2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 * Kernel memory management.
66 #include <mach/kern_return.h>
67 #include <mach/vm_param.h>
68 #include <kern/assert.h>
69 #include <kern/lock.h>
70 #include <kern/thread.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_pageout.h>
76 #include <kern/misc_protos.h>
81 #include <libkern/OSDebug.h>
82 #include <sys/kdebug.h>
85 * Variables exported by this module.
89 vm_map_t kernel_pageable_map
;
91 extern boolean_t vm_kernel_ready
;
94 * Forward declarations for internal functions.
96 extern kern_return_t
kmem_alloc_pages(
97 register vm_object_t object
,
98 register vm_object_offset_t offset
,
99 register vm_object_size_t size
);
101 extern void kmem_remap_pages(
102 register vm_object_t object
,
103 register vm_object_offset_t offset
,
104 register vm_offset_t start
,
105 register vm_offset_t end
,
106 vm_prot_t protection
);
119 vm_object_offset_t offset
;
120 vm_map_offset_t map_addr
;
121 vm_map_offset_t map_mask
;
122 vm_map_size_t map_size
, i
;
123 vm_map_entry_t entry
;
127 if (map
== VM_MAP_NULL
|| (flags
& ~(KMA_KOBJECT
| KMA_LOMEM
| KMA_NOPAGEWAIT
)))
128 return KERN_INVALID_ARGUMENT
;
130 map_size
= vm_map_round_page(size
);
131 map_mask
= (vm_map_offset_t
)mask
;
133 /* Check for zero allocation size (either directly or via overflow) */
136 return KERN_INVALID_ARGUMENT
;
140 * Allocate a new object (if necessary) and the reference we
141 * will be donating to the map entry. We must do this before
142 * locking the map, or risk deadlock with the default pager.
144 if ((flags
& KMA_KOBJECT
) != 0) {
145 object
= kernel_object
;
146 vm_object_reference(object
);
148 object
= vm_object_allocate(map_size
);
151 kr
= vm_map_find_space(map
, &map_addr
, map_size
, map_mask
, 0, &entry
);
152 if (KERN_SUCCESS
!= kr
) {
153 vm_object_deallocate(object
);
157 entry
->object
.vm_object
= object
;
158 entry
->offset
= offset
= (object
== kernel_object
) ?
161 /* Take an extra object ref in case the map entry gets deleted */
162 vm_object_reference(object
);
165 kr
= cpm_allocate(CAST_DOWN(vm_size_t
, map_size
), &pages
, max_pnum
, pnum_mask
, FALSE
, flags
);
167 if (kr
!= KERN_SUCCESS
) {
168 vm_map_remove(map
, vm_map_trunc_page(map_addr
),
169 vm_map_round_page(map_addr
+ map_size
), 0);
170 vm_object_deallocate(object
);
175 vm_object_lock(object
);
176 for (i
= 0; i
< map_size
; i
+= PAGE_SIZE
) {
178 pages
= NEXT_PAGE(m
);
179 *(NEXT_PAGE_PTR(m
)) = VM_PAGE_NULL
;
181 vm_page_insert(m
, object
, offset
+ i
);
183 vm_object_unlock(object
);
185 if ((kr
= vm_map_wire(map
, vm_map_trunc_page(map_addr
),
186 vm_map_round_page(map_addr
+ map_size
), VM_PROT_DEFAULT
, FALSE
))
188 if (object
== kernel_object
) {
189 vm_object_lock(object
);
190 vm_object_page_remove(object
, offset
, offset
+ map_size
);
191 vm_object_unlock(object
);
193 vm_map_remove(map
, vm_map_trunc_page(map_addr
),
194 vm_map_round_page(map_addr
+ map_size
), 0);
195 vm_object_deallocate(object
);
198 vm_object_deallocate(object
);
200 if (object
== kernel_object
)
201 vm_map_simplify(map
, map_addr
);
203 *addrp
= (vm_offset_t
) map_addr
;
204 assert((vm_map_offset_t
) *addrp
== map_addr
);
209 * Master entry point for allocating kernel memory.
210 * NOTE: this routine is _never_ interrupt safe.
212 * map : map to allocate into
213 * addrp : pointer to start address of new memory
214 * size : size of memory requested
216 * KMA_HERE *addrp is base address, else "anywhere"
217 * KMA_NOPAGEWAIT don't wait for pages if unavailable
218 * KMA_KOBJECT use kernel_object
219 * KMA_LOMEM support for 32 bit devices in a 64 bit world
220 * if set and a lomemory pool is available
221 * grab pages from it... this also implies
226 kernel_memory_allocate(
227 register vm_map_t map
,
228 register vm_offset_t
*addrp
,
229 register vm_size_t size
,
230 register vm_offset_t mask
,
234 vm_object_offset_t offset
;
235 vm_object_offset_t pg_offset
;
236 vm_map_entry_t entry
= NULL
;
237 vm_map_offset_t map_addr
, fill_start
;
238 vm_map_offset_t map_mask
;
239 vm_map_size_t map_size
, fill_size
;
242 vm_page_t guard_page_list
= NULL
;
243 vm_page_t wired_page_list
= NULL
;
244 int guard_page_count
= 0;
245 int wired_page_count
= 0;
250 if (! vm_kernel_ready
) {
251 panic("kernel_memory_allocate: VM is not ready");
254 map_size
= vm_map_round_page(size
);
255 map_mask
= (vm_map_offset_t
) mask
;
258 /* Check for zero allocation size (either directly or via overflow) */
261 return KERN_INVALID_ARGUMENT
;
265 * limit the size of a single extent of wired memory
266 * to try and limit the damage to the system if
267 * too many pages get wired down
269 if (map_size
> (1 << 30)) {
270 return KERN_RESOURCE_SHORTAGE
;
276 * Guard pages are implemented as ficticious pages. By placing guard pages
277 * on either end of a stack, they can help detect cases where a thread walks
278 * off either end of its stack. They are allocated and set up here and attempts
279 * to access those pages are trapped in vm_fault_page().
281 * The map_size we were passed may include extra space for
282 * guard pages. If those were requested, then back it out of fill_size
283 * since vm_map_find_space() takes just the actual size not including
284 * guard pages. Similarly, fill_start indicates where the actual pages
285 * will begin in the range.
289 fill_size
= map_size
;
291 if (flags
& KMA_GUARD_FIRST
) {
292 vm_alloc_flags
|= VM_FLAGS_GUARD_BEFORE
;
293 fill_start
+= PAGE_SIZE_64
;
294 fill_size
-= PAGE_SIZE_64
;
295 if (map_size
< fill_start
+ fill_size
) {
296 /* no space for a guard page */
298 return KERN_INVALID_ARGUMENT
;
302 if (flags
& KMA_GUARD_LAST
) {
303 vm_alloc_flags
|= VM_FLAGS_GUARD_AFTER
;
304 fill_size
-= PAGE_SIZE_64
;
305 if (map_size
<= fill_start
+ fill_size
) {
306 /* no space for a guard page */
308 return KERN_INVALID_ARGUMENT
;
312 wired_page_count
= (int) (fill_size
/ PAGE_SIZE_64
);
313 assert(wired_page_count
* PAGE_SIZE_64
== fill_size
);
315 for (i
= 0; i
< guard_page_count
; i
++) {
317 mem
= vm_page_grab_guard();
319 if (mem
!= VM_PAGE_NULL
)
321 if (flags
& KMA_NOPAGEWAIT
) {
322 kr
= KERN_RESOURCE_SHORTAGE
;
325 vm_page_more_fictitious();
327 mem
->pageq
.next
= (queue_entry_t
)guard_page_list
;
328 guard_page_list
= mem
;
331 for (i
= 0; i
< wired_page_count
; i
++) {
332 uint64_t unavailable
;
335 if (flags
& KMA_LOMEM
)
336 mem
= vm_page_grablo();
338 mem
= vm_page_grab();
340 if (mem
!= VM_PAGE_NULL
)
343 if (flags
& KMA_NOPAGEWAIT
) {
344 kr
= KERN_RESOURCE_SHORTAGE
;
347 if ((flags
& KMA_LOMEM
) && (vm_lopage_needed
== TRUE
)) {
348 kr
= KERN_RESOURCE_SHORTAGE
;
351 unavailable
= (vm_page_wire_count
+ vm_page_free_target
) * PAGE_SIZE
;
353 if (unavailable
> max_mem
|| map_size
> (max_mem
- unavailable
)) {
354 kr
= KERN_RESOURCE_SHORTAGE
;
359 mem
->pageq
.next
= (queue_entry_t
)wired_page_list
;
360 wired_page_list
= mem
;
364 * Allocate a new object (if necessary). We must do this before
365 * locking the map, or risk deadlock with the default pager.
367 if ((flags
& KMA_KOBJECT
) != 0) {
368 object
= kernel_object
;
369 vm_object_reference(object
);
371 object
= vm_object_allocate(map_size
);
374 kr
= vm_map_find_space(map
, &map_addr
,
376 vm_alloc_flags
, &entry
);
377 if (KERN_SUCCESS
!= kr
) {
378 vm_object_deallocate(object
);
382 entry
->object
.vm_object
= object
;
383 entry
->offset
= offset
= (object
== kernel_object
) ?
386 entry
->wired_count
++;
388 if (flags
& KMA_PERMANENT
)
389 entry
->permanent
= TRUE
;
391 if (object
!= kernel_object
)
392 vm_object_reference(object
);
394 vm_object_lock(object
);
400 if (guard_page_list
== NULL
)
401 panic("kernel_memory_allocate: guard_page_list == NULL");
403 mem
= guard_page_list
;
404 guard_page_list
= (vm_page_t
)mem
->pageq
.next
;
405 mem
->pageq
.next
= NULL
;
407 vm_page_insert(mem
, object
, offset
+ pg_offset
);
410 pg_offset
+= PAGE_SIZE_64
;
413 kma_prot
= VM_PROT_READ
| VM_PROT_WRITE
;
415 for (pg_offset
= fill_start
; pg_offset
< fill_start
+ fill_size
; pg_offset
+= PAGE_SIZE_64
) {
416 if (wired_page_list
== NULL
)
417 panic("kernel_memory_allocate: wired_page_list == NULL");
419 mem
= wired_page_list
;
420 wired_page_list
= (vm_page_t
)mem
->pageq
.next
;
421 mem
->pageq
.next
= NULL
;
424 vm_page_insert(mem
, object
, offset
+ pg_offset
);
428 mem
->wpmapped
= TRUE
;
430 PMAP_ENTER(kernel_pmap
, map_addr
+ pg_offset
, mem
,
431 kma_prot
, VM_PROT_NONE
, ((flags
& KMA_KSTACK
) ? VM_MEM_STACK
: 0), TRUE
);
433 if (flags
& KMA_NOENCRYPT
) {
434 bzero(CAST_DOWN(void *, (map_addr
+ pg_offset
)), PAGE_SIZE
);
436 pmap_set_noencrypt(mem
->phys_page
);
439 if ((fill_start
+ fill_size
) < map_size
) {
440 if (guard_page_list
== NULL
)
441 panic("kernel_memory_allocate: guard_page_list == NULL");
443 mem
= guard_page_list
;
444 guard_page_list
= (vm_page_t
)mem
->pageq
.next
;
445 mem
->pageq
.next
= NULL
;
447 vm_page_insert(mem
, object
, offset
+ pg_offset
);
451 if (guard_page_list
|| wired_page_list
)
452 panic("kernel_memory_allocate: non empty list\n");
454 vm_page_lockspin_queues();
455 vm_page_wire_count
+= wired_page_count
;
456 vm_page_unlock_queues();
458 vm_object_unlock(object
);
461 * now that the pages are wired, we no longer have to fear coalesce
463 if (object
== kernel_object
)
464 vm_map_simplify(map
, map_addr
);
466 vm_object_deallocate(object
);
469 * Return the memory, not zeroed.
471 *addrp
= CAST_DOWN(vm_offset_t
, map_addr
);
476 vm_page_free_list(guard_page_list
, FALSE
);
479 vm_page_free_list(wired_page_list
, FALSE
);
487 * Allocate wired-down memory in the kernel's address map
488 * or a submap. The memory is not zero-filled.
497 kern_return_t kr
= kernel_memory_allocate(map
, addrp
, size
, 0, 0);
498 TRACE_MACHLEAKS(KMEM_ALLOC_CODE
, KMEM_ALLOC_CODE_2
, size
, *addrp
);
505 * Reallocate wired-down memory in the kernel's address map
506 * or a submap. Newly allocated pages are not zeroed.
507 * This can only be used on regions allocated with kmem_alloc.
509 * If successful, the pages in the old region are mapped twice.
510 * The old region is unchanged. Use kmem_free to get rid of it.
517 vm_offset_t
*newaddrp
,
521 vm_object_offset_t offset
;
522 vm_map_offset_t oldmapmin
;
523 vm_map_offset_t oldmapmax
;
524 vm_map_offset_t newmapaddr
;
525 vm_map_size_t oldmapsize
;
526 vm_map_size_t newmapsize
;
527 vm_map_entry_t oldentry
;
528 vm_map_entry_t newentry
;
532 oldmapmin
= vm_map_trunc_page(oldaddr
);
533 oldmapmax
= vm_map_round_page(oldaddr
+ oldsize
);
534 oldmapsize
= oldmapmax
- oldmapmin
;
535 newmapsize
= vm_map_round_page(newsize
);
539 * Find the VM object backing the old region.
544 if (!vm_map_lookup_entry(map
, oldmapmin
, &oldentry
))
545 panic("kmem_realloc");
546 object
= oldentry
->object
.vm_object
;
549 * Increase the size of the object and
550 * fill in the new region.
553 vm_object_reference(object
);
554 /* by grabbing the object lock before unlocking the map */
555 /* we guarantee that we will panic if more than one */
556 /* attempt is made to realloc a kmem_alloc'd area */
557 vm_object_lock(object
);
559 if (object
->vo_size
!= oldmapsize
)
560 panic("kmem_realloc");
561 object
->vo_size
= newmapsize
;
562 vm_object_unlock(object
);
564 /* allocate the new pages while expanded portion of the */
565 /* object is still not mapped */
566 kmem_alloc_pages(object
, vm_object_round_page(oldmapsize
),
567 vm_object_round_page(newmapsize
-oldmapsize
));
570 * Find space for the new region.
573 kr
= vm_map_find_space(map
, &newmapaddr
, newmapsize
,
574 (vm_map_offset_t
) 0, 0, &newentry
);
575 if (kr
!= KERN_SUCCESS
) {
576 vm_object_lock(object
);
577 for(offset
= oldmapsize
;
578 offset
< newmapsize
; offset
+= PAGE_SIZE
) {
579 if ((mem
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
583 object
->vo_size
= oldmapsize
;
584 vm_object_unlock(object
);
585 vm_object_deallocate(object
);
588 newentry
->object
.vm_object
= object
;
589 newentry
->offset
= 0;
590 assert (newentry
->wired_count
== 0);
593 /* add an extra reference in case we have someone doing an */
594 /* unexpected deallocate */
595 vm_object_reference(object
);
598 kr
= vm_map_wire(map
, newmapaddr
, newmapaddr
+ newmapsize
, VM_PROT_DEFAULT
, FALSE
);
599 if (KERN_SUCCESS
!= kr
) {
600 vm_map_remove(map
, newmapaddr
, newmapaddr
+ newmapsize
, 0);
601 vm_object_lock(object
);
602 for(offset
= oldsize
; offset
< newmapsize
; offset
+= PAGE_SIZE
) {
603 if ((mem
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
607 object
->vo_size
= oldmapsize
;
608 vm_object_unlock(object
);
609 vm_object_deallocate(object
);
612 vm_object_deallocate(object
);
614 *newaddrp
= CAST_DOWN(vm_offset_t
, newmapaddr
);
619 * kmem_alloc_kobject:
621 * Allocate wired-down memory in the kernel's address map
622 * or a submap. The memory is not zero-filled.
624 * The memory is allocated in the kernel_object.
625 * It may not be copied with vm_map_copy, and
626 * it may not be reallocated with kmem_realloc.
635 return kernel_memory_allocate(map
, addrp
, size
, 0, KMA_KOBJECT
);
639 * kmem_alloc_aligned:
641 * Like kmem_alloc_kobject, except that the memory is aligned.
642 * The size should be a power-of-2.
651 if ((size
& (size
- 1)) != 0)
652 panic("kmem_alloc_aligned: size not aligned");
653 return kernel_memory_allocate(map
, addrp
, size
, size
- 1, KMA_KOBJECT
);
657 * kmem_alloc_pageable:
659 * Allocate pageable memory in the kernel's address map.
668 vm_map_offset_t map_addr
;
669 vm_map_size_t map_size
;
673 map_addr
= (vm_map_min(map
)) + 0x1000;
675 map_addr
= vm_map_min(map
);
677 map_size
= vm_map_round_page(size
);
679 kr
= vm_map_enter(map
, &map_addr
, map_size
,
680 (vm_map_offset_t
) 0, VM_FLAGS_ANYWHERE
,
681 VM_OBJECT_NULL
, (vm_object_offset_t
) 0, FALSE
,
682 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
684 if (kr
!= KERN_SUCCESS
)
687 *addrp
= CAST_DOWN(vm_offset_t
, map_addr
);
694 * Release a region of kernel virtual memory allocated
695 * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable,
696 * and return the physical pages associated with that region.
707 assert(addr
>= VM_MIN_KERNEL_AND_KEXT_ADDRESS
);
709 TRACE_MACHLEAKS(KMEM_FREE_CODE
, KMEM_FREE_CODE_2
, size
, addr
);
713 printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n",map
,(uint64_t)addr
);
718 kr
= vm_map_remove(map
, vm_map_trunc_page(addr
),
719 vm_map_round_page(addr
+ size
),
720 VM_MAP_REMOVE_KUNWIRE
);
721 if (kr
!= KERN_SUCCESS
)
726 * Allocate new pages in an object.
731 register vm_object_t object
,
732 register vm_object_offset_t offset
,
733 register vm_object_size_t size
)
735 vm_object_size_t alloc_size
;
737 alloc_size
= vm_object_round_page(size
);
738 vm_object_lock(object
);
740 register vm_page_t mem
;
746 while (VM_PAGE_NULL
==
747 (mem
= vm_page_alloc(object
, offset
))) {
748 vm_object_unlock(object
);
750 vm_object_lock(object
);
754 alloc_size
-= PAGE_SIZE
;
757 vm_object_unlock(object
);
762 * Remap wired pages in an object into a new region.
763 * The object is assumed to be mapped into the kernel map or
768 register vm_object_t object
,
769 register vm_object_offset_t offset
,
770 register vm_offset_t start
,
771 register vm_offset_t end
,
772 vm_prot_t protection
)
775 vm_map_offset_t map_start
;
776 vm_map_offset_t map_end
;
779 * Mark the pmap region as not pageable.
781 map_start
= vm_map_trunc_page(start
);
782 map_end
= vm_map_round_page(end
);
784 pmap_pageable(kernel_pmap
, map_start
, map_end
, FALSE
);
786 while (map_start
< map_end
) {
787 register vm_page_t mem
;
789 vm_object_lock(object
);
794 if ((mem
= vm_page_lookup(object
, offset
)) == VM_PAGE_NULL
)
795 panic("kmem_remap_pages");
798 * Wire it down (again)
800 vm_page_lockspin_queues();
802 vm_page_unlock_queues();
803 vm_object_unlock(object
);
807 * The page is supposed to be wired now, so it
808 * shouldn't be encrypted at this point. It can
809 * safely be entered in the page table.
811 ASSERT_PAGE_DECRYPTED(mem
);
814 * Enter it in the kernel pmap. The page isn't busy,
815 * but this shouldn't be a problem because it is wired.
819 mem
->wpmapped
= TRUE
;
821 PMAP_ENTER(kernel_pmap
, map_start
, mem
, protection
, VM_PROT_NONE
, 0, TRUE
);
823 map_start
+= PAGE_SIZE
;
831 * Allocates a map to manage a subrange
832 * of the kernel virtual address space.
834 * Arguments are as follows:
836 * parent Map to take range from
837 * addr Address of start of range (IN/OUT)
838 * size Size of range to find
839 * pageable Can region be paged
840 * anywhere Can region be located anywhere in map
841 * new_map Pointer to new submap
853 vm_map_offset_t map_addr
;
854 vm_map_size_t map_size
;
857 map_size
= vm_map_round_page(size
);
860 * Need reference on submap object because it is internal
861 * to the vm_system. vm_object_enter will never be called
862 * on it (usual source of reference for vm_map_enter).
864 vm_object_reference(vm_submap_object
);
866 map_addr
= (flags
& VM_FLAGS_ANYWHERE
) ?
867 vm_map_min(parent
) : vm_map_trunc_page(*addr
);
869 kr
= vm_map_enter(parent
, &map_addr
, map_size
,
870 (vm_map_offset_t
) 0, flags
,
871 vm_submap_object
, (vm_object_offset_t
) 0, FALSE
,
872 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
873 if (kr
!= KERN_SUCCESS
) {
874 vm_object_deallocate(vm_submap_object
);
878 pmap_reference(vm_map_pmap(parent
));
879 map
= vm_map_create(vm_map_pmap(parent
), map_addr
, map_addr
+ map_size
, pageable
);
880 if (map
== VM_MAP_NULL
)
881 panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
883 kr
= vm_map_submap(parent
, map_addr
, map_addr
+ map_size
, map
, map_addr
, FALSE
);
884 if (kr
!= KERN_SUCCESS
) {
886 * See comment preceding vm_map_submap().
888 vm_map_remove(parent
, map_addr
, map_addr
+ map_size
, VM_MAP_NO_FLAGS
);
889 vm_map_deallocate(map
); /* also removes ref to pmap */
890 vm_object_deallocate(vm_submap_object
);
893 *addr
= CAST_DOWN(vm_offset_t
, map_addr
);
895 return (KERN_SUCCESS
);
901 * Initialize the kernel's virtual memory map, taking
902 * into account all memory allocated up to this time.
909 vm_map_offset_t map_start
;
910 vm_map_offset_t map_end
;
912 map_start
= vm_map_trunc_page(start
);
913 map_end
= vm_map_round_page(end
);
915 kernel_map
= vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS
,
918 * Reserve virtual memory allocated up to this time.
920 if (start
!= VM_MIN_KERNEL_AND_KEXT_ADDRESS
) {
921 vm_map_offset_t map_addr
;
924 map_addr
= VM_MIN_KERNEL_AND_KEXT_ADDRESS
;
925 kr
= vm_map_enter(kernel_map
,
927 (vm_map_size_t
)(map_start
- VM_MIN_KERNEL_AND_KEXT_ADDRESS
),
929 VM_FLAGS_FIXED
| VM_FLAGS_NO_PMAP_CHECK
,
931 (vm_object_offset_t
) 0, FALSE
,
932 VM_PROT_NONE
, VM_PROT_NONE
,
935 if (kr
!= KERN_SUCCESS
) {
936 panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
937 (uint64_t) start
, (uint64_t) end
,
938 (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS
,
939 (uint64_t) (map_start
- VM_MIN_KERNEL_AND_KEXT_ADDRESS
),
945 * Set the default global user wire limit which limits the amount of
946 * memory that can be locked via mlock(). We set this to the total
947 * amount of memory that are potentially usable by a user app (max_mem)
948 * minus a certain amount. This can be overridden via a sysctl.
950 vm_global_no_user_wire_amount
= MIN(max_mem
*20/100,
951 VM_NOT_USER_WIREABLE
);
952 vm_global_user_wire_limit
= max_mem
- vm_global_no_user_wire_amount
;
954 /* the default per user limit is the same as the global limit */
955 vm_user_wire_limit
= vm_global_user_wire_limit
;
962 * Like copyin, except that fromaddr is an address
963 * in the specified VM map. This implementation
964 * is incomplete; it handles the current user map
965 * and the kernel map/submaps.
970 vm_map_offset_t fromaddr
,
974 kern_return_t kr
= KERN_SUCCESS
;
977 if (vm_map_pmap(map
) == pmap_kernel())
979 /* assume a correct copy */
980 memcpy(todata
, CAST_DOWN(void *, fromaddr
), length
);
982 else if (current_map() == map
)
984 if (copyin(fromaddr
, todata
, length
) != 0)
985 kr
= KERN_INVALID_ADDRESS
;
989 vm_map_reference(map
);
990 oldmap
= vm_map_switch(map
);
991 if (copyin(fromaddr
, todata
, length
) != 0)
992 kr
= KERN_INVALID_ADDRESS
;
993 vm_map_switch(oldmap
);
994 vm_map_deallocate(map
);
1000 * Routine: copyoutmap
1002 * Like copyout, except that toaddr is an address
1003 * in the specified VM map. This implementation
1004 * is incomplete; it handles the current user map
1005 * and the kernel map/submaps.
1011 vm_map_address_t toaddr
,
1014 if (vm_map_pmap(map
) == pmap_kernel()) {
1015 /* assume a correct copy */
1016 memcpy(CAST_DOWN(void *, toaddr
), fromdata
, length
);
1017 return KERN_SUCCESS
;
1020 if (current_map() != map
)
1021 return KERN_NOT_SUPPORTED
;
1023 if (copyout(fromdata
, toaddr
, length
) != 0)
1024 return KERN_INVALID_ADDRESS
;
1026 return KERN_SUCCESS
;
1033 vm_map_offset_t off
,
1035 memory_object_t pager
,
1036 vm_object_offset_t file_off
)
1038 vm_map_entry_t entry
;
1040 vm_object_offset_t obj_off
;
1042 vm_map_offset_t base_offset
;
1043 vm_map_offset_t original_offset
;
1045 vm_map_size_t local_len
;
1049 original_offset
= off
;
1052 while(vm_map_lookup_entry(map
, off
, &entry
)) {
1055 if (entry
->object
.vm_object
== VM_OBJECT_NULL
) {
1057 return KERN_SUCCESS
;
1059 if (entry
->is_sub_map
) {
1063 vm_map_lock(entry
->object
.sub_map
);
1064 map
= entry
->object
.sub_map
;
1065 off
= entry
->offset
+ (off
- entry
->vme_start
);
1066 vm_map_unlock(old_map
);
1069 obj
= entry
->object
.vm_object
;
1070 obj_off
= (off
- entry
->vme_start
) + entry
->offset
;
1071 while(obj
->shadow
) {
1072 obj_off
+= obj
->vo_shadow_offset
;
1075 if((obj
->pager_created
) && (obj
->pager
== pager
)) {
1076 if(((obj
->paging_offset
) + obj_off
) == file_off
) {
1077 if(off
!= base_offset
) {
1079 return KERN_FAILURE
;
1081 kr
= KERN_ALREADY_WAITING
;
1083 vm_object_offset_t obj_off_aligned
;
1084 vm_object_offset_t file_off_aligned
;
1086 obj_off_aligned
= obj_off
& ~PAGE_MASK
;
1087 file_off_aligned
= file_off
& ~PAGE_MASK
;
1089 if (file_off_aligned
== (obj
->paging_offset
+ obj_off_aligned
)) {
1091 * the target map and the file offset start in the same page
1092 * but are not identical...
1095 return KERN_FAILURE
;
1097 if ((file_off
< (obj
->paging_offset
+ obj_off_aligned
)) &&
1098 ((file_off
+ len
) > (obj
->paging_offset
+ obj_off_aligned
))) {
1100 * some portion of the tail of the I/O will fall
1101 * within the encompass of the target map
1104 return KERN_FAILURE
;
1106 if ((file_off_aligned
> (obj
->paging_offset
+ obj_off
)) &&
1107 (file_off_aligned
< (obj
->paging_offset
+ obj_off
) + len
)) {
1109 * the beginning page of the file offset falls within
1110 * the target map's encompass
1113 return KERN_FAILURE
;
1116 } else if(kr
!= KERN_SUCCESS
) {
1118 return KERN_FAILURE
;
1121 if(len
<= ((entry
->vme_end
- entry
->vme_start
) -
1122 (off
- entry
->vme_start
))) {
1126 len
-= (entry
->vme_end
- entry
->vme_start
) -
1127 (off
- entry
->vme_start
);
1129 base_offset
= base_offset
+ (local_len
- len
);
1130 file_off
= file_off
+ (local_len
- len
);
1132 if(map
!= base_map
) {
1134 vm_map_lock(base_map
);