]> git.saurik.com Git - apple/xnu.git/blob - EXTERNAL_HEADERS/corecrypto/ccn.h
xnu-2782.40.9.tar.gz
[apple/xnu.git] / EXTERNAL_HEADERS / corecrypto / ccn.h
1 /*
2 * ccn.h
3 * corecrypto
4 *
5 * Created by Michael Brouwer on 7/25/10.
6 * Copyright 2010,2011 Apple Inc. All rights reserved.
7 *
8 */
9
10 #ifndef _CORECRYPTO_CCN_H_
11 #define _CORECRYPTO_CCN_H_
12
13 #include <corecrypto/cc_config.h>
14 #include <corecrypto/cc_priv.h> /* TODO: Get rid of this include in this header. */
15 #include <stdint.h>
16 #include <stdarg.h>
17
18
19 typedef uint8_t cc_byte;
20 typedef size_t cc_size;
21
22 #if CCN_UNIT_SIZE == 8
23 typedef uint64_t cc_unit; // 64 bit unit
24 //typedef uint128_t cc_dunit; // 128 bit double width unit
25 #define CCN_LOG2_BITS_PER_UNIT 6 // 2^6 = 64 bits
26 #define CC_UNIT_C(x) UINT64_C(x)
27 #elif CCN_UNIT_SIZE == 4
28 typedef uint32_t cc_unit; // 32 bit unit
29 typedef uint64_t cc_dunit; // 64 bit double width unit
30 #define CCN_LOG2_BITS_PER_UNIT 5 // 2^5 = 32 bits
31 #define CC_UNIT_C(x) UINT32_C(x)
32 #elif CCN_UNIT_SIZE == 2
33 typedef uint16_t cc_unit; // 16 bit unit
34 typedef uint32_t cc_dunit; // 32 bit double width unit
35 #define CCN_LOG2_BITS_PER_UNIT 4 // 2^4 = 16 bits
36 #define CC_UNIT_C(x) UINT16_C(x)
37 #elif CCN_UNIT_SIZE == 1
38 typedef uint8_t cc_unit; // 8 bit unit
39 typedef uint16_t cc_dunit; // 16 bit double width unit
40 #define CCN_LOG2_BITS_PER_UNIT 3 // 2^3 = 8 bits
41 #define CC_UNIT_C(x) UINT8_C(x)
42 #else
43 #error invalid CCN_UNIT_SIZE
44 #endif
45
46 // All mp types have units in little endian unit order.
47 typedef cc_unit *ccn_t; // n unit long mp
48 typedef cc_unit *ccnp1_t; // n + 1 unit long mp
49 typedef cc_unit *cc2n_t; // 2 * n unit long mp
50 typedef cc_unit *cc2np2_t; // 2 * n + 2 unit long mp
51 typedef const cc_unit *ccn_in_t; // n unit long mp
52 typedef const cc_unit *ccnp1_in_t; // n + 1 unit long mp
53 typedef const cc_unit *cc2n_in_t; // 2 * n unit long mp
54 typedef const cc_unit *cc2np2_in_t; // 2 * n + 2 unit long mp
55
56 #define CCN_UNIT_BITS (sizeof(cc_unit) * 8)
57 #define CCN_UNIT_MASK ((cc_unit)~0)
58
59
60 /* Conversions between n sizeof and bits */
61
62 /* Returns the sizeof a ccn vector of length _n_ units. */
63 #define ccn_sizeof_n(_n_) (sizeof(cc_unit) * (_n_))
64
65 /* Returns the count (n) of a ccn vector that can represent _bits_. */
66 #define ccn_nof(_bits_) (((_bits_) + CCN_UNIT_BITS - 1) / CCN_UNIT_BITS)
67
68 /* Returns the sizeof a ccn vector that can represent _bits_. */
69 #define ccn_sizeof(_bits_) (ccn_sizeof_n(ccn_nof(_bits_)))
70
71 /* Returns the count (n) of a ccn vector that can represent _size_ bytes. */
72 #define ccn_nof_size(_size_) (((_size_) + CCN_UNIT_SIZE - 1) / CCN_UNIT_SIZE)
73
74 /* Return the max number of bits a ccn vector of _n_ units can hold. */
75 #define ccn_bitsof_n(_n_) ((_n_) * CCN_UNIT_BITS)
76
77 /* Return the max number of bits a ccn vector of _size_ bytes can hold. */
78 #define ccn_bitsof_size(_size_) ((_size_) * 8)
79
80 /* Return the size of a ccn of size bytes in bytes. */
81 #define ccn_sizeof_size(_size_) ccn_sizeof_n(ccn_nof_size(_size_))
82
83 /* Returns the value of bit _k_ of _ccn_, both are only evaluated once. */
84 #define ccn_bit(_ccn_, _k_) ({__typeof__ (_k_) __k = (_k_); \
85 1 & ((_ccn_)[__k / CCN_UNIT_BITS] >> (__k & (CCN_UNIT_BITS - 1)));})
86
87 #define ccn_set_bit(_ccn_, _k_, _v_) ({__typeof__ (_k_) __k = (_k_); \
88 if (_v_) \
89 (_ccn_)[__k/CCN_UNIT_BITS] |= CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1)); \
90 else \
91 (_ccn_)[__k/CCN_UNIT_BITS] &= ~(CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1))); \
92 })
93
94 /* Macros for making ccn constants. You must use list of CCN64_C() instances
95 separated by commas, with an optional smaller sized CCN32_C, CCN16_C, or
96 CCN8_C() instance at the end of the list, when making macros to declare
97 larger sized constants. */
98 #define CCN8_C(a0) CC_UNIT_C(0x##a0)
99
100 #if CCN_UNIT_SIZE >= 2
101 #define CCN16_C(a1,a0) CC_UNIT_C(0x##a1##a0)
102 #define ccn16_v(a0) (a0)
103 #elif CCN_UNIT_SIZE == 1
104 #define CCN16_C(a1,a0) CCN8_C(a0),CCN8_C(a1)
105 #define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
106 #endif
107
108 #if CCN_UNIT_SIZE >= 4
109 #define CCN32_C(a3,a2,a1,a0) CC_UNIT_C(0x##a3##a2##a1##a0)
110 #define ccn32_v(a0) (a0)
111 #else
112 #define CCN32_C(a3,a2,a1,a0) CCN16_C(a1,a0),CCN16_C(a3,a2)
113 #define ccn32_v(a0) ccn16_v(a0 & UINT16_C(0xffff)),ccn16_v(a0 >> 16)
114 #endif
115
116 #if CCN_UNIT_SIZE == 8
117 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CC_UNIT_C(0x##a7##a6##a5##a4##a3##a2##a1##a0)
118 #define CCN40_C(a4,a3,a2,a1,a0) CC_UNIT_C(0x##a4##a3##a2##a1##a0)
119 #define ccn64_v(a0) (a0)
120 //#define ccn64_32(a1,a0) ((a1 << 32) | a0)
121 //#define ccn_uint64(a,i) (a[i])
122 #else
123 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN32_C(a7,a6,a5,a4)
124 #define CCN40_C(a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN8_C(a4)
125 #define ccn64_v(a0) ccn32_v((uint64_t)a0 & UINT32_C(0xffffffff)),ccn32_v((uint64_t)a0 >> 32)
126 //#define ccn64_32(a1,a0) ccn32_v(a0),ccn32_v(a1)
127 //#define ccn_uint64(a,i) ((uint64_t)ccn_uint32(a, i << 1 + 1) << 32 | (uint64_t)ccn_uint32(a, i << 1))
128 #endif
129
130 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
131 64 bit units respectively. */
132 #if CCN_UNIT_SIZE == 8
133 /* #define ccn_uint16(a,i) ((i & 3) == 3 ? ((uint16_t)(a[i >> 2] >> 48)) : \
134 (i & 3) == 2 ? ((uint16_t)(a[i >> 2] >> 32) & UINT16_C(0xffff)) : \
135 (i & 3) == 1 ? ((uint16_t)(a[i >> 2] >> 16) & UINT16_C(0xffff)) : \
136 ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
137 */
138 //#define ccn_uint32(a,i) (i & 1 ? ((uint32_t)(a[i >> 1] >> 32)) : ((uint32_t)(a[i >> 1] & UINT32_C(0xffffffff))))
139 #elif CCN_UNIT_SIZE == 4
140 //#define ccn16_v(a0) (a0)
141 //#define ccn32_v(a0) (a0)
142 //#define ccn_uint16(a,i) (i & 1 ? ((uint16_t)(a[i >> 1] >> 16)) : ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
143 //#define ccn_uint32(a,i) (a[i])
144 #elif CCN_UNIT_SIZE == 2
145 //#define ccn16_v(a0) (a0)
146 //#define ccn32_v(a0,a1) (a1,a0)
147 //#define ccn_uint16(a,i) (a[i])
148 //#define ccn_uint32(a,i) (((uint32_t)a[i << 1 + 1]) << 16 | (uint32_t)a[i << 1]))
149 #elif CCN_UNIT_SIZE == 1
150 //#define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
151 //#define ccn_uint16(a,i) ((uint16_t)((a[i << 1 + 1] << 8) | a[i << 1]))
152 //#define ccn_uint32(a,i) ((uint32_t)ccn_uint16(a, i << 1 + 1) << 16 | (uint32_t)ccn_uint16(a, i << 1))
153 #endif
154
155 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
156 64 bit units respectively. */
157 #if CCN_UNIT_SIZE == 8
158
159 #define ccn64_32(a1,a0) (((cc_unit)a1) << 32 | ((cc_unit)a0))
160 #define ccn32_32(a0) a0
161 #if __LITTLE_ENDIAN__
162 #define ccn32_32_parse(p,i) (((uint32_t *)p)[i])
163 #else
164 #define ccn32_32_parse(p,i) (((uint32_t *)p)[i^1])
165 #endif
166 #define ccn32_32_null 0
167
168 #define ccn64_64(a0) a0
169 #define ccn64_64_parse(p,i) p[i]
170 #define ccn64_64_null 0
171
172 #elif CCN_UNIT_SIZE == 4
173
174 #define ccn32_32(a0) a0
175 #define ccn32_32_parse(p,i) p[i]
176 #define ccn32_32_null 0
177 #define ccn64_32(a1,a0) ccn32_32(a0),ccn32_32(a1)
178
179 #define ccn64_64(a1,a0) a0,a1
180 #define ccn64_64_parse(p,i) p[1+(i<<1)],p[i<<1]
181 #define ccn64_64_null 0,0
182
183 #elif CCN_UNIT_SIZE == 2
184
185 #define ccn32_32(a1,a0) a0,a1
186 #define ccn32_32_parse(p,i) p[1+(i<<1)],p[i<<1]
187 #define ccn32_32_null 0,0
188 #define ccn64_32(a3,a2,a1,a0) ccn32_32(a1,a0),ccn32_32(a3,a2)
189
190 #define ccn64_64(a3,a2,a1,a0) a0,a1,a2,a3
191 #define ccn64_64_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
192 #define ccn64_64_null 0,0,0,0
193
194 #elif CCN_UNIT_SIZE == 1
195
196 #define ccn32_32(a3,a2,a1,a0) a0,a1,a2,a3
197 #define ccn32_32_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
198 #define ccn32_32_null 0,0,0,0
199 #define ccn64_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn32_32(a3,a2,a1,a0),ccn32_32(a7,a6,a5,a4)
200
201 #define ccn64_64(a7,a6,a5,a4,a3,a2,a1,a0) a0,a1,a2,a3,a4,a5,a6,a7
202 #define ccn64_64_parse(p,i) p[7+(i<<3)],p[6+(i<<3)],p[5+(i<<3)],p[4+(i<<3)],p[3+(i<<3)],p[2+(i<<3)],p[1+(i<<3)],p[i<<3]
203 #define ccn64_64_null 0,0,0,0,0,0,0,0
204
205 #endif
206
207
208 /* Macros to construct fixed size ccn arrays from 64 or 32 bit quantities. */
209 #define ccn192_64(a2,a1,a0) ccn64_64(a0),ccn64_64(a1),ccn64_64(a2)
210 #define ccn224_32(a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn32_32(a6)
211 #define ccn256_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6)
212 #define ccn384_32(a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6),ccn64_32(a9,a8),ccn64_32(a11,a10)
213
214
215 #define CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
216 CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0),\
217 CCN64_C(b7,b6,b5,b4,b3,b2,b1,b0),\
218 CCN64_C(c7,c6,c5,c4,c3,c2,c1,c0)
219
220 #define CCN200_C(d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
221 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
222 CCN8_C(d0)
223
224 #define CCN224_C(d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
225 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
226 CCN32_C(d3,d2,d1,d0)
227
228 #define CCN232_C(d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
229 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
230 CCN40_C(d4,d3,d2,d1,d0)
231
232 #define CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
233 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
234 CCN64_C(d7,d6,d5,d4,d3,d2,d1,d0)
235
236 #define CCN264_C(e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
237 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
238 CCN8_C(e0)
239
240 #define CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
241 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
242 CCN64_C(e7,e6,e5,e4,e3,e2,e1,e0),\
243 CCN64_C(f7,f6,f5,f4,f3,f2,f1,f0)
244
245 #define CCN392_C(g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
246 CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
247 CCN8_C(g0)
248
249 #define CCN528_C(i1,i0,h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
250 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
251 CCN256_C(h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0),\
252 CCN16_C(i1,i0)
253
254 #define CCN192_N ccn_nof(192)
255 #define CCN224_N ccn_nof(224)
256 #define CCN256_N ccn_nof(256)
257 #define CCN384_N ccn_nof(384)
258 #define CCN521_N ccn_nof(521)
259
260 #if defined(_ARM_ARCH_6) || defined(_ARM_ARCH_7)
261 #if CCN_USE_BUILTIN_CLZ
262 CC_INLINE CC_CONST
263 cc_unit cc_clz(cc_unit data)
264 {
265 return __builtin_clzl(data);
266 }
267 #else
268 CC_INLINE CC_CONST
269 cc_unit cc_clz(cc_unit data)
270 {
271 __asm__ ("clz %0, %1\n" : "=l" (data) : "l" (data));
272 return data;
273 }
274 #endif /* CCN_USE_BUILTIN_CLZ */
275 #endif /* !defined(_ARM_ARCH_6) && !defined(_ARM_ARCH_7) */
276
277
278 #if CCN_N_INLINE
279 /* Return the number of used units after stripping leading 0 units. */
280 CC_INLINE CC_PURE CC_NONNULL2
281 cc_size ccn_n(cc_size n, const cc_unit *s) {
282 #if 1
283 while (n-- && s[n] == 0) {}
284 return n + 1;
285 #elif 0
286 while (n && s[n - 1] == 0) {
287 n -= 1;
288 }
289 return n;
290 #else
291 if (n & 1) {
292 if (s[n - 1])
293 return n;
294 n &= ~1;
295 }
296 if (n & 2) {
297 cc_unit a[2] = { s[n - 1], s[n - 2] };
298 if (a[0])
299 return n - 1;
300 if (a[1])
301 return n - 2;
302 n &= ~2;
303 }
304 while (n) {
305 cc_unit a[4] = { s[n - 1], s[n - 2], s[n - 3], s[n - 4] };
306 if (a[0])
307 return n - 1;
308 if (a[1])
309 return n - 2;
310 if (a[2])
311 return n - 3;
312 if (a[3])
313 return n - 4;
314 n -= 4;
315 }
316 return n;
317 #endif
318 }
319 #else
320 /* Return the number of used units after stripping leading 0 units. */
321 CC_PURE CC_NONNULL2
322 cc_size ccn_n(cc_size n, const cc_unit *s);
323 #endif
324
325 /* s >> k -> r return bits shifted out of least significant word in bits [0, n>
326 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
327 the _multi version doesn't return the shifted bits, but does support multiple
328 word shifts. */
329 CC_NONNULL((2, 3))
330 cc_unit ccn_shift_right(cc_size n, cc_unit *r, const cc_unit *s, size_t k);
331 CC_NONNULL((2, 3))
332 void ccn_shift_right_multi(cc_size n, cc_unit *r,const cc_unit *s, size_t k);
333
334 /* s << k -> r return bits shifted out of most significant word in bits [0, n>
335 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
336 the _multi version doesn't return the shifted bits, but does support multiple
337 word shifts */
338 CC_NONNULL((2, 3))
339 cc_unit ccn_shift_left(cc_size n, cc_unit *r, const cc_unit *s, size_t k);
340 CC_NONNULL((2, 3))
341 void ccn_shift_left_multi(cc_size n, cc_unit *r, const cc_unit *s, size_t k);
342
343 /* s == 0 -> return 0 | s > 0 -> return index (starting at 1) of most
344 significant bit that is 1.
345 { N bit } N = n * sizeof(cc_unit) * 8 */
346 CC_NONNULL2
347 size_t ccn_bitlen(cc_size n, const cc_unit *s);
348
349 /* Returns the number of bits which are zero before the first one bit
350 counting from least to most significant bit. */
351 CC_NONNULL2
352 size_t ccn_trailing_zeros(cc_size n, const cc_unit *s);
353
354 /* s == 0 -> return true | s != 0 -> return false
355 { N bit } N = n * sizeof(cc_unit) * 8 */
356 #define ccn_is_zero(_n_, _s_) (!ccn_n(_n_, _s_))
357
358 /* s == 1 -> return true | s != 1 -> return false
359 { N bit } N = n * sizeof(cc_unit) * 8 */
360 #define ccn_is_one(_n_, _s_) (ccn_n(_n_, _s_) == 1 && _s_[0] == 1)
361
362 #define ccn_is_zero_or_one(_n_, _s_) (((_n_)==0) || ((ccn_n(_n_, _s_) <= 1) && (_s_[0] <= 1)))
363
364 #if CCN_CMP_INLINE
365 CC_INLINE CC_PURE CC_NONNULL((2, 3))
366 int ccn_cmp(cc_size n, const cc_unit *s, const cc_unit *t) {
367 while (n) {
368 n--;
369 cc_unit si = s[n];
370 cc_unit ti = t[n];
371 if (si != ti)
372 return si > ti ? 1 : -1;
373 }
374 return n;
375 }
376 #else
377 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
378 { N bit, N bit -> int } N = n * sizeof(cc_unit) * 8 */
379 CC_PURE CC_NONNULL((2, 3))
380 int ccn_cmp(cc_size n, const cc_unit *s, const cc_unit *t);
381 #endif
382
383 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
384 { N bit, M bit -> int } N = ns * sizeof(cc_unit) * 8 M = nt * sizeof(cc_unit) * 8 */
385 CC_INLINE CC_NONNULL((2, 4))
386 int ccn_cmpn(cc_size ns, const cc_unit *s,
387 cc_size nt, const cc_unit *t) {
388 if (ns > nt) {
389 return 1;
390 } else if (ns < nt) {
391 return -1;
392 }
393 return ccn_cmp(ns, s, t);
394 }
395
396 /* s - t -> r return 1 iff t > s
397 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
398 CC_NONNULL((2, 3, 4))
399 cc_unit ccn_sub(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t);
400
401 /* s - v -> r return 1 iff v > s return 0 otherwise.
402 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
403 CC_NONNULL((2, 3))
404 cc_unit ccn_sub1(cc_size n, cc_unit *r, const cc_unit *s, cc_unit v);
405
406 /* s - t -> r return 1 iff t > s
407 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
408 CC_INLINE
409 CC_NONNULL((2, 3, 5))
410 cc_unit ccn_subn(cc_size n, cc_unit *r, const cc_unit *s,
411 cc_size nt, const cc_unit *t) {
412 assert(n >= nt);
413 return ccn_sub1(n - nt, r + nt, s + nt, ccn_sub(nt, r, s, t));
414 }
415
416
417 /* s + t -> r return carry if result doesn't fit in n bits.
418 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
419 CC_NONNULL((2, 3, 4))
420 cc_unit ccn_add(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t);
421
422 /* s + v -> r return carry if result doesn't fit in n bits.
423 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
424 CC_NONNULL((2, 3))
425 cc_unit ccn_add1(cc_size n, cc_unit *r, const cc_unit *s, cc_unit v);
426
427 /* s + t -> r return carry if result doesn't fit in n bits
428 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
429 CC_INLINE
430 CC_NONNULL((2, 3, 5))
431 cc_unit ccn_addn(cc_size n, cc_unit *r, const cc_unit *s,
432 cc_size nt, const cc_unit *t) {
433 assert(n >= nt);
434 return ccn_add1(n - nt, r + nt, s + nt, ccn_add(nt, r, s, t));
435 }
436
437 CC_NONNULL((4, 5))
438 void ccn_divmod(cc_size n, cc_unit *q, cc_unit *r, const cc_unit *s, const cc_unit *t);
439
440
441 CC_NONNULL((2, 3, 4))
442 void ccn_lcm(cc_size n, cc_unit *r2n, const cc_unit *s, const cc_unit *t);
443
444
445 /* s * t -> r_2n r_2n must not overlap with s nor t
446 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8
447 { N bit, N bit -> 2N bit } N = ccn_bitsof(n) */
448 CC_NONNULL((2, 3, 4))
449 void ccn_mul(cc_size n, cc_unit *r_2n, const cc_unit *s, const cc_unit *t);
450
451 /* s[0..n) * v -> r[0..n)+return value
452 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
453 CC_NONNULL((2, 3))
454 cc_unit ccn_mul1(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit v);
455
456 /* s[0..n) * v + r[0..n) -> r[0..n)+return value
457 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
458 CC_NONNULL((2, 3))
459 cc_unit ccn_addmul1(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit v);
460
461 #if 0
462 /* a % d -> n
463 {2 * n bit, n bit -> n bit } n = count * sizeof(cc_unit) * 8 */
464 CC_NONNULL((2, 3, 4))
465 void ccn_mod(cc_size n, cc_unit *r, const cc_unit *a_2n, const cc_unit *d);
466 #endif
467
468 /* r = gcd(s, t).
469 N bit, N bit -> N bit */
470 CC_NONNULL((2, 3, 4))
471 void ccn_gcd(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t);
472
473 /* r = gcd(s, t).
474 N bit, N bit -> O bit */
475 CC_NONNULL((2, 4, 6))
476 void ccn_gcdn(cc_size rn, cc_unit *r, cc_size sn, const cc_unit *s, cc_size tn, const cc_unit *t);
477
478 /* r = (data, len) treated as a big endian byte array, return -1 if data
479 doesn't fit in r, return 0 otherwise. */
480 CC_NONNULL((2, 4))
481 int ccn_read_uint(cc_size n, cc_unit *r, size_t data_size, const uint8_t *data);
482
483 /* r = (data, len) treated as a big endian byte array, return -1 if data
484 doesn't fit in r, return 0 otherwise.
485 ccn_read_uint strips leading zeroes and doesn't care about sign. */
486 #define ccn_read_int(n, r, data_size, data) ccn_read_uint(n, r, data_size, data)
487
488 /* Return actual size in bytes needed to serialize s. */
489 CC_PURE CC_NONNULL2
490 size_t ccn_write_uint_size(cc_size n, const cc_unit *s);
491
492 /* Serialize s, to out.
493 First byte of byte stream is the m.s. byte of s,
494 regardless of the size of cc_unit.
495
496 No assumption is made about the alignment of out.
497
498 The out_size argument should be the value returned from ccn_write_uint_size,
499 and is also the exact number of bytes this function will write to out.
500 If out_size if less than the value returned by ccn_write_uint_size, only the
501 first out_size non-zero most significant octets of s will be written. */
502 CC_NONNULL((2, 4))
503 void ccn_write_uint(cc_size n, const cc_unit *s, size_t out_size, void *out);
504
505
506 CC_INLINE CC_NONNULL((2, 4))
507 cc_size ccn_write_uint_padded(cc_size n, const cc_unit* s, size_t out_size, uint8_t* to)
508 {
509 size_t bytesInKey = ccn_write_uint_size(n, s);
510 cc_size offset = (out_size > bytesInKey) ? out_size - bytesInKey : 0;
511
512 cc_zero(offset, to);
513 ccn_write_uint(n, s, out_size - offset, to + offset);
514
515 return offset;
516 }
517
518
519 /* Return actual size in bytes needed to serialize s as int
520 (adding leading zero if high bit is set). */
521 CC_PURE CC_NONNULL2
522 size_t ccn_write_int_size(cc_size n, const cc_unit *s);
523
524 /* Serialize s, to out.
525 First byte of byte stream is the m.s. byte of s,
526 regardless of the size of cc_unit.
527
528 No assumption is made about the alignment of out.
529
530 The out_size argument should be the value returned from ccn_write_int_size,
531 and is also the exact number of bytes this function will write to out.
532 If out_size if less than the value returned by ccn_write_int_size, only the
533 first out_size non-zero most significant octets of s will be written. */
534 CC_NONNULL((2, 4))
535 void ccn_write_int(cc_size n, const cc_unit *s, size_t out_size, void *out);
536
537
538 /* s^2 -> r
539 { n bit -> 2 * n bit } */
540 CC_INLINE CC_NONNULL((2, 3))
541 void ccn_sqr(cc_size n, cc_unit *r, const cc_unit *s) {
542 ccn_mul(n, r, s, s);
543 }
544
545 /* s -> r
546 { n bit -> n bit } */
547 CC_NONNULL((2, 3))
548 void ccn_set(cc_size n, cc_unit *r, const cc_unit *s);
549
550 CC_INLINE CC_NONNULL2
551 void ccn_zero(cc_size n, cc_unit *r) {
552 CC_BZERO(r, ccn_sizeof_n(n));
553 }
554
555 CC_NONNULL2
556 void ccn_zero_multi(cc_size n, cc_unit *r, ...);
557
558 /* Burn (zero fill or otherwise overwrite) n cc_units of stack space. */
559 void ccn_burn_stack(cc_size n);
560
561 CC_INLINE CC_NONNULL2
562 void ccn_seti(cc_size n, cc_unit *r, cc_unit v) {
563 /* assert(n > 0); */
564 r[0] = v;
565 ccn_zero(n - 1, r + 1);
566 }
567
568 CC_INLINE CC_NONNULL((2, 4))
569 void ccn_setn(cc_size n, cc_unit *r, const cc_size s_size, const cc_unit *s) {
570 /* FIXME: assert not available in kernel.
571 assert(n > 0);
572 assert(s_size > 0);
573 assert(s_size <= n);
574 */
575 ccn_set(s_size, r, s);
576 ccn_zero(n - s_size, r + s_size);
577 }
578
579 #define CC_SWAP_HOST_BIG_64(x) \
580 ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
581 (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
582 (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
583 (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
584 (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
585 (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
586 (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
587 (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
588 #define CC_SWAP_HOST_BIG_32(x) \
589 ((((x) & 0xff000000) >> 24) | \
590 (((x) & 0x00ff0000) >> 8) | \
591 (((x) & 0x0000ff00) << 8) | \
592 (((x) & 0x000000ff) << 24))
593 #define CC_SWAP_HOST_BIG_16(x) \
594 ((((x) & 0xff00) >> 8) | \
595 (((x) & 0x00ff) << 8))
596
597 /* This should probably move if we move ccn_swap out of line. */
598 #if CCN_UNIT_SIZE == 8
599 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_64(x)
600 #elif CCN_UNIT_SIZE == 4
601 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_32(x)
602 #elif CCN_UNIT_SIZE == 2
603 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_16(x)
604 #elif CCN_UNIT_SIZE == 1
605 #define CC_UNIT_TO_BIG(x) (x)
606 #else
607 #error unsupported CCN_UNIT_SIZE
608 #endif
609
610 /* Swap units in r in place from cc_unit vector byte order to big endian byte order (or back). */
611 CC_INLINE CC_NONNULL2
612 void ccn_swap(cc_size n, cc_unit *r) {
613 cc_unit *e;
614 for (e = r + n - 1; r < e; ++r, --e) {
615 cc_unit t = CC_UNIT_TO_BIG(*r);
616 *r = CC_UNIT_TO_BIG(*e);
617 *e = t;
618 }
619 if (n & 1)
620 *r = CC_UNIT_TO_BIG(*r);
621 }
622
623 CC_INLINE CC_NONNULL((2, 3, 4))
624 void ccn_xor(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t) {
625 while (n--) {
626 r[n] = s[n] ^ t[n];
627 }
628 }
629
630 /* Debugging */
631 CC_NONNULL2
632 void ccn_print(cc_size n, const cc_unit *s);
633 CC_NONNULL3
634 void ccn_lprint(cc_size n, const char *label, const cc_unit *s);
635
636 /* Forward declaration so we don't depend on ccrng.h. */
637 struct ccrng_state;
638
639 #if 0
640 CC_INLINE CC_NONNULL((2, 3))
641 int ccn_random(cc_size n, cc_unit *r, struct ccrng_state *rng) {
642 return (RNG)->generate((RNG), ccn_sizeof_n(n), (unsigned char *)r);
643 }
644 #else
645 #define ccn_random(_n_,_r_,_ccrng_ctx_) \
646 ccrng_generate(_ccrng_ctx_, ccn_sizeof_n(_n_), (unsigned char *)_r_)
647 #endif
648
649 /* Make a ccn of size ccn_nof(nbits) units with up to nbits sized random value. */
650 CC_NONNULL((2, 3))
651 int ccn_random_bits(cc_size nbits, cc_unit *r, struct ccrng_state *rng);
652
653 #endif /* _CORECRYPTO_CCN_H_ */