cdi->cdi_sstkb = (vm_offset_t) &master_sstk.top;
384
385 cdi->cdi_gdtu.ptr = (void *)DBLMAP((uintptr_t) &master_gdt);
386 cdi->cdi_gdtb.ptr = (void *)&master_gdt;
387 cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
388 cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64);
389 cdi->cdi_ldtu = (struct real_descriptor *)DBLMAP((uintptr_t)&master_ldt[0]);
390 cdi->cdi_ldtb = &master_ldt[0];
391
392 /* Replace the expanded LDTs and TSS slots in the GDT */
393 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
394 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
395 kernel_ldt_desc64;
396 *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
397 kernel_ldt_desc64;
398 kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64);
399 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
400 kernel_tss_desc64;
401
402 /* Fix up the expanded descriptors for 64-bit. */
403 fix_desc64((void *) &master_idt64, IDTSZ);
404 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
405 fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1);
406 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
407
408 /*
409 * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
410 */
411 master_ktss64.ist2 = (uintptr_t) low_eintstack;
412 master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t);
413 } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
414 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
415
416 cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
417
418 cdi->cdi_ktssu = (void *)DBLMAP(&cdt->ktss);
419 cdi->cdi_ktssb = (void *)(&cdt->ktss);
420 cdi->cdi_sstku = (vm_offset_t)DBLMAP(&cdt->sstk.top);
421 cdi->cdi_sstkb = (vm_offset_t)(&cdt->sstk.top);
422 cdi->cdi_ldtu = (void *)LDTALIAS(cdp->cpu_ldtp);
423 cdi->cdi_ldtb = (void *)(cdp->cpu_ldtp);
424
425 /*
426 * Copy the tables
427 */
428 bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
429 bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, mldtsz);
430 bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
431 cdi->cdi_gdtu.ptr = (void *)DBLMAP(cdt->gdt);
432 cdi->cdi_gdtb.ptr = (void *)(cdt->gdt);
433 /*
434 * Fix up the entries in the GDT to point to
435 * this LDT and this TSS.
436 * Note reuse of global 'kernel_ldt_desc64, which is not
437 * concurrency-safe. Higher level synchronization is expected
438 */
439 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
440 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
441 kernel_ldt_desc64;
442 fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
443
444 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
445 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
446 kernel_ldt_desc64;
447 fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
448
449 kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu;
450 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
451 kernel_tss_desc64;
452 fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
453
454 /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
455 uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
456 cdt->fstkp = cfstk;
457 bzero((void *) cfstk, FSTK_SZ);
458 cdt->ktss.ist2 = DBLMAP((uint64_t)cdt->fstkp + FSTK_SZ);
459 cdt->ktss.ist1 = cdt->ktss.ist2 - sizeof(x86_64_intr_stack_frame_t);
460 }
461
462 /* Require that the top of the sysenter stack is 16-byte aligned */
463 if ((cdi->cdi_sstku % 16) != 0) {
464 panic("cpu_desc_init() sysenter stack not 16-byte aligned");
465 }
466 }
467 void
468 cpu_desc_load(cpu_data_t *cdp)
469 {
470 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
471
472 postcode(CPU_DESC_LOAD_ENTRY);
473
474 /* Stuff the kernel per-cpu data area address into the MSRs */
475 postcode(CPU_DESC_LOAD_GS_BASE);
476 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
477 postcode(CPU_DESC_LOAD_KERNEL_GS_BASE);
478 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
479
480 /*
481 * Ensure the TSS segment's busy bit is clear. This is required
482 * for the case of reloading descriptors at wake to avoid
483 * their complete re-initialization.
484 */
485 gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
486
487 /* Load the GDT, LDT, IDT and TSS */
488 cdi->cdi_gdtb.size = sizeof(struct real_descriptor) * GDTSZ - 1;
489 cdi->cdi_gdtu.size = cdi->cdi_gdtb.size;
490 cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number;
491 cdi->cdi_idtu.size = cdi->cdi_idtb.size;
492
493 postcode(CPU_DESC_LOAD_GDT);
494 lgdt((uintptr_t *) &cdi->cdi_gdtu);
495 postcode(CPU_DESC_LOAD_IDT);
496 lidt((uintptr_t *) &cdi->cdi_idtu);
497 postcode(CPU_DESC_LOAD_LDT);
498 lldt(KERNEL_LDT);
499 postcode(CPU_DESC_LOAD_TSS);
500 set_tr(KERNEL_TSS);
501
502 postcode(CPU_DESC_LOAD_EXIT);
503 }
504
505 /*
506 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
507 */
508 void
509 cpu_syscall_init(cpu_data_t *cdp)
510 {
511 #pragma unused(cdp)
512
513 wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
514 wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter));
515 wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku);
516 /* Enable syscall/sysret */
517 wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
518
519 /*
520 * MSRs for 64-bit syscall/sysret
521 * Note USER_CS because sysret uses this + 16 when returning to
522 * 64-bit code.
523 */
524 wrmsr64(MSR_IA32_LSTAR, DBLMAP((uintptr_t) hi64_syscall));
525 wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | (((uint64_t)KERNEL64_CS) << 32));
526 /*
527 * Emulate eflags cleared by sysenter but note that
528 * we also clear the trace trap to avoid the complications
529 * of single-stepping into a syscall. The nested task bit
530 * is also cleared to avoid a spurious "task switch"
531 * should we choose to return via an IRET.
532 */
533 wrmsr64(MSR_IA32_FMASK, EFL_DF | EFL_IF | EFL_TF | EFL_NT);
534 }
535 extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
536 uint64_t ldt_alias_offset;
537
538 cpu_data_t *
539 cpu_data_alloc(boolean_t is_boot_cpu)
540 {
541 int ret;
542 cpu_data_t *cdp;
543
544 if (is_boot_cpu) {
545 assert(real_ncpus == 1);
546 cdp = cpu_datap(0);
547 if (cdp->cpu_processor == NULL) {
548 simple_lock_init(&ncpus_lock, 0);
549 cdp->cpu_processor = cpu_processor_alloc(TRUE);
550 #if NCOPY_WINDOWS > 0
551 cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
552 #endif
553 }
554 return cdp;
555 }
556
557 boolean_t do_ldt_alloc = FALSE;
558 simple_lock(&ncpus_lock, LCK_GRP_NULL);
559 int cnum = real_ncpus;
560 real_ncpus++;
561 if (dyn_ldts == NULL) {
562 do_ldt_alloc = TRUE;
563 }
564 simple_unlock(&ncpus_lock);
565
566 /*
567 * Allocate per-cpu data:
568 */
569
570 cdp = &scdatas[cnum];
571 bzero((void*) cdp, sizeof(cpu_data_t));
572 cdp->cpu_this = cdp;
573 cdp->cpu_number = cnum;
574 cdp->cd_shadow = &cpshadows[cnum];
575 /*
576 * Allocate interrupt stack:
577 */
578 ret = kmem_alloc(kernel_map,
579 (vm_offset_t *) &cdp->cpu_int_stack_top,
580 INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
581 if (ret != KERN_SUCCESS) {
582 panic("cpu_data_alloc() int stack failed, ret=%d\n", ret);
583 }
584 bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
585 cdp->cpu_int_stack_top += INTSTACK_SIZE;
586
587 /*
588 * Allocate descriptor table:
589 */
590
591 cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[cnum];
592 /*
593 * Allocate LDT
594 */
595 if (do_ldt_alloc) {
596 boolean_t do_ldt_free = FALSE;
597 vm_offset_t sldtoffset = 0;
598 /*
599 * Allocate LDT
600 */
601 vm_offset_t ldtalloc = 0, ldtallocsz = round_page_64(MAX_CPUS * sizeof(struct real_descriptor) * LDTSZ);
602 ret = kmem_alloc(kernel_map, (vm_offset_t *) &ldtalloc, ldtallocsz, VM_KERN_MEMORY_CPU);
603 if (ret != KERN_SUCCESS) {
604 panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret);
605 }
606
607 simple_lock(&ncpus_lock, LCK_GRP_NULL);
608 if (dyn_ldts == NULL) {
609 dyn_ldts = (cldt_t *)ldtalloc;
610 } else {
611 do_ldt_free = TRUE;
612 }
613 simple_unlock(&ncpus_lock);
614
615 if (do_ldt_free) {
616 kmem_free(kernel_map, ldtalloc, ldtallocsz);
617 } else {
618 /* CPU registration and startup are expected to execute
619 * serially, as invoked by the platform driver.
620 * Create trampoline alias of LDT region.
621 */
622 sldtoffset = dyn_dblmap(ldtalloc, ldtallocsz);
623 ldt_alias_offset = sldtoffset;
624 }
625 }
626 cdp->cpu_ldtp = &dyn_ldts[cnum].pcldts[0];
627
628 #if CONFIG_MCA
629 /* Machine-check shadow register allocation. */
630 mca_cpu_alloc(cdp);
631 #endif
632
633 /*
634 * Before this cpu has been assigned a real thread context,
635 * we give it a fake, unique, non-zero thread id which the locking
636 * primitives use as their lock value.
637 * Note that this does not apply to the boot processor, cpu 0, which
638 * transitions to a thread context well before other processors are
639 * started.
640 */
641 cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
642 cdp->cpu_NMI_acknowledged = TRUE;
643 cdp->cpu_nanotime = &pal_rtc_nanotime_info;
644
645 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
646 "ldt: %p "
647 "int_stack: 0x%lx-0x%lx\n",
648 cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
649 (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
650 cpu_data_ptr[cnum] = cdp;
651
652 return cdp;
653 }
654
655 boolean_t
656 valid_user_data_selector(uint16_t selector)
657 {
658 sel_t sel = selector_to_sel(selector);
659
660 if (selector == 0) {
661 return TRUE;
662 }
663
664 if (sel.ti == SEL_LDT) {
665 return TRUE;
666 } else if (sel.index < GDTSZ) {
667 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
668 return TRUE;
669 }
670 }
671 return FALSE;
672 }
673
674 boolean_t
675 valid_user_code_selector(uint16_t selector)
676 {
677 sel_t sel = selector_to_sel(selector);
678
679 if (selector == 0) {
680 return FALSE;
681 }
682
683 if (sel.ti == SEL_LDT) {
684 if (sel.rpl == USER_PRIV) {
685 return TRUE;
686 }
687 } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
688 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
689 return TRUE;
690 }
691 /* Explicitly validate the system code selectors
692 * even if not instantaneously privileged,
693 * since they are dynamically re-privileged
694 * at context switch
695 */
696 if ((selector == USER_CS) || (selector == USER64_CS)) {
697 return TRUE;
698 }
699 }
700
701 return FALSE;
702 }
703
704 boolean_t
705 valid_user_stack_selector(uint16_t selector)
706 {
707 sel_t sel = selector_to_sel(selector);
708
709 if (selector == 0) {
710 return FALSE;
711 }
712
713 if (sel.ti == SEL_LDT) {
714 if (sel.rpl == USER_PRIV) {
715 return TRUE;
716 }
717 } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
718 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
719 return TRUE;
720 }
721 }
722
723 return FALSE;
724 }
725
726 boolean_t
727 valid_user_segment_selectors(uint16_t cs,
728 uint16_t ss,
729 uint16_t ds,
730 uint16_t es,
731 uint16_t fs,
732 uint16_t gs)
733 {
734 return valid_user_code_selector(cs) &&
735 valid_user_stack_selector(ss) &&
736 valid_user_data_selector(ds) &&
737 valid_user_data_selector(es) &&
738 valid_user_data_selector(fs) &&
739 valid_user_data_selector(gs);
740 }
741
742 #if NCOPY_WINDOWS > 0
743
744 static vm_offset_t user_window_base = 0;
745
746 void
747 cpu_userwindow_init(int cpu)
748 {
749 cpu_data_t *cdp = cpu_data_ptr[cpu];
750 vm_offset_t user_window;
751 vm_offset_t vaddr;
752 int num_cpus;
753
754 num_cpus = ml_get_max_cpus();
755
756 if (cpu >= num_cpus) {
757 panic("cpu_userwindow_init: cpu > num_cpus");
758 }
759
760 if (user_window_base == 0) {
761 if (vm_allocate(kernel_map, &vaddr,
762 (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
763 VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) {
764 panic("cpu_userwindow_init: "
765 "couldn't allocate user map window");
766 }
767
768 /*
769 * window must start on a page table boundary
770 * in the virtual address space
771 */
772 user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1);
773
774 /*
775 * get rid of any allocation leading up to our
776 * starting boundary
777 */
778 vm_deallocate(kernel_map, vaddr, user_window_base - vaddr);
779
780 /*
781 * get rid of tail that we don't need
782 */
783 user_window = user_window_base +
784 (NBPDE * NCOPY_WINDOWS * num_cpus);
785
786 vm_deallocate(kernel_map, user_window,
787 (vaddr +
788 ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
789 user_window);
790 }
791
792 user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
793
794 cdp->cpu_copywindow_base = user_window;
795 /*
796 * Abuse this pdp entry, the pdp now actually points to
797 * an array of copy windows addresses.
798 */
799 cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
800 }
801
802 void
803 cpu_physwindow_init(int cpu)
804 {
805 cpu_data_t *cdp = cpu_data_ptr[cpu];
806 vm_offset_t phys_window = cdp->cpu_physwindow_base;
807
808 if (phys_window == 0) {
809 if (vm_allocate(kernel_map, &phys_window,
810 PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU))
811 != KERN_SUCCESS) {
812 panic("cpu_physwindow_init: "
813 "couldn't allocate phys map window");
814 }
815
816 /*
817 * make sure the page that encompasses the
818 * pte pointer we're interested in actually
819 * exists in the page table
820 */
821 pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE);
822
823 cdp->cpu_physwindow_base = phys_window;
824 cdp->cpu_physwindow_ptep = vtopte(phys_window);
825 }
826 }
827 #endif /* NCOPY_WINDOWS > 0 */
828
829 /*
830 * Allocate a new interrupt stack for the boot processor from the
831 * heap rather than continue to use the statically allocated space.
832 * Also switch to a dynamically allocated cpu data area.
833 */
834 void
835 cpu_data_realloc(void)
836 {
837 int ret;
838 vm_offset_t istk;
839 cpu_data_t *cdp;
840 boolean_t istate;
841
842 ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
843 if (ret != KERN_SUCCESS) {
844 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
845 }
846 bzero((void*) istk, INTSTACK_SIZE);
847 istk += INTSTACK_SIZE;
848
849 cdp = &scdatas[0];
850
851 /* Copy old contents into new area and make fix-ups */
852 assert(cpu_number() == 0);
853 bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t));
854 cdp->cpu_this = cdp;
855 cdp->cpu_int_stack_top = istk;
856 timer_call_queue_init(&cdp->rtclock_timer.queue);
857 cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0];
858 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
859
860 uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
861 cdt->fstkp = cfstk;
862 cfstk += FSTK_SZ;
863
864 /*
865 * With interrupts disabled commmit the new areas.
866 */
867 istate = ml_set_interrupts_enabled(FALSE);
868 cpu_data_ptr[0] = cdp;
869 master_ktss64.ist2 = DBLMAP((uintptr_t) cfstk);
870 master_ktss64.ist1 = DBLMAP((uintptr_t) cfstk - sizeof(x86_64_intr_stack_frame_t));
871 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
872 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
873 (void) ml_set_interrupts_enabled(istate);
874
875 kprintf("Reallocated master cpu data: %p,"
876 " interrupt stack: %p, fault stack: %p\n",
877 (void *) cdp, (void *) istk, (void *) cfstk);
878 }