2 * Copyright (c) 2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <mach/mach_types.h>
29 #include <kern/assert.h>
30 #include <kern/clock.h>
31 #include <kern/coalition.h>
32 #include <kern/debug.h>
33 #include <kern/startup.h>
34 #include <kern/host.h>
35 #include <kern/kern_types.h>
36 #include <kern/machine.h>
37 #include <kern/simple_lock.h>
38 #include <kern/misc_protos.h>
39 #include <kern/sched.h>
40 #include <kern/sched_prim.h>
42 #include <kern/timer_call.h>
43 #include <kern/waitq.h>
44 #include <kern/ledger.h>
45 #include <kern/policy_internal.h>
47 #include <machine/atomic.h>
49 #include <pexpert/pexpert.h>
51 #include <libkern/kernel_mach_header.h>
53 #include <sys/kdebug.h>
60 #define dprintf(...) kprintf(__VA_ARGS__)
62 #define dprintf(...) do { } while(0)
66 * SFI (Selective Forced Idle) operates by enabling a global
67 * timer on the SFI window interval. When it fires, all processors
68 * running a thread that should be SFI-ed are sent an AST.
69 * As threads become runnable while in their "off phase", they
70 * are placed on a deferred ready queue. When a per-class
71 * "on timer" fires, the ready threads for that class are
72 * re-enqueued for running. As an optimization to avoid spurious
73 * wakeups, the timer may be lazily programmed.
77 * The "sfi_lock" simple lock guards access to static configuration
78 * parameters (as specified by userspace), dynamic state changes
79 * (as updated by the timer event routine), and timer data structures.
80 * Since it can be taken with interrupts disabled in some cases, all
81 * uses should be taken with interrupts disabled at splsched(). The
82 * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and
83 * must only be accessed with it held.
85 * When an "on timer" fires, we must deterministically be able to drain
86 * the wait queue, since if any threads are added to the queue afterwards,
87 * they may never get woken out of SFI wait. So sfi_lock must be
88 * taken before the wait queue's own spinlock.
90 * The wait queue will take the thread's scheduling lock. We may also take
91 * the thread_lock directly to update the "sfi_class" field and determine
92 * if the thread should block in the wait queue, but the lock will be
93 * released before doing so.
95 * The pset lock may also be taken, but not while any other locks are held.
97 * The task and thread mutex may also be held while reevaluating sfi state.
99 * splsched ---> sfi_lock ---> waitq ---> thread_lock
100 * \ \ \__ thread_lock (*)
106 decl_simple_lock_data(static, sfi_lock
);
107 static timer_call_data_t sfi_timer_call_entry
;
108 volatile boolean_t sfi_is_enabled
;
110 boolean_t sfi_window_is_set
;
111 uint64_t sfi_window_usecs
;
112 uint64_t sfi_window_interval
;
113 uint64_t sfi_next_off_deadline
;
116 sfi_class_id_t class_id
;
117 thread_continue_t class_continuation
;
118 const char * class_name
;
119 const char * class_ledger_name
;
120 } sfi_class_registration_t
;
123 * To add a new SFI class:
125 * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h
126 * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness.
127 * 3) Add a call to SFI_CLASS_REGISTER below
128 * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible.
129 * 5) Modify thermald to use the SFI class
132 static inline void _sfi_wait_cleanup(void);
134 static void sfi_class_register(sfi_class_registration_t
*);
136 #define SFI_CLASS_REGISTER(clsid, ledger_name) \
138 static void __attribute__((noinline, noreturn)) \
139 SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \
141 _sfi_wait_cleanup(); \
142 thread_exception_return(); \
145 static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \
147 static __startup_data sfi_class_registration_t \
148 SFI_ ## clsid ## _registration = { \
149 .class_id = SFI_CLASS_ ## clsid, \
150 .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \
151 .class_name = "SFI_CLASS_" # clsid, \
152 .class_ledger_name = "SFI_CLASS_" # ledger_name, \
154 STARTUP_ARG(TUNABLES, STARTUP_RANK_MIDDLE, \
155 sfi_class_register, &SFI_ ## clsid ## _registration)
157 /* SFI_CLASS_UNSPECIFIED not included here */
158 SFI_CLASS_REGISTER(MAINTENANCE
, MAINTENANCE
);
159 SFI_CLASS_REGISTER(DARWIN_BG
, DARWIN_BG
);
160 SFI_CLASS_REGISTER(APP_NAP
, APP_NAP
);
161 SFI_CLASS_REGISTER(MANAGED_FOCAL
, MANAGED
);
162 SFI_CLASS_REGISTER(MANAGED_NONFOCAL
, MANAGED
);
163 SFI_CLASS_REGISTER(UTILITY
, UTILITY
);
164 SFI_CLASS_REGISTER(DEFAULT_FOCAL
, DEFAULT
);
165 SFI_CLASS_REGISTER(DEFAULT_NONFOCAL
, DEFAULT
);
166 SFI_CLASS_REGISTER(LEGACY_FOCAL
, LEGACY
);
167 SFI_CLASS_REGISTER(LEGACY_NONFOCAL
, LEGACY
);
168 SFI_CLASS_REGISTER(USER_INITIATED_FOCAL
, USER_INITIATED
);
169 SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL
, USER_INITIATED
);
170 SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL
, USER_INTERACTIVE
);
171 SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL
, USER_INTERACTIVE
);
172 SFI_CLASS_REGISTER(KERNEL
, OPTED_OUT
);
173 SFI_CLASS_REGISTER(OPTED_OUT
, OPTED_OUT
);
175 struct sfi_class_state
{
176 uint64_t off_time_usecs
;
177 uint64_t off_time_interval
;
179 timer_call_data_t on_timer
;
180 uint64_t on_timer_deadline
;
181 boolean_t on_timer_programmed
;
183 boolean_t class_sfi_is_enabled
;
184 volatile boolean_t class_in_on_phase
;
186 struct waitq waitq
; /* threads in ready state */
187 thread_continue_t continuation
;
189 const char * class_name
;
190 const char * class_ledger_name
;
193 /* Static configuration performed in sfi_early_init() */
194 struct sfi_class_state sfi_classes
[MAX_SFI_CLASS_ID
];
196 int sfi_enabled_class_count
; // protected by sfi_lock and used atomically
198 static void sfi_timer_global_off(
199 timer_call_param_t param0
,
200 timer_call_param_t param1
);
202 static void sfi_timer_per_class_on(
203 timer_call_param_t param0
,
204 timer_call_param_t param1
);
206 /* Called early in boot, when kernel is single-threaded */
209 sfi_class_register(sfi_class_registration_t
*reg
)
211 sfi_class_id_t class_id
= reg
->class_id
;
213 if (class_id
>= MAX_SFI_CLASS_ID
) {
214 panic("Invalid SFI class 0x%x", class_id
);
216 if (sfi_classes
[class_id
].continuation
!= NULL
) {
217 panic("Duplicate SFI registration for class 0x%x", class_id
);
219 sfi_classes
[class_id
].class_sfi_is_enabled
= FALSE
;
220 sfi_classes
[class_id
].class_in_on_phase
= TRUE
;
221 sfi_classes
[class_id
].continuation
= reg
->class_continuation
;
222 sfi_classes
[class_id
].class_name
= reg
->class_name
;
223 sfi_classes
[class_id
].class_ledger_name
= reg
->class_ledger_name
;
232 simple_lock_init(&sfi_lock
, 0);
233 timer_call_setup(&sfi_timer_call_entry
, sfi_timer_global_off
, NULL
);
234 sfi_window_is_set
= FALSE
;
235 os_atomic_init(&sfi_enabled_class_count
, 0);
236 sfi_is_enabled
= FALSE
;
238 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
239 /* If the class was set up in sfi_early_init(), initialize remaining fields */
240 if (sfi_classes
[i
].continuation
) {
241 timer_call_setup(&sfi_classes
[i
].on_timer
, sfi_timer_per_class_on
, (void *)(uintptr_t)i
);
242 sfi_classes
[i
].on_timer_programmed
= FALSE
;
244 kret
= waitq_init(&sfi_classes
[i
].waitq
, SYNC_POLICY_FIFO
| SYNC_POLICY_DISABLE_IRQ
);
245 assert(kret
== KERN_SUCCESS
);
247 /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */
248 if (i
!= SFI_CLASS_UNSPECIFIED
) {
249 panic("Gap in registered SFI classes");
255 /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */
257 sfi_get_ledger_alias_for_class(sfi_class_id_t class_id
)
260 const char *ledger_name
= NULL
;
262 ledger_name
= sfi_classes
[class_id
].class_ledger_name
;
264 /* Find the first class in the registration table with this ledger name */
266 for (i
= SFI_CLASS_UNSPECIFIED
+ 1; i
< class_id
; i
++) {
267 if (0 == strcmp(sfi_classes
[i
].class_ledger_name
, ledger_name
)) {
268 dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id
, i
);
273 /* This class is the primary one for the ledger, so there is no alias */
274 dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id
, SFI_CLASS_UNSPECIFIED
);
275 return SFI_CLASS_UNSPECIFIED
;
278 /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */
279 return SFI_CLASS_UNSPECIFIED
;
283 sfi_ledger_entry_add(ledger_template_t
template, sfi_class_id_t class_id
)
285 const char *ledger_name
= NULL
;
287 ledger_name
= sfi_classes
[class_id
].class_ledger_name
;
289 dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n", template, class_id
, ledger_name
);
290 return ledger_entry_add(template, ledger_name
, "sfi", "MATUs");
294 sfi_timer_global_off(
295 timer_call_param_t param0 __unused
,
296 timer_call_param_t param1 __unused
)
298 uint64_t now
= mach_absolute_time();
300 processor_set_t pset
, nset
;
301 processor_t processor
;
302 uint32_t needs_cause_ast_mask
= 0x0;
307 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
308 if (!sfi_is_enabled
) {
309 /* If SFI has been disabled, let all "on" timers drain naturally */
310 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_NONE
, 1, 0, 0, 0, 0);
312 simple_unlock(&sfi_lock
);
317 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
319 /* First set all configured classes into the off state, and program their "on" timer */
320 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
321 if (sfi_classes
[i
].class_sfi_is_enabled
) {
322 uint64_t on_timer_deadline
;
324 sfi_classes
[i
].class_in_on_phase
= FALSE
;
325 sfi_classes
[i
].on_timer_programmed
= TRUE
;
327 /* Push out on-timer */
328 on_timer_deadline
= now
+ sfi_classes
[i
].off_time_interval
;
329 sfi_classes
[i
].on_timer_deadline
= on_timer_deadline
;
331 timer_call_enter1(&sfi_classes
[i
].on_timer
, NULL
, on_timer_deadline
, TIMER_CALL_SYS_CRITICAL
);
333 /* If this class no longer needs SFI, make sure the timer is cancelled */
334 sfi_classes
[i
].class_in_on_phase
= TRUE
;
335 if (sfi_classes
[i
].on_timer_programmed
) {
336 sfi_classes
[i
].on_timer_programmed
= FALSE
;
337 sfi_classes
[i
].on_timer_deadline
= ~0ULL;
338 timer_call_cancel(&sfi_classes
[i
].on_timer
);
342 simple_unlock(&sfi_lock
);
344 /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */
345 processor
= processor_list
;
346 pset
= processor
->processor_set
;
351 nset
= processor
->processor_set
;
358 /* "processor" and its pset are locked */
359 if (processor
->state
== PROCESSOR_RUNNING
) {
360 if (AST_NONE
!= sfi_processor_needs_ast(processor
)) {
361 needs_cause_ast_mask
|= (1U << processor
->cpu_id
);
364 } while ((processor
= processor
->processor_list
) != NULL
);
368 for (int cpuid
= lsb_first(needs_cause_ast_mask
); cpuid
>= 0; cpuid
= lsb_next(needs_cause_ast_mask
, cpuid
)) {
369 processor
= processor_array
[cpuid
];
370 if (processor
== current_processor()) {
373 cause_ast_check(processor
);
377 /* Re-arm timer if still enabled */
378 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
379 if (sfi_is_enabled
) {
380 clock_deadline_for_periodic_event(sfi_window_interval
,
382 &sfi_next_off_deadline
);
383 timer_call_enter1(&sfi_timer_call_entry
,
385 sfi_next_off_deadline
,
386 TIMER_CALL_SYS_CRITICAL
);
389 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
391 simple_unlock(&sfi_lock
);
397 sfi_timer_per_class_on(
398 timer_call_param_t param0
,
399 timer_call_param_t param1 __unused
)
401 sfi_class_id_t sfi_class_id
= (sfi_class_id_t
)(uintptr_t)param0
;
402 struct sfi_class_state
*sfi_class
= &sfi_classes
[sfi_class_id
];
408 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
410 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_ON_TIMER
) | DBG_FUNC_START
, sfi_class_id
, 0, 0, 0, 0);
413 * Any threads that may have accumulated in the ready queue for this class should get re-enqueued.
414 * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect
415 * no new threads to be put on this wait queue until the global "off timer" has fired.
418 sfi_class
->class_in_on_phase
= TRUE
;
419 sfi_class
->on_timer_programmed
= FALSE
;
421 kret
= waitq_wakeup64_all(&sfi_class
->waitq
,
422 CAST_EVENT64_T(sfi_class_id
),
423 THREAD_AWAKENED
, WAITQ_ALL_PRIORITIES
);
424 assert(kret
== KERN_SUCCESS
|| kret
== KERN_NOT_WAITING
);
426 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_ON_TIMER
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
428 simple_unlock(&sfi_lock
);
435 sfi_set_window(uint64_t window_usecs
)
437 uint64_t interval
, deadline
;
438 uint64_t now
= mach_absolute_time();
441 uint64_t largest_class_off_interval
= 0;
443 if (window_usecs
< MIN_SFI_WINDOW_USEC
) {
444 window_usecs
= MIN_SFI_WINDOW_USEC
;
447 if (window_usecs
> UINT32_MAX
) {
448 return KERN_INVALID_ARGUMENT
;
451 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_SET_WINDOW
), window_usecs
, 0, 0, 0, 0);
453 clock_interval_to_absolutetime_interval((uint32_t)window_usecs
, NSEC_PER_USEC
, &interval
);
454 deadline
= now
+ interval
;
458 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
460 /* Check that we are not bringing in the SFI window smaller than any class */
461 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
462 if (sfi_classes
[i
].class_sfi_is_enabled
) {
463 largest_class_off_interval
= MAX(largest_class_off_interval
, sfi_classes
[i
].off_time_interval
);
468 * Off window must be strictly greater than all enabled classes,
469 * otherwise threads would build up on ready queue and never be able to run.
471 if (interval
<= largest_class_off_interval
) {
472 simple_unlock(&sfi_lock
);
474 return KERN_INVALID_ARGUMENT
;
478 * If the new "off" deadline is further out than the current programmed timer,
479 * just let the current one expire (and the new cadence will be established thereafter).
480 * If the new "off" deadline is nearer than the current one, bring it in, so we
481 * can start the new behavior sooner. Note that this may cause the "off" timer to
482 * fire before some of the class "on" timers have fired.
484 sfi_window_usecs
= window_usecs
;
485 sfi_window_interval
= interval
;
486 sfi_window_is_set
= TRUE
;
488 if (os_atomic_load(&sfi_enabled_class_count
, relaxed
) == 0) {
489 /* Can't program timer yet */
490 } else if (!sfi_is_enabled
) {
491 sfi_is_enabled
= TRUE
;
492 sfi_next_off_deadline
= deadline
;
493 timer_call_enter1(&sfi_timer_call_entry
,
495 sfi_next_off_deadline
,
496 TIMER_CALL_SYS_CRITICAL
);
497 } else if (deadline
>= sfi_next_off_deadline
) {
498 sfi_next_off_deadline
= deadline
;
500 sfi_next_off_deadline
= deadline
;
501 timer_call_enter1(&sfi_timer_call_entry
,
503 sfi_next_off_deadline
,
504 TIMER_CALL_SYS_CRITICAL
);
507 simple_unlock(&sfi_lock
);
514 sfi_window_cancel(void)
520 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_CANCEL_WINDOW
), 0, 0, 0, 0, 0);
522 /* Disable globals so that global "off-timer" is not re-armed */
523 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
524 sfi_window_is_set
= FALSE
;
525 sfi_window_usecs
= 0;
526 sfi_window_interval
= 0;
527 sfi_next_off_deadline
= 0;
528 sfi_is_enabled
= FALSE
;
529 simple_unlock(&sfi_lock
);
536 /* Defers SFI off and per-class on timers (if live) by the specified interval
537 * in Mach Absolute Time Units. Currently invoked to align with the global
538 * forced idle mechanism. Making some simplifying assumptions, the iterative GFI
539 * induced SFI on+off deferrals form a geometric series that converges to yield
540 * an effective SFI duty cycle that is scaled by the GFI duty cycle. Initial phase
541 * alignment and congruency of the SFI/GFI periods can distort this to some extent.
545 sfi_defer(uint64_t sfi_defer_matus
)
548 kern_return_t kr
= KERN_FAILURE
;
551 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_GLOBAL_DEFER
), sfi_defer_matus
, 0, 0, 0, 0);
553 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
554 if (!sfi_is_enabled
) {
558 assert(sfi_next_off_deadline
!= 0);
560 sfi_next_off_deadline
+= sfi_defer_matus
;
561 timer_call_enter1(&sfi_timer_call_entry
, NULL
, sfi_next_off_deadline
, TIMER_CALL_SYS_CRITICAL
);
564 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
565 if (sfi_classes
[i
].class_sfi_is_enabled
) {
566 if (sfi_classes
[i
].on_timer_programmed
) {
567 uint64_t new_on_deadline
= sfi_classes
[i
].on_timer_deadline
+ sfi_defer_matus
;
568 sfi_classes
[i
].on_timer_deadline
= new_on_deadline
;
569 timer_call_enter1(&sfi_classes
[i
].on_timer
, NULL
, new_on_deadline
, TIMER_CALL_SYS_CRITICAL
);
576 simple_unlock(&sfi_lock
);
585 sfi_get_window(uint64_t *window_usecs
)
588 uint64_t off_window_us
;
591 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
593 off_window_us
= sfi_window_usecs
;
595 simple_unlock(&sfi_lock
);
598 *window_usecs
= off_window_us
;
605 sfi_set_class_offtime(sfi_class_id_t class_id
, uint64_t offtime_usecs
)
609 uint64_t off_window_interval
;
611 if (offtime_usecs
< MIN_SFI_WINDOW_USEC
) {
612 offtime_usecs
= MIN_SFI_WINDOW_USEC
;
615 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
) {
616 return KERN_INVALID_ARGUMENT
;
619 if (offtime_usecs
> UINT32_MAX
) {
620 return KERN_INVALID_ARGUMENT
;
623 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_SET_CLASS_OFFTIME
), offtime_usecs
, class_id
, 0, 0, 0);
625 clock_interval_to_absolutetime_interval((uint32_t)offtime_usecs
, NSEC_PER_USEC
, &interval
);
629 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
630 off_window_interval
= sfi_window_interval
;
632 /* Check that we are not bringing in class off-time larger than the SFI window */
633 if (off_window_interval
&& (interval
>= off_window_interval
)) {
634 simple_unlock(&sfi_lock
);
636 return KERN_INVALID_ARGUMENT
;
639 /* We never re-program the per-class on-timer, but rather just let it expire naturally */
640 if (!sfi_classes
[class_id
].class_sfi_is_enabled
) {
641 os_atomic_inc(&sfi_enabled_class_count
, relaxed
);
643 sfi_classes
[class_id
].off_time_usecs
= offtime_usecs
;
644 sfi_classes
[class_id
].off_time_interval
= interval
;
645 sfi_classes
[class_id
].class_sfi_is_enabled
= TRUE
;
647 if (sfi_window_is_set
&& !sfi_is_enabled
) {
648 /* start global off timer */
649 sfi_is_enabled
= TRUE
;
650 sfi_next_off_deadline
= mach_absolute_time() + sfi_window_interval
;
651 timer_call_enter1(&sfi_timer_call_entry
,
653 sfi_next_off_deadline
,
654 TIMER_CALL_SYS_CRITICAL
);
657 simple_unlock(&sfi_lock
);
665 sfi_class_offtime_cancel(sfi_class_id_t class_id
)
669 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
) {
670 return KERN_INVALID_ARGUMENT
;
675 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_CANCEL_CLASS_OFFTIME
), class_id
, 0, 0, 0, 0);
677 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
679 /* We never re-program the per-class on-timer, but rather just let it expire naturally */
680 if (sfi_classes
[class_id
].class_sfi_is_enabled
) {
681 os_atomic_dec(&sfi_enabled_class_count
, relaxed
);
683 sfi_classes
[class_id
].off_time_usecs
= 0;
684 sfi_classes
[class_id
].off_time_interval
= 0;
685 sfi_classes
[class_id
].class_sfi_is_enabled
= FALSE
;
687 if (os_atomic_load(&sfi_enabled_class_count
, relaxed
) == 0) {
688 sfi_is_enabled
= FALSE
;
691 simple_unlock(&sfi_lock
);
699 sfi_get_class_offtime(sfi_class_id_t class_id
, uint64_t *offtime_usecs
)
701 uint64_t off_time_us
;
704 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
) {
710 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
711 off_time_us
= sfi_classes
[class_id
].off_time_usecs
;
712 simple_unlock(&sfi_lock
);
716 *offtime_usecs
= off_time_us
;
722 * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical
723 * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be
724 * set. As the thread is unwinding to userspace, sfi_ast() performs full locking
725 * and determines whether the thread should enter an SFI wait state. Because of
726 * the inherent races between the time the AST is set and when it is evaluated,
727 * thread classification can be inaccurate (but should always be safe). This is
728 * especially the case for sfi_processor_active_thread_classify, which must
729 * classify the active thread on a remote processor without taking the thread lock.
730 * When in doubt, classification should err on the side of *not* classifying a
731 * thread at all, and wait for the thread itself to either hit a quantum expiration
732 * or block inside the kernel.
736 * Thread must be locked. Ultimately, the real decision to enter
737 * SFI wait happens at the AST boundary.
740 sfi_thread_classify(thread_t thread
)
742 task_t task
= thread
->task
;
743 boolean_t is_kernel_thread
= (task
== kernel_task
);
744 sched_mode_t thmode
= thread
->sched_mode
;
745 boolean_t focal
= FALSE
;
747 /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */
748 if (is_kernel_thread
) {
749 return SFI_CLASS_KERNEL
;
752 /* no need to re-classify threads unless there is at least one enabled SFI class */
753 if (os_atomic_load(&sfi_enabled_class_count
, relaxed
) == 0) {
754 return SFI_CLASS_OPTED_OUT
;
757 int task_role
= proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
);
758 int latency_qos
= proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
);
759 int managed_task
= proc_get_effective_task_policy(task
, TASK_POLICY_SFI_MANAGED
);
761 int thread_qos
= proc_get_effective_thread_policy(thread
, TASK_POLICY_QOS
);
762 int thread_bg
= proc_get_effective_thread_policy(thread
, TASK_POLICY_DARWIN_BG
);
764 if (thread_qos
== THREAD_QOS_MAINTENANCE
) {
765 return SFI_CLASS_MAINTENANCE
;
768 if (thread_bg
|| thread_qos
== THREAD_QOS_BACKGROUND
) {
769 return SFI_CLASS_DARWIN_BG
;
772 if (latency_qos
!= 0) {
773 int latency_qos_wtf
= latency_qos
- 1;
775 if ((latency_qos_wtf
>= 4) && (latency_qos_wtf
<= 5)) {
776 return SFI_CLASS_APP_NAP
;
781 * Realtime and fixed priority threads express their duty cycle constraints
782 * via other mechanisms, and are opted out of (most) forms of SFI
784 if (thmode
== TH_MODE_REALTIME
|| thmode
== TH_MODE_FIXED
|| task_role
== TASK_GRAPHICS_SERVER
) {
785 return SFI_CLASS_OPTED_OUT
;
789 * Threads with unspecified, legacy, or user-initiated QOS class can be individually managed.
792 case TASK_CONTROL_APPLICATION
:
793 case TASK_FOREGROUND_APPLICATION
:
796 case TASK_BACKGROUND_APPLICATION
:
797 case TASK_DEFAULT_APPLICATION
:
798 case TASK_UNSPECIFIED
:
799 /* Focal if the task is in a coalition with a FG/focal app */
800 if (task_coalition_focal_count(thread
->task
) > 0) {
804 case TASK_THROTTLE_APPLICATION
:
805 case TASK_DARWINBG_APPLICATION
:
806 case TASK_NONUI_APPLICATION
:
807 /* Definitely not focal */
813 switch (thread_qos
) {
814 case THREAD_QOS_UNSPECIFIED
:
815 case THREAD_QOS_LEGACY
:
816 case THREAD_QOS_USER_INITIATED
:
818 return SFI_CLASS_MANAGED_FOCAL
;
820 return SFI_CLASS_MANAGED_NONFOCAL
;
827 if (thread_qos
== THREAD_QOS_UTILITY
) {
828 return SFI_CLASS_UTILITY
;
832 * Classify threads in non-managed tasks
835 switch (thread_qos
) {
836 case THREAD_QOS_USER_INTERACTIVE
:
837 return SFI_CLASS_USER_INTERACTIVE_FOCAL
;
838 case THREAD_QOS_USER_INITIATED
:
839 return SFI_CLASS_USER_INITIATED_FOCAL
;
840 case THREAD_QOS_LEGACY
:
841 return SFI_CLASS_LEGACY_FOCAL
;
843 return SFI_CLASS_DEFAULT_FOCAL
;
846 switch (thread_qos
) {
847 case THREAD_QOS_USER_INTERACTIVE
:
848 return SFI_CLASS_USER_INTERACTIVE_NONFOCAL
;
849 case THREAD_QOS_USER_INITIATED
:
850 return SFI_CLASS_USER_INITIATED_NONFOCAL
;
851 case THREAD_QOS_LEGACY
:
852 return SFI_CLASS_LEGACY_NONFOCAL
;
854 return SFI_CLASS_DEFAULT_NONFOCAL
;
860 * pset must be locked.
863 sfi_processor_active_thread_classify(processor_t processor
)
865 return processor
->current_sfi_class
;
869 * thread must be locked. This is inherently racy, with the intent that
870 * at the AST boundary, it will be fully evaluated whether we need to
871 * perform an AST wait
874 sfi_thread_needs_ast(thread_t thread
, sfi_class_id_t
*out_class
)
876 sfi_class_id_t class_id
;
878 class_id
= sfi_thread_classify(thread
);
881 *out_class
= class_id
;
884 /* No lock taken, so a stale value may be used. */
885 if (!sfi_classes
[class_id
].class_in_on_phase
) {
893 * pset must be locked. We take the SFI class for
894 * the currently running thread which is cached on
895 * the processor_t, and assume it is accurate. In the
896 * worst case, the processor will get an IPI and be asked
897 * to evaluate if the current running thread at that
898 * later point in time should be in an SFI wait.
901 sfi_processor_needs_ast(processor_t processor
)
903 sfi_class_id_t class_id
;
905 class_id
= sfi_processor_active_thread_classify(processor
);
907 /* No lock taken, so a stale value may be used. */
908 if (!sfi_classes
[class_id
].class_in_on_phase
) {
916 _sfi_wait_cleanup(void)
918 thread_t self
= current_thread();
920 spl_t s
= splsched();
921 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
923 sfi_class_id_t current_sfi_wait_class
= self
->sfi_wait_class
;
925 assert((SFI_CLASS_UNSPECIFIED
< current_sfi_wait_class
) &&
926 (current_sfi_wait_class
< MAX_SFI_CLASS_ID
));
928 self
->sfi_wait_class
= SFI_CLASS_UNSPECIFIED
;
930 simple_unlock(&sfi_lock
);
934 * It's possible for the thread to be woken up due to the SFI period
935 * ending *before* it finishes blocking. In that case,
936 * wait_sfi_begin_time won't be set.
938 * Derive the time sacrificed to SFI by looking at when this thread was
939 * awoken by the on-timer, to avoid counting the time this thread spent
940 * waiting to get scheduled.
942 * Note that last_made_runnable_time could be reset if this thread
943 * gets preempted before we read the value. To fix that, we'd need to
944 * track wait time in a thread timer, sample the timer before blocking,
945 * pass the value through thread->parameter, and subtract that.
948 if (self
->wait_sfi_begin_time
!= 0) {
949 uint64_t made_runnable
= os_atomic_load(&self
->last_made_runnable_time
, relaxed
);
950 int64_t sfi_wait_time
= made_runnable
- self
->wait_sfi_begin_time
;
951 assert(sfi_wait_time
>= 0);
953 ledger_credit(self
->task
->ledger
, task_ledgers
.sfi_wait_times
[current_sfi_wait_class
],
956 self
->wait_sfi_begin_time
= 0;
961 * Called at AST context to fully evaluate if the current thread
962 * (which is obviously running) should instead block in an SFI wait.
963 * We must take the sfi_lock to check whether we are in the "off" period
964 * for the class, and if so, block.
967 sfi_ast(thread_t thread
)
969 sfi_class_id_t class_id
;
971 struct sfi_class_state
*sfi_class
;
972 wait_result_t waitret
;
973 boolean_t did_wait
= FALSE
;
974 thread_continue_t continuation
;
978 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
980 if (!sfi_is_enabled
) {
982 * SFI is not enabled, or has recently been disabled.
983 * There is no point putting this thread on a deferred ready
984 * queue, even if it were classified as needing it, since
985 * SFI will truly be off at the next global off timer
987 simple_unlock(&sfi_lock
);
994 thread
->sfi_class
= class_id
= sfi_thread_classify(thread
);
995 thread_unlock(thread
);
998 * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we
999 * are committed to transitioning to whatever state is indicated by "->class_in_on_phase".
1000 * If another thread tries to call sfi_reevaluate() after this point, it will take the
1001 * sfi_lock and see the thread in this wait state. If another thread calls
1002 * sfi_reevaluate() before this point, it would see a runnable thread and at most
1003 * attempt to send an AST to this processor, but we would have the most accurate
1007 sfi_class
= &sfi_classes
[class_id
];
1008 if (!sfi_class
->class_in_on_phase
) {
1009 /* Need to block thread in wait queue */
1010 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_THREAD_DEFER
),
1011 thread_tid(thread
), class_id
, 0, 0, 0);
1013 waitret
= waitq_assert_wait64(&sfi_class
->waitq
,
1014 CAST_EVENT64_T(class_id
),
1015 THREAD_INTERRUPTIBLE
| THREAD_WAIT_NOREPORT
, 0);
1016 if (waitret
== THREAD_WAITING
) {
1017 thread
->sfi_wait_class
= class_id
;
1019 continuation
= sfi_class
->continuation
;
1021 /* thread may be exiting already, all other errors are unexpected */
1022 assert(waitret
== THREAD_INTERRUPTED
);
1025 simple_unlock(&sfi_lock
);
1030 assert(thread
->wait_sfi_begin_time
== 0);
1032 thread_block_reason(continuation
, NULL
, AST_SFI
);
1036 /* Thread must be unlocked */
1038 sfi_reevaluate(thread_t thread
)
1042 sfi_class_id_t class_id
, current_class_id
;
1047 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
1049 thread_lock(thread
);
1050 sfi_ast
= sfi_thread_needs_ast(thread
, &class_id
);
1051 thread
->sfi_class
= class_id
;
1054 * This routine chiefly exists to boost threads out of an SFI wait
1055 * if their classification changes before the "on" timer fires.
1057 * If we calculate that a thread is in a different ->sfi_wait_class
1058 * than we think it should be (including no-SFI-wait), we need to
1061 * If the thread is in SFI wait and should not be (or should be waiting
1062 * on a different class' "on" timer), we wake it up. If needed, the
1063 * thread may immediately block again in the different SFI wait state.
1065 * If the thread is not in an SFI wait state and it should be, we need
1066 * to get that thread's attention, possibly by sending an AST to another
1070 if ((current_class_id
= thread
->sfi_wait_class
) != SFI_CLASS_UNSPECIFIED
) {
1071 thread_unlock(thread
); /* not needed anymore */
1073 assert(current_class_id
< MAX_SFI_CLASS_ID
);
1075 if ((sfi_ast
== AST_NONE
) || (class_id
!= current_class_id
)) {
1076 struct sfi_class_state
*sfi_class
= &sfi_classes
[current_class_id
];
1078 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_WAIT_CANCELED
), thread_tid(thread
), current_class_id
, class_id
, 0, 0);
1080 kret
= waitq_wakeup64_thread(&sfi_class
->waitq
,
1081 CAST_EVENT64_T(current_class_id
),
1084 assert(kret
== KERN_SUCCESS
|| kret
== KERN_NOT_WAITING
);
1088 * Thread's current SFI wait class is not set, and because we
1089 * have the sfi_lock, it won't get set.
1092 if ((thread
->state
& (TH_RUN
| TH_IDLE
)) == TH_RUN
) {
1093 if (sfi_ast
!= AST_NONE
) {
1094 if (thread
== current_thread()) {
1097 processor_t processor
= thread
->last_processor
;
1099 if (processor
!= PROCESSOR_NULL
&&
1100 processor
->state
== PROCESSOR_RUNNING
&&
1101 processor
->active_thread
== thread
) {
1102 cause_ast_check(processor
);
1105 * Runnable thread that's not on a CPU currently. When a processor
1106 * does context switch to it, the AST will get set based on whether
1107 * the thread is in its "off time".
1114 thread_unlock(thread
);
1117 simple_unlock(&sfi_lock
);
1121 #else /* !CONFIG_SCHED_SFI */
1124 sfi_set_window(uint64_t window_usecs __unused
)
1126 return KERN_NOT_SUPPORTED
;
1130 sfi_window_cancel(void)
1132 return KERN_NOT_SUPPORTED
;
1137 sfi_get_window(uint64_t *window_usecs __unused
)
1139 return KERN_NOT_SUPPORTED
;
1144 sfi_set_class_offtime(sfi_class_id_t class_id __unused
, uint64_t offtime_usecs __unused
)
1146 return KERN_NOT_SUPPORTED
;
1150 sfi_class_offtime_cancel(sfi_class_id_t class_id __unused
)
1152 return KERN_NOT_SUPPORTED
;
1156 sfi_get_class_offtime(sfi_class_id_t class_id __unused
, uint64_t *offtime_usecs __unused
)
1158 return KERN_NOT_SUPPORTED
;
1162 sfi_reevaluate(thread_t thread __unused
)
1168 sfi_thread_classify(thread_t thread
)
1170 task_t task
= thread
->task
;
1171 boolean_t is_kernel_thread
= (task
== kernel_task
);
1173 if (is_kernel_thread
) {
1174 return SFI_CLASS_KERNEL
;
1177 return SFI_CLASS_OPTED_OUT
;
1180 #endif /* !CONFIG_SCHED_SFI */