]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_kern.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * Kernel memory management. | |
64 | */ | |
65 | ||
1c79356b A |
66 | #include <mach/kern_return.h> |
67 | #include <mach/vm_param.h> | |
68 | #include <kern/assert.h> | |
69 | #include <kern/lock.h> | |
70 | #include <kern/thread.h> | |
71 | #include <vm/vm_kern.h> | |
72 | #include <vm/vm_map.h> | |
73 | #include <vm/vm_object.h> | |
74 | #include <vm/vm_page.h> | |
75 | #include <vm/vm_pageout.h> | |
76 | #include <kern/misc_protos.h> | |
77 | #include <vm/cpm.h> | |
78 | ||
79 | #include <string.h> | |
2d21ac55 A |
80 | |
81 | #include <libkern/OSDebug.h> | |
82 | #include <sys/kdebug.h> | |
83 | ||
1c79356b A |
84 | /* |
85 | * Variables exported by this module. | |
86 | */ | |
87 | ||
88 | vm_map_t kernel_map; | |
89 | vm_map_t kernel_pageable_map; | |
90 | ||
2d21ac55 A |
91 | extern boolean_t vm_kernel_ready; |
92 | ||
1c79356b A |
93 | /* |
94 | * Forward declarations for internal functions. | |
95 | */ | |
96 | extern kern_return_t kmem_alloc_pages( | |
97 | register vm_object_t object, | |
98 | register vm_object_offset_t offset, | |
91447636 | 99 | register vm_object_size_t size); |
1c79356b A |
100 | |
101 | extern void kmem_remap_pages( | |
102 | register vm_object_t object, | |
103 | register vm_object_offset_t offset, | |
104 | register vm_offset_t start, | |
105 | register vm_offset_t end, | |
106 | vm_prot_t protection); | |
107 | ||
108 | kern_return_t | |
109 | kmem_alloc_contig( | |
91447636 A |
110 | vm_map_t map, |
111 | vm_offset_t *addrp, | |
112 | vm_size_t size, | |
113 | vm_offset_t mask, | |
2d21ac55 | 114 | ppnum_t max_pnum, |
b0d623f7 | 115 | ppnum_t pnum_mask, |
91447636 | 116 | int flags) |
1c79356b A |
117 | { |
118 | vm_object_t object; | |
1c79356b | 119 | vm_object_offset_t offset; |
91447636 A |
120 | vm_map_offset_t map_addr; |
121 | vm_map_offset_t map_mask; | |
122 | vm_map_size_t map_size, i; | |
1c79356b | 123 | vm_map_entry_t entry; |
91447636 A |
124 | vm_page_t m, pages; |
125 | kern_return_t kr; | |
1c79356b | 126 | |
b0d623f7 | 127 | if (map == VM_MAP_NULL || (flags & ~(KMA_KOBJECT | KMA_LOMEM | KMA_NOPAGEWAIT))) |
1c79356b | 128 | return KERN_INVALID_ARGUMENT; |
316670eb A |
129 | |
130 | map_size = vm_map_round_page(size); | |
131 | map_mask = (vm_map_offset_t)mask; | |
1c79356b | 132 | |
316670eb A |
133 | /* Check for zero allocation size (either directly or via overflow) */ |
134 | if (map_size == 0) { | |
1c79356b A |
135 | *addrp = 0; |
136 | return KERN_INVALID_ARGUMENT; | |
137 | } | |
138 | ||
91447636 A |
139 | /* |
140 | * Allocate a new object (if necessary) and the reference we | |
141 | * will be donating to the map entry. We must do this before | |
142 | * locking the map, or risk deadlock with the default pager. | |
143 | */ | |
144 | if ((flags & KMA_KOBJECT) != 0) { | |
145 | object = kernel_object; | |
146 | vm_object_reference(object); | |
1c79356b | 147 | } else { |
91447636 | 148 | object = vm_object_allocate(map_size); |
1c79356b A |
149 | } |
150 | ||
0c530ab8 | 151 | kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0, &entry); |
91447636 A |
152 | if (KERN_SUCCESS != kr) { |
153 | vm_object_deallocate(object); | |
1c79356b A |
154 | return kr; |
155 | } | |
156 | ||
91447636 A |
157 | entry->object.vm_object = object; |
158 | entry->offset = offset = (object == kernel_object) ? | |
b0d623f7 | 159 | map_addr : 0; |
91447636 A |
160 | |
161 | /* Take an extra object ref in case the map entry gets deleted */ | |
162 | vm_object_reference(object); | |
1c79356b A |
163 | vm_map_unlock(map); |
164 | ||
b0d623f7 | 165 | kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, pnum_mask, FALSE, flags); |
1c79356b A |
166 | |
167 | if (kr != KERN_SUCCESS) { | |
91447636 A |
168 | vm_map_remove(map, vm_map_trunc_page(map_addr), |
169 | vm_map_round_page(map_addr + map_size), 0); | |
170 | vm_object_deallocate(object); | |
1c79356b A |
171 | *addrp = 0; |
172 | return kr; | |
173 | } | |
174 | ||
175 | vm_object_lock(object); | |
91447636 | 176 | for (i = 0; i < map_size; i += PAGE_SIZE) { |
1c79356b A |
177 | m = pages; |
178 | pages = NEXT_PAGE(m); | |
0c530ab8 | 179 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
1c79356b A |
180 | m->busy = FALSE; |
181 | vm_page_insert(m, object, offset + i); | |
182 | } | |
183 | vm_object_unlock(object); | |
184 | ||
91447636 A |
185 | if ((kr = vm_map_wire(map, vm_map_trunc_page(map_addr), |
186 | vm_map_round_page(map_addr + map_size), VM_PROT_DEFAULT, FALSE)) | |
1c79356b A |
187 | != KERN_SUCCESS) { |
188 | if (object == kernel_object) { | |
189 | vm_object_lock(object); | |
91447636 | 190 | vm_object_page_remove(object, offset, offset + map_size); |
1c79356b A |
191 | vm_object_unlock(object); |
192 | } | |
91447636 A |
193 | vm_map_remove(map, vm_map_trunc_page(map_addr), |
194 | vm_map_round_page(map_addr + map_size), 0); | |
195 | vm_object_deallocate(object); | |
1c79356b A |
196 | return kr; |
197 | } | |
91447636 A |
198 | vm_object_deallocate(object); |
199 | ||
1c79356b | 200 | if (object == kernel_object) |
91447636 | 201 | vm_map_simplify(map, map_addr); |
1c79356b | 202 | |
b0d623f7 A |
203 | *addrp = (vm_offset_t) map_addr; |
204 | assert((vm_map_offset_t) *addrp == map_addr); | |
1c79356b A |
205 | return KERN_SUCCESS; |
206 | } | |
207 | ||
208 | /* | |
209 | * Master entry point for allocating kernel memory. | |
210 | * NOTE: this routine is _never_ interrupt safe. | |
211 | * | |
212 | * map : map to allocate into | |
213 | * addrp : pointer to start address of new memory | |
214 | * size : size of memory requested | |
215 | * flags : options | |
216 | * KMA_HERE *addrp is base address, else "anywhere" | |
217 | * KMA_NOPAGEWAIT don't wait for pages if unavailable | |
218 | * KMA_KOBJECT use kernel_object | |
0c530ab8 A |
219 | * KMA_LOMEM support for 32 bit devices in a 64 bit world |
220 | * if set and a lomemory pool is available | |
221 | * grab pages from it... this also implies | |
222 | * KMA_NOPAGEWAIT | |
1c79356b A |
223 | */ |
224 | ||
225 | kern_return_t | |
226 | kernel_memory_allocate( | |
227 | register vm_map_t map, | |
228 | register vm_offset_t *addrp, | |
229 | register vm_size_t size, | |
230 | register vm_offset_t mask, | |
231 | int flags) | |
232 | { | |
91447636 A |
233 | vm_object_t object; |
234 | vm_object_offset_t offset; | |
b0d623f7 | 235 | vm_object_offset_t pg_offset; |
bd504ef0 | 236 | vm_map_entry_t entry = NULL; |
2d21ac55 | 237 | vm_map_offset_t map_addr, fill_start; |
91447636 | 238 | vm_map_offset_t map_mask; |
2d21ac55 | 239 | vm_map_size_t map_size, fill_size; |
1c79356b | 240 | kern_return_t kr; |
2d21ac55 | 241 | vm_page_t mem; |
b0d623f7 A |
242 | vm_page_t guard_page_list = NULL; |
243 | vm_page_t wired_page_list = NULL; | |
244 | int guard_page_count = 0; | |
245 | int wired_page_count = 0; | |
246 | int i; | |
2d21ac55 | 247 | int vm_alloc_flags; |
316670eb | 248 | vm_prot_t kma_prot; |
2d21ac55 A |
249 | |
250 | if (! vm_kernel_ready) { | |
251 | panic("kernel_memory_allocate: VM is not ready"); | |
252 | } | |
1c79356b | 253 | |
91447636 A |
254 | map_size = vm_map_round_page(size); |
255 | map_mask = (vm_map_offset_t) mask; | |
2d21ac55 A |
256 | vm_alloc_flags = 0; |
257 | ||
316670eb A |
258 | /* Check for zero allocation size (either directly or via overflow) */ |
259 | if (map_size == 0) { | |
260 | *addrp = 0; | |
261 | return KERN_INVALID_ARGUMENT; | |
262 | } | |
b0d623f7 A |
263 | |
264 | /* | |
265 | * limit the size of a single extent of wired memory | |
266 | * to try and limit the damage to the system if | |
267 | * too many pages get wired down | |
268 | */ | |
269 | if (map_size > (1 << 30)) { | |
270 | return KERN_RESOURCE_SHORTAGE; | |
271 | } | |
272 | ||
2d21ac55 A |
273 | /* |
274 | * Guard pages: | |
275 | * | |
276 | * Guard pages are implemented as ficticious pages. By placing guard pages | |
277 | * on either end of a stack, they can help detect cases where a thread walks | |
278 | * off either end of its stack. They are allocated and set up here and attempts | |
279 | * to access those pages are trapped in vm_fault_page(). | |
280 | * | |
281 | * The map_size we were passed may include extra space for | |
282 | * guard pages. If those were requested, then back it out of fill_size | |
283 | * since vm_map_find_space() takes just the actual size not including | |
284 | * guard pages. Similarly, fill_start indicates where the actual pages | |
285 | * will begin in the range. | |
286 | */ | |
287 | ||
288 | fill_start = 0; | |
289 | fill_size = map_size; | |
b0d623f7 | 290 | |
2d21ac55 A |
291 | if (flags & KMA_GUARD_FIRST) { |
292 | vm_alloc_flags |= VM_FLAGS_GUARD_BEFORE; | |
293 | fill_start += PAGE_SIZE_64; | |
294 | fill_size -= PAGE_SIZE_64; | |
295 | if (map_size < fill_start + fill_size) { | |
296 | /* no space for a guard page */ | |
297 | *addrp = 0; | |
298 | return KERN_INVALID_ARGUMENT; | |
299 | } | |
b0d623f7 | 300 | guard_page_count++; |
2d21ac55 A |
301 | } |
302 | if (flags & KMA_GUARD_LAST) { | |
303 | vm_alloc_flags |= VM_FLAGS_GUARD_AFTER; | |
304 | fill_size -= PAGE_SIZE_64; | |
305 | if (map_size <= fill_start + fill_size) { | |
306 | /* no space for a guard page */ | |
307 | *addrp = 0; | |
308 | return KERN_INVALID_ARGUMENT; | |
309 | } | |
b0d623f7 A |
310 | guard_page_count++; |
311 | } | |
312 | wired_page_count = (int) (fill_size / PAGE_SIZE_64); | |
313 | assert(wired_page_count * PAGE_SIZE_64 == fill_size); | |
314 | ||
315 | for (i = 0; i < guard_page_count; i++) { | |
316 | for (;;) { | |
317 | mem = vm_page_grab_guard(); | |
318 | ||
319 | if (mem != VM_PAGE_NULL) | |
320 | break; | |
321 | if (flags & KMA_NOPAGEWAIT) { | |
322 | kr = KERN_RESOURCE_SHORTAGE; | |
323 | goto out; | |
324 | } | |
325 | vm_page_more_fictitious(); | |
326 | } | |
327 | mem->pageq.next = (queue_entry_t)guard_page_list; | |
328 | guard_page_list = mem; | |
329 | } | |
330 | ||
331 | for (i = 0; i < wired_page_count; i++) { | |
332 | uint64_t unavailable; | |
333 | ||
334 | for (;;) { | |
335 | if (flags & KMA_LOMEM) | |
336 | mem = vm_page_grablo(); | |
337 | else | |
338 | mem = vm_page_grab(); | |
339 | ||
340 | if (mem != VM_PAGE_NULL) | |
341 | break; | |
342 | ||
343 | if (flags & KMA_NOPAGEWAIT) { | |
344 | kr = KERN_RESOURCE_SHORTAGE; | |
345 | goto out; | |
346 | } | |
0b4c1975 A |
347 | if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) { |
348 | kr = KERN_RESOURCE_SHORTAGE; | |
349 | goto out; | |
350 | } | |
b0d623f7 A |
351 | unavailable = (vm_page_wire_count + vm_page_free_target) * PAGE_SIZE; |
352 | ||
353 | if (unavailable > max_mem || map_size > (max_mem - unavailable)) { | |
354 | kr = KERN_RESOURCE_SHORTAGE; | |
355 | goto out; | |
356 | } | |
357 | VM_PAGE_WAIT(); | |
358 | } | |
359 | mem->pageq.next = (queue_entry_t)wired_page_list; | |
360 | wired_page_list = mem; | |
2d21ac55 | 361 | } |
91447636 A |
362 | |
363 | /* | |
364 | * Allocate a new object (if necessary). We must do this before | |
365 | * locking the map, or risk deadlock with the default pager. | |
366 | */ | |
367 | if ((flags & KMA_KOBJECT) != 0) { | |
1c79356b | 368 | object = kernel_object; |
91447636 A |
369 | vm_object_reference(object); |
370 | } else { | |
371 | object = vm_object_allocate(map_size); | |
1c79356b | 372 | } |
91447636 | 373 | |
2d21ac55 A |
374 | kr = vm_map_find_space(map, &map_addr, |
375 | fill_size, map_mask, | |
376 | vm_alloc_flags, &entry); | |
91447636 A |
377 | if (KERN_SUCCESS != kr) { |
378 | vm_object_deallocate(object); | |
b0d623f7 | 379 | goto out; |
1c79356b | 380 | } |
2d21ac55 | 381 | |
91447636 A |
382 | entry->object.vm_object = object; |
383 | entry->offset = offset = (object == kernel_object) ? | |
b0d623f7 | 384 | map_addr : 0; |
1c79356b | 385 | |
b0d623f7 A |
386 | entry->wired_count++; |
387 | ||
388 | if (flags & KMA_PERMANENT) | |
389 | entry->permanent = TRUE; | |
390 | ||
391 | if (object != kernel_object) | |
392 | vm_object_reference(object); | |
1c79356b A |
393 | |
394 | vm_object_lock(object); | |
b0d623f7 | 395 | vm_map_unlock(map); |
1c79356b | 396 | |
b0d623f7 A |
397 | pg_offset = 0; |
398 | ||
399 | if (fill_start) { | |
400 | if (guard_page_list == NULL) | |
401 | panic("kernel_memory_allocate: guard_page_list == NULL"); | |
402 | ||
403 | mem = guard_page_list; | |
404 | guard_page_list = (vm_page_t)mem->pageq.next; | |
405 | mem->pageq.next = NULL; | |
406 | ||
407 | vm_page_insert(mem, object, offset + pg_offset); | |
2d21ac55 | 408 | |
2d21ac55 | 409 | mem->busy = FALSE; |
b0d623f7 | 410 | pg_offset += PAGE_SIZE_64; |
2d21ac55 | 411 | } |
316670eb A |
412 | |
413 | kma_prot = VM_PROT_READ | VM_PROT_WRITE; | |
414 | ||
b0d623f7 A |
415 | for (pg_offset = fill_start; pg_offset < fill_start + fill_size; pg_offset += PAGE_SIZE_64) { |
416 | if (wired_page_list == NULL) | |
417 | panic("kernel_memory_allocate: wired_page_list == NULL"); | |
2d21ac55 | 418 | |
b0d623f7 A |
419 | mem = wired_page_list; |
420 | wired_page_list = (vm_page_t)mem->pageq.next; | |
421 | mem->pageq.next = NULL; | |
422 | mem->wire_count++; | |
2d21ac55 | 423 | |
b0d623f7 | 424 | vm_page_insert(mem, object, offset + pg_offset); |
0c530ab8 | 425 | |
1c79356b | 426 | mem->busy = FALSE; |
b0d623f7 A |
427 | mem->pmapped = TRUE; |
428 | mem->wpmapped = TRUE; | |
429 | ||
430 | PMAP_ENTER(kernel_pmap, map_addr + pg_offset, mem, | |
316670eb | 431 | kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE); |
0b4c1975 A |
432 | |
433 | if (flags & KMA_NOENCRYPT) { | |
434 | bzero(CAST_DOWN(void *, (map_addr + pg_offset)), PAGE_SIZE); | |
435 | ||
436 | pmap_set_noencrypt(mem->phys_page); | |
437 | } | |
1c79356b | 438 | } |
b0d623f7 A |
439 | if ((fill_start + fill_size) < map_size) { |
440 | if (guard_page_list == NULL) | |
441 | panic("kernel_memory_allocate: guard_page_list == NULL"); | |
1c79356b | 442 | |
b0d623f7 A |
443 | mem = guard_page_list; |
444 | guard_page_list = (vm_page_t)mem->pageq.next; | |
445 | mem->pageq.next = NULL; | |
446 | ||
447 | vm_page_insert(mem, object, offset + pg_offset); | |
2d21ac55 | 448 | |
2d21ac55 | 449 | mem->busy = FALSE; |
1c79356b | 450 | } |
b0d623f7 A |
451 | if (guard_page_list || wired_page_list) |
452 | panic("kernel_memory_allocate: non empty list\n"); | |
2d21ac55 | 453 | |
b0d623f7 A |
454 | vm_page_lockspin_queues(); |
455 | vm_page_wire_count += wired_page_count; | |
456 | vm_page_unlock_queues(); | |
2d21ac55 | 457 | |
b0d623f7 A |
458 | vm_object_unlock(object); |
459 | ||
460 | /* | |
461 | * now that the pages are wired, we no longer have to fear coalesce | |
462 | */ | |
1c79356b | 463 | if (object == kernel_object) |
91447636 | 464 | vm_map_simplify(map, map_addr); |
b0d623f7 A |
465 | else |
466 | vm_object_deallocate(object); | |
1c79356b A |
467 | |
468 | /* | |
469 | * Return the memory, not zeroed. | |
470 | */ | |
91447636 | 471 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b | 472 | return KERN_SUCCESS; |
2d21ac55 | 473 | |
b0d623f7 A |
474 | out: |
475 | if (guard_page_list) | |
476 | vm_page_free_list(guard_page_list, FALSE); | |
477 | ||
478 | if (wired_page_list) | |
479 | vm_page_free_list(wired_page_list, FALSE); | |
480 | ||
481 | return kr; | |
1c79356b A |
482 | } |
483 | ||
484 | /* | |
485 | * kmem_alloc: | |
486 | * | |
487 | * Allocate wired-down memory in the kernel's address map | |
488 | * or a submap. The memory is not zero-filled. | |
489 | */ | |
490 | ||
491 | kern_return_t | |
492 | kmem_alloc( | |
493 | vm_map_t map, | |
494 | vm_offset_t *addrp, | |
495 | vm_size_t size) | |
496 | { | |
2d21ac55 A |
497 | kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, 0); |
498 | TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp); | |
499 | return kr; | |
1c79356b A |
500 | } |
501 | ||
502 | /* | |
503 | * kmem_realloc: | |
504 | * | |
505 | * Reallocate wired-down memory in the kernel's address map | |
506 | * or a submap. Newly allocated pages are not zeroed. | |
507 | * This can only be used on regions allocated with kmem_alloc. | |
508 | * | |
509 | * If successful, the pages in the old region are mapped twice. | |
510 | * The old region is unchanged. Use kmem_free to get rid of it. | |
511 | */ | |
512 | kern_return_t | |
513 | kmem_realloc( | |
91447636 A |
514 | vm_map_t map, |
515 | vm_offset_t oldaddr, | |
516 | vm_size_t oldsize, | |
517 | vm_offset_t *newaddrp, | |
518 | vm_size_t newsize) | |
1c79356b | 519 | { |
91447636 A |
520 | vm_object_t object; |
521 | vm_object_offset_t offset; | |
522 | vm_map_offset_t oldmapmin; | |
523 | vm_map_offset_t oldmapmax; | |
524 | vm_map_offset_t newmapaddr; | |
525 | vm_map_size_t oldmapsize; | |
526 | vm_map_size_t newmapsize; | |
527 | vm_map_entry_t oldentry; | |
528 | vm_map_entry_t newentry; | |
529 | vm_page_t mem; | |
530 | kern_return_t kr; | |
1c79356b | 531 | |
91447636 A |
532 | oldmapmin = vm_map_trunc_page(oldaddr); |
533 | oldmapmax = vm_map_round_page(oldaddr + oldsize); | |
534 | oldmapsize = oldmapmax - oldmapmin; | |
535 | newmapsize = vm_map_round_page(newsize); | |
1c79356b | 536 | |
1c79356b A |
537 | |
538 | /* | |
539 | * Find the VM object backing the old region. | |
540 | */ | |
541 | ||
b4c24cb9 A |
542 | vm_map_lock(map); |
543 | ||
91447636 | 544 | if (!vm_map_lookup_entry(map, oldmapmin, &oldentry)) |
1c79356b A |
545 | panic("kmem_realloc"); |
546 | object = oldentry->object.vm_object; | |
547 | ||
548 | /* | |
549 | * Increase the size of the object and | |
550 | * fill in the new region. | |
551 | */ | |
552 | ||
553 | vm_object_reference(object); | |
b4c24cb9 A |
554 | /* by grabbing the object lock before unlocking the map */ |
555 | /* we guarantee that we will panic if more than one */ | |
556 | /* attempt is made to realloc a kmem_alloc'd area */ | |
1c79356b | 557 | vm_object_lock(object); |
b4c24cb9 | 558 | vm_map_unlock(map); |
6d2010ae | 559 | if (object->vo_size != oldmapsize) |
1c79356b | 560 | panic("kmem_realloc"); |
6d2010ae | 561 | object->vo_size = newmapsize; |
1c79356b A |
562 | vm_object_unlock(object); |
563 | ||
b4c24cb9 A |
564 | /* allocate the new pages while expanded portion of the */ |
565 | /* object is still not mapped */ | |
91447636 A |
566 | kmem_alloc_pages(object, vm_object_round_page(oldmapsize), |
567 | vm_object_round_page(newmapsize-oldmapsize)); | |
1c79356b A |
568 | |
569 | /* | |
b4c24cb9 | 570 | * Find space for the new region. |
1c79356b A |
571 | */ |
572 | ||
91447636 | 573 | kr = vm_map_find_space(map, &newmapaddr, newmapsize, |
0c530ab8 | 574 | (vm_map_offset_t) 0, 0, &newentry); |
b4c24cb9 A |
575 | if (kr != KERN_SUCCESS) { |
576 | vm_object_lock(object); | |
91447636 A |
577 | for(offset = oldmapsize; |
578 | offset < newmapsize; offset += PAGE_SIZE) { | |
b4c24cb9 | 579 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
b0d623f7 | 580 | VM_PAGE_FREE(mem); |
b4c24cb9 A |
581 | } |
582 | } | |
6d2010ae | 583 | object->vo_size = oldmapsize; |
b4c24cb9 A |
584 | vm_object_unlock(object); |
585 | vm_object_deallocate(object); | |
586 | return kr; | |
587 | } | |
588 | newentry->object.vm_object = object; | |
589 | newentry->offset = 0; | |
590 | assert (newentry->wired_count == 0); | |
591 | ||
592 | ||
593 | /* add an extra reference in case we have someone doing an */ | |
594 | /* unexpected deallocate */ | |
595 | vm_object_reference(object); | |
1c79356b A |
596 | vm_map_unlock(map); |
597 | ||
91447636 A |
598 | kr = vm_map_wire(map, newmapaddr, newmapaddr + newmapsize, VM_PROT_DEFAULT, FALSE); |
599 | if (KERN_SUCCESS != kr) { | |
600 | vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, 0); | |
b4c24cb9 | 601 | vm_object_lock(object); |
91447636 | 602 | for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) { |
b4c24cb9 | 603 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
b0d623f7 | 604 | VM_PAGE_FREE(mem); |
b4c24cb9 A |
605 | } |
606 | } | |
6d2010ae | 607 | object->vo_size = oldmapsize; |
b4c24cb9 A |
608 | vm_object_unlock(object); |
609 | vm_object_deallocate(object); | |
610 | return (kr); | |
611 | } | |
612 | vm_object_deallocate(object); | |
1c79356b | 613 | |
91447636 | 614 | *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr); |
1c79356b A |
615 | return KERN_SUCCESS; |
616 | } | |
617 | ||
618 | /* | |
b0d623f7 | 619 | * kmem_alloc_kobject: |
1c79356b A |
620 | * |
621 | * Allocate wired-down memory in the kernel's address map | |
622 | * or a submap. The memory is not zero-filled. | |
623 | * | |
624 | * The memory is allocated in the kernel_object. | |
625 | * It may not be copied with vm_map_copy, and | |
626 | * it may not be reallocated with kmem_realloc. | |
627 | */ | |
628 | ||
629 | kern_return_t | |
b0d623f7 | 630 | kmem_alloc_kobject( |
1c79356b A |
631 | vm_map_t map, |
632 | vm_offset_t *addrp, | |
633 | vm_size_t size) | |
634 | { | |
635 | return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT); | |
636 | } | |
637 | ||
638 | /* | |
639 | * kmem_alloc_aligned: | |
640 | * | |
b0d623f7 | 641 | * Like kmem_alloc_kobject, except that the memory is aligned. |
1c79356b A |
642 | * The size should be a power-of-2. |
643 | */ | |
644 | ||
645 | kern_return_t | |
646 | kmem_alloc_aligned( | |
647 | vm_map_t map, | |
648 | vm_offset_t *addrp, | |
649 | vm_size_t size) | |
650 | { | |
651 | if ((size & (size - 1)) != 0) | |
652 | panic("kmem_alloc_aligned: size not aligned"); | |
653 | return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT); | |
654 | } | |
655 | ||
656 | /* | |
657 | * kmem_alloc_pageable: | |
658 | * | |
659 | * Allocate pageable memory in the kernel's address map. | |
660 | */ | |
661 | ||
662 | kern_return_t | |
663 | kmem_alloc_pageable( | |
664 | vm_map_t map, | |
665 | vm_offset_t *addrp, | |
666 | vm_size_t size) | |
667 | { | |
91447636 A |
668 | vm_map_offset_t map_addr; |
669 | vm_map_size_t map_size; | |
1c79356b A |
670 | kern_return_t kr; |
671 | ||
672 | #ifndef normal | |
91447636 | 673 | map_addr = (vm_map_min(map)) + 0x1000; |
1c79356b | 674 | #else |
91447636 | 675 | map_addr = vm_map_min(map); |
1c79356b | 676 | #endif |
91447636 A |
677 | map_size = vm_map_round_page(size); |
678 | ||
679 | kr = vm_map_enter(map, &map_addr, map_size, | |
680 | (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE, | |
1c79356b A |
681 | VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE, |
682 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
91447636 | 683 | |
1c79356b A |
684 | if (kr != KERN_SUCCESS) |
685 | return kr; | |
686 | ||
91447636 | 687 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b A |
688 | return KERN_SUCCESS; |
689 | } | |
690 | ||
691 | /* | |
692 | * kmem_free: | |
693 | * | |
694 | * Release a region of kernel virtual memory allocated | |
b0d623f7 | 695 | * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable, |
1c79356b A |
696 | * and return the physical pages associated with that region. |
697 | */ | |
698 | ||
699 | void | |
700 | kmem_free( | |
701 | vm_map_t map, | |
702 | vm_offset_t addr, | |
703 | vm_size_t size) | |
704 | { | |
705 | kern_return_t kr; | |
706 | ||
b0d623f7 A |
707 | assert(addr >= VM_MIN_KERNEL_AND_KEXT_ADDRESS); |
708 | ||
2d21ac55 A |
709 | TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr); |
710 | ||
b0d623f7 A |
711 | if(size == 0) { |
712 | #if MACH_ASSERT | |
713 | printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n",map,(uint64_t)addr); | |
714 | #endif | |
715 | return; | |
716 | } | |
717 | ||
91447636 A |
718 | kr = vm_map_remove(map, vm_map_trunc_page(addr), |
719 | vm_map_round_page(addr + size), | |
55e303ae | 720 | VM_MAP_REMOVE_KUNWIRE); |
1c79356b A |
721 | if (kr != KERN_SUCCESS) |
722 | panic("kmem_free"); | |
723 | } | |
724 | ||
725 | /* | |
b4c24cb9 | 726 | * Allocate new pages in an object. |
1c79356b A |
727 | */ |
728 | ||
729 | kern_return_t | |
730 | kmem_alloc_pages( | |
731 | register vm_object_t object, | |
732 | register vm_object_offset_t offset, | |
91447636 | 733 | register vm_object_size_t size) |
1c79356b | 734 | { |
91447636 | 735 | vm_object_size_t alloc_size; |
1c79356b | 736 | |
91447636 | 737 | alloc_size = vm_object_round_page(size); |
b4c24cb9 | 738 | vm_object_lock(object); |
91447636 | 739 | while (alloc_size) { |
1c79356b A |
740 | register vm_page_t mem; |
741 | ||
1c79356b A |
742 | |
743 | /* | |
744 | * Allocate a page | |
745 | */ | |
91447636 A |
746 | while (VM_PAGE_NULL == |
747 | (mem = vm_page_alloc(object, offset))) { | |
1c79356b A |
748 | vm_object_unlock(object); |
749 | VM_PAGE_WAIT(); | |
750 | vm_object_lock(object); | |
751 | } | |
91447636 | 752 | mem->busy = FALSE; |
1c79356b | 753 | |
91447636 | 754 | alloc_size -= PAGE_SIZE; |
b4c24cb9 | 755 | offset += PAGE_SIZE; |
1c79356b | 756 | } |
b4c24cb9 | 757 | vm_object_unlock(object); |
1c79356b A |
758 | return KERN_SUCCESS; |
759 | } | |
760 | ||
761 | /* | |
762 | * Remap wired pages in an object into a new region. | |
763 | * The object is assumed to be mapped into the kernel map or | |
764 | * a submap. | |
765 | */ | |
766 | void | |
767 | kmem_remap_pages( | |
768 | register vm_object_t object, | |
769 | register vm_object_offset_t offset, | |
770 | register vm_offset_t start, | |
771 | register vm_offset_t end, | |
772 | vm_prot_t protection) | |
773 | { | |
91447636 A |
774 | |
775 | vm_map_offset_t map_start; | |
776 | vm_map_offset_t map_end; | |
777 | ||
1c79356b A |
778 | /* |
779 | * Mark the pmap region as not pageable. | |
780 | */ | |
91447636 A |
781 | map_start = vm_map_trunc_page(start); |
782 | map_end = vm_map_round_page(end); | |
1c79356b | 783 | |
91447636 A |
784 | pmap_pageable(kernel_pmap, map_start, map_end, FALSE); |
785 | ||
786 | while (map_start < map_end) { | |
1c79356b A |
787 | register vm_page_t mem; |
788 | ||
789 | vm_object_lock(object); | |
790 | ||
791 | /* | |
792 | * Find a page | |
793 | */ | |
794 | if ((mem = vm_page_lookup(object, offset)) == VM_PAGE_NULL) | |
795 | panic("kmem_remap_pages"); | |
796 | ||
797 | /* | |
798 | * Wire it down (again) | |
799 | */ | |
2d21ac55 | 800 | vm_page_lockspin_queues(); |
1c79356b A |
801 | vm_page_wire(mem); |
802 | vm_page_unlock_queues(); | |
803 | vm_object_unlock(object); | |
804 | ||
91447636 A |
805 | /* |
806 | * ENCRYPTED SWAP: | |
807 | * The page is supposed to be wired now, so it | |
808 | * shouldn't be encrypted at this point. It can | |
809 | * safely be entered in the page table. | |
810 | */ | |
811 | ASSERT_PAGE_DECRYPTED(mem); | |
812 | ||
1c79356b A |
813 | /* |
814 | * Enter it in the kernel pmap. The page isn't busy, | |
815 | * but this shouldn't be a problem because it is wired. | |
816 | */ | |
b0d623f7 A |
817 | |
818 | mem->pmapped = TRUE; | |
819 | mem->wpmapped = TRUE; | |
820 | ||
316670eb | 821 | PMAP_ENTER(kernel_pmap, map_start, mem, protection, VM_PROT_NONE, 0, TRUE); |
1c79356b | 822 | |
91447636 | 823 | map_start += PAGE_SIZE; |
1c79356b A |
824 | offset += PAGE_SIZE; |
825 | } | |
826 | } | |
827 | ||
828 | /* | |
829 | * kmem_suballoc: | |
830 | * | |
831 | * Allocates a map to manage a subrange | |
832 | * of the kernel virtual address space. | |
833 | * | |
834 | * Arguments are as follows: | |
835 | * | |
836 | * parent Map to take range from | |
837 | * addr Address of start of range (IN/OUT) | |
838 | * size Size of range to find | |
839 | * pageable Can region be paged | |
840 | * anywhere Can region be located anywhere in map | |
841 | * new_map Pointer to new submap | |
842 | */ | |
843 | kern_return_t | |
844 | kmem_suballoc( | |
845 | vm_map_t parent, | |
846 | vm_offset_t *addr, | |
847 | vm_size_t size, | |
848 | boolean_t pageable, | |
91447636 | 849 | int flags, |
1c79356b A |
850 | vm_map_t *new_map) |
851 | { | |
91447636 A |
852 | vm_map_t map; |
853 | vm_map_offset_t map_addr; | |
854 | vm_map_size_t map_size; | |
855 | kern_return_t kr; | |
1c79356b | 856 | |
91447636 | 857 | map_size = vm_map_round_page(size); |
1c79356b A |
858 | |
859 | /* | |
860 | * Need reference on submap object because it is internal | |
861 | * to the vm_system. vm_object_enter will never be called | |
862 | * on it (usual source of reference for vm_map_enter). | |
863 | */ | |
864 | vm_object_reference(vm_submap_object); | |
865 | ||
91447636 A |
866 | map_addr = (flags & VM_FLAGS_ANYWHERE) ? |
867 | vm_map_min(parent) : vm_map_trunc_page(*addr); | |
868 | ||
869 | kr = vm_map_enter(parent, &map_addr, map_size, | |
870 | (vm_map_offset_t) 0, flags, | |
1c79356b A |
871 | vm_submap_object, (vm_object_offset_t) 0, FALSE, |
872 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
873 | if (kr != KERN_SUCCESS) { | |
874 | vm_object_deallocate(vm_submap_object); | |
875 | return (kr); | |
876 | } | |
877 | ||
878 | pmap_reference(vm_map_pmap(parent)); | |
91447636 | 879 | map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable); |
1c79356b A |
880 | if (map == VM_MAP_NULL) |
881 | panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */ | |
882 | ||
91447636 | 883 | kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE); |
1c79356b A |
884 | if (kr != KERN_SUCCESS) { |
885 | /* | |
886 | * See comment preceding vm_map_submap(). | |
887 | */ | |
91447636 | 888 | vm_map_remove(parent, map_addr, map_addr + map_size, VM_MAP_NO_FLAGS); |
1c79356b A |
889 | vm_map_deallocate(map); /* also removes ref to pmap */ |
890 | vm_object_deallocate(vm_submap_object); | |
891 | return (kr); | |
892 | } | |
91447636 | 893 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b A |
894 | *new_map = map; |
895 | return (KERN_SUCCESS); | |
896 | } | |
897 | ||
898 | /* | |
899 | * kmem_init: | |
900 | * | |
901 | * Initialize the kernel's virtual memory map, taking | |
902 | * into account all memory allocated up to this time. | |
903 | */ | |
904 | void | |
905 | kmem_init( | |
906 | vm_offset_t start, | |
907 | vm_offset_t end) | |
908 | { | |
91447636 A |
909 | vm_map_offset_t map_start; |
910 | vm_map_offset_t map_end; | |
911 | ||
912 | map_start = vm_map_trunc_page(start); | |
913 | map_end = vm_map_round_page(end); | |
914 | ||
6d2010ae | 915 | kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
0c530ab8 | 916 | map_end, FALSE); |
1c79356b A |
917 | /* |
918 | * Reserve virtual memory allocated up to this time. | |
919 | */ | |
6d2010ae | 920 | if (start != VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
91447636 | 921 | vm_map_offset_t map_addr; |
6d2010ae | 922 | kern_return_t kr; |
0c530ab8 | 923 | |
6d2010ae A |
924 | map_addr = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
925 | kr = vm_map_enter(kernel_map, | |
926 | &map_addr, | |
927 | (vm_map_size_t)(map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), | |
928 | (vm_map_offset_t) 0, | |
929 | VM_FLAGS_FIXED | VM_FLAGS_NO_PMAP_CHECK, | |
930 | VM_OBJECT_NULL, | |
931 | (vm_object_offset_t) 0, FALSE, | |
932 | VM_PROT_NONE, VM_PROT_NONE, | |
933 | VM_INHERIT_DEFAULT); | |
934 | ||
935 | if (kr != KERN_SUCCESS) { | |
936 | panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n", | |
937 | (uint64_t) start, (uint64_t) end, | |
938 | (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS, | |
939 | (uint64_t) (map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), | |
940 | kr); | |
941 | } | |
1c79356b | 942 | } |
6d2010ae | 943 | |
2d21ac55 A |
944 | /* |
945 | * Set the default global user wire limit which limits the amount of | |
b0d623f7 A |
946 | * memory that can be locked via mlock(). We set this to the total |
947 | * amount of memory that are potentially usable by a user app (max_mem) | |
948 | * minus a certain amount. This can be overridden via a sysctl. | |
2d21ac55 | 949 | */ |
b0d623f7 A |
950 | vm_global_no_user_wire_amount = MIN(max_mem*20/100, |
951 | VM_NOT_USER_WIREABLE); | |
952 | vm_global_user_wire_limit = max_mem - vm_global_no_user_wire_amount; | |
2d21ac55 | 953 | |
b0d623f7 A |
954 | /* the default per user limit is the same as the global limit */ |
955 | vm_user_wire_limit = vm_global_user_wire_limit; | |
1c79356b A |
956 | } |
957 | ||
1c79356b | 958 | |
1c79356b A |
959 | /* |
960 | * Routine: copyinmap | |
961 | * Purpose: | |
962 | * Like copyin, except that fromaddr is an address | |
963 | * in the specified VM map. This implementation | |
964 | * is incomplete; it handles the current user map | |
965 | * and the kernel map/submaps. | |
966 | */ | |
91447636 | 967 | kern_return_t |
1c79356b | 968 | copyinmap( |
91447636 A |
969 | vm_map_t map, |
970 | vm_map_offset_t fromaddr, | |
971 | void *todata, | |
972 | vm_size_t length) | |
1c79356b | 973 | { |
91447636 A |
974 | kern_return_t kr = KERN_SUCCESS; |
975 | vm_map_t oldmap; | |
976 | ||
977 | if (vm_map_pmap(map) == pmap_kernel()) | |
978 | { | |
1c79356b | 979 | /* assume a correct copy */ |
91447636 A |
980 | memcpy(todata, CAST_DOWN(void *, fromaddr), length); |
981 | } | |
982 | else if (current_map() == map) | |
983 | { | |
984 | if (copyin(fromaddr, todata, length) != 0) | |
985 | kr = KERN_INVALID_ADDRESS; | |
1c79356b | 986 | } |
91447636 A |
987 | else |
988 | { | |
989 | vm_map_reference(map); | |
990 | oldmap = vm_map_switch(map); | |
991 | if (copyin(fromaddr, todata, length) != 0) | |
992 | kr = KERN_INVALID_ADDRESS; | |
993 | vm_map_switch(oldmap); | |
994 | vm_map_deallocate(map); | |
995 | } | |
996 | return kr; | |
1c79356b A |
997 | } |
998 | ||
999 | /* | |
1000 | * Routine: copyoutmap | |
1001 | * Purpose: | |
1002 | * Like copyout, except that toaddr is an address | |
1003 | * in the specified VM map. This implementation | |
1004 | * is incomplete; it handles the current user map | |
1005 | * and the kernel map/submaps. | |
1006 | */ | |
91447636 | 1007 | kern_return_t |
1c79356b | 1008 | copyoutmap( |
91447636 A |
1009 | vm_map_t map, |
1010 | void *fromdata, | |
1011 | vm_map_address_t toaddr, | |
1012 | vm_size_t length) | |
1c79356b A |
1013 | { |
1014 | if (vm_map_pmap(map) == pmap_kernel()) { | |
1015 | /* assume a correct copy */ | |
91447636 A |
1016 | memcpy(CAST_DOWN(void *, toaddr), fromdata, length); |
1017 | return KERN_SUCCESS; | |
1c79356b A |
1018 | } |
1019 | ||
91447636 A |
1020 | if (current_map() != map) |
1021 | return KERN_NOT_SUPPORTED; | |
1022 | ||
1023 | if (copyout(fromdata, toaddr, length) != 0) | |
1024 | return KERN_INVALID_ADDRESS; | |
1c79356b | 1025 | |
91447636 | 1026 | return KERN_SUCCESS; |
1c79356b | 1027 | } |
9bccf70c A |
1028 | |
1029 | ||
1030 | kern_return_t | |
1031 | vm_conflict_check( | |
1032 | vm_map_t map, | |
91447636 A |
1033 | vm_map_offset_t off, |
1034 | vm_map_size_t len, | |
1035 | memory_object_t pager, | |
9bccf70c A |
1036 | vm_object_offset_t file_off) |
1037 | { | |
1038 | vm_map_entry_t entry; | |
1039 | vm_object_t obj; | |
1040 | vm_object_offset_t obj_off; | |
1041 | vm_map_t base_map; | |
91447636 A |
1042 | vm_map_offset_t base_offset; |
1043 | vm_map_offset_t original_offset; | |
9bccf70c | 1044 | kern_return_t kr; |
91447636 | 1045 | vm_map_size_t local_len; |
9bccf70c A |
1046 | |
1047 | base_map = map; | |
1048 | base_offset = off; | |
1049 | original_offset = off; | |
1050 | kr = KERN_SUCCESS; | |
1051 | vm_map_lock(map); | |
1052 | while(vm_map_lookup_entry(map, off, &entry)) { | |
1053 | local_len = len; | |
1054 | ||
1055 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
1056 | vm_map_unlock(map); | |
1057 | return KERN_SUCCESS; | |
1058 | } | |
1059 | if (entry->is_sub_map) { | |
1060 | vm_map_t old_map; | |
55e303ae | 1061 | |
9bccf70c A |
1062 | old_map = map; |
1063 | vm_map_lock(entry->object.sub_map); | |
1064 | map = entry->object.sub_map; | |
1065 | off = entry->offset + (off - entry->vme_start); | |
1066 | vm_map_unlock(old_map); | |
1067 | continue; | |
1068 | } | |
1069 | obj = entry->object.vm_object; | |
1070 | obj_off = (off - entry->vme_start) + entry->offset; | |
1071 | while(obj->shadow) { | |
6d2010ae | 1072 | obj_off += obj->vo_shadow_offset; |
9bccf70c A |
1073 | obj = obj->shadow; |
1074 | } | |
1075 | if((obj->pager_created) && (obj->pager == pager)) { | |
1076 | if(((obj->paging_offset) + obj_off) == file_off) { | |
1077 | if(off != base_offset) { | |
1078 | vm_map_unlock(map); | |
1079 | return KERN_FAILURE; | |
1080 | } | |
1081 | kr = KERN_ALREADY_WAITING; | |
55e303ae A |
1082 | } else { |
1083 | vm_object_offset_t obj_off_aligned; | |
1084 | vm_object_offset_t file_off_aligned; | |
1085 | ||
1086 | obj_off_aligned = obj_off & ~PAGE_MASK; | |
1087 | file_off_aligned = file_off & ~PAGE_MASK; | |
1088 | ||
1089 | if (file_off_aligned == (obj->paging_offset + obj_off_aligned)) { | |
1090 | /* | |
1091 | * the target map and the file offset start in the same page | |
1092 | * but are not identical... | |
1093 | */ | |
1094 | vm_map_unlock(map); | |
1095 | return KERN_FAILURE; | |
1096 | } | |
1097 | if ((file_off < (obj->paging_offset + obj_off_aligned)) && | |
1098 | ((file_off + len) > (obj->paging_offset + obj_off_aligned))) { | |
1099 | /* | |
1100 | * some portion of the tail of the I/O will fall | |
1101 | * within the encompass of the target map | |
1102 | */ | |
1103 | vm_map_unlock(map); | |
1104 | return KERN_FAILURE; | |
1105 | } | |
1106 | if ((file_off_aligned > (obj->paging_offset + obj_off)) && | |
1107 | (file_off_aligned < (obj->paging_offset + obj_off) + len)) { | |
1108 | /* | |
1109 | * the beginning page of the file offset falls within | |
1110 | * the target map's encompass | |
1111 | */ | |
1112 | vm_map_unlock(map); | |
1113 | return KERN_FAILURE; | |
1114 | } | |
9bccf70c A |
1115 | } |
1116 | } else if(kr != KERN_SUCCESS) { | |
55e303ae | 1117 | vm_map_unlock(map); |
9bccf70c A |
1118 | return KERN_FAILURE; |
1119 | } | |
1120 | ||
55e303ae | 1121 | if(len <= ((entry->vme_end - entry->vme_start) - |
9bccf70c A |
1122 | (off - entry->vme_start))) { |
1123 | vm_map_unlock(map); | |
1124 | return kr; | |
1125 | } else { | |
1126 | len -= (entry->vme_end - entry->vme_start) - | |
1127 | (off - entry->vme_start); | |
1128 | } | |
1129 | base_offset = base_offset + (local_len - len); | |
1130 | file_off = file_off + (local_len - len); | |
1131 | off = base_offset; | |
1132 | if(map != base_map) { | |
1133 | vm_map_unlock(map); | |
1134 | vm_map_lock(base_map); | |
1135 | map = base_map; | |
1136 | } | |
1137 | } | |
1138 | ||
1139 | vm_map_unlock(map); | |
1140 | return kr; | |
9bccf70c | 1141 | } |