2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 #include <kern/cpu_number.h>
61 #include <kern/cpu_data.h>
62 #include <kern/percpu.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <mach/vm_map.h>
66 #include <mach/machine/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_map.h>
70 #include <i386/bit_routines.h>
71 #include <i386/mp_desc.h>
72 #include <i386/misc_protos.h>
74 #include <i386/pmap.h>
75 #include <i386/postcode.h>
76 #include <i386/pmap_internal.h>
78 #include <i386/machine_check.h>
81 #include <kern/misc_protos.h>
84 #include <kern/monotonic.h>
85 #endif /* MONOTONIC */
86 #include <san/kasan.h>
88 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
89 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
91 // Declare macros that will declare the externs
92 #define TRAP(n, name) extern void *name ;
93 #define TRAP_ERR(n, name) extern void *name ;
94 #define TRAP_SPC(n, name) extern void *name ;
95 #define TRAP_IST1(n, name) extern void *name ;
96 #define TRAP_IST2(n, name) extern void *name ;
97 #define INTERRUPT(n) extern void *_intr_ ## n ;
98 #define USER_TRAP(n, name) extern void *name ;
99 #define USER_TRAP_SPC(n, name) extern void *name ;
101 // Include the table to declare the externs
102 #include "../x86_64/idt_table.h"
104 // Undef the macros, then redefine them so we can declare the table
114 #define TRAP(n, name) \
123 #define TRAP_ERR TRAP
124 #define TRAP_SPC TRAP
126 #define TRAP_IST1(n, name) \
135 #define TRAP_IST2(n, name) \
144 #define INTERRUPT(n) \
146 (uintptr_t)&_intr_ ## n,\
153 #define USER_TRAP(n, name) \
162 #define USER_TRAP_SPC USER_TRAP
164 // Declare the table using the macros we just set up
165 struct fake_descriptor64 master_idt64
[IDTSZ
]
166 __attribute__ ((section("__HIB,__desc")))
167 __attribute__ ((aligned(PAGE_SIZE
))) = {
168 #include "../x86_64/idt_table.h"
172 * First cpu`s interrupt stack.
174 extern uint32_t low_intstack
[]; /* bottom */
175 extern uint32_t low_eintstack
[]; /* top */
178 * Per-cpu data area pointers.
180 cpu_data_t cpshadows
[MAX_CPUS
] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
181 cpu_data_t scdatas
[MAX_CPUS
] __attribute__((aligned(64))) = {
182 [0].cpu_this
= &scdatas
[0],
183 [0].cpu_nanotime
= &pal_rtc_nanotime_info
,
184 [0].cpu_int_stack_top
= (vm_offset_t
) low_eintstack
,
185 [0].cd_shadow
= &cpshadows
[0]
187 cpu_data_t
*cpu_data_master
= &scdatas
[0];
189 cpu_data_t
*cpu_data_ptr
[MAX_CPUS
] = {[0] = &scdatas
[0] };
191 SECURITY_READ_ONLY_LATE(struct percpu_base
) percpu_base
;
193 decl_simple_lock_data(, ncpus_lock
); /* protects real_ncpus */
194 unsigned int real_ncpus
= 1;
195 unsigned int max_ncpus
= MAX_CPUS
;
196 unsigned int max_cpus_from_firmware
= 0;
198 extern void hi64_sysenter(void);
199 extern void hi64_syscall(void);
202 struct real_descriptor pcldts
[LDTSZ
];
205 cpu_desc_table64_t scdtables
[MAX_CPUS
] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
206 cpu_fault_stack_t scfstks
[MAX_CPUS
] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
211 * Multiprocessor i386/i486 systems use a separate copy of the
212 * GDT, IDT, LDT, and kernel TSS per processor. The first three
213 * are separate to avoid lock contention: the i386 uses locked
214 * memory cycles to access the descriptor tables. The TSS is
215 * separate since each processor needs its own kernel stack,
216 * and since using a TSS marks it busy.
220 * Allocate and initialize the per-processor descriptor tables.
224 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
225 * When switching to 64-bit mode this replaces KERNEL_LDT entry
226 * and the following empty slot. This enables the LDT to be referenced
227 * in the uber-space remapping window on the kernel.
229 struct fake_descriptor64 kernel_ldt_desc64
= {
231 .lim_or_seg
= LDTSZ_MIN
* sizeof(struct fake_descriptor
) - 1,
233 .access
= ACC_P
| ACC_PL_K
| ACC_LDT
,
238 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
239 * It is follows pattern of the KERNEL_LDT.
241 struct fake_descriptor64 kernel_tss_desc64
= {
243 .lim_or_seg
= sizeof(struct x86_64_tss
) - 1,
245 .access
= ACC_P
| ACC_PL_K
| ACC_TSS
,
250 * Convert a descriptor from fake to real format.
252 * Fake descriptor format:
253 * bytes 0..3 base 31..0
254 * bytes 4..5 limit 15..0
255 * byte 6 access byte 2 | limit 19..16
256 * byte 7 access byte 1
258 * Real descriptor format:
259 * bytes 0..1 limit 15..0
260 * bytes 2..3 base 15..0
262 * byte 5 access byte 1
263 * byte 6 access byte 2 | limit 19..16
268 * bytes 4..5 selector
269 * byte 6 word count << 4 (to match fake descriptor)
270 * byte 7 access byte 1
273 * bytes 0..1 offset 15..0
274 * bytes 2..3 selector
276 * byte 5 access byte 1
277 * bytes 6..7 offset 31..16
280 fix_desc(void *d
, int num_desc
)
282 uint8_t *desc
= (uint8_t*) d
;
285 if ((desc
[7] & 0x14) == 0x04) { /* gate */
291 offset
= *((uint32_t*)(desc
));
292 selector
= *((uint32_t*)(desc
+ 4));
293 wordcount
= desc
[6] >> 4;
296 *((uint16_t*)desc
) = offset
& 0xFFFF;
297 *((uint16_t*)(desc
+ 2)) = selector
;
300 *((uint16_t*)(desc
+ 6)) = offset
>> 16;
301 } else { /* descriptor */
306 base
= *((uint32_t*)(desc
));
307 limit
= *((uint16_t*)(desc
+ 4));
311 *((uint16_t*)(desc
)) = limit
;
312 *((uint16_t*)(desc
+ 2)) = base
& 0xFFFF;
313 desc
[4] = (base
>> 16) & 0xFF;
316 desc
[7] = base
>> 24;
319 } while (--num_desc
);
323 fix_desc64(void *descp
, int count
)
325 struct fake_descriptor64
*fakep
;
327 struct real_gate64 gate
;
328 struct real_descriptor64 desc
;
332 fakep
= (struct fake_descriptor64
*) descp
;
334 for (i
= 0; i
< count
; i
++, fakep
++) {
336 * Construct the real decriptor locally.
339 bzero((void *) &real
, sizeof(real
));
341 switch (fakep
->access
& ACC_TYPE
) {
347 real
.gate
.offset_low16
= (uint16_t)(fakep
->offset64
& 0xFFFF);
348 real
.gate
.selector16
= fakep
->lim_or_seg
& 0xFFFF;
349 real
.gate
.IST
= fakep
->size_or_IST
& 0x7;
350 real
.gate
.access8
= fakep
->access
;
351 real
.gate
.offset_high16
= (uint16_t)((fakep
->offset64
>> 16) & 0xFFFF);
352 real
.gate
.offset_top32
= (uint32_t)(fakep
->offset64
>> 32);
354 default: /* Otherwise */
355 real
.desc
.limit_low16
= fakep
->lim_or_seg
& 0xFFFF;
356 real
.desc
.base_low16
= (uint16_t)(fakep
->offset64
& 0xFFFF);
357 real
.desc
.base_med8
= (uint8_t)((fakep
->offset64
>> 16) & 0xFF);
358 real
.desc
.access8
= fakep
->access
;
359 real
.desc
.limit_high4
= (fakep
->lim_or_seg
>> 16) & 0xFF;
360 real
.desc
.granularity4
= fakep
->size_or_IST
;
361 real
.desc
.base_high8
= (uint8_t)((fakep
->offset64
>> 24) & 0xFF);
362 real
.desc
.base_top32
= (uint32_t)(fakep
->offset64
>> 32);
366 * Now copy back over the fake structure.
368 bcopy((void *) &real
, (void *) fakep
, sizeof(real
));
372 extern unsigned mldtsz
;
374 cpu_desc_init(cpu_data_t
*cdp
)
376 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
378 if (cdp
== cpu_data_master
) {
380 * Populate the double-mapped 'u' and base 'b' fields in the
381 * KTSS with I/G/LDT and sysenter stack data.
383 cdi
->cdi_ktssu
= (void *)DBLMAP(&master_ktss64
);
384 cdi
->cdi_ktssb
= (void *)&master_ktss64
;
385 cdi
->cdi_sstku
= (vm_offset_t
) DBLMAP(&master_sstk
.top
);
386 cdi
->cdi_sstkb
= (vm_offset_t
) &master_sstk
.top
;
388 cdi
->cdi_gdtu
.ptr
= (void *)DBLMAP((uintptr_t) &master_gdt
);
389 cdi
->cdi_gdtb
.ptr
= (void *)&master_gdt
;
390 cdi
->cdi_idtu
.ptr
= (void *)DBLMAP((uintptr_t) &master_idt64
);
391 cdi
->cdi_idtb
.ptr
= (void *)((uintptr_t) &master_idt64
);
392 cdi
->cdi_ldtu
= (struct real_descriptor
*)DBLMAP((uintptr_t)&master_ldt
[0]);
393 cdi
->cdi_ldtb
= &master_ldt
[0];
395 /* Replace the expanded LDTs and TSS slots in the GDT */
396 kernel_ldt_desc64
.offset64
= (uintptr_t) cdi
->cdi_ldtu
;
397 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(KERNEL_LDT
)] =
399 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(USER_LDT
)] =
401 kernel_tss_desc64
.offset64
= (uintptr_t) DBLMAP(&master_ktss64
);
402 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(KERNEL_TSS
)] =
405 /* Fix up the expanded descriptors for 64-bit. */
406 fix_desc64((void *) &master_idt64
, IDTSZ
);
407 fix_desc64((void *) &master_gdt
[sel_idx(KERNEL_LDT
)], 1);
408 fix_desc64((void *) &master_gdt
[sel_idx(USER_LDT
)], 1);
409 fix_desc64((void *) &master_gdt
[sel_idx(KERNEL_TSS
)], 1);
412 * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
414 master_ktss64
.ist2
= (uintptr_t) low_eintstack
;
415 master_ktss64
.ist1
= (uintptr_t) low_eintstack
- sizeof(x86_64_intr_stack_frame_t
);
416 } else if (cdi
->cdi_ktssu
== NULL
) { /* Skipping re-init on wake */
417 cpu_desc_table64_t
*cdt
= (cpu_desc_table64_t
*) cdp
->cpu_desc_tablep
;
419 cdi
->cdi_idtu
.ptr
= (void *)DBLMAP((uintptr_t) &master_idt64
);
421 cdi
->cdi_ktssu
= (void *)DBLMAP(&cdt
->ktss
);
422 cdi
->cdi_ktssb
= (void *)(&cdt
->ktss
);
423 cdi
->cdi_sstku
= (vm_offset_t
)DBLMAP(&cdt
->sstk
.top
);
424 cdi
->cdi_sstkb
= (vm_offset_t
)(&cdt
->sstk
.top
);
425 cdi
->cdi_ldtu
= (void *)LDTALIAS(cdp
->cpu_ldtp
);
426 cdi
->cdi_ldtb
= (void *)(cdp
->cpu_ldtp
);
431 bcopy((char *)master_gdt
, (char *)cdt
->gdt
, sizeof(master_gdt
));
432 bcopy((char *)master_ldt
, (char *)cdp
->cpu_ldtp
, mldtsz
);
433 bcopy((char *)&master_ktss64
, (char *)&cdt
->ktss
, sizeof(struct x86_64_tss
));
434 cdi
->cdi_gdtu
.ptr
= (void *)DBLMAP(cdt
->gdt
);
435 cdi
->cdi_gdtb
.ptr
= (void *)(cdt
->gdt
);
437 * Fix up the entries in the GDT to point to
438 * this LDT and this TSS.
439 * Note reuse of global 'kernel_ldt_desc64, which is not
440 * concurrency-safe. Higher level synchronization is expected
442 kernel_ldt_desc64
.offset64
= (uintptr_t) cdi
->cdi_ldtu
;
443 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(KERNEL_LDT
)] =
445 fix_desc64(&cdt
->gdt
[sel_idx(KERNEL_LDT
)], 1);
447 kernel_ldt_desc64
.offset64
= (uintptr_t) cdi
->cdi_ldtu
;
448 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(USER_LDT
)] =
450 fix_desc64(&cdt
->gdt
[sel_idx(USER_LDT
)], 1);
452 kernel_tss_desc64
.offset64
= (uintptr_t) cdi
->cdi_ktssu
;
453 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(KERNEL_TSS
)] =
455 fix_desc64(&cdt
->gdt
[sel_idx(KERNEL_TSS
)], 1);
457 /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
458 uint8_t *cfstk
= &scfstks
[cdp
->cpu_number
].fstk
[0];
460 bzero((void *) cfstk
, FSTK_SZ
);
461 cdt
->ktss
.ist2
= DBLMAP((uint64_t)cdt
->fstkp
+ FSTK_SZ
);
462 cdt
->ktss
.ist1
= cdt
->ktss
.ist2
- sizeof(x86_64_intr_stack_frame_t
);
465 /* Require that the top of the sysenter stack is 16-byte aligned */
466 if ((cdi
->cdi_sstku
% 16) != 0) {
467 panic("cpu_desc_init() sysenter stack not 16-byte aligned");
471 cpu_desc_load(cpu_data_t
*cdp
)
473 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
475 postcode(CPU_DESC_LOAD_ENTRY
);
477 /* Stuff the kernel per-cpu data area address into the MSRs */
478 postcode(CPU_DESC_LOAD_GS_BASE
);
479 wrmsr64(MSR_IA32_GS_BASE
, (uintptr_t) cdp
);
480 postcode(CPU_DESC_LOAD_KERNEL_GS_BASE
);
481 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, (uintptr_t) cdp
);
484 * Ensure the TSS segment's busy bit is clear. This is required
485 * for the case of reloading descriptors at wake to avoid
486 * their complete re-initialization.
488 gdt_desc_p(KERNEL_TSS
)->access
&= ~ACC_TSS_BUSY
;
490 /* Load the GDT, LDT, IDT and TSS */
491 cdi
->cdi_gdtb
.size
= sizeof(struct real_descriptor
) * GDTSZ
- 1;
492 cdi
->cdi_gdtu
.size
= cdi
->cdi_gdtb
.size
;
493 cdi
->cdi_idtb
.size
= 0x1000 + cdp
->cpu_number
;
494 cdi
->cdi_idtu
.size
= cdi
->cdi_idtb
.size
;
496 postcode(CPU_DESC_LOAD_GDT
);
497 lgdt((uintptr_t *) &cdi
->cdi_gdtu
);
498 postcode(CPU_DESC_LOAD_IDT
);
499 lidt((uintptr_t *) &cdi
->cdi_idtu
);
500 postcode(CPU_DESC_LOAD_LDT
);
502 postcode(CPU_DESC_LOAD_TSS
);
505 postcode(CPU_DESC_LOAD_EXIT
);
509 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
512 cpu_syscall_init(cpu_data_t
*cdp
)
516 wrmsr64(MSR_IA32_SYSENTER_CS
, SYSENTER_CS
);
517 wrmsr64(MSR_IA32_SYSENTER_EIP
, DBLMAP((uintptr_t) hi64_sysenter
));
518 wrmsr64(MSR_IA32_SYSENTER_ESP
, current_cpu_datap()->cpu_desc_index
.cdi_sstku
);
519 /* Enable syscall/sysret */
520 wrmsr64(MSR_IA32_EFER
, rdmsr64(MSR_IA32_EFER
) | MSR_IA32_EFER_SCE
);
523 * MSRs for 64-bit syscall/sysret
524 * Note USER_CS because sysret uses this + 16 when returning to
527 wrmsr64(MSR_IA32_LSTAR
, DBLMAP((uintptr_t) hi64_syscall
));
528 wrmsr64(MSR_IA32_STAR
, (((uint64_t)USER_CS
) << 48) | (((uint64_t)KERNEL64_CS
) << 32));
530 * Emulate eflags cleared by sysenter but note that
531 * we also clear the trace trap to avoid the complications
532 * of single-stepping into a syscall. The nested task bit
533 * is also cleared to avoid a spurious "task switch"
534 * should we choose to return via an IRET.
536 wrmsr64(MSR_IA32_FMASK
, EFL_DF
| EFL_IF
| EFL_TF
| EFL_NT
);
538 extern vm_offset_t
dyn_dblmap(vm_offset_t
, vm_offset_t
);
539 uint64_t ldt_alias_offset
;
543 cpu_data_startup_init(void)
545 int flags
= KMA_GUARD_FIRST
| KMA_GUARD_LAST
| KMA_PERMANENT
|
546 KMA_ZERO
| KMA_KOBJECT
;
547 uint32_t cpus
= max_cpus_from_firmware
;
548 vm_size_t size
= percpu_section_size() * cpus
;
551 percpu_base
.size
= percpu_section_size();
553 panic("percpu: max_cpus_from_firmware not yet initialized");
556 percpu_base
.start
= VM_MAX_KERNEL_ADDRESS
;
560 kr
= kmem_alloc_flags(kernel_map
, &percpu_base
.start
,
561 round_page(size
) + 2 * PAGE_SIZE
, VM_KERN_MEMORY_CPU
, flags
);
562 if (kr
!= KERN_SUCCESS
) {
563 panic("percpu: kmem_alloc failed (%d)", kr
);
566 percpu_base
.start
+= PAGE_SIZE
- percpu_section_start();
567 percpu_base
.end
= percpu_base
.start
+ size
- 1;
569 STARTUP(PERCPU
, STARTUP_RANK_FIRST
, cpu_data_startup_init
);
572 cpu_data_alloc(boolean_t is_boot_cpu
)
578 assert(real_ncpus
== 1);
580 if (cdp
->cpu_processor
== NULL
) {
581 simple_lock_init(&ncpus_lock
, 0);
582 cdp
->cpu_processor
= PERCPU_GET_MASTER(processor
);
587 boolean_t do_ldt_alloc
= FALSE
;
588 simple_lock(&ncpus_lock
, LCK_GRP_NULL
);
589 int cnum
= real_ncpus
;
591 if (dyn_ldts
== NULL
) {
594 simple_unlock(&ncpus_lock
);
597 * Allocate per-cpu data:
600 cdp
= &scdatas
[cnum
];
601 bzero((void*) cdp
, sizeof(cpu_data_t
));
603 cdp
->cpu_number
= cnum
;
604 cdp
->cd_shadow
= &cpshadows
[cnum
];
605 cdp
->cpu_pcpu_base
= percpu_base
.start
+ (cnum
- 1) * percpu_section_size();
606 cdp
->cpu_processor
= PERCPU_GET_WITH_BASE(cdp
->cpu_pcpu_base
, processor
);
609 * Allocate interrupt stack:
611 ret
= kmem_alloc(kernel_map
,
612 (vm_offset_t
*) &cdp
->cpu_int_stack_top
,
613 INTSTACK_SIZE
, VM_KERN_MEMORY_CPU
);
614 if (ret
!= KERN_SUCCESS
) {
615 panic("cpu_data_alloc() int stack failed, ret=%d\n", ret
);
617 bzero((void*) cdp
->cpu_int_stack_top
, INTSTACK_SIZE
);
618 cdp
->cpu_int_stack_top
+= INTSTACK_SIZE
;
621 * Allocate descriptor table:
624 cdp
->cpu_desc_tablep
= (struct cpu_desc_table
*) &scdtables
[cnum
];
629 boolean_t do_ldt_free
= FALSE
;
630 vm_offset_t sldtoffset
= 0;
634 vm_offset_t ldtalloc
= 0, ldtallocsz
= round_page_64(MAX_CPUS
* sizeof(struct real_descriptor
) * LDTSZ
);
635 ret
= kmem_alloc(kernel_map
, (vm_offset_t
*) &ldtalloc
, ldtallocsz
, VM_KERN_MEMORY_CPU
);
636 if (ret
!= KERN_SUCCESS
) {
637 panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret
);
640 simple_lock(&ncpus_lock
, LCK_GRP_NULL
);
641 if (dyn_ldts
== NULL
) {
642 dyn_ldts
= (cldt_t
*)ldtalloc
;
646 simple_unlock(&ncpus_lock
);
649 kmem_free(kernel_map
, ldtalloc
, ldtallocsz
);
651 /* CPU registration and startup are expected to execute
652 * serially, as invoked by the platform driver.
653 * Create trampoline alias of LDT region.
655 sldtoffset
= dyn_dblmap(ldtalloc
, ldtallocsz
);
656 ldt_alias_offset
= sldtoffset
;
659 cdp
->cpu_ldtp
= &dyn_ldts
[cnum
].pcldts
[0];
662 /* Machine-check shadow register allocation. */
667 * Before this cpu has been assigned a real thread context,
668 * we give it a fake, unique, non-zero thread id which the locking
669 * primitives use as their lock value.
670 * Note that this does not apply to the boot processor, cpu 0, which
671 * transitions to a thread context well before other processors are
674 cdp
->cpu_active_thread
= (thread_t
) (uintptr_t) cdp
->cpu_number
;
675 cdp
->cpu_NMI_acknowledged
= TRUE
;
676 cdp
->cpu_nanotime
= &pal_rtc_nanotime_info
;
678 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
680 "int_stack: 0x%lx-0x%lx\n",
681 cdp
->cpu_number
, cdp
, cdp
->cpu_desc_tablep
, cdp
->cpu_ldtp
,
682 (long)(cdp
->cpu_int_stack_top
- INTSTACK_SIZE
), (long)(cdp
->cpu_int_stack_top
));
683 cpu_data_ptr
[cnum
] = cdp
;
689 valid_user_data_selector(uint16_t selector
)
691 sel_t sel
= selector_to_sel(selector
);
697 if (sel
.ti
== SEL_LDT
) {
699 } else if (sel
.index
< GDTSZ
) {
700 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
) {
708 valid_user_code_selector(uint16_t selector
)
710 sel_t sel
= selector_to_sel(selector
);
716 if (sel
.ti
== SEL_LDT
) {
717 if (sel
.rpl
== USER_PRIV
) {
720 } else if (sel
.index
< GDTSZ
&& sel
.rpl
== USER_PRIV
) {
721 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
) {
724 /* Explicitly validate the system code selectors
725 * even if not instantaneously privileged,
726 * since they are dynamically re-privileged
729 if ((selector
== USER_CS
) || (selector
== USER64_CS
)) {
738 valid_user_stack_selector(uint16_t selector
)
740 sel_t sel
= selector_to_sel(selector
);
746 if (sel
.ti
== SEL_LDT
) {
747 if (sel
.rpl
== USER_PRIV
) {
750 } else if (sel
.index
< GDTSZ
&& sel
.rpl
== USER_PRIV
) {
751 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
) {
760 valid_user_segment_selectors(uint16_t cs
,
767 return valid_user_code_selector(cs
) &&
768 valid_user_stack_selector(ss
) &&
769 valid_user_data_selector(ds
) &&
770 valid_user_data_selector(es
) &&
771 valid_user_data_selector(fs
) &&
772 valid_user_data_selector(gs
);
776 * Allocate a new interrupt stack for the boot processor from the
777 * heap rather than continue to use the statically allocated space.
778 * Also switch to a dynamically allocated cpu data area.
781 cpu_data_realloc(void)
788 ret
= kmem_alloc(kernel_map
, &istk
, INTSTACK_SIZE
, VM_KERN_MEMORY_CPU
);
789 if (ret
!= KERN_SUCCESS
) {
790 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret
);
792 bzero((void*) istk
, INTSTACK_SIZE
);
793 istk
+= INTSTACK_SIZE
;
797 /* Copy old contents into new area and make fix-ups */
798 assert(cpu_number() == 0);
799 bcopy((void *) cpu_data_ptr
[0], (void*) cdp
, sizeof(cpu_data_t
));
801 cdp
->cpu_int_stack_top
= istk
;
802 timer_call_queue_init(&cdp
->rtclock_timer
.queue
);
803 cdp
->cpu_desc_tablep
= (struct cpu_desc_table
*) &scdtables
[0];
804 cpu_desc_table64_t
*cdt
= (cpu_desc_table64_t
*) cdp
->cpu_desc_tablep
;
806 uint8_t *cfstk
= &scfstks
[cdp
->cpu_number
].fstk
[0];
811 * With interrupts disabled commmit the new areas.
813 istate
= ml_set_interrupts_enabled(FALSE
);
814 cpu_data_ptr
[0] = cdp
;
815 master_ktss64
.ist2
= DBLMAP((uintptr_t) cfstk
);
816 master_ktss64
.ist1
= DBLMAP((uintptr_t) cfstk
- sizeof(x86_64_intr_stack_frame_t
));
817 wrmsr64(MSR_IA32_GS_BASE
, (uintptr_t) cdp
);
818 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, (uintptr_t) cdp
);
819 (void) ml_set_interrupts_enabled(istate
);
821 kprintf("Reallocated master cpu data: %p,"
822 " interrupt stack: %p, fault stack: %p\n",
823 (void *) cdp
, (void *) istk
, (void *) cfstk
);