2 * Copyright (c) 2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <mach/mach_types.h>
29 #include <kern/assert.h>
30 #include <kern/clock.h>
31 #include <kern/coalition.h>
32 #include <kern/debug.h>
33 #include <kern/host.h>
34 #include <kern/kalloc.h>
35 #include <kern/kern_types.h>
36 #include <kern/machine.h>
37 #include <kern/simple_lock.h>
38 #include <kern/misc_protos.h>
39 #include <kern/sched.h>
40 #include <kern/sched_prim.h>
42 #include <kern/timer_call.h>
43 #include <kern/waitq.h>
44 #include <kern/ledger.h>
45 #include <kern/policy_internal.h>
47 #include <machine/atomic.h>
49 #include <pexpert/pexpert.h>
51 #include <libkern/kernel_mach_header.h>
53 #include <sys/kdebug.h>
60 #define dprintf(...) kprintf(__VA_ARGS__)
62 #define dprintf(...) do { } while(0)
66 * SFI (Selective Forced Idle) operates by enabling a global
67 * timer on the SFI window interval. When it fires, all processors
68 * running a thread that should be SFI-ed are sent an AST.
69 * As threads become runnable while in their "off phase", they
70 * are placed on a deferred ready queue. When a per-class
71 * "on timer" fires, the ready threads for that class are
72 * re-enqueued for running. As an optimization to avoid spurious
73 * wakeups, the timer may be lazily programmed.
77 * The "sfi_lock" simple lock guards access to static configuration
78 * parameters (as specified by userspace), dynamic state changes
79 * (as updated by the timer event routine), and timer data structures.
80 * Since it can be taken with interrupts disabled in some cases, all
81 * uses should be taken with interrupts disabled at splsched(). The
82 * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and
83 * must only be accessed with it held.
85 * When an "on timer" fires, we must deterministically be able to drain
86 * the wait queue, since if any threads are added to the queue afterwards,
87 * they may never get woken out of SFI wait. So sfi_lock must be
88 * taken before the wait queue's own spinlock.
90 * The wait queue will take the thread's scheduling lock. We may also take
91 * the thread_lock directly to update the "sfi_class" field and determine
92 * if the thread should block in the wait queue, but the lock will be
93 * released before doing so.
95 * The pset lock may also be taken, but not while any other locks are held.
97 * The task and thread mutex may also be held while reevaluating sfi state.
99 * splsched ---> sfi_lock ---> waitq ---> thread_lock
100 * \ \ \__ thread_lock (*)
106 decl_simple_lock_data(static,sfi_lock
);
107 static timer_call_data_t sfi_timer_call_entry
;
108 volatile boolean_t sfi_is_enabled
;
110 boolean_t sfi_window_is_set
;
111 uint64_t sfi_window_usecs
;
112 uint64_t sfi_window_interval
;
113 uint64_t sfi_next_off_deadline
;
116 sfi_class_id_t class_id
;
117 thread_continue_t class_continuation
;
118 const char * class_name
;
119 const char * class_ledger_name
;
120 } sfi_class_registration_t
;
123 * To add a new SFI class:
125 * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h
126 * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness.
127 * 3) Add a call to SFI_CLASS_REGISTER below
128 * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible.
129 * 5) Modify thermald to use the SFI class
132 static inline void _sfi_wait_cleanup(void);
134 #define SFI_CLASS_REGISTER(clsid, ledger_name) \
135 static void __attribute__((noinline, noreturn)) \
136 SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \
138 _sfi_wait_cleanup(); \
139 thread_exception_return(); \
142 _Static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \
144 __attribute__((section("__DATA,__sfi_class_reg"), used)) \
145 static sfi_class_registration_t SFI_ ## clsid ## _registration = { \
146 .class_id = SFI_CLASS_ ## clsid, \
147 .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \
148 .class_name = "SFI_CLASS_" # clsid, \
149 .class_ledger_name = "SFI_CLASS_" # ledger_name, \
152 /* SFI_CLASS_UNSPECIFIED not included here */
153 SFI_CLASS_REGISTER(MAINTENANCE
, MAINTENANCE
);
154 SFI_CLASS_REGISTER(DARWIN_BG
, DARWIN_BG
);
155 SFI_CLASS_REGISTER(APP_NAP
, APP_NAP
);
156 SFI_CLASS_REGISTER(MANAGED_FOCAL
, MANAGED
);
157 SFI_CLASS_REGISTER(MANAGED_NONFOCAL
, MANAGED
);
158 SFI_CLASS_REGISTER(UTILITY
, UTILITY
);
159 SFI_CLASS_REGISTER(DEFAULT_FOCAL
, DEFAULT
);
160 SFI_CLASS_REGISTER(DEFAULT_NONFOCAL
, DEFAULT
);
161 SFI_CLASS_REGISTER(LEGACY_FOCAL
, LEGACY
);
162 SFI_CLASS_REGISTER(LEGACY_NONFOCAL
, LEGACY
);
163 SFI_CLASS_REGISTER(USER_INITIATED_FOCAL
, USER_INITIATED
);
164 SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL
, USER_INITIATED
);
165 SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL
, USER_INTERACTIVE
);
166 SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL
, USER_INTERACTIVE
);
167 SFI_CLASS_REGISTER(KERNEL
, OPTED_OUT
);
168 SFI_CLASS_REGISTER(OPTED_OUT
, OPTED_OUT
);
170 struct sfi_class_state
{
171 uint64_t off_time_usecs
;
172 uint64_t off_time_interval
;
174 timer_call_data_t on_timer
;
175 uint64_t on_timer_deadline
;
176 boolean_t on_timer_programmed
;
178 boolean_t class_sfi_is_enabled
;
179 volatile boolean_t class_in_on_phase
;
181 struct waitq waitq
; /* threads in ready state */
182 thread_continue_t continuation
;
184 const char * class_name
;
185 const char * class_ledger_name
;
188 /* Static configuration performed in sfi_early_init() */
189 struct sfi_class_state sfi_classes
[MAX_SFI_CLASS_ID
];
191 int sfi_enabled_class_count
;
193 static void sfi_timer_global_off(
194 timer_call_param_t param0
,
195 timer_call_param_t param1
);
197 static void sfi_timer_per_class_on(
198 timer_call_param_t param0
,
199 timer_call_param_t param1
);
201 static sfi_class_registration_t
*
202 sfi_get_registration_data(unsigned long *count
)
204 unsigned long sectlen
= 0;
207 sectdata
= getsectdatafromheader(&_mh_execute_header
, "__DATA", "__sfi_class_reg", §len
);
210 if (sectlen
% sizeof(sfi_class_registration_t
) != 0) {
212 panic("__sfi_class_reg section has invalid size %lu", sectlen
);
213 __builtin_unreachable();
216 *count
= sectlen
/ sizeof(sfi_class_registration_t
);
217 return (sfi_class_registration_t
*)sectdata
;
219 panic("__sfi_class_reg section not found");
220 __builtin_unreachable();
224 /* Called early in boot, when kernel is single-threaded */
225 void sfi_early_init(void)
227 unsigned long i
, count
;
228 sfi_class_registration_t
*registrations
;
230 registrations
= sfi_get_registration_data(&count
);
231 for (i
=0; i
< count
; i
++) {
232 sfi_class_id_t class_id
= registrations
[i
].class_id
;
234 assert(class_id
< MAX_SFI_CLASS_ID
); /* should be caught at compile-time */
235 if (class_id
< MAX_SFI_CLASS_ID
) {
236 if (sfi_classes
[class_id
].continuation
!= NULL
) {
237 panic("Duplicate SFI registration for class 0x%x", class_id
);
239 sfi_classes
[class_id
].class_sfi_is_enabled
= FALSE
;
240 sfi_classes
[class_id
].class_in_on_phase
= TRUE
;
241 sfi_classes
[class_id
].continuation
= registrations
[i
].class_continuation
;
242 sfi_classes
[class_id
].class_name
= registrations
[i
].class_name
;
243 sfi_classes
[class_id
].class_ledger_name
= registrations
[i
].class_ledger_name
;
253 simple_lock_init(&sfi_lock
, 0);
254 timer_call_setup(&sfi_timer_call_entry
, sfi_timer_global_off
, NULL
);
255 sfi_window_is_set
= FALSE
;
256 sfi_enabled_class_count
= 0;
257 sfi_is_enabled
= FALSE
;
259 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
260 /* If the class was set up in sfi_early_init(), initialize remaining fields */
261 if (sfi_classes
[i
].continuation
) {
262 timer_call_setup(&sfi_classes
[i
].on_timer
, sfi_timer_per_class_on
, (void *)(uintptr_t)i
);
263 sfi_classes
[i
].on_timer_programmed
= FALSE
;
265 kret
= waitq_init(&sfi_classes
[i
].waitq
, SYNC_POLICY_FIFO
|SYNC_POLICY_DISABLE_IRQ
);
266 assert(kret
== KERN_SUCCESS
);
268 /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */
269 if(i
!= SFI_CLASS_UNSPECIFIED
) {
270 panic("Gap in registered SFI classes");
276 /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */
278 sfi_get_ledger_alias_for_class(sfi_class_id_t class_id
)
281 const char *ledger_name
= NULL
;
283 ledger_name
= sfi_classes
[class_id
].class_ledger_name
;
285 /* Find the first class in the registration table with this ledger name */
287 for (i
= SFI_CLASS_UNSPECIFIED
+ 1; i
< class_id
; i
++) {
288 if (0 == strcmp(sfi_classes
[i
].class_ledger_name
, ledger_name
)) {
289 dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id
, i
);
294 /* This class is the primary one for the ledger, so there is no alias */
295 dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id
, SFI_CLASS_UNSPECIFIED
);
296 return SFI_CLASS_UNSPECIFIED
;
299 /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */
300 return SFI_CLASS_UNSPECIFIED
;
304 sfi_ledger_entry_add(ledger_template_t
template, sfi_class_id_t class_id
)
306 const char *ledger_name
= NULL
;
308 ledger_name
= sfi_classes
[class_id
].class_ledger_name
;
310 dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n", template, class_id
, ledger_name
);
311 return ledger_entry_add(template, ledger_name
, "sfi", "MATUs");
314 static void sfi_timer_global_off(
315 timer_call_param_t param0 __unused
,
316 timer_call_param_t param1 __unused
)
318 uint64_t now
= mach_absolute_time();
320 processor_set_t pset
, nset
;
321 processor_t processor
;
322 uint32_t needs_cause_ast_mask
= 0x0;
327 simple_lock(&sfi_lock
);
328 if (!sfi_is_enabled
) {
329 /* If SFI has been disabled, let all "on" timers drain naturally */
330 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_NONE
, 1, 0, 0, 0, 0);
332 simple_unlock(&sfi_lock
);
337 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
339 /* First set all configured classes into the off state, and program their "on" timer */
340 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
341 if (sfi_classes
[i
].class_sfi_is_enabled
) {
342 uint64_t on_timer_deadline
;
344 sfi_classes
[i
].class_in_on_phase
= FALSE
;
345 sfi_classes
[i
].on_timer_programmed
= TRUE
;
347 /* Push out on-timer */
348 on_timer_deadline
= now
+ sfi_classes
[i
].off_time_interval
;
349 sfi_classes
[i
].on_timer_deadline
= on_timer_deadline
;
351 timer_call_enter1(&sfi_classes
[i
].on_timer
, NULL
, on_timer_deadline
, TIMER_CALL_SYS_CRITICAL
);
353 /* If this class no longer needs SFI, make sure the timer is cancelled */
354 sfi_classes
[i
].class_in_on_phase
= TRUE
;
355 if (sfi_classes
[i
].on_timer_programmed
) {
356 sfi_classes
[i
].on_timer_programmed
= FALSE
;
357 sfi_classes
[i
].on_timer_deadline
= ~0ULL;
358 timer_call_cancel(&sfi_classes
[i
].on_timer
);
362 simple_unlock(&sfi_lock
);
364 /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */
365 processor
= processor_list
;
366 pset
= processor
->processor_set
;
371 nset
= processor
->processor_set
;
378 /* "processor" and its pset are locked */
379 if (processor
->state
== PROCESSOR_RUNNING
) {
380 if (AST_NONE
!= sfi_processor_needs_ast(processor
)) {
381 needs_cause_ast_mask
|= (1U << processor
->cpu_id
);
384 } while ((processor
= processor
->processor_list
) != NULL
);
388 for (int cpuid
= lsb_first(needs_cause_ast_mask
); cpuid
>= 0; cpuid
= lsb_next(needs_cause_ast_mask
, cpuid
)) {
389 processor
= processor_array
[cpuid
];
390 if (processor
== current_processor()) {
393 cause_ast_check(processor
);
397 /* Re-arm timer if still enabled */
398 simple_lock(&sfi_lock
);
399 if (sfi_is_enabled
) {
400 clock_deadline_for_periodic_event(sfi_window_interval
,
402 &sfi_next_off_deadline
);
403 timer_call_enter1(&sfi_timer_call_entry
,
405 sfi_next_off_deadline
,
406 TIMER_CALL_SYS_CRITICAL
);
409 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
411 simple_unlock(&sfi_lock
);
416 static void sfi_timer_per_class_on(
417 timer_call_param_t param0
,
418 timer_call_param_t param1 __unused
)
420 sfi_class_id_t sfi_class_id
= (sfi_class_id_t
)(uintptr_t)param0
;
421 struct sfi_class_state
*sfi_class
= &sfi_classes
[sfi_class_id
];
427 simple_lock(&sfi_lock
);
429 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_ON_TIMER
) | DBG_FUNC_START
, sfi_class_id
, 0, 0, 0, 0);
432 * Any threads that may have accumulated in the ready queue for this class should get re-enqueued.
433 * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect
434 * no new threads to be put on this wait queue until the global "off timer" has fired.
437 sfi_class
->class_in_on_phase
= TRUE
;
438 sfi_class
->on_timer_programmed
= FALSE
;
440 kret
= waitq_wakeup64_all(&sfi_class
->waitq
,
441 CAST_EVENT64_T(sfi_class_id
),
442 THREAD_AWAKENED
, WAITQ_ALL_PRIORITIES
);
443 assert(kret
== KERN_SUCCESS
|| kret
== KERN_NOT_WAITING
);
445 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_ON_TIMER
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
447 simple_unlock(&sfi_lock
);
453 kern_return_t
sfi_set_window(uint64_t window_usecs
)
455 uint64_t interval
, deadline
;
456 uint64_t now
= mach_absolute_time();
459 uint64_t largest_class_off_interval
= 0;
461 if (window_usecs
< MIN_SFI_WINDOW_USEC
)
462 window_usecs
= MIN_SFI_WINDOW_USEC
;
464 if (window_usecs
> UINT32_MAX
)
465 return (KERN_INVALID_ARGUMENT
);
467 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_SET_WINDOW
), window_usecs
, 0, 0, 0, 0);
469 clock_interval_to_absolutetime_interval((uint32_t)window_usecs
, NSEC_PER_USEC
, &interval
);
470 deadline
= now
+ interval
;
474 simple_lock(&sfi_lock
);
476 /* Check that we are not bringing in the SFI window smaller than any class */
477 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
478 if (sfi_classes
[i
].class_sfi_is_enabled
) {
479 largest_class_off_interval
= MAX(largest_class_off_interval
, sfi_classes
[i
].off_time_interval
);
484 * Off window must be strictly greater than all enabled classes,
485 * otherwise threads would build up on ready queue and never be able to run.
487 if (interval
<= largest_class_off_interval
) {
488 simple_unlock(&sfi_lock
);
490 return (KERN_INVALID_ARGUMENT
);
494 * If the new "off" deadline is further out than the current programmed timer,
495 * just let the current one expire (and the new cadence will be established thereafter).
496 * If the new "off" deadline is nearer than the current one, bring it in, so we
497 * can start the new behavior sooner. Note that this may cause the "off" timer to
498 * fire before some of the class "on" timers have fired.
500 sfi_window_usecs
= window_usecs
;
501 sfi_window_interval
= interval
;
502 sfi_window_is_set
= TRUE
;
504 if (sfi_enabled_class_count
== 0) {
505 /* Can't program timer yet */
506 } else if (!sfi_is_enabled
) {
507 sfi_is_enabled
= TRUE
;
508 sfi_next_off_deadline
= deadline
;
509 timer_call_enter1(&sfi_timer_call_entry
,
511 sfi_next_off_deadline
,
512 TIMER_CALL_SYS_CRITICAL
);
513 } else if (deadline
>= sfi_next_off_deadline
) {
514 sfi_next_off_deadline
= deadline
;
516 sfi_next_off_deadline
= deadline
;
517 timer_call_enter1(&sfi_timer_call_entry
,
519 sfi_next_off_deadline
,
520 TIMER_CALL_SYS_CRITICAL
);
523 simple_unlock(&sfi_lock
);
526 return (KERN_SUCCESS
);
529 kern_return_t
sfi_window_cancel(void)
535 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_CANCEL_WINDOW
), 0, 0, 0, 0, 0);
537 /* Disable globals so that global "off-timer" is not re-armed */
538 simple_lock(&sfi_lock
);
539 sfi_window_is_set
= FALSE
;
540 sfi_window_usecs
= 0;
541 sfi_window_interval
= 0;
542 sfi_next_off_deadline
= 0;
543 sfi_is_enabled
= FALSE
;
544 simple_unlock(&sfi_lock
);
548 return (KERN_SUCCESS
);
551 /* Defers SFI off and per-class on timers (if live) by the specified interval
552 * in Mach Absolute Time Units. Currently invoked to align with the global
553 * forced idle mechanism. Making some simplifying assumptions, the iterative GFI
554 * induced SFI on+off deferrals form a geometric series that converges to yield
555 * an effective SFI duty cycle that is scaled by the GFI duty cycle. Initial phase
556 * alignment and congruency of the SFI/GFI periods can distort this to some extent.
559 kern_return_t
sfi_defer(uint64_t sfi_defer_matus
)
562 kern_return_t kr
= KERN_FAILURE
;
565 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_GLOBAL_DEFER
), sfi_defer_matus
, 0, 0, 0, 0);
567 simple_lock(&sfi_lock
);
568 if (!sfi_is_enabled
) {
572 assert(sfi_next_off_deadline
!= 0);
574 sfi_next_off_deadline
+= sfi_defer_matus
;
575 timer_call_enter1(&sfi_timer_call_entry
, NULL
, sfi_next_off_deadline
, TIMER_CALL_SYS_CRITICAL
);
578 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
579 if (sfi_classes
[i
].class_sfi_is_enabled
) {
580 if (sfi_classes
[i
].on_timer_programmed
) {
581 uint64_t new_on_deadline
= sfi_classes
[i
].on_timer_deadline
+ sfi_defer_matus
;
582 sfi_classes
[i
].on_timer_deadline
= new_on_deadline
;
583 timer_call_enter1(&sfi_classes
[i
].on_timer
, NULL
, new_on_deadline
, TIMER_CALL_SYS_CRITICAL
);
590 simple_unlock(&sfi_lock
);
598 kern_return_t
sfi_get_window(uint64_t *window_usecs
)
601 uint64_t off_window_us
;
604 simple_lock(&sfi_lock
);
606 off_window_us
= sfi_window_usecs
;
608 simple_unlock(&sfi_lock
);
611 *window_usecs
= off_window_us
;
613 return (KERN_SUCCESS
);
617 kern_return_t
sfi_set_class_offtime(sfi_class_id_t class_id
, uint64_t offtime_usecs
)
621 uint64_t off_window_interval
;
623 if (offtime_usecs
< MIN_SFI_WINDOW_USEC
)
624 offtime_usecs
= MIN_SFI_WINDOW_USEC
;
626 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
)
627 return (KERN_INVALID_ARGUMENT
);
629 if (offtime_usecs
> UINT32_MAX
)
630 return (KERN_INVALID_ARGUMENT
);
632 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_SET_CLASS_OFFTIME
), offtime_usecs
, class_id
, 0, 0, 0);
634 clock_interval_to_absolutetime_interval((uint32_t)offtime_usecs
, NSEC_PER_USEC
, &interval
);
638 simple_lock(&sfi_lock
);
639 off_window_interval
= sfi_window_interval
;
641 /* Check that we are not bringing in class off-time larger than the SFI window */
642 if (off_window_interval
&& (interval
>= off_window_interval
)) {
643 simple_unlock(&sfi_lock
);
645 return (KERN_INVALID_ARGUMENT
);
648 /* We never re-program the per-class on-timer, but rather just let it expire naturally */
649 if (!sfi_classes
[class_id
].class_sfi_is_enabled
) {
650 sfi_enabled_class_count
++;
652 sfi_classes
[class_id
].off_time_usecs
= offtime_usecs
;
653 sfi_classes
[class_id
].off_time_interval
= interval
;
654 sfi_classes
[class_id
].class_sfi_is_enabled
= TRUE
;
656 if (sfi_window_is_set
&& !sfi_is_enabled
) {
657 /* start global off timer */
658 sfi_is_enabled
= TRUE
;
659 sfi_next_off_deadline
= mach_absolute_time() + sfi_window_interval
;
660 timer_call_enter1(&sfi_timer_call_entry
,
662 sfi_next_off_deadline
,
663 TIMER_CALL_SYS_CRITICAL
);
666 simple_unlock(&sfi_lock
);
670 return (KERN_SUCCESS
);
673 kern_return_t
sfi_class_offtime_cancel(sfi_class_id_t class_id
)
677 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
)
678 return (KERN_INVALID_ARGUMENT
);
682 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_CANCEL_CLASS_OFFTIME
), class_id
, 0, 0, 0, 0);
684 simple_lock(&sfi_lock
);
686 /* We never re-program the per-class on-timer, but rather just let it expire naturally */
687 if (sfi_classes
[class_id
].class_sfi_is_enabled
) {
688 sfi_enabled_class_count
--;
690 sfi_classes
[class_id
].off_time_usecs
= 0;
691 sfi_classes
[class_id
].off_time_interval
= 0;
692 sfi_classes
[class_id
].class_sfi_is_enabled
= FALSE
;
694 if (sfi_enabled_class_count
== 0) {
695 sfi_is_enabled
= FALSE
;
698 simple_unlock(&sfi_lock
);
702 return (KERN_SUCCESS
);
705 kern_return_t
sfi_get_class_offtime(sfi_class_id_t class_id
, uint64_t *offtime_usecs
)
707 uint64_t off_time_us
;
710 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
)
715 simple_lock(&sfi_lock
);
716 off_time_us
= sfi_classes
[class_id
].off_time_usecs
;
717 simple_unlock(&sfi_lock
);
721 *offtime_usecs
= off_time_us
;
723 return (KERN_SUCCESS
);
727 * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical
728 * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be
729 * set. As the thread is unwinding to userspace, sfi_ast() performs full locking
730 * and determines whether the thread should enter an SFI wait state. Because of
731 * the inherent races between the time the AST is set and when it is evaluated,
732 * thread classification can be inaccurate (but should always be safe). This is
733 * especially the case for sfi_processor_active_thread_classify, which must
734 * classify the active thread on a remote processor without taking the thread lock.
735 * When in doubt, classification should err on the side of *not* classifying a
736 * thread at all, and wait for the thread itself to either hit a quantum expiration
737 * or block inside the kernel.
741 * Thread must be locked. Ultimately, the real decision to enter
742 * SFI wait happens at the AST boundary.
744 sfi_class_id_t
sfi_thread_classify(thread_t thread
)
746 task_t task
= thread
->task
;
747 boolean_t is_kernel_thread
= (task
== kernel_task
);
748 sched_mode_t thmode
= thread
->sched_mode
;
749 boolean_t focal
= FALSE
;
751 int task_role
= proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
);
752 int latency_qos
= proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
);
753 int managed_task
= proc_get_effective_task_policy(task
, TASK_POLICY_SFI_MANAGED
);
755 int thread_qos
= proc_get_effective_thread_policy(thread
, TASK_POLICY_QOS
);
756 int thread_bg
= proc_get_effective_thread_policy(thread
, TASK_POLICY_DARWIN_BG
);
758 /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */
759 if (is_kernel_thread
) {
760 return SFI_CLASS_KERNEL
;
763 if (thread_qos
== THREAD_QOS_MAINTENANCE
)
764 return SFI_CLASS_MAINTENANCE
;
766 if (thread_bg
|| thread_qos
== THREAD_QOS_BACKGROUND
) {
767 return SFI_CLASS_DARWIN_BG
;
770 if (latency_qos
!= 0) {
771 int latency_qos_wtf
= latency_qos
- 1;
773 if ((latency_qos_wtf
>= 4) && (latency_qos_wtf
<= 5)) {
774 return SFI_CLASS_APP_NAP
;
779 * Realtime and fixed priority threads express their duty cycle constraints
780 * via other mechanisms, and are opted out of (most) forms of SFI
782 if (thmode
== TH_MODE_REALTIME
|| thmode
== TH_MODE_FIXED
|| task_role
== TASK_GRAPHICS_SERVER
) {
783 return SFI_CLASS_OPTED_OUT
;
787 * Threads with unspecified, legacy, or user-initiated QOS class can be individually managed.
790 case TASK_CONTROL_APPLICATION
:
791 case TASK_FOREGROUND_APPLICATION
:
794 case TASK_BACKGROUND_APPLICATION
:
795 case TASK_DEFAULT_APPLICATION
:
796 case TASK_UNSPECIFIED
:
797 /* Focal if the task is in a coalition with a FG/focal app */
798 if (task_coalition_focal_count(thread
->task
) > 0)
801 case TASK_THROTTLE_APPLICATION
:
802 case TASK_DARWINBG_APPLICATION
:
803 case TASK_NONUI_APPLICATION
:
804 /* Definitely not focal */
810 switch (thread_qos
) {
811 case THREAD_QOS_UNSPECIFIED
:
812 case THREAD_QOS_LEGACY
:
813 case THREAD_QOS_USER_INITIATED
:
815 return SFI_CLASS_MANAGED_FOCAL
;
817 return SFI_CLASS_MANAGED_NONFOCAL
;
823 if (thread_qos
== THREAD_QOS_UTILITY
)
824 return SFI_CLASS_UTILITY
;
827 * Classify threads in non-managed tasks
830 switch (thread_qos
) {
831 case THREAD_QOS_USER_INTERACTIVE
:
832 return SFI_CLASS_USER_INTERACTIVE_FOCAL
;
833 case THREAD_QOS_USER_INITIATED
:
834 return SFI_CLASS_USER_INITIATED_FOCAL
;
835 case THREAD_QOS_LEGACY
:
836 return SFI_CLASS_LEGACY_FOCAL
;
838 return SFI_CLASS_DEFAULT_FOCAL
;
841 switch (thread_qos
) {
842 case THREAD_QOS_USER_INTERACTIVE
:
843 return SFI_CLASS_USER_INTERACTIVE_NONFOCAL
;
844 case THREAD_QOS_USER_INITIATED
:
845 return SFI_CLASS_USER_INITIATED_NONFOCAL
;
846 case THREAD_QOS_LEGACY
:
847 return SFI_CLASS_LEGACY_NONFOCAL
;
849 return SFI_CLASS_DEFAULT_NONFOCAL
;
855 * pset must be locked.
857 sfi_class_id_t
sfi_processor_active_thread_classify(processor_t processor
)
859 return processor
->current_sfi_class
;
863 * thread must be locked. This is inherently racy, with the intent that
864 * at the AST boundary, it will be fully evaluated whether we need to
865 * perform an AST wait
867 ast_t
sfi_thread_needs_ast(thread_t thread
, sfi_class_id_t
*out_class
)
869 sfi_class_id_t class_id
;
871 class_id
= sfi_thread_classify(thread
);
874 *out_class
= class_id
;
876 /* No lock taken, so a stale value may be used. */
877 if (!sfi_classes
[class_id
].class_in_on_phase
)
884 * pset must be locked. We take the SFI class for
885 * the currently running thread which is cached on
886 * the processor_t, and assume it is accurate. In the
887 * worst case, the processor will get an IPI and be asked
888 * to evaluate if the current running thread at that
889 * later point in time should be in an SFI wait.
891 ast_t
sfi_processor_needs_ast(processor_t processor
)
893 sfi_class_id_t class_id
;
895 class_id
= sfi_processor_active_thread_classify(processor
);
897 /* No lock taken, so a stale value may be used. */
898 if (!sfi_classes
[class_id
].class_in_on_phase
)
905 static inline void _sfi_wait_cleanup(void)
907 thread_t self
= current_thread();
909 spl_t s
= splsched();
910 simple_lock(&sfi_lock
);
912 sfi_class_id_t current_sfi_wait_class
= self
->sfi_wait_class
;
914 assert((SFI_CLASS_UNSPECIFIED
< current_sfi_wait_class
) &&
915 (current_sfi_wait_class
< MAX_SFI_CLASS_ID
));
917 self
->sfi_wait_class
= SFI_CLASS_UNSPECIFIED
;
919 simple_unlock(&sfi_lock
);
923 * It's possible for the thread to be woken up due to the SFI period
924 * ending *before* it finishes blocking. In that case,
925 * wait_sfi_begin_time won't be set.
927 * Derive the time sacrificed to SFI by looking at when this thread was
928 * awoken by the on-timer, to avoid counting the time this thread spent
929 * waiting to get scheduled.
931 * Note that last_made_runnable_time could be reset if this thread
932 * gets preempted before we read the value. To fix that, we'd need to
933 * track wait time in a thread timer, sample the timer before blocking,
934 * pass the value through thread->parameter, and subtract that.
937 if (self
->wait_sfi_begin_time
!= 0) {
939 uint64_t made_runnable
= os_atomic_load(&self
->last_made_runnable_time
, relaxed
);
940 int64_t sfi_wait_time
= made_runnable
- self
->wait_sfi_begin_time
;
941 assert(sfi_wait_time
>= 0);
943 ledger_credit(self
->task
->ledger
, task_ledgers
.sfi_wait_times
[current_sfi_wait_class
],
945 #endif /* !CONFIG_EMBEDDED */
947 self
->wait_sfi_begin_time
= 0;
952 * Called at AST context to fully evaluate if the current thread
953 * (which is obviously running) should instead block in an SFI wait.
954 * We must take the sfi_lock to check whether we are in the "off" period
955 * for the class, and if so, block.
957 void sfi_ast(thread_t thread
)
959 sfi_class_id_t class_id
;
961 struct sfi_class_state
*sfi_class
;
962 wait_result_t waitret
;
963 boolean_t did_wait
= FALSE
;
964 thread_continue_t continuation
;
968 simple_lock(&sfi_lock
);
970 if (!sfi_is_enabled
) {
972 * SFI is not enabled, or has recently been disabled.
973 * There is no point putting this thread on a deferred ready
974 * queue, even if it were classified as needing it, since
975 * SFI will truly be off at the next global off timer
977 simple_unlock(&sfi_lock
);
984 thread
->sfi_class
= class_id
= sfi_thread_classify(thread
);
985 thread_unlock(thread
);
988 * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we
989 * are committed to transitioning to whatever state is indicated by "->class_in_on_phase".
990 * If another thread tries to call sfi_reevaluate() after this point, it will take the
991 * sfi_lock and see the thread in this wait state. If another thread calls
992 * sfi_reevaluate() before this point, it would see a runnable thread and at most
993 * attempt to send an AST to this processor, but we would have the most accurate
997 sfi_class
= &sfi_classes
[class_id
];
998 if (!sfi_class
->class_in_on_phase
) {
999 /* Need to block thread in wait queue */
1000 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_THREAD_DEFER
),
1001 thread_tid(thread
), class_id
, 0, 0, 0);
1003 waitret
= waitq_assert_wait64(&sfi_class
->waitq
,
1004 CAST_EVENT64_T(class_id
),
1005 THREAD_INTERRUPTIBLE
| THREAD_WAIT_NOREPORT
, 0);
1006 if (waitret
== THREAD_WAITING
) {
1007 thread
->sfi_wait_class
= class_id
;
1009 continuation
= sfi_class
->continuation
;
1011 /* thread may be exiting already, all other errors are unexpected */
1012 assert(waitret
== THREAD_INTERRUPTED
);
1015 simple_unlock(&sfi_lock
);
1020 assert(thread
->wait_sfi_begin_time
== 0);
1022 thread_block_reason(continuation
, NULL
, AST_SFI
);
1026 /* Thread must be unlocked */
1027 void sfi_reevaluate(thread_t thread
)
1031 sfi_class_id_t class_id
, current_class_id
;
1036 simple_lock(&sfi_lock
);
1038 thread_lock(thread
);
1039 sfi_ast
= sfi_thread_needs_ast(thread
, &class_id
);
1040 thread
->sfi_class
= class_id
;
1043 * This routine chiefly exists to boost threads out of an SFI wait
1044 * if their classification changes before the "on" timer fires.
1046 * If we calculate that a thread is in a different ->sfi_wait_class
1047 * than we think it should be (including no-SFI-wait), we need to
1050 * If the thread is in SFI wait and should not be (or should be waiting
1051 * on a different class' "on" timer), we wake it up. If needed, the
1052 * thread may immediately block again in the different SFI wait state.
1054 * If the thread is not in an SFI wait state and it should be, we need
1055 * to get that thread's attention, possibly by sending an AST to another
1059 if ((current_class_id
= thread
->sfi_wait_class
) != SFI_CLASS_UNSPECIFIED
) {
1061 thread_unlock(thread
); /* not needed anymore */
1063 assert(current_class_id
< MAX_SFI_CLASS_ID
);
1065 if ((sfi_ast
== AST_NONE
) || (class_id
!= current_class_id
)) {
1066 struct sfi_class_state
*sfi_class
= &sfi_classes
[current_class_id
];
1068 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_WAIT_CANCELED
), thread_tid(thread
), current_class_id
, class_id
, 0, 0);
1070 kret
= waitq_wakeup64_thread(&sfi_class
->waitq
,
1071 CAST_EVENT64_T(current_class_id
),
1074 assert(kret
== KERN_SUCCESS
|| kret
== KERN_NOT_WAITING
);
1078 * Thread's current SFI wait class is not set, and because we
1079 * have the sfi_lock, it won't get set.
1082 if ((thread
->state
& (TH_RUN
| TH_IDLE
)) == TH_RUN
) {
1083 if (sfi_ast
!= AST_NONE
) {
1084 if (thread
== current_thread())
1087 processor_t processor
= thread
->last_processor
;
1089 if (processor
!= PROCESSOR_NULL
&&
1090 processor
->state
== PROCESSOR_RUNNING
&&
1091 processor
->active_thread
== thread
) {
1092 cause_ast_check(processor
);
1095 * Runnable thread that's not on a CPU currently. When a processor
1096 * does context switch to it, the AST will get set based on whether
1097 * the thread is in its "off time".
1104 thread_unlock(thread
);
1107 simple_unlock(&sfi_lock
);
1111 #else /* !CONFIG_SCHED_SFI */
1113 kern_return_t
sfi_set_window(uint64_t window_usecs __unused
)
1115 return (KERN_NOT_SUPPORTED
);
1118 kern_return_t
sfi_window_cancel(void)
1120 return (KERN_NOT_SUPPORTED
);
1124 kern_return_t
sfi_get_window(uint64_t *window_usecs __unused
)
1126 return (KERN_NOT_SUPPORTED
);
1130 kern_return_t
sfi_set_class_offtime(sfi_class_id_t class_id __unused
, uint64_t offtime_usecs __unused
)
1132 return (KERN_NOT_SUPPORTED
);
1135 kern_return_t
sfi_class_offtime_cancel(sfi_class_id_t class_id __unused
)
1137 return (KERN_NOT_SUPPORTED
);
1140 kern_return_t
sfi_get_class_offtime(sfi_class_id_t class_id __unused
, uint64_t *offtime_usecs __unused
)
1142 return (KERN_NOT_SUPPORTED
);
1145 void sfi_reevaluate(thread_t thread __unused
)
1150 sfi_class_id_t
sfi_thread_classify(thread_t thread
)
1152 task_t task
= thread
->task
;
1153 boolean_t is_kernel_thread
= (task
== kernel_task
);
1155 if (is_kernel_thread
) {
1156 return SFI_CLASS_KERNEL
;
1159 return SFI_CLASS_OPTED_OUT
;
1162 #endif /* !CONFIG_SCHED_SFI */