2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
31 #include <vm/vm_page.h>
32 #include <pexpert/pexpert.h>
34 #include <i386/cpu_threads.h>
35 #include <i386/cpuid.h>
37 int force_tecs_at_idle
;
38 int tecs_mode_supported
;
40 static boolean_t cpuid_dbg
52 #define min(a, b) ((a) < (b) ? (a) : (b))
53 #define quad(hi, lo) (((uint64_t)(hi)) << 32 | (lo))
56 * Leaf 2 cache descriptor encodings.
59 _NULL_
, /* NULL (empty) descriptor */
62 STLB
, /* Shared second-level unified TLB */
63 PREFETCH
/* Prefetch size */
64 } cpuid_leaf2_desc_type_t
;
67 NA
, /* Not Applicable */
68 FULLY
, /* Fully-associative */
69 TRACE
, /* Trace Cache (P4 only) */
70 INST
, /* Instruction TLB */
72 DATA0
, /* Data TLB, 1st level */
73 DATA1
, /* Data TLB, 2nd level */
74 L1
, /* L1 (unified) cache */
75 L1_INST
, /* L1 Instruction cache */
76 L1_DATA
, /* L1 Data cache */
77 L2
, /* L2 (unified) cache */
78 L3
, /* L3 (unified) cache */
79 L2_2LINESECTOR
, /* L2 (unified) cache with 2 lines per sector */
80 L3_2LINESECTOR
, /* L3(unified) cache with 2 lines per sector */
81 SMALL
, /* Small page TLB */
82 LARGE
, /* Large page TLB */
83 BOTH
/* Small and Large page TLB */
84 } cpuid_leaf2_qualifier_t
;
86 typedef struct cpuid_cache_descriptor
{
87 uint8_t value
; /* descriptor code */
88 uint8_t type
; /* cpuid_leaf2_desc_type_t */
89 uint8_t level
; /* level of cache/TLB hierachy */
90 uint8_t ways
; /* wayness of cache */
91 uint16_t size
; /* cachesize or TLB pagesize */
92 uint16_t entries
; /* number of TLB entries or linesize */
93 } cpuid_cache_descriptor_t
;
96 * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
102 * Intel cache descriptor table:
104 static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table
[] = {
105 // -------------------------------------------------------
106 // value type level ways size entries
107 // -------------------------------------------------------
108 { 0x00, _NULL_
, NA
, NA
, NA
, NA
},
109 { 0x01, TLB
, INST
, 4, SMALL
, 32 },
110 { 0x02, TLB
, INST
, FULLY
, LARGE
, 2 },
111 { 0x03, TLB
, DATA
, 4, SMALL
, 64 },
112 { 0x04, TLB
, DATA
, 4, LARGE
, 8 },
113 { 0x05, TLB
, DATA1
, 4, LARGE
, 32 },
114 { 0x06, CACHE
, L1_INST
, 4, 8 * K
, 32 },
115 { 0x08, CACHE
, L1_INST
, 4, 16 * K
, 32 },
116 { 0x09, CACHE
, L1_INST
, 4, 32 * K
, 64 },
117 { 0x0A, CACHE
, L1_DATA
, 2, 8 * K
, 32 },
118 { 0x0B, TLB
, INST
, 4, LARGE
, 4 },
119 { 0x0C, CACHE
, L1_DATA
, 4, 16 * K
, 32 },
120 { 0x0D, CACHE
, L1_DATA
, 4, 16 * K
, 64 },
121 { 0x0E, CACHE
, L1_DATA
, 6, 24 * K
, 64 },
122 { 0x21, CACHE
, L2
, 8, 256 * K
, 64 },
123 { 0x22, CACHE
, L3_2LINESECTOR
, 4, 512 * K
, 64 },
124 { 0x23, CACHE
, L3_2LINESECTOR
, 8, 1 * M
, 64 },
125 { 0x25, CACHE
, L3_2LINESECTOR
, 8, 2 * M
, 64 },
126 { 0x29, CACHE
, L3_2LINESECTOR
, 8, 4 * M
, 64 },
127 { 0x2C, CACHE
, L1_DATA
, 8, 32 * K
, 64 },
128 { 0x30, CACHE
, L1_INST
, 8, 32 * K
, 64 },
129 { 0x40, CACHE
, L2
, NA
, 0, NA
},
130 { 0x41, CACHE
, L2
, 4, 128 * K
, 32 },
131 { 0x42, CACHE
, L2
, 4, 256 * K
, 32 },
132 { 0x43, CACHE
, L2
, 4, 512 * K
, 32 },
133 { 0x44, CACHE
, L2
, 4, 1 * M
, 32 },
134 { 0x45, CACHE
, L2
, 4, 2 * M
, 32 },
135 { 0x46, CACHE
, L3
, 4, 4 * M
, 64 },
136 { 0x47, CACHE
, L3
, 8, 8 * M
, 64 },
137 { 0x48, CACHE
, L2
, 12, 3 * M
, 64 },
138 { 0x49, CACHE
, L2
, 16, 4 * M
, 64 },
139 { 0x4A, CACHE
, L3
, 12, 6 * M
, 64 },
140 { 0x4B, CACHE
, L3
, 16, 8 * M
, 64 },
141 { 0x4C, CACHE
, L3
, 12, 12 * M
, 64 },
142 { 0x4D, CACHE
, L3
, 16, 16 * M
, 64 },
143 { 0x4E, CACHE
, L2
, 24, 6 * M
, 64 },
144 { 0x4F, TLB
, INST
, NA
, SMALL
, 32 },
145 { 0x50, TLB
, INST
, NA
, BOTH
, 64 },
146 { 0x51, TLB
, INST
, NA
, BOTH
, 128 },
147 { 0x52, TLB
, INST
, NA
, BOTH
, 256 },
148 { 0x55, TLB
, INST
, FULLY
, BOTH
, 7 },
149 { 0x56, TLB
, DATA0
, 4, LARGE
, 16 },
150 { 0x57, TLB
, DATA0
, 4, SMALL
, 16 },
151 { 0x59, TLB
, DATA0
, FULLY
, SMALL
, 16 },
152 { 0x5A, TLB
, DATA0
, 4, LARGE
, 32 },
153 { 0x5B, TLB
, DATA
, NA
, BOTH
, 64 },
154 { 0x5C, TLB
, DATA
, NA
, BOTH
, 128 },
155 { 0x5D, TLB
, DATA
, NA
, BOTH
, 256 },
156 { 0x60, CACHE
, L1
, 16 * K
, 8, 64 },
157 { 0x61, CACHE
, L1
, 4, 8 * K
, 64 },
158 { 0x62, CACHE
, L1
, 4, 16 * K
, 64 },
159 { 0x63, CACHE
, L1
, 4, 32 * K
, 64 },
160 { 0x70, CACHE
, TRACE
, 8, 12 * K
, NA
},
161 { 0x71, CACHE
, TRACE
, 8, 16 * K
, NA
},
162 { 0x72, CACHE
, TRACE
, 8, 32 * K
, NA
},
163 { 0x76, TLB
, INST
, NA
, BOTH
, 8 },
164 { 0x78, CACHE
, L2
, 4, 1 * M
, 64 },
165 { 0x79, CACHE
, L2_2LINESECTOR
, 8, 128 * K
, 64 },
166 { 0x7A, CACHE
, L2_2LINESECTOR
, 8, 256 * K
, 64 },
167 { 0x7B, CACHE
, L2_2LINESECTOR
, 8, 512 * K
, 64 },
168 { 0x7C, CACHE
, L2_2LINESECTOR
, 8, 1 * M
, 64 },
169 { 0x7D, CACHE
, L2
, 8, 2 * M
, 64 },
170 { 0x7F, CACHE
, L2
, 2, 512 * K
, 64 },
171 { 0x80, CACHE
, L2
, 8, 512 * K
, 64 },
172 { 0x82, CACHE
, L2
, 8, 256 * K
, 32 },
173 { 0x83, CACHE
, L2
, 8, 512 * K
, 32 },
174 { 0x84, CACHE
, L2
, 8, 1 * M
, 32 },
175 { 0x85, CACHE
, L2
, 8, 2 * M
, 32 },
176 { 0x86, CACHE
, L2
, 4, 512 * K
, 64 },
177 { 0x87, CACHE
, L2
, 8, 1 * M
, 64 },
178 { 0xB0, TLB
, INST
, 4, SMALL
, 128 },
179 { 0xB1, TLB
, INST
, 4, LARGE
, 8 },
180 { 0xB2, TLB
, INST
, 4, SMALL
, 64 },
181 { 0xB3, TLB
, DATA
, 4, SMALL
, 128 },
182 { 0xB4, TLB
, DATA1
, 4, SMALL
, 256 },
183 { 0xB5, TLB
, DATA1
, 8, SMALL
, 64 },
184 { 0xB6, TLB
, DATA1
, 8, SMALL
, 128 },
185 { 0xBA, TLB
, DATA1
, 4, BOTH
, 64 },
186 { 0xC1, STLB
, DATA1
, 8, SMALL
, 1024},
187 { 0xCA, STLB
, DATA1
, 4, SMALL
, 512 },
188 { 0xD0, CACHE
, L3
, 4, 512 * K
, 64 },
189 { 0xD1, CACHE
, L3
, 4, 1 * M
, 64 },
190 { 0xD2, CACHE
, L3
, 4, 2 * M
, 64 },
191 { 0xD3, CACHE
, L3
, 4, 4 * M
, 64 },
192 { 0xD4, CACHE
, L3
, 4, 8 * M
, 64 },
193 { 0xD6, CACHE
, L3
, 8, 1 * M
, 64 },
194 { 0xD7, CACHE
, L3
, 8, 2 * M
, 64 },
195 { 0xD8, CACHE
, L3
, 8, 4 * M
, 64 },
196 { 0xD9, CACHE
, L3
, 8, 8 * M
, 64 },
197 { 0xDA, CACHE
, L3
, 8, 12 * M
, 64 },
198 { 0xDC, CACHE
, L3
, 12, 1536 * K
, 64 },
199 { 0xDD, CACHE
, L3
, 12, 3 * M
, 64 },
200 { 0xDE, CACHE
, L3
, 12, 6 * M
, 64 },
201 { 0xDF, CACHE
, L3
, 12, 12 * M
, 64 },
202 { 0xE0, CACHE
, L3
, 12, 18 * M
, 64 },
203 { 0xE2, CACHE
, L3
, 16, 2 * M
, 64 },
204 { 0xE3, CACHE
, L3
, 16, 4 * M
, 64 },
205 { 0xE4, CACHE
, L3
, 16, 8 * M
, 64 },
206 { 0xE5, CACHE
, L3
, 16, 16 * M
, 64 },
207 { 0xE6, CACHE
, L3
, 16, 24 * M
, 64 },
208 { 0xF0, PREFETCH
, NA
, NA
, 64, NA
},
209 { 0xF1, PREFETCH
, NA
, NA
, 128, NA
},
210 { 0xFF, CACHE
, NA
, NA
, 0, NA
}
212 #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
213 sizeof(cpuid_cache_descriptor_t))
215 static void do_cwas(i386_cpu_info_t
*cpuinfo
, boolean_t on_slave
);
216 static void cpuid_do_precpuid_was(void);
218 static inline cpuid_cache_descriptor_t
*
219 cpuid_leaf2_find(uint8_t value
)
223 for (i
= 0; i
< INTEL_LEAF2_DESC_NUM
; i
++) {
224 if (intel_cpuid_leaf2_descriptor_table
[i
].value
== value
) {
225 return &intel_cpuid_leaf2_descriptor_table
[i
];
232 * CPU identification routines.
235 static i386_cpu_info_t cpuid_cpu_info
;
236 static i386_cpu_info_t
*cpuid_cpu_infop
= NULL
;
239 cpuid_fn(uint32_t selector
, uint32_t *result
)
241 do_cpuid(selector
, result
);
242 DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n",
243 selector
, result
[0], result
[1], result
[2], result
[3]);
246 static const char *cache_type_str
[LCACHE_MAX
] = {
247 "Lnone", "L1I", "L1D", "L2U", "L3U"
251 do_cwas(i386_cpu_info_t
*cpuinfo
, boolean_t on_slave
)
253 extern int force_thread_policy_tecs
;
256 * Workaround for reclaiming perf counter 3 due to TSX memory ordering erratum.
257 * This workaround does not support being forcibly set (since an MSR must be
258 * enumerated, lest we #GP when forced to access it.)
260 if (cpuid_wa_required(CPU_INTEL_TSXFA
) == CWA_ON
) {
261 /* This must be executed on all logical processors */
262 wrmsr64(MSR_IA32_TSX_FORCE_ABORT
,
263 rdmsr64(MSR_IA32_TSX_FORCE_ABORT
) | MSR_IA32_TSXFA_RTM_FORCE_ABORT
);
270 switch (cpuid_wa_required(CPU_INTEL_SEGCHK
)) {
272 force_thread_policy_tecs
= 1;
274 /* If hyperthreaded, enable idle workaround */
275 if (cpuinfo
->thread_count
> cpuinfo
->core_count
) {
276 force_tecs_at_idle
= 1;
281 tecs_mode_supported
= 1;
286 tecs_mode_supported
= 0;
287 force_tecs_at_idle
= 0;
288 force_thread_policy_tecs
= 0;
299 do_cwas(cpuid_info(), TRUE
);
302 /* this function is Intel-specific */
304 cpuid_set_cache_info( i386_cpu_info_t
* info_p
)
306 uint32_t cpuid_result
[4];
309 uint32_t linesizes
[LCACHE_MAX
];
312 boolean_t cpuid_deterministic_supported
= FALSE
;
314 DBG("cpuid_set_cache_info(%p)\n", info_p
);
316 bzero( linesizes
, sizeof(linesizes
));
318 /* Get processor cache descriptor info using leaf 2. We don't use
319 * this internally, but must publish it for KEXTs.
321 cpuid_fn(2, cpuid_result
);
322 for (j
= 0; j
< 4; j
++) {
323 if ((cpuid_result
[j
] >> 31) == 1) { /* bit31 is validity */
326 ((uint32_t *) info_p
->cache_info
)[j
] = cpuid_result
[j
];
328 /* first byte gives number of cpuid calls to get all descriptors */
329 for (i
= 1; i
< info_p
->cache_info
[0]; i
++) {
330 if (i
* 16 > sizeof(info_p
->cache_info
)) {
333 cpuid_fn(2, cpuid_result
);
334 for (j
= 0; j
< 4; j
++) {
335 if ((cpuid_result
[j
] >> 31) == 1) {
338 ((uint32_t *) info_p
->cache_info
)[4 * i
+ j
] =
344 * Get cache info using leaf 4, the "deterministic cache parameters."
345 * Most processors Mac OS X supports implement this flavor of CPUID.
346 * Loop over each cache on the processor.
348 cpuid_fn(0, cpuid_result
);
349 if (cpuid_result
[eax
] >= 4) {
350 cpuid_deterministic_supported
= TRUE
;
353 for (index
= 0; cpuid_deterministic_supported
; index
++) {
354 cache_type_t type
= Lnone
;
356 uint32_t cache_level
;
357 uint32_t cache_sharing
;
358 uint32_t cache_linesize
;
360 uint32_t cache_associativity
;
362 uint32_t cache_partitions
;
365 reg
[eax
] = 4; /* cpuid request 4 */
366 reg
[ecx
] = index
; /* index starting at 0 */
368 DBG("cpuid(4) index=%d eax=0x%x\n", index
, reg
[eax
]);
369 cache_type
= bitfield32(reg
[eax
], 4, 0);
370 if (cache_type
== 0) {
371 break; /* no more caches */
373 cache_level
= bitfield32(reg
[eax
], 7, 5);
374 cache_sharing
= bitfield32(reg
[eax
], 25, 14) + 1;
375 info_p
->cpuid_cores_per_package
376 = bitfield32(reg
[eax
], 31, 26) + 1;
377 cache_linesize
= bitfield32(reg
[ebx
], 11, 0) + 1;
378 cache_partitions
= bitfield32(reg
[ebx
], 21, 12) + 1;
379 cache_associativity
= bitfield32(reg
[ebx
], 31, 22) + 1;
380 cache_sets
= bitfield32(reg
[ecx
], 31, 0) + 1;
382 /* Map type/levels returned by CPUID into cache_type_t */
383 switch (cache_level
) {
385 type
= cache_type
== 1 ? L1D
:
386 cache_type
== 2 ? L1I
:
390 type
= cache_type
== 3 ? L2U
:
394 type
= cache_type
== 3 ? L3U
:
401 /* The total size of a cache is:
402 * ( linesize * sets * associativity * partitions )
405 cache_size
= cache_linesize
* cache_sets
*
406 cache_associativity
* cache_partitions
;
407 info_p
->cache_size
[type
] = cache_size
;
408 info_p
->cache_sharing
[type
] = cache_sharing
;
409 info_p
->cache_partitions
[type
] = cache_partitions
;
410 linesizes
[type
] = cache_linesize
;
412 DBG(" cache_size[%s] : %d\n",
413 cache_type_str
[type
], cache_size
);
414 DBG(" cache_sharing[%s] : %d\n",
415 cache_type_str
[type
], cache_sharing
);
416 DBG(" cache_partitions[%s]: %d\n",
417 cache_type_str
[type
], cache_partitions
);
420 * Overwrite associativity determined via
421 * CPUID.0x80000006 -- this leaf is more
425 info_p
->cpuid_cache_L2_associativity
= cache_associativity
;
428 * Adjust #sets to account for the N CBos
429 * This is because addresses are hashed across CBos
431 if (type
== L3U
&& info_p
->core_count
) {
432 cache_sets
= cache_sets
/ info_p
->core_count
;
435 /* Compute the number of page colors for this cache,
437 * ( linesize * sets ) / page_size
439 * To help visualize this, consider two views of a
440 * physical address. To the cache, it is composed
441 * of a line offset, a set selector, and a tag.
442 * To VM, it is composed of a page offset, a page
443 * color, and other bits in the pageframe number:
445 * +-----------------+---------+--------+
446 * cache: | tag | set | offset |
447 * +-----------------+---------+--------+
449 * +-----------------+-------+----------+
450 * VM: | don't care | color | pg offset|
451 * +-----------------+-------+----------+
453 * The color is those bits in (set+offset) not covered
454 * by the page offset.
456 colors
= (cache_linesize
* cache_sets
) >> 12;
458 if (colors
> vm_cache_geometry_colors
) {
459 vm_cache_geometry_colors
= colors
;
463 DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors
);
466 * If deterministic cache parameters are not available, use
469 if (info_p
->cpuid_cores_per_package
== 0) {
470 info_p
->cpuid_cores_per_package
= 1;
472 /* cpuid define in 1024 quantities */
473 info_p
->cache_size
[L2U
] = info_p
->cpuid_cache_size
* 1024;
474 info_p
->cache_sharing
[L2U
] = 1;
475 info_p
->cache_partitions
[L2U
] = 1;
477 linesizes
[L2U
] = info_p
->cpuid_cache_linesize
;
479 DBG(" cache_size[L2U] : %d\n",
480 info_p
->cache_size
[L2U
]);
481 DBG(" cache_sharing[L2U] : 1\n");
482 DBG(" cache_partitions[L2U]: 1\n");
483 DBG(" linesizes[L2U] : %d\n",
484 info_p
->cpuid_cache_linesize
);
488 * What linesize to publish? We use the L2 linesize if any,
491 if (linesizes
[L2U
]) {
492 info_p
->cache_linesize
= linesizes
[L2U
];
493 } else if (linesizes
[L1D
]) {
494 info_p
->cache_linesize
= linesizes
[L1D
];
496 panic("no linesize");
498 DBG(" cache_linesize : %d\n", info_p
->cache_linesize
);
501 * Extract and publish TLB information from Leaf 2 descriptors.
503 DBG(" %ld leaf2 descriptors:\n", sizeof(info_p
->cache_info
));
504 for (i
= 1; i
< sizeof(info_p
->cache_info
); i
++) {
505 cpuid_cache_descriptor_t
*descp
;
510 DBG(" 0x%02x", info_p
->cache_info
[i
]);
511 descp
= cpuid_leaf2_find(info_p
->cache_info
[i
]);
516 switch (descp
->type
) {
518 page
= (descp
->size
== SMALL
) ? TLB_SMALL
: TLB_LARGE
;
519 /* determine I or D: */
520 switch (descp
->level
) {
532 /* determine level: */
533 switch (descp
->level
) {
540 info_p
->cpuid_tlb
[id
][page
][level
] = descp
->entries
;
543 info_p
->cpuid_stlb
= descp
->entries
;
550 cpuid_set_generic_info(i386_cpu_info_t
*info_p
)
555 DBG("cpuid_set_generic_info(%p)\n", info_p
);
557 /* do cpuid 0 to get vendor */
559 info_p
->cpuid_max_basic
= reg
[eax
];
560 bcopy((char *)®
[ebx
], &info_p
->cpuid_vendor
[0], 4); /* ug */
561 bcopy((char *)®
[ecx
], &info_p
->cpuid_vendor
[8], 4);
562 bcopy((char *)®
[edx
], &info_p
->cpuid_vendor
[4], 4);
563 info_p
->cpuid_vendor
[12] = 0;
565 /* get extended cpuid results */
566 cpuid_fn(0x80000000, reg
);
567 info_p
->cpuid_max_ext
= reg
[eax
];
569 /* check to see if we can get brand string */
570 if (info_p
->cpuid_max_ext
>= 0x80000004) {
572 * The brand string 48 bytes (max), guaranteed to
575 cpuid_fn(0x80000002, reg
);
576 bcopy((char *)reg
, &str
[0], 16);
577 cpuid_fn(0x80000003, reg
);
578 bcopy((char *)reg
, &str
[16], 16);
579 cpuid_fn(0x80000004, reg
);
580 bcopy((char *)reg
, &str
[32], 16);
581 for (p
= str
; *p
!= '\0'; p
++) {
586 strlcpy(info_p
->cpuid_brand_string
,
587 p
, sizeof(info_p
->cpuid_brand_string
));
589 if (!strncmp(info_p
->cpuid_brand_string
, CPUID_STRING_UNKNOWN
,
590 min(sizeof(info_p
->cpuid_brand_string
),
591 strlen(CPUID_STRING_UNKNOWN
) + 1))) {
593 * This string means we have a firmware-programmable brand string,
594 * and the firmware couldn't figure out what sort of CPU we have.
596 info_p
->cpuid_brand_string
[0] = '\0';
600 /* Get cache and addressing info. */
601 if (info_p
->cpuid_max_ext
>= 0x80000006) {
603 cpuid_fn(0x80000006, reg
);
604 info_p
->cpuid_cache_linesize
= bitfield32(reg
[ecx
], 7, 0);
605 assoc
= bitfield32(reg
[ecx
], 15, 12);
607 * L2 associativity is encoded, though in an insufficiently
608 * descriptive fashion, e.g. 24-way is mapped to 16-way.
609 * Represent a fully associative cache as 0xFFFF.
610 * Overwritten by associativity as determined via CPUID.4
615 } else if (assoc
== 8) {
617 } else if (assoc
== 0xF) {
620 info_p
->cpuid_cache_L2_associativity
= assoc
;
621 info_p
->cpuid_cache_size
= bitfield32(reg
[ecx
], 31, 16);
622 cpuid_fn(0x80000008, reg
);
623 info_p
->cpuid_address_bits_physical
=
624 bitfield32(reg
[eax
], 7, 0);
625 info_p
->cpuid_address_bits_virtual
=
626 bitfield32(reg
[eax
], 15, 8);
630 * Get processor signature and decode
631 * and bracket this with the approved procedure for reading the
632 * the microcode version number a.k.a. signature a.k.a. BIOS ID
634 wrmsr64(MSR_IA32_BIOS_SIGN_ID
, 0);
636 info_p
->cpuid_microcode_version
=
637 (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID
) >> 32);
638 info_p
->cpuid_signature
= reg
[eax
];
639 info_p
->cpuid_stepping
= bitfield32(reg
[eax
], 3, 0);
640 info_p
->cpuid_model
= bitfield32(reg
[eax
], 7, 4);
641 info_p
->cpuid_family
= bitfield32(reg
[eax
], 11, 8);
642 info_p
->cpuid_type
= bitfield32(reg
[eax
], 13, 12);
643 info_p
->cpuid_extmodel
= bitfield32(reg
[eax
], 19, 16);
644 info_p
->cpuid_extfamily
= bitfield32(reg
[eax
], 27, 20);
645 info_p
->cpuid_brand
= bitfield32(reg
[ebx
], 7, 0);
646 info_p
->cpuid_features
= quad(reg
[ecx
], reg
[edx
]);
648 /* Get "processor flag"; necessary for microcode update matching */
649 info_p
->cpuid_processor_flag
= (rdmsr64(MSR_IA32_PLATFORM_ID
) >> 50) & 0x7;
651 /* Fold extensions into family/model */
652 if (info_p
->cpuid_family
== 0x0f) {
653 info_p
->cpuid_family
+= info_p
->cpuid_extfamily
;
655 if (info_p
->cpuid_family
== 0x0f || info_p
->cpuid_family
== 0x06) {
656 info_p
->cpuid_model
+= (info_p
->cpuid_extmodel
<< 4);
659 if (info_p
->cpuid_features
& CPUID_FEATURE_HTT
) {
660 info_p
->cpuid_logical_per_package
=
661 bitfield32(reg
[ebx
], 23, 16);
663 info_p
->cpuid_logical_per_package
= 1;
666 if (info_p
->cpuid_max_ext
>= 0x80000001) {
667 cpuid_fn(0x80000001, reg
);
668 info_p
->cpuid_extfeatures
=
669 quad(reg
[ecx
], reg
[edx
]);
672 DBG(" max_basic : %d\n", info_p
->cpuid_max_basic
);
673 DBG(" max_ext : 0x%08x\n", info_p
->cpuid_max_ext
);
674 DBG(" vendor : %s\n", info_p
->cpuid_vendor
);
675 DBG(" brand_string : %s\n", info_p
->cpuid_brand_string
);
676 DBG(" signature : 0x%08x\n", info_p
->cpuid_signature
);
677 DBG(" stepping : %d\n", info_p
->cpuid_stepping
);
678 DBG(" model : %d\n", info_p
->cpuid_model
);
679 DBG(" family : %d\n", info_p
->cpuid_family
);
680 DBG(" type : %d\n", info_p
->cpuid_type
);
681 DBG(" extmodel : %d\n", info_p
->cpuid_extmodel
);
682 DBG(" extfamily : %d\n", info_p
->cpuid_extfamily
);
683 DBG(" brand : %d\n", info_p
->cpuid_brand
);
684 DBG(" features : 0x%016llx\n", info_p
->cpuid_features
);
685 DBG(" extfeatures : 0x%016llx\n", info_p
->cpuid_extfeatures
);
686 DBG(" logical_per_package : %d\n", info_p
->cpuid_logical_per_package
);
687 DBG(" microcode_version : 0x%08x\n", info_p
->cpuid_microcode_version
);
689 /* Fold in the Invariant TSC feature bit, if present */
690 if (info_p
->cpuid_max_ext
>= 0x80000007) {
691 cpuid_fn(0x80000007, reg
);
692 info_p
->cpuid_extfeatures
|=
693 reg
[edx
] & (uint32_t)CPUID_EXTFEATURE_TSCI
;
694 DBG(" extfeatures : 0x%016llx\n",
695 info_p
->cpuid_extfeatures
);
698 if (info_p
->cpuid_max_basic
>= 0x5) {
699 cpuid_mwait_leaf_t
*cmp
= &info_p
->cpuid_mwait_leaf
;
702 * Extract the Monitor/Mwait Leaf info:
705 cmp
->linesize_min
= reg
[eax
];
706 cmp
->linesize_max
= reg
[ebx
];
707 cmp
->extensions
= reg
[ecx
];
708 cmp
->sub_Cstates
= reg
[edx
];
709 info_p
->cpuid_mwait_leafp
= cmp
;
711 DBG(" Monitor/Mwait Leaf:\n");
712 DBG(" linesize_min : %d\n", cmp
->linesize_min
);
713 DBG(" linesize_max : %d\n", cmp
->linesize_max
);
714 DBG(" extensions : %d\n", cmp
->extensions
);
715 DBG(" sub_Cstates : 0x%08x\n", cmp
->sub_Cstates
);
718 if (info_p
->cpuid_max_basic
>= 0x6) {
719 cpuid_thermal_leaf_t
*ctp
= &info_p
->cpuid_thermal_leaf
;
722 * The thermal and Power Leaf:
725 ctp
->sensor
= bitfield32(reg
[eax
], 0, 0);
726 ctp
->dynamic_acceleration
= bitfield32(reg
[eax
], 1, 1);
727 ctp
->invariant_APIC_timer
= bitfield32(reg
[eax
], 2, 2);
728 ctp
->core_power_limits
= bitfield32(reg
[eax
], 4, 4);
729 ctp
->fine_grain_clock_mod
= bitfield32(reg
[eax
], 5, 5);
730 ctp
->package_thermal_intr
= bitfield32(reg
[eax
], 6, 6);
731 ctp
->thresholds
= bitfield32(reg
[ebx
], 3, 0);
732 ctp
->ACNT_MCNT
= bitfield32(reg
[ecx
], 0, 0);
733 ctp
->hardware_feedback
= bitfield32(reg
[ecx
], 1, 1);
734 ctp
->energy_policy
= bitfield32(reg
[ecx
], 3, 3);
735 info_p
->cpuid_thermal_leafp
= ctp
;
737 DBG(" Thermal/Power Leaf:\n");
738 DBG(" sensor : %d\n", ctp
->sensor
);
739 DBG(" dynamic_acceleration : %d\n", ctp
->dynamic_acceleration
);
740 DBG(" invariant_APIC_timer : %d\n", ctp
->invariant_APIC_timer
);
741 DBG(" core_power_limits : %d\n", ctp
->core_power_limits
);
742 DBG(" fine_grain_clock_mod : %d\n", ctp
->fine_grain_clock_mod
);
743 DBG(" package_thermal_intr : %d\n", ctp
->package_thermal_intr
);
744 DBG(" thresholds : %d\n", ctp
->thresholds
);
745 DBG(" ACNT_MCNT : %d\n", ctp
->ACNT_MCNT
);
746 DBG(" ACNT2 : %d\n", ctp
->hardware_feedback
);
747 DBG(" energy_policy : %d\n", ctp
->energy_policy
);
750 if (info_p
->cpuid_max_basic
>= 0xa) {
751 cpuid_arch_perf_leaf_t
*capp
= &info_p
->cpuid_arch_perf_leaf
;
754 * Architectural Performance Monitoring Leaf:
757 capp
->version
= bitfield32(reg
[eax
], 7, 0);
758 capp
->number
= bitfield32(reg
[eax
], 15, 8);
759 capp
->width
= bitfield32(reg
[eax
], 23, 16);
760 capp
->events_number
= bitfield32(reg
[eax
], 31, 24);
761 capp
->events
= reg
[ebx
];
762 capp
->fixed_number
= bitfield32(reg
[edx
], 4, 0);
763 capp
->fixed_width
= bitfield32(reg
[edx
], 12, 5);
764 info_p
->cpuid_arch_perf_leafp
= capp
;
766 DBG(" Architectural Performance Monitoring Leaf:\n");
767 DBG(" version : %d\n", capp
->version
);
768 DBG(" number : %d\n", capp
->number
);
769 DBG(" width : %d\n", capp
->width
);
770 DBG(" events_number : %d\n", capp
->events_number
);
771 DBG(" events : %d\n", capp
->events
);
772 DBG(" fixed_number : %d\n", capp
->fixed_number
);
773 DBG(" fixed_width : %d\n", capp
->fixed_width
);
776 if (info_p
->cpuid_max_basic
>= 0xd) {
777 cpuid_xsave_leaf_t
*xsp
;
781 xsp
= &info_p
->cpuid_xsave_leaf
[0];
782 info_p
->cpuid_xsave_leafp
= xsp
;
783 xsp
->extended_state
[eax
] = 0xd;
784 xsp
->extended_state
[ecx
] = 0;
785 cpuid(xsp
->extended_state
);
786 DBG(" XSAVE Main leaf:\n");
787 DBG(" EAX : 0x%x\n", xsp
->extended_state
[eax
]);
788 DBG(" EBX : 0x%x\n", xsp
->extended_state
[ebx
]);
789 DBG(" ECX : 0x%x\n", xsp
->extended_state
[ecx
]);
790 DBG(" EDX : 0x%x\n", xsp
->extended_state
[edx
]);
792 xsp
= &info_p
->cpuid_xsave_leaf
[1];
793 xsp
->extended_state
[eax
] = 0xd;
794 xsp
->extended_state
[ecx
] = 1;
795 cpuid(xsp
->extended_state
);
796 DBG(" XSAVE Sub-leaf1:\n");
797 DBG(" EAX : 0x%x\n", xsp
->extended_state
[eax
]);
798 DBG(" EBX : 0x%x\n", xsp
->extended_state
[ebx
]);
799 DBG(" ECX : 0x%x\n", xsp
->extended_state
[ecx
]);
800 DBG(" EDX : 0x%x\n", xsp
->extended_state
[edx
]);
803 if (info_p
->cpuid_model
>= CPUID_MODEL_IVYBRIDGE
) {
808 info_p
->cpuid_leaf7_features
= quad(reg
[ecx
], reg
[ebx
]);
809 info_p
->cpuid_leaf7_extfeatures
= reg
[edx
];
811 DBG(" Feature Leaf7:\n");
812 DBG(" EBX : 0x%x\n", reg
[ebx
]);
813 DBG(" ECX : 0x%x\n", reg
[ecx
]);
814 DBG(" EDX : 0x%x\n", reg
[edx
]);
817 if (info_p
->cpuid_max_basic
>= 0x15) {
819 * TCS/CCC frequency leaf:
822 info_p
->cpuid_tsc_leaf
.denominator
= reg
[eax
];
823 info_p
->cpuid_tsc_leaf
.numerator
= reg
[ebx
];
825 DBG(" TSC/CCC Information Leaf:\n");
826 DBG(" numerator : 0x%x\n", reg
[ebx
]);
827 DBG(" denominator : 0x%x\n", reg
[eax
]);
834 cpuid_set_cpufamily(i386_cpu_info_t
*info_p
)
836 uint32_t cpufamily
= CPUFAMILY_UNKNOWN
;
838 switch (info_p
->cpuid_family
) {
840 switch (info_p
->cpuid_model
) {
842 cpufamily
= CPUFAMILY_INTEL_PENRYN
;
844 case CPUID_MODEL_NEHALEM
:
845 case CPUID_MODEL_FIELDS
:
846 case CPUID_MODEL_DALES
:
847 case CPUID_MODEL_NEHALEM_EX
:
848 cpufamily
= CPUFAMILY_INTEL_NEHALEM
;
850 case CPUID_MODEL_DALES_32NM
:
851 case CPUID_MODEL_WESTMERE
:
852 case CPUID_MODEL_WESTMERE_EX
:
853 cpufamily
= CPUFAMILY_INTEL_WESTMERE
;
855 case CPUID_MODEL_SANDYBRIDGE
:
856 case CPUID_MODEL_JAKETOWN
:
857 cpufamily
= CPUFAMILY_INTEL_SANDYBRIDGE
;
859 case CPUID_MODEL_IVYBRIDGE
:
860 case CPUID_MODEL_IVYBRIDGE_EP
:
861 cpufamily
= CPUFAMILY_INTEL_IVYBRIDGE
;
863 case CPUID_MODEL_HASWELL
:
864 case CPUID_MODEL_HASWELL_EP
:
865 case CPUID_MODEL_HASWELL_ULT
:
866 case CPUID_MODEL_CRYSTALWELL
:
867 cpufamily
= CPUFAMILY_INTEL_HASWELL
;
869 case CPUID_MODEL_BROADWELL
:
870 case CPUID_MODEL_BRYSTALWELL
:
871 cpufamily
= CPUFAMILY_INTEL_BROADWELL
;
873 case CPUID_MODEL_SKYLAKE
:
874 case CPUID_MODEL_SKYLAKE_DT
:
875 case CPUID_MODEL_SKYLAKE_W
:
876 cpufamily
= CPUFAMILY_INTEL_SKYLAKE
;
878 case CPUID_MODEL_KABYLAKE
:
879 case CPUID_MODEL_KABYLAKE_DT
:
880 cpufamily
= CPUFAMILY_INTEL_KABYLAKE
;
886 info_p
->cpuid_cpufamily
= cpufamily
;
887 DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p
, cpufamily
);
891 * Must be invoked either when executing single threaded, or with
892 * independent synchronization.
897 i386_cpu_info_t
*info_p
= &cpuid_cpu_info
;
898 boolean_t enable_x86_64h
= TRUE
;
900 /* Perform pre-cpuid workarounds (since their effects impact values returned via cpuid) */
901 cpuid_do_precpuid_was();
903 cpuid_set_generic_info(info_p
);
905 /* verify we are running on a supported CPU */
906 if ((strncmp(CPUID_VID_INTEL
, info_p
->cpuid_vendor
,
907 min(strlen(CPUID_STRING_UNKNOWN
) + 1,
908 sizeof(info_p
->cpuid_vendor
)))) ||
909 (cpuid_set_cpufamily(info_p
) == CPUFAMILY_UNKNOWN
)) {
910 panic("Unsupported CPU");
913 info_p
->cpuid_cpu_type
= CPU_TYPE_X86
;
915 if (!PE_parse_boot_argn("-enable_x86_64h", &enable_x86_64h
, sizeof(enable_x86_64h
))) {
916 boolean_t disable_x86_64h
= FALSE
;
918 if (PE_parse_boot_argn("-disable_x86_64h", &disable_x86_64h
, sizeof(disable_x86_64h
))) {
919 enable_x86_64h
= FALSE
;
923 if (enable_x86_64h
&&
924 ((info_p
->cpuid_features
& CPUID_X86_64_H_FEATURE_SUBSET
) == CPUID_X86_64_H_FEATURE_SUBSET
) &&
925 ((info_p
->cpuid_extfeatures
& CPUID_X86_64_H_EXTFEATURE_SUBSET
) == CPUID_X86_64_H_EXTFEATURE_SUBSET
) &&
926 ((info_p
->cpuid_leaf7_features
& CPUID_X86_64_H_LEAF7_FEATURE_SUBSET
) == CPUID_X86_64_H_LEAF7_FEATURE_SUBSET
)) {
927 info_p
->cpuid_cpu_subtype
= CPU_SUBTYPE_X86_64_H
;
929 info_p
->cpuid_cpu_subtype
= CPU_SUBTYPE_X86_ARCH1
;
931 /* cpuid_set_cache_info must be invoked after set_generic_info */
934 * Find the number of enabled cores and threads
935 * (which determines whether SMT/Hyperthreading is active).
938 if (0 != (info_p
->cpuid_features
& CPUID_FEATURE_VMM
) &&
939 PE_parse_boot_argn("-nomsr35h", NULL
, 0)) {
940 info_p
->core_count
= 1;
941 info_p
->thread_count
= 1;
942 cpuid_set_cache_info(info_p
);
944 switch (info_p
->cpuid_cpufamily
) {
945 case CPUFAMILY_INTEL_PENRYN
:
946 cpuid_set_cache_info(info_p
);
947 info_p
->core_count
= info_p
->cpuid_cores_per_package
;
948 info_p
->thread_count
= info_p
->cpuid_logical_per_package
;
950 case CPUFAMILY_INTEL_WESTMERE
: {
951 uint64_t msr
= rdmsr64(MSR_CORE_THREAD_COUNT
);
953 /* Provide a non-zero default for some VMMs */
956 info_p
->core_count
= bitfield32((uint32_t)msr
, 19, 16);
957 info_p
->thread_count
= bitfield32((uint32_t)msr
, 15, 0);
958 cpuid_set_cache_info(info_p
);
962 uint64_t msr
= rdmsr64(MSR_CORE_THREAD_COUNT
);
964 /* Provide a non-zero default for some VMMs */
967 info_p
->core_count
= bitfield32((uint32_t)msr
, 31, 16);
968 info_p
->thread_count
= bitfield32((uint32_t)msr
, 15, 0);
969 cpuid_set_cache_info(info_p
);
975 DBG("cpuid_set_info():\n");
976 DBG(" core_count : %d\n", info_p
->core_count
);
977 DBG(" thread_count : %d\n", info_p
->thread_count
);
978 DBG(" cpu_type: 0x%08x\n", info_p
->cpuid_cpu_type
);
979 DBG(" cpu_subtype: 0x%08x\n", info_p
->cpuid_cpu_subtype
);
981 info_p
->cpuid_model_string
= ""; /* deprecated */
983 do_cwas(info_p
, FALSE
);
986 static struct table
{
990 {CPUID_FEATURE_FPU
, "FPU"},
991 {CPUID_FEATURE_VME
, "VME"},
992 {CPUID_FEATURE_DE
, "DE"},
993 {CPUID_FEATURE_PSE
, "PSE"},
994 {CPUID_FEATURE_TSC
, "TSC"},
995 {CPUID_FEATURE_MSR
, "MSR"},
996 {CPUID_FEATURE_PAE
, "PAE"},
997 {CPUID_FEATURE_MCE
, "MCE"},
998 {CPUID_FEATURE_CX8
, "CX8"},
999 {CPUID_FEATURE_APIC
, "APIC"},
1000 {CPUID_FEATURE_SEP
, "SEP"},
1001 {CPUID_FEATURE_MTRR
, "MTRR"},
1002 {CPUID_FEATURE_PGE
, "PGE"},
1003 {CPUID_FEATURE_MCA
, "MCA"},
1004 {CPUID_FEATURE_CMOV
, "CMOV"},
1005 {CPUID_FEATURE_PAT
, "PAT"},
1006 {CPUID_FEATURE_PSE36
, "PSE36"},
1007 {CPUID_FEATURE_PSN
, "PSN"},
1008 {CPUID_FEATURE_CLFSH
, "CLFSH"},
1009 {CPUID_FEATURE_DS
, "DS"},
1010 {CPUID_FEATURE_ACPI
, "ACPI"},
1011 {CPUID_FEATURE_MMX
, "MMX"},
1012 {CPUID_FEATURE_FXSR
, "FXSR"},
1013 {CPUID_FEATURE_SSE
, "SSE"},
1014 {CPUID_FEATURE_SSE2
, "SSE2"},
1015 {CPUID_FEATURE_SS
, "SS"},
1016 {CPUID_FEATURE_HTT
, "HTT"},
1017 {CPUID_FEATURE_TM
, "TM"},
1018 {CPUID_FEATURE_PBE
, "PBE"},
1019 {CPUID_FEATURE_SSE3
, "SSE3"},
1020 {CPUID_FEATURE_PCLMULQDQ
, "PCLMULQDQ"},
1021 {CPUID_FEATURE_DTES64
, "DTES64"},
1022 {CPUID_FEATURE_MONITOR
, "MON"},
1023 {CPUID_FEATURE_DSCPL
, "DSCPL"},
1024 {CPUID_FEATURE_VMX
, "VMX"},
1025 {CPUID_FEATURE_SMX
, "SMX"},
1026 {CPUID_FEATURE_EST
, "EST"},
1027 {CPUID_FEATURE_TM2
, "TM2"},
1028 {CPUID_FEATURE_SSSE3
, "SSSE3"},
1029 {CPUID_FEATURE_CID
, "CID"},
1030 {CPUID_FEATURE_FMA
, "FMA"},
1031 {CPUID_FEATURE_CX16
, "CX16"},
1032 {CPUID_FEATURE_xTPR
, "TPR"},
1033 {CPUID_FEATURE_PDCM
, "PDCM"},
1034 {CPUID_FEATURE_SSE4_1
, "SSE4.1"},
1035 {CPUID_FEATURE_SSE4_2
, "SSE4.2"},
1036 {CPUID_FEATURE_x2APIC
, "x2APIC"},
1037 {CPUID_FEATURE_MOVBE
, "MOVBE"},
1038 {CPUID_FEATURE_POPCNT
, "POPCNT"},
1039 {CPUID_FEATURE_AES
, "AES"},
1040 {CPUID_FEATURE_VMM
, "VMM"},
1041 {CPUID_FEATURE_PCID
, "PCID"},
1042 {CPUID_FEATURE_XSAVE
, "XSAVE"},
1043 {CPUID_FEATURE_OSXSAVE
, "OSXSAVE"},
1044 {CPUID_FEATURE_SEGLIM64
, "SEGLIM64"},
1045 {CPUID_FEATURE_TSCTMR
, "TSCTMR"},
1046 {CPUID_FEATURE_AVX1_0
, "AVX1.0"},
1047 {CPUID_FEATURE_RDRAND
, "RDRAND"},
1048 {CPUID_FEATURE_F16C
, "F16C"},
1051 extfeature_map
[] = {
1052 {CPUID_EXTFEATURE_SYSCALL
, "SYSCALL"},
1053 {CPUID_EXTFEATURE_XD
, "XD"},
1054 {CPUID_EXTFEATURE_1GBPAGE
, "1GBPAGE"},
1055 {CPUID_EXTFEATURE_EM64T
, "EM64T"},
1056 {CPUID_EXTFEATURE_LAHF
, "LAHF"},
1057 {CPUID_EXTFEATURE_LZCNT
, "LZCNT"},
1058 {CPUID_EXTFEATURE_PREFETCHW
, "PREFETCHW"},
1059 {CPUID_EXTFEATURE_RDTSCP
, "RDTSCP"},
1060 {CPUID_EXTFEATURE_TSCI
, "TSCI"},
1063 leaf7_feature_map
[] = {
1064 {CPUID_LEAF7_FEATURE_RDWRFSGS
, "RDWRFSGS"},
1065 {CPUID_LEAF7_FEATURE_TSCOFF
, "TSC_THREAD_OFFSET"},
1066 {CPUID_LEAF7_FEATURE_SGX
, "SGX"},
1067 {CPUID_LEAF7_FEATURE_BMI1
, "BMI1"},
1068 {CPUID_LEAF7_FEATURE_HLE
, "HLE"},
1069 {CPUID_LEAF7_FEATURE_AVX2
, "AVX2"},
1070 {CPUID_LEAF7_FEATURE_FDPEO
, "FDPEO"},
1071 {CPUID_LEAF7_FEATURE_SMEP
, "SMEP"},
1072 {CPUID_LEAF7_FEATURE_BMI2
, "BMI2"},
1073 {CPUID_LEAF7_FEATURE_ERMS
, "ERMS"},
1074 {CPUID_LEAF7_FEATURE_INVPCID
, "INVPCID"},
1075 {CPUID_LEAF7_FEATURE_RTM
, "RTM"},
1076 {CPUID_LEAF7_FEATURE_PQM
, "PQM"},
1077 {CPUID_LEAF7_FEATURE_FPU_CSDS
, "FPU_CSDS"},
1078 {CPUID_LEAF7_FEATURE_MPX
, "MPX"},
1079 {CPUID_LEAF7_FEATURE_PQE
, "PQE"},
1080 {CPUID_LEAF7_FEATURE_AVX512F
, "AVX512F"},
1081 {CPUID_LEAF7_FEATURE_AVX512DQ
, "AVX512DQ"},
1082 {CPUID_LEAF7_FEATURE_RDSEED
, "RDSEED"},
1083 {CPUID_LEAF7_FEATURE_ADX
, "ADX"},
1084 {CPUID_LEAF7_FEATURE_SMAP
, "SMAP"},
1085 {CPUID_LEAF7_FEATURE_AVX512IFMA
, "AVX512IFMA"},
1086 {CPUID_LEAF7_FEATURE_CLFSOPT
, "CLFSOPT"},
1087 {CPUID_LEAF7_FEATURE_CLWB
, "CLWB"},
1088 {CPUID_LEAF7_FEATURE_IPT
, "IPT"},
1089 {CPUID_LEAF7_FEATURE_AVX512CD
, "AVX512CD"},
1090 {CPUID_LEAF7_FEATURE_SHA
, "SHA"},
1091 {CPUID_LEAF7_FEATURE_AVX512BW
, "AVX512BW"},
1092 {CPUID_LEAF7_FEATURE_AVX512VL
, "AVX512VL"},
1093 {CPUID_LEAF7_FEATURE_PREFETCHWT1
, "PREFETCHWT1"},
1094 {CPUID_LEAF7_FEATURE_AVX512VBMI
, "AVX512VBMI"},
1095 {CPUID_LEAF7_FEATURE_UMIP
, "UMIP"},
1096 {CPUID_LEAF7_FEATURE_PKU
, "PKU"},
1097 {CPUID_LEAF7_FEATURE_OSPKE
, "OSPKE"},
1098 {CPUID_LEAF7_FEATURE_WAITPKG
, "WAITPKG"},
1099 {CPUID_LEAF7_FEATURE_GFNI
, "GFNI"},
1100 {CPUID_LEAF7_FEATURE_VAES
, "VAES"},
1101 {CPUID_LEAF7_FEATURE_VPCLMULQDQ
, "VPCLMULQDQ"},
1102 {CPUID_LEAF7_FEATURE_AVX512VNNI
, "AVX512VNNI"},
1103 {CPUID_LEAF7_FEATURE_AVX512BITALG
, "AVX512BITALG"},
1104 {CPUID_LEAF7_FEATURE_AVX512VPCDQ
, "AVX512VPOPCNTDQ"},
1105 {CPUID_LEAF7_FEATURE_RDPID
, "RDPID"},
1106 {CPUID_LEAF7_FEATURE_CLDEMOTE
, "CLDEMOTE"},
1107 {CPUID_LEAF7_FEATURE_MOVDIRI
, "MOVDIRI"},
1108 {CPUID_LEAF7_FEATURE_MOVDIRI64B
, "MOVDIRI64B"},
1109 {CPUID_LEAF7_FEATURE_SGXLC
, "SGXLC"},
1112 leaf7_extfeature_map
[] = {
1113 { CPUID_LEAF7_EXTFEATURE_AVX5124VNNIW
, "AVX5124VNNIW" },
1114 { CPUID_LEAF7_EXTFEATURE_AVX5124FMAPS
, "AVX5124FMAPS" },
1115 { CPUID_LEAF7_EXTFEATURE_FSREPMOV
, "FSREPMOV" },
1116 { CPUID_LEAF7_EXTFEATURE_MDCLEAR
, "MDCLEAR" },
1117 { CPUID_LEAF7_EXTFEATURE_TSXFA
, "TSXFA" },
1118 { CPUID_LEAF7_EXTFEATURE_IBRS
, "IBRS" },
1119 { CPUID_LEAF7_EXTFEATURE_STIBP
, "STIBP" },
1120 { CPUID_LEAF7_EXTFEATURE_L1DF
, "L1DF" },
1121 { CPUID_LEAF7_EXTFEATURE_ACAPMSR
, "ACAPMSR" },
1122 { CPUID_LEAF7_EXTFEATURE_CCAPMSR
, "CCAPMSR" },
1123 { CPUID_LEAF7_EXTFEATURE_SSBD
, "SSBD" },
1128 cpuid_get_names(struct table
*map
, uint64_t bits
, char *buf
, unsigned buf_len
)
1134 for (i
= 0; map
[i
].mask
!= 0; i
++) {
1135 if ((bits
& map
[i
].mask
) == 0) {
1138 if (len
&& ((size_t) (p
- buf
) < (buf_len
- 1))) {
1141 len
= min(strlen(map
[i
].name
), (size_t)((buf_len
- 1) - (p
- buf
)));
1145 bcopy(map
[i
].name
, p
, len
);
1155 /* Set-up the cpuid_info stucture lazily */
1156 if (cpuid_cpu_infop
== NULL
) {
1157 PE_parse_boot_argn("-cpuid", &cpuid_dbg
, sizeof(cpuid_dbg
));
1159 cpuid_cpu_infop
= &cpuid_cpu_info
;
1161 return cpuid_cpu_infop
;
1165 cpuid_get_feature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1167 return cpuid_get_names(feature_map
, features
, buf
, buf_len
);
1171 cpuid_get_extfeature_names(uint64_t extfeatures
, char *buf
, unsigned buf_len
)
1173 return cpuid_get_names(extfeature_map
, extfeatures
, buf
, buf_len
);
1177 cpuid_get_leaf7_feature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1179 return cpuid_get_names(leaf7_feature_map
, features
, buf
, buf_len
);
1183 cpuid_get_leaf7_extfeature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1185 return cpuid_get_names(leaf7_extfeature_map
, features
, buf
, buf_len
);
1189 cpuid_feature_display(
1194 kprintf("%s: %s", header
,
1195 cpuid_get_feature_names(cpuid_features(), buf
, sizeof(buf
)));
1196 if (cpuid_leaf7_features()) {
1197 kprintf(" %s", cpuid_get_leaf7_feature_names(
1198 cpuid_leaf7_features(), buf
, sizeof(buf
)));
1200 if (cpuid_leaf7_extfeatures()) {
1201 kprintf(" %s", cpuid_get_leaf7_extfeature_names(
1202 cpuid_leaf7_extfeatures(), buf
, sizeof(buf
)));
1205 if (cpuid_features() & CPUID_FEATURE_HTT
) {
1206 #define s_if_plural(n) ((n > 1) ? "s" : "")
1207 kprintf(" HTT: %d core%s per package;"
1208 " %d logical cpu%s per package\n",
1209 cpuid_cpu_infop
->cpuid_cores_per_package
,
1210 s_if_plural(cpuid_cpu_infop
->cpuid_cores_per_package
),
1211 cpuid_cpu_infop
->cpuid_logical_per_package
,
1212 s_if_plural(cpuid_cpu_infop
->cpuid_logical_per_package
));
1217 cpuid_extfeature_display(
1222 kprintf("%s: %s\n", header
,
1223 cpuid_get_extfeature_names(cpuid_extfeatures(),
1231 if (cpuid_cpu_infop
->cpuid_brand_string
[0] != '\0') {
1232 kprintf("%s: %s\n", header
, cpuid_cpu_infop
->cpuid_brand_string
);
1239 return cpuid_info()->cpuid_family
;
1243 cpuid_cpufamily(void)
1245 return cpuid_info()->cpuid_cpufamily
;
1251 return cpuid_info()->cpuid_cpu_type
;
1255 cpuid_cpusubtype(void)
1257 return cpuid_info()->cpuid_cpu_subtype
;
1261 cpuid_features(void)
1263 static int checked
= 0;
1264 char fpu_arg
[20] = { 0 };
1266 (void) cpuid_info();
1268 /* check for boot-time fpu limitations */
1269 if (PE_parse_boot_argn("_fpu", &fpu_arg
[0], sizeof(fpu_arg
))) {
1270 printf("limiting fpu features to: %s\n", fpu_arg
);
1271 if (!strncmp("387", fpu_arg
, sizeof("387")) || !strncmp("mmx", fpu_arg
, sizeof("mmx"))) {
1272 printf("no sse or sse2\n");
1273 cpuid_cpu_infop
->cpuid_features
&= ~(CPUID_FEATURE_SSE
| CPUID_FEATURE_SSE2
| CPUID_FEATURE_FXSR
);
1274 } else if (!strncmp("sse", fpu_arg
, sizeof("sse"))) {
1275 printf("no sse2\n");
1276 cpuid_cpu_infop
->cpuid_features
&= ~(CPUID_FEATURE_SSE2
);
1281 return cpuid_cpu_infop
->cpuid_features
;
1285 cpuid_extfeatures(void)
1287 return cpuid_info()->cpuid_extfeatures
;
1291 cpuid_leaf7_features(void)
1293 return cpuid_info()->cpuid_leaf7_features
;
1297 cpuid_leaf7_extfeatures(void)
1299 return cpuid_info()->cpuid_leaf7_extfeatures
;
1302 static i386_vmm_info_t
*_cpuid_vmm_infop
= NULL
;
1303 static i386_vmm_info_t _cpuid_vmm_info
;
1306 cpuid_init_vmm_info(i386_vmm_info_t
*info_p
)
1309 uint32_t max_vmm_leaf
;
1311 bzero(info_p
, sizeof(*info_p
));
1313 if (!cpuid_vmm_present()) {
1317 DBG("cpuid_init_vmm_info(%p)\n", info_p
);
1319 /* do cpuid 0x40000000 to get VMM vendor */
1320 cpuid_fn(0x40000000, reg
);
1321 max_vmm_leaf
= reg
[eax
];
1322 bcopy((char *)®
[ebx
], &info_p
->cpuid_vmm_vendor
[0], 4);
1323 bcopy((char *)®
[ecx
], &info_p
->cpuid_vmm_vendor
[4], 4);
1324 bcopy((char *)®
[edx
], &info_p
->cpuid_vmm_vendor
[8], 4);
1325 info_p
->cpuid_vmm_vendor
[12] = '\0';
1327 if (0 == strcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_VMWARE
)) {
1328 /* VMware identification string: kb.vmware.com/kb/1009458 */
1329 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_VMWARE
;
1330 } else if (0 == strcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_PARALLELS
)) {
1331 /* Parallels identification string */
1332 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_PARALLELS
;
1334 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_UNKNOWN
;
1337 /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */
1338 if (max_vmm_leaf
>= 0x40000010) {
1339 cpuid_fn(0x40000010, reg
);
1341 info_p
->cpuid_vmm_tsc_frequency
= reg
[eax
];
1342 info_p
->cpuid_vmm_bus_frequency
= reg
[ebx
];
1345 DBG(" vmm_vendor : %s\n", info_p
->cpuid_vmm_vendor
);
1346 DBG(" vmm_family : %u\n", info_p
->cpuid_vmm_family
);
1347 DBG(" vmm_bus_frequency : %u\n", info_p
->cpuid_vmm_bus_frequency
);
1348 DBG(" vmm_tsc_frequency : %u\n", info_p
->cpuid_vmm_tsc_frequency
);
1352 cpuid_vmm_present(void)
1354 return (cpuid_features() & CPUID_FEATURE_VMM
) ? TRUE
: FALSE
;
1358 cpuid_vmm_info(void)
1360 if (_cpuid_vmm_infop
== NULL
) {
1361 cpuid_init_vmm_info(&_cpuid_vmm_info
);
1362 _cpuid_vmm_infop
= &_cpuid_vmm_info
;
1364 return _cpuid_vmm_infop
;
1368 cpuid_vmm_family(void)
1370 return cpuid_vmm_info()->cpuid_vmm_family
;
1374 cpuid_wa_required(cpu_wa_e wa
)
1376 i386_cpu_info_t
*info_p
= &cpuid_cpu_info
;
1377 static uint64_t bootarg_cpu_wa_enables
= 0;
1378 static uint64_t bootarg_cpu_wa_disables
= 0;
1379 static int bootargs_overrides_processed
= 0;
1381 if (!bootargs_overrides_processed
) {
1382 if (!PE_parse_boot_argn("cwae", &bootarg_cpu_wa_enables
, sizeof(bootarg_cpu_wa_enables
))) {
1383 bootarg_cpu_wa_enables
= 0;
1386 if (!PE_parse_boot_argn("cwad", &bootarg_cpu_wa_disables
, sizeof(bootarg_cpu_wa_disables
))) {
1387 bootarg_cpu_wa_disables
= 0;
1389 bootargs_overrides_processed
= 1;
1392 if (bootarg_cpu_wa_enables
& (1 << wa
)) {
1393 return CWA_FORCE_ON
;
1396 if (bootarg_cpu_wa_disables
& (1 << wa
)) {
1397 return CWA_FORCE_OFF
;
1401 case CPU_INTEL_SEGCHK
:
1402 /* First, check to see if this CPU requires the workaround */
1403 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_ACAPMSR
) != 0) {
1404 /* We have ARCHCAP, so check it for either RDCL_NO or MDS_NO */
1405 uint64_t archcap_msr
= rdmsr64(MSR_IA32_ARCH_CAPABILITIES
);
1406 if ((archcap_msr
& (MSR_IA32_ARCH_CAPABILITIES_RDCL_NO
| MSR_IA32_ARCH_CAPABILITIES_MDS_NO
)) != 0) {
1407 /* Workaround not needed */
1412 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_MDCLEAR
) != 0) {
1417 * If the CPU supports the ARCHCAP MSR and neither the RDCL_NO bit nor the MDS_NO
1418 * bit are set, OR the CPU does not support the ARCHCAP MSR and the CPU does
1419 * not enumerate the presence of the enhanced VERW instruction, report
1420 * that the workaround should not be enabled.
1424 case CPU_INTEL_TSXFA
:
1426 * Otherwise, if the CPU supports both TSX(HLE) and FORCE_ABORT, return that
1427 * the workaround should be enabled.
1429 if ((info_p
->cpuid_leaf7_extfeatures
& CPUID_LEAF7_EXTFEATURE_TSXFA
) != 0 &&
1430 (info_p
->cpuid_leaf7_features
& CPUID_LEAF7_FEATURE_RTM
) != 0) {
1443 cpuid_do_precpuid_was(void)
1446 * Note that care must be taken not to use any data from the cached cpuid data since it is
1447 * likely uninitialized at this point. That includes calling functions that make use of
1448 * that data as well.