]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/mp_desc.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / mp_desc.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 */
59
60 #include <kern/cpu_number.h>
61 #include <kern/cpu_data.h>
62 #include <kern/percpu.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <mach/vm_map.h>
66 #include <mach/machine/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_map.h>
69
70 #include <i386/bit_routines.h>
71 #include <i386/mp_desc.h>
72 #include <i386/misc_protos.h>
73 #include <i386/mp.h>
74 #include <i386/pmap.h>
75 #include <i386/postcode.h>
76 #include <i386/pmap_internal.h>
77 #if CONFIG_MCA
78 #include <i386/machine_check.h>
79 #endif
80
81 #include <kern/misc_protos.h>
82
83 #if MONOTONIC
84 #include <kern/monotonic.h>
85 #endif /* MONOTONIC */
86 #include <san/kasan.h>
87
88 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
89 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
90
91 // Declare macros that will declare the externs
92 #define TRAP(n, name) extern void *name ;
93 #define TRAP_ERR(n, name) extern void *name ;
94 #define TRAP_SPC(n, name) extern void *name ;
95 #define TRAP_IST1(n, name) extern void *name ;
96 #define TRAP_IST2(n, name) extern void *name ;
97 #define INTERRUPT(n) extern void *_intr_ ## n ;
98 #define USER_TRAP(n, name) extern void *name ;
99 #define USER_TRAP_SPC(n, name) extern void *name ;
100
101 // Include the table to declare the externs
102 #include "../x86_64/idt_table.h"
103
104 // Undef the macros, then redefine them so we can declare the table
105 #undef TRAP
106 #undef TRAP_ERR
107 #undef TRAP_SPC
108 #undef TRAP_IST1
109 #undef TRAP_IST2
110 #undef INTERRUPT
111 #undef USER_TRAP
112 #undef USER_TRAP_SPC
113
114 #define TRAP(n, name) \
115 [n] = { \
116 (uintptr_t)&name, \
117 KERNEL64_CS, \
118 0, \
119 K_INTR_GATE, \
120 0 \
121 },
122
123 #define TRAP_ERR TRAP
124 #define TRAP_SPC TRAP
125
126 #define TRAP_IST1(n, name) \
127 [n] = { \
128 (uintptr_t)&name, \
129 KERNEL64_CS, \
130 1, \
131 K_INTR_GATE, \
132 0 \
133 },
134
135 #define TRAP_IST2(n, name) \
136 [n] = { \
137 (uintptr_t)&name, \
138 KERNEL64_CS, \
139 2, \
140 K_INTR_GATE, \
141 0 \
142 },
143
144 #define INTERRUPT(n) \
145 [n] = { \
146 (uintptr_t)&_intr_ ## n,\
147 KERNEL64_CS, \
148 0, \
149 K_INTR_GATE, \
150 0 \
151 },
152
153 #define USER_TRAP(n, name) \
154 [n] = { \
155 (uintptr_t)&name, \
156 KERNEL64_CS, \
157 0, \
158 U_INTR_GATE, \
159 0 \
160 },
161
162 #define USER_TRAP_SPC USER_TRAP
163
164 // Declare the table using the macros we just set up
165 struct fake_descriptor64 master_idt64[IDTSZ]
166 __attribute__ ((section("__HIB,__desc")))
167 __attribute__ ((aligned(PAGE_SIZE))) = {
168 #include "../x86_64/idt_table.h"
169 };
170
171 /*
172 * First cpu`s interrupt stack.
173 */
174 extern uint32_t low_intstack[]; /* bottom */
175 extern uint32_t low_eintstack[]; /* top */
176
177 /*
178 * Per-cpu data area pointers.
179 */
180 cpu_data_t cpshadows[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
181 cpu_data_t scdatas[MAX_CPUS] __attribute__((aligned(64))) = {
182 [0].cpu_this = &scdatas[0],
183 [0].cpu_nanotime = &pal_rtc_nanotime_info,
184 [0].cpu_int_stack_top = (vm_offset_t) low_eintstack,
185 [0].cd_shadow = &cpshadows[0]
186 };
187 cpu_data_t *cpu_data_master = &scdatas[0];
188
189 cpu_data_t *cpu_data_ptr[MAX_CPUS] = {[0] = &scdatas[0] };
190
191 SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base;
192
193 decl_simple_lock_data(, ncpus_lock); /* protects real_ncpus */
194 unsigned int real_ncpus = 1;
195 unsigned int max_ncpus = MAX_CPUS;
196 unsigned int max_cpus_from_firmware = 0;
197
198 extern void hi64_sysenter(void);
199 extern void hi64_syscall(void);
200
201 typedef struct {
202 struct real_descriptor pcldts[LDTSZ];
203 } cldt_t;
204
205 cpu_desc_table64_t scdtables[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
206 cpu_fault_stack_t scfstks[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
207
208 cldt_t *dyn_ldts;
209
210 /*
211 * Multiprocessor i386/i486 systems use a separate copy of the
212 * GDT, IDT, LDT, and kernel TSS per processor. The first three
213 * are separate to avoid lock contention: the i386 uses locked
214 * memory cycles to access the descriptor tables. The TSS is
215 * separate since each processor needs its own kernel stack,
216 * and since using a TSS marks it busy.
217 */
218
219 /*
220 * Allocate and initialize the per-processor descriptor tables.
221 */
222
223 /*
224 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
225 * When switching to 64-bit mode this replaces KERNEL_LDT entry
226 * and the following empty slot. This enables the LDT to be referenced
227 * in the uber-space remapping window on the kernel.
228 */
229 struct fake_descriptor64 kernel_ldt_desc64 = {
230 .offset64 = 0,
231 .lim_or_seg = LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
232 .size_or_IST = 0,
233 .access = ACC_P | ACC_PL_K | ACC_LDT,
234 .reserved = 0
235 };
236
237 /*
238 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
239 * It is follows pattern of the KERNEL_LDT.
240 */
241 struct fake_descriptor64 kernel_tss_desc64 = {
242 .offset64 = 0,
243 .lim_or_seg = sizeof(struct x86_64_tss) - 1,
244 .size_or_IST = 0,
245 .access = ACC_P | ACC_PL_K | ACC_TSS,
246 .reserved = 0
247 };
248
249 /*
250 * Convert a descriptor from fake to real format.
251 *
252 * Fake descriptor format:
253 * bytes 0..3 base 31..0
254 * bytes 4..5 limit 15..0
255 * byte 6 access byte 2 | limit 19..16
256 * byte 7 access byte 1
257 *
258 * Real descriptor format:
259 * bytes 0..1 limit 15..0
260 * bytes 2..3 base 15..0
261 * byte 4 base 23..16
262 * byte 5 access byte 1
263 * byte 6 access byte 2 | limit 19..16
264 * byte 7 base 31..24
265 *
266 * Fake gate format:
267 * bytes 0..3 offset
268 * bytes 4..5 selector
269 * byte 6 word count << 4 (to match fake descriptor)
270 * byte 7 access byte 1
271 *
272 * Real gate format:
273 * bytes 0..1 offset 15..0
274 * bytes 2..3 selector
275 * byte 4 word count
276 * byte 5 access byte 1
277 * bytes 6..7 offset 31..16
278 */
279 void
280 fix_desc(void *d, int num_desc)
281 {
282 uint8_t *desc = (uint8_t*) d;
283
284 do {
285 if ((desc[7] & 0x14) == 0x04) { /* gate */
286 uint32_t offset;
287 uint16_t selector;
288 uint8_t wordcount;
289 uint8_t acc;
290
291 offset = *((uint32_t*)(desc));
292 selector = *((uint32_t*)(desc + 4));
293 wordcount = desc[6] >> 4;
294 acc = desc[7];
295
296 *((uint16_t*)desc) = offset & 0xFFFF;
297 *((uint16_t*)(desc + 2)) = selector;
298 desc[4] = wordcount;
299 desc[5] = acc;
300 *((uint16_t*)(desc + 6)) = offset >> 16;
301 } else { /* descriptor */
302 uint32_t base;
303 uint16_t limit;
304 uint8_t acc1, acc2;
305
306 base = *((uint32_t*)(desc));
307 limit = *((uint16_t*)(desc + 4));
308 acc2 = desc[6];
309 acc1 = desc[7];
310
311 *((uint16_t*)(desc)) = limit;
312 *((uint16_t*)(desc + 2)) = base & 0xFFFF;
313 desc[4] = (base >> 16) & 0xFF;
314 desc[5] = acc1;
315 desc[6] = acc2;
316 desc[7] = base >> 24;
317 }
318 desc += 8;
319 } while (--num_desc);
320 }
321
322 void
323 fix_desc64(void *descp, int count)
324 {
325 struct fake_descriptor64 *fakep;
326 union {
327 struct real_gate64 gate;
328 struct real_descriptor64 desc;
329 } real;
330 int i;
331
332 fakep = (struct fake_descriptor64 *) descp;
333
334 for (i = 0; i < count; i++, fakep++) {
335 /*
336 * Construct the real decriptor locally.
337 */
338
339 bzero((void *) &real, sizeof(real));
340
341 switch (fakep->access & ACC_TYPE) {
342 case 0:
343 break;
344 case ACC_CALL_GATE:
345 case ACC_INTR_GATE:
346 case ACC_TRAP_GATE:
347 real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
348 real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
349 real.gate.IST = fakep->size_or_IST & 0x7;
350 real.gate.access8 = fakep->access;
351 real.gate.offset_high16 = (uint16_t)((fakep->offset64 >> 16) & 0xFFFF);
352 real.gate.offset_top32 = (uint32_t)(fakep->offset64 >> 32);
353 break;
354 default: /* Otherwise */
355 real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
356 real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
357 real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
358 real.desc.access8 = fakep->access;
359 real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
360 real.desc.granularity4 = fakep->size_or_IST;
361 real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
362 real.desc.base_top32 = (uint32_t)(fakep->offset64 >> 32);
363 }
364
365 /*
366 * Now copy back over the fake structure.
367 */
368 bcopy((void *) &real, (void *) fakep, sizeof(real));
369 }
370 }
371
372 extern unsigned mldtsz;
373 void
374 cpu_desc_init(cpu_data_t *cdp)
375 {
376 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
377
378 if (cdp == cpu_data_master) {
379 /*
380 * Populate the double-mapped 'u' and base 'b' fields in the
381 * KTSS with I/G/LDT and sysenter stack data.
382 */
383 cdi->cdi_ktssu = (void *)DBLMAP(&master_ktss64);
384 cdi->cdi_ktssb = (void *)&master_ktss64;
385 cdi->cdi_sstku = (vm_offset_t) DBLMAP(&master_sstk.top);
386 cdi->cdi_sstkb = (vm_offset_t) &master_sstk.top;
387
388 cdi->cdi_gdtu.ptr = (void *)DBLMAP((uintptr_t) &master_gdt);
389 cdi->cdi_gdtb.ptr = (void *)&master_gdt;
390 cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
391 cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64);
392 cdi->cdi_ldtu = (struct real_descriptor *)DBLMAP((uintptr_t)&master_ldt[0]);
393 cdi->cdi_ldtb = &master_ldt[0];
394
395 /* Replace the expanded LDTs and TSS slots in the GDT */
396 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
397 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
398 kernel_ldt_desc64;
399 *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
400 kernel_ldt_desc64;
401 kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64);
402 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
403 kernel_tss_desc64;
404
405 /* Fix up the expanded descriptors for 64-bit. */
406 fix_desc64((void *) &master_idt64, IDTSZ);
407 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
408 fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1);
409 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
410
411 /*
412 * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
413 */
414 master_ktss64.ist2 = (uintptr_t) low_eintstack;
415 master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t);
416 } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
417 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
418
419 cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
420
421 cdi->cdi_ktssu = (void *)DBLMAP(&cdt->ktss);
422 cdi->cdi_ktssb = (void *)(&cdt->ktss);
423 cdi->cdi_sstku = (vm_offset_t)DBLMAP(&cdt->sstk.top);
424 cdi->cdi_sstkb = (vm_offset_t)(&cdt->sstk.top);
425 cdi->cdi_ldtu = (void *)LDTALIAS(cdp->cpu_ldtp);
426 cdi->cdi_ldtb = (void *)(cdp->cpu_ldtp);
427
428 /*
429 * Copy the tables
430 */
431 bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
432 bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, mldtsz);
433 bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
434 cdi->cdi_gdtu.ptr = (void *)DBLMAP(cdt->gdt);
435 cdi->cdi_gdtb.ptr = (void *)(cdt->gdt);
436 /*
437 * Fix up the entries in the GDT to point to
438 * this LDT and this TSS.
439 * Note reuse of global 'kernel_ldt_desc64, which is not
440 * concurrency-safe. Higher level synchronization is expected
441 */
442 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
443 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
444 kernel_ldt_desc64;
445 fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
446
447 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
448 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
449 kernel_ldt_desc64;
450 fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
451
452 kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu;
453 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
454 kernel_tss_desc64;
455 fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
456
457 /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
458 uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
459 cdt->fstkp = cfstk;
460 bzero((void *) cfstk, FSTK_SZ);
461 cdt->ktss.ist2 = DBLMAP((uint64_t)cdt->fstkp + FSTK_SZ);
462 cdt->ktss.ist1 = cdt->ktss.ist2 - sizeof(x86_64_intr_stack_frame_t);
463 }
464
465 /* Require that the top of the sysenter stack is 16-byte aligned */
466 if ((cdi->cdi_sstku % 16) != 0) {
467 panic("cpu_desc_init() sysenter stack not 16-byte aligned");
468 }
469 }
470 void
471 cpu_desc_load(cpu_data_t *cdp)
472 {
473 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
474
475 postcode(CPU_DESC_LOAD_ENTRY);
476
477 /* Stuff the kernel per-cpu data area address into the MSRs */
478 postcode(CPU_DESC_LOAD_GS_BASE);
479 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
480 postcode(CPU_DESC_LOAD_KERNEL_GS_BASE);
481 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
482
483 /*
484 * Ensure the TSS segment's busy bit is clear. This is required
485 * for the case of reloading descriptors at wake to avoid
486 * their complete re-initialization.
487 */
488 gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
489
490 /* Load the GDT, LDT, IDT and TSS */
491 cdi->cdi_gdtb.size = sizeof(struct real_descriptor) * GDTSZ - 1;
492 cdi->cdi_gdtu.size = cdi->cdi_gdtb.size;
493 cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number;
494 cdi->cdi_idtu.size = cdi->cdi_idtb.size;
495
496 postcode(CPU_DESC_LOAD_GDT);
497 lgdt((uintptr_t *) &cdi->cdi_gdtu);
498 postcode(CPU_DESC_LOAD_IDT);
499 lidt((uintptr_t *) &cdi->cdi_idtu);
500 postcode(CPU_DESC_LOAD_LDT);
501 lldt(KERNEL_LDT);
502 postcode(CPU_DESC_LOAD_TSS);
503 set_tr(KERNEL_TSS);
504
505 postcode(CPU_DESC_LOAD_EXIT);
506 }
507
508 /*
509 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
510 */
511 void
512 cpu_syscall_init(cpu_data_t *cdp)
513 {
514 #pragma unused(cdp)
515
516 wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
517 wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter));
518 wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku);
519 /* Enable syscall/sysret */
520 wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
521
522 /*
523 * MSRs for 64-bit syscall/sysret
524 * Note USER_CS because sysret uses this + 16 when returning to
525 * 64-bit code.
526 */
527 wrmsr64(MSR_IA32_LSTAR, DBLMAP((uintptr_t) hi64_syscall));
528 wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | (((uint64_t)KERNEL64_CS) << 32));
529 /*
530 * Emulate eflags cleared by sysenter but note that
531 * we also clear the trace trap to avoid the complications
532 * of single-stepping into a syscall. The nested task bit
533 * is also cleared to avoid a spurious "task switch"
534 * should we choose to return via an IRET.
535 */
536 wrmsr64(MSR_IA32_FMASK, EFL_DF | EFL_IF | EFL_TF | EFL_NT);
537 }
538 extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
539 uint64_t ldt_alias_offset;
540
541 __startup_func
542 static void
543 cpu_data_startup_init(void)
544 {
545 int flags = KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_PERMANENT |
546 KMA_ZERO | KMA_KOBJECT;
547 uint32_t cpus = max_cpus_from_firmware;
548 vm_size_t size = percpu_section_size() * cpus;
549 kern_return_t kr;
550
551 percpu_base.size = percpu_section_size();
552 if (cpus == 0) {
553 panic("percpu: max_cpus_from_firmware not yet initialized");
554 }
555 if (cpus == 1) {
556 percpu_base.start = VM_MAX_KERNEL_ADDRESS;
557 return;
558 }
559
560 kr = kmem_alloc_flags(kernel_map, &percpu_base.start,
561 round_page(size) + 2 * PAGE_SIZE, VM_KERN_MEMORY_CPU, flags);
562 if (kr != KERN_SUCCESS) {
563 panic("percpu: kmem_alloc failed (%d)", kr);
564 }
565
566 percpu_base.start += PAGE_SIZE - percpu_section_start();
567 percpu_base.end = percpu_base.start + size - 1;
568 }
569 STARTUP(PERCPU, STARTUP_RANK_FIRST, cpu_data_startup_init);
570
571 cpu_data_t *
572 cpu_data_alloc(boolean_t is_boot_cpu)
573 {
574 int ret;
575 cpu_data_t *cdp;
576
577 if (is_boot_cpu) {
578 assert(real_ncpus == 1);
579 cdp = cpu_datap(0);
580 if (cdp->cpu_processor == NULL) {
581 simple_lock_init(&ncpus_lock, 0);
582 cdp->cpu_processor = PERCPU_GET_MASTER(processor);
583 }
584 return cdp;
585 }
586
587 boolean_t do_ldt_alloc = FALSE;
588 simple_lock(&ncpus_lock, LCK_GRP_NULL);
589 int cnum = real_ncpus;
590 real_ncpus++;
591 if (dyn_ldts == NULL) {
592 do_ldt_alloc = TRUE;
593 }
594 simple_unlock(&ncpus_lock);
595
596 /*
597 * Allocate per-cpu data:
598 */
599
600 cdp = &scdatas[cnum];
601 bzero((void*) cdp, sizeof(cpu_data_t));
602 cdp->cpu_this = cdp;
603 cdp->cpu_number = cnum;
604 cdp->cd_shadow = &cpshadows[cnum];
605 cdp->cpu_pcpu_base = percpu_base.start + (cnum - 1) * percpu_section_size();
606 cdp->cpu_processor = PERCPU_GET_WITH_BASE(cdp->cpu_pcpu_base, processor);
607
608 /*
609 * Allocate interrupt stack:
610 */
611 ret = kmem_alloc(kernel_map,
612 (vm_offset_t *) &cdp->cpu_int_stack_top,
613 INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
614 if (ret != KERN_SUCCESS) {
615 panic("cpu_data_alloc() int stack failed, ret=%d\n", ret);
616 }
617 bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
618 cdp->cpu_int_stack_top += INTSTACK_SIZE;
619
620 /*
621 * Allocate descriptor table:
622 */
623
624 cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[cnum];
625 /*
626 * Allocate LDT
627 */
628 if (do_ldt_alloc) {
629 boolean_t do_ldt_free = FALSE;
630 vm_offset_t sldtoffset = 0;
631 /*
632 * Allocate LDT
633 */
634 vm_offset_t ldtalloc = 0, ldtallocsz = round_page_64(MAX_CPUS * sizeof(struct real_descriptor) * LDTSZ);
635 ret = kmem_alloc(kernel_map, (vm_offset_t *) &ldtalloc, ldtallocsz, VM_KERN_MEMORY_CPU);
636 if (ret != KERN_SUCCESS) {
637 panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret);
638 }
639
640 simple_lock(&ncpus_lock, LCK_GRP_NULL);
641 if (dyn_ldts == NULL) {
642 dyn_ldts = (cldt_t *)ldtalloc;
643 } else {
644 do_ldt_free = TRUE;
645 }
646 simple_unlock(&ncpus_lock);
647
648 if (do_ldt_free) {
649 kmem_free(kernel_map, ldtalloc, ldtallocsz);
650 } else {
651 /* CPU registration and startup are expected to execute
652 * serially, as invoked by the platform driver.
653 * Create trampoline alias of LDT region.
654 */
655 sldtoffset = dyn_dblmap(ldtalloc, ldtallocsz);
656 ldt_alias_offset = sldtoffset;
657 }
658 }
659 cdp->cpu_ldtp = &dyn_ldts[cnum].pcldts[0];
660
661 #if CONFIG_MCA
662 /* Machine-check shadow register allocation. */
663 mca_cpu_alloc(cdp);
664 #endif
665
666 /*
667 * Before this cpu has been assigned a real thread context,
668 * we give it a fake, unique, non-zero thread id which the locking
669 * primitives use as their lock value.
670 * Note that this does not apply to the boot processor, cpu 0, which
671 * transitions to a thread context well before other processors are
672 * started.
673 */
674 cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
675 cdp->cpu_NMI_acknowledged = TRUE;
676 cdp->cpu_nanotime = &pal_rtc_nanotime_info;
677
678 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
679 "ldt: %p "
680 "int_stack: 0x%lx-0x%lx\n",
681 cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
682 (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
683 cpu_data_ptr[cnum] = cdp;
684
685 return cdp;
686 }
687
688 boolean_t
689 valid_user_data_selector(uint16_t selector)
690 {
691 sel_t sel = selector_to_sel(selector);
692
693 if (selector == 0) {
694 return TRUE;
695 }
696
697 if (sel.ti == SEL_LDT) {
698 return TRUE;
699 } else if (sel.index < GDTSZ) {
700 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
701 return TRUE;
702 }
703 }
704 return FALSE;
705 }
706
707 boolean_t
708 valid_user_code_selector(uint16_t selector)
709 {
710 sel_t sel = selector_to_sel(selector);
711
712 if (selector == 0) {
713 return FALSE;
714 }
715
716 if (sel.ti == SEL_LDT) {
717 if (sel.rpl == USER_PRIV) {
718 return TRUE;
719 }
720 } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
721 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
722 return TRUE;
723 }
724 /* Explicitly validate the system code selectors
725 * even if not instantaneously privileged,
726 * since they are dynamically re-privileged
727 * at context switch
728 */
729 if ((selector == USER_CS) || (selector == USER64_CS)) {
730 return TRUE;
731 }
732 }
733
734 return FALSE;
735 }
736
737 boolean_t
738 valid_user_stack_selector(uint16_t selector)
739 {
740 sel_t sel = selector_to_sel(selector);
741
742 if (selector == 0) {
743 return FALSE;
744 }
745
746 if (sel.ti == SEL_LDT) {
747 if (sel.rpl == USER_PRIV) {
748 return TRUE;
749 }
750 } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
751 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
752 return TRUE;
753 }
754 }
755
756 return FALSE;
757 }
758
759 boolean_t
760 valid_user_segment_selectors(uint16_t cs,
761 uint16_t ss,
762 uint16_t ds,
763 uint16_t es,
764 uint16_t fs,
765 uint16_t gs)
766 {
767 return valid_user_code_selector(cs) &&
768 valid_user_stack_selector(ss) &&
769 valid_user_data_selector(ds) &&
770 valid_user_data_selector(es) &&
771 valid_user_data_selector(fs) &&
772 valid_user_data_selector(gs);
773 }
774
775 /*
776 * Allocate a new interrupt stack for the boot processor from the
777 * heap rather than continue to use the statically allocated space.
778 * Also switch to a dynamically allocated cpu data area.
779 */
780 void
781 cpu_data_realloc(void)
782 {
783 int ret;
784 vm_offset_t istk;
785 cpu_data_t *cdp;
786 boolean_t istate;
787
788 ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
789 if (ret != KERN_SUCCESS) {
790 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
791 }
792 bzero((void*) istk, INTSTACK_SIZE);
793 istk += INTSTACK_SIZE;
794
795 cdp = &scdatas[0];
796
797 /* Copy old contents into new area and make fix-ups */
798 assert(cpu_number() == 0);
799 bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t));
800 cdp->cpu_this = cdp;
801 cdp->cpu_int_stack_top = istk;
802 timer_call_queue_init(&cdp->rtclock_timer.queue);
803 cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0];
804 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
805
806 uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
807 cdt->fstkp = cfstk;
808 cfstk += FSTK_SZ;
809
810 /*
811 * With interrupts disabled commmit the new areas.
812 */
813 istate = ml_set_interrupts_enabled(FALSE);
814 cpu_data_ptr[0] = cdp;
815 master_ktss64.ist2 = DBLMAP((uintptr_t) cfstk);
816 master_ktss64.ist1 = DBLMAP((uintptr_t) cfstk - sizeof(x86_64_intr_stack_frame_t));
817 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
818 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
819 (void) ml_set_interrupts_enabled(istate);
820
821 kprintf("Reallocated master cpu data: %p,"
822 " interrupt stack: %p, fault stack: %p\n",
823 (void *) cdp, (void *) istk, (void *) cfstk);
824 }