2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 #include <kern/cpu_number.h>
61 #include <kern/kalloc.h>
62 #include <kern/cpu_data.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <mach/vm_map.h>
66 #include <mach/machine/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_map.h>
70 #include <i386/bit_routines.h>
71 #include <i386/mp_desc.h>
72 #include <i386/misc_protos.h>
74 #include <i386/pmap.h>
75 #include <i386/postcode.h>
76 #include <i386/pmap_internal.h>
78 #include <i386/machine_check.h>
81 #include <kern/misc_protos.h>
84 #include <kern/monotonic.h>
85 #endif /* MONOTONIC */
86 #include <san/kasan.h>
88 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
89 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
91 // Declare macros that will declare the externs
92 #define TRAP(n, name) extern void *name ;
93 #define TRAP_ERR(n, name) extern void *name ;
94 #define TRAP_SPC(n, name) extern void *name ;
95 #define TRAP_IST1(n, name) extern void *name ;
96 #define TRAP_IST2(n, name) extern void *name ;
97 #define INTERRUPT(n) extern void *_intr_ ## n ;
98 #define USER_TRAP(n, name) extern void *name ;
99 #define USER_TRAP_SPC(n, name) extern void *name ;
101 // Include the table to declare the externs
102 #include "../x86_64/idt_table.h"
104 // Undef the macros, then redefine them so we can declare the table
114 #define TRAP(n, name) \
123 #define TRAP_ERR TRAP
124 #define TRAP_SPC TRAP
126 #define TRAP_IST1(n, name) \
135 #define TRAP_IST2(n, name) \
144 #define INTERRUPT(n) \
146 (uintptr_t)&_intr_ ## n,\
153 #define USER_TRAP(n, name) \
162 #define USER_TRAP_SPC USER_TRAP
164 // Declare the table using the macros we just set up
165 struct fake_descriptor64 master_idt64
[IDTSZ
]
166 __attribute__ ((section("__HIB,__desc")))
167 __attribute__ ((aligned(PAGE_SIZE
))) = {
168 #include "../x86_64/idt_table.h"
172 * First cpu`s interrupt stack.
174 extern uint32_t low_intstack
[]; /* bottom */
175 extern uint32_t low_eintstack
[]; /* top */
178 * Per-cpu data area pointers.
180 cpu_data_t cpshadows
[MAX_CPUS
] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
181 cpu_data_t scdatas
[MAX_CPUS
] __attribute__((aligned(64))) = {
182 [0].cpu_this
= &scdatas
[0],
183 [0].cpu_nanotime
= &pal_rtc_nanotime_info
,
184 [0].cpu_int_stack_top
= (vm_offset_t
) low_eintstack
,
185 [0].cd_shadow
= &cpshadows
[0]
187 cpu_data_t
*cpu_data_master
= &scdatas
[0];
189 cpu_data_t
*cpu_data_ptr
[MAX_CPUS
] = { [0] = &scdatas
[0] };
191 decl_simple_lock_data(,ncpus_lock
); /* protects real_ncpus */
192 unsigned int real_ncpus
= 1;
193 unsigned int max_ncpus
= MAX_CPUS
;
195 extern void hi64_sysenter(void);
196 extern void hi64_syscall(void);
199 struct real_descriptor pcldts
[LDTSZ
];
202 cpu_desc_table64_t scdtables
[MAX_CPUS
] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
203 cpu_fault_stack_t scfstks
[MAX_CPUS
] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
208 * Multiprocessor i386/i486 systems use a separate copy of the
209 * GDT, IDT, LDT, and kernel TSS per processor. The first three
210 * are separate to avoid lock contention: the i386 uses locked
211 * memory cycles to access the descriptor tables. The TSS is
212 * separate since each processor needs its own kernel stack,
213 * and since using a TSS marks it busy.
217 * Allocate and initialize the per-processor descriptor tables.
221 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
222 * When switching to 64-bit mode this replaces KERNEL_LDT entry
223 * and the following empty slot. This enables the LDT to be referenced
224 * in the uber-space remapping window on the kernel.
226 struct fake_descriptor64 kernel_ldt_desc64
= {
228 LDTSZ_MIN
*sizeof(struct fake_descriptor
)-1,
230 ACC_P
|ACC_PL_K
|ACC_LDT
,
235 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
236 * It is follows pattern of the KERNEL_LDT.
238 struct fake_descriptor64 kernel_tss_desc64
= {
240 sizeof(struct x86_64_tss
)-1,
242 ACC_P
|ACC_PL_K
|ACC_TSS
,
247 * Convert a descriptor from fake to real format.
249 * Fake descriptor format:
250 * bytes 0..3 base 31..0
251 * bytes 4..5 limit 15..0
252 * byte 6 access byte 2 | limit 19..16
253 * byte 7 access byte 1
255 * Real descriptor format:
256 * bytes 0..1 limit 15..0
257 * bytes 2..3 base 15..0
259 * byte 5 access byte 1
260 * byte 6 access byte 2 | limit 19..16
265 * bytes 4..5 selector
266 * byte 6 word count << 4 (to match fake descriptor)
267 * byte 7 access byte 1
270 * bytes 0..1 offset 15..0
271 * bytes 2..3 selector
273 * byte 5 access byte 1
274 * bytes 6..7 offset 31..16
277 fix_desc(void *d
, int num_desc
) {
278 //early_kprintf("fix_desc(%x, %x)\n", d, num_desc);
279 uint8_t *desc
= (uint8_t*) d
;
282 if ((desc
[7] & 0x14) == 0x04) { /* gate */
288 offset
= *((uint32_t*)(desc
));
289 selector
= *((uint32_t*)(desc
+4));
290 wordcount
= desc
[6] >> 4;
293 *((uint16_t*)desc
) = offset
& 0xFFFF;
294 *((uint16_t*)(desc
+2)) = selector
;
297 *((uint16_t*)(desc
+6)) = offset
>> 16;
299 } else { /* descriptor */
304 base
= *((uint32_t*)(desc
));
305 limit
= *((uint16_t*)(desc
+4));
309 *((uint16_t*)(desc
)) = limit
;
310 *((uint16_t*)(desc
+2)) = base
& 0xFFFF;
311 desc
[4] = (base
>> 16) & 0xFF;
314 desc
[7] = base
>> 24;
317 } while (--num_desc
);
321 fix_desc64(void *descp
, int count
)
323 struct fake_descriptor64
*fakep
;
325 struct real_gate64 gate
;
326 struct real_descriptor64 desc
;
330 fakep
= (struct fake_descriptor64
*) descp
;
332 for (i
= 0; i
< count
; i
++, fakep
++) {
334 * Construct the real decriptor locally.
337 bzero((void *) &real
, sizeof(real
));
339 switch (fakep
->access
& ACC_TYPE
) {
345 real
.gate
.offset_low16
= (uint16_t)(fakep
->offset64
& 0xFFFF);
346 real
.gate
.selector16
= fakep
->lim_or_seg
& 0xFFFF;
347 real
.gate
.IST
= fakep
->size_or_IST
& 0x7;
348 real
.gate
.access8
= fakep
->access
;
349 real
.gate
.offset_high16
= (uint16_t)((fakep
->offset64
>>16) & 0xFFFF);
350 real
.gate
.offset_top32
= (uint32_t)(fakep
->offset64
>>32);
352 default: /* Otherwise */
353 real
.desc
.limit_low16
= fakep
->lim_or_seg
& 0xFFFF;
354 real
.desc
.base_low16
= (uint16_t)(fakep
->offset64
& 0xFFFF);
355 real
.desc
.base_med8
= (uint8_t)((fakep
->offset64
>> 16) & 0xFF);
356 real
.desc
.access8
= fakep
->access
;
357 real
.desc
.limit_high4
= (fakep
->lim_or_seg
>> 16) & 0xFF;
358 real
.desc
.granularity4
= fakep
->size_or_IST
;
359 real
.desc
.base_high8
= (uint8_t)((fakep
->offset64
>> 24) & 0xFF);
360 real
.desc
.base_top32
= (uint32_t)(fakep
->offset64
>>32);
364 * Now copy back over the fake structure.
366 bcopy((void *) &real
, (void *) fakep
, sizeof(real
));
370 extern unsigned mldtsz
;
372 cpu_desc_init(cpu_data_t
*cdp
)
374 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
376 if (cdp
== cpu_data_master
) {
378 * Populate the double-mapped 'u' and base 'b' fields in the
379 * KTSS with I/G/LDT and sysenter stack data.
381 cdi
->cdi_ktssu
= (void *)DBLMAP(&master_ktss64
);
382 cdi
->cdi_ktssb
= (void *)&master_ktss64
;
383 cdi
->cdi_sstku
= (vm_offset_t
) DBLMAP(&master_sstk
.top
);
384 cdi
->cdi_sstkb
= (vm_offset_t
) &master_sstk
.top
;
386 cdi
->cdi_gdtu
.ptr
= (void *)DBLMAP((uintptr_t) &master_gdt
);
387 cdi
->cdi_gdtb
.ptr
= (void *)&master_gdt
;
388 cdi
->cdi_idtu
.ptr
= (void *)DBLMAP((uintptr_t) &master_idt64
);
389 cdi
->cdi_idtb
.ptr
= (void *)((uintptr_t) &master_idt64
);
390 cdi
->cdi_ldtu
= (struct fake_descriptor
*) (void *) DBLMAP((uintptr_t)&master_ldt
[0]);
391 cdi
->cdi_ldtb
= (struct fake_descriptor
*) (void *) &master_ldt
[0];
393 /* Replace the expanded LDTs and TSS slots in the GDT */
394 kernel_ldt_desc64
.offset64
= (uintptr_t) cdi
->cdi_ldtu
;
395 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(KERNEL_LDT
)] =
397 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(USER_LDT
)] =
399 kernel_tss_desc64
.offset64
= (uintptr_t) DBLMAP(&master_ktss64
);
400 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(KERNEL_TSS
)] =
403 /* Fix up the expanded descriptors for 64-bit. */
404 fix_desc64((void *) &master_idt64
, IDTSZ
);
405 fix_desc64((void *) &master_gdt
[sel_idx(KERNEL_LDT
)], 1);
406 fix_desc64((void *) &master_gdt
[sel_idx(USER_LDT
)], 1);
407 fix_desc64((void *) &master_gdt
[sel_idx(KERNEL_TSS
)], 1);
410 * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
412 master_ktss64
.ist2
= (uintptr_t) low_eintstack
;
413 master_ktss64
.ist1
= (uintptr_t) low_eintstack
- sizeof(x86_64_intr_stack_frame_t
);
414 } else if (cdi
->cdi_ktssu
== NULL
) { /* Skipping re-init on wake */
415 cpu_desc_table64_t
*cdt
= (cpu_desc_table64_t
*) cdp
->cpu_desc_tablep
;
417 cdi
->cdi_idtu
.ptr
= (void *)DBLMAP((uintptr_t) &master_idt64
);
419 cdi
->cdi_ktssu
= (void *)DBLMAP(&cdt
->ktss
);
420 cdi
->cdi_ktssb
= (void *)(&cdt
->ktss
);
421 cdi
->cdi_sstku
= (vm_offset_t
)DBLMAP(&cdt
->sstk
.top
);
422 cdi
->cdi_sstkb
= (vm_offset_t
)(&cdt
->sstk
.top
);
423 cdi
->cdi_ldtu
= (void *)LDTALIAS(cdp
->cpu_ldtp
);
424 cdi
->cdi_ldtb
= (void *)(cdp
->cpu_ldtp
);
429 bcopy((char *)master_gdt
, (char *)cdt
->gdt
, sizeof(master_gdt
));
430 bcopy((char *)master_ldt
, (char *)cdp
->cpu_ldtp
, mldtsz
);
431 bcopy((char *)&master_ktss64
, (char *)&cdt
->ktss
, sizeof(struct x86_64_tss
));
432 cdi
->cdi_gdtu
.ptr
= (void *)DBLMAP(cdt
->gdt
);
433 cdi
->cdi_gdtb
.ptr
= (void *)(cdt
->gdt
);
435 * Fix up the entries in the GDT to point to
436 * this LDT and this TSS.
437 * Note reuse of global 'kernel_ldt_desc64, which is not
438 * concurrency-safe. Higher level synchronization is expected
440 kernel_ldt_desc64
.offset64
= (uintptr_t) cdi
->cdi_ldtu
;
441 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(KERNEL_LDT
)] =
443 fix_desc64(&cdt
->gdt
[sel_idx(KERNEL_LDT
)], 1);
445 kernel_ldt_desc64
.offset64
= (uintptr_t) cdi
->cdi_ldtu
;
446 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(USER_LDT
)] =
448 fix_desc64(&cdt
->gdt
[sel_idx(USER_LDT
)], 1);
450 kernel_tss_desc64
.offset64
= (uintptr_t) cdi
->cdi_ktssu
;
451 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(KERNEL_TSS
)] =
453 fix_desc64(&cdt
->gdt
[sel_idx(KERNEL_TSS
)], 1);
455 /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
456 uint8_t *cfstk
= &scfstks
[cdp
->cpu_number
].fstk
[0];
458 bzero((void *) cfstk
, FSTK_SZ
);
459 cdt
->ktss
.ist2
= DBLMAP((uint64_t)cdt
->fstkp
+ FSTK_SZ
);
460 cdt
->ktss
.ist1
= cdt
->ktss
.ist2
- sizeof(x86_64_intr_stack_frame_t
);
463 /* Require that the top of the sysenter stack is 16-byte aligned */
464 if ((cdi
->cdi_sstku
% 16) != 0)
465 panic("cpu_desc_init() sysenter stack not 16-byte aligned");
468 cpu_desc_load(cpu_data_t
*cdp
)
470 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
472 postcode(CPU_DESC_LOAD_ENTRY
);
474 /* Stuff the kernel per-cpu data area address into the MSRs */
475 postcode(CPU_DESC_LOAD_GS_BASE
);
476 wrmsr64(MSR_IA32_GS_BASE
, (uintptr_t) cdp
);
477 postcode(CPU_DESC_LOAD_KERNEL_GS_BASE
);
478 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, (uintptr_t) cdp
);
481 * Ensure the TSS segment's busy bit is clear. This is required
482 * for the case of reloading descriptors at wake to avoid
483 * their complete re-initialization.
485 gdt_desc_p(KERNEL_TSS
)->access
&= ~ACC_TSS_BUSY
;
487 /* Load the GDT, LDT, IDT and TSS */
488 cdi
->cdi_gdtb
.size
= sizeof(struct real_descriptor
)*GDTSZ
- 1;
489 cdi
->cdi_gdtu
.size
= cdi
->cdi_gdtb
.size
;
490 cdi
->cdi_idtb
.size
= 0x1000 + cdp
->cpu_number
;
491 cdi
->cdi_idtu
.size
= cdi
->cdi_idtb
.size
;
493 postcode(CPU_DESC_LOAD_GDT
);
494 lgdt((uintptr_t *) &cdi
->cdi_gdtu
);
495 postcode(CPU_DESC_LOAD_IDT
);
496 lidt((uintptr_t *) &cdi
->cdi_idtu
);
497 postcode(CPU_DESC_LOAD_LDT
);
499 postcode(CPU_DESC_LOAD_TSS
);
502 #if GPROF // Hack to enable mcount to work on K64
503 __asm__
volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS
)));
505 postcode(CPU_DESC_LOAD_EXIT
);
509 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
512 cpu_syscall_init(cpu_data_t
*cdp
)
516 #else /* MONOTONIC */
518 #endif /* !MONOTONIC */
519 wrmsr64(MSR_IA32_SYSENTER_CS
, SYSENTER_CS
);
520 wrmsr64(MSR_IA32_SYSENTER_EIP
, DBLMAP((uintptr_t) hi64_sysenter
));
521 wrmsr64(MSR_IA32_SYSENTER_ESP
, current_cpu_datap()->cpu_desc_index
.cdi_sstku
);
522 /* Enable syscall/sysret */
523 wrmsr64(MSR_IA32_EFER
, rdmsr64(MSR_IA32_EFER
) | MSR_IA32_EFER_SCE
);
526 * MSRs for 64-bit syscall/sysret
527 * Note USER_CS because sysret uses this + 16 when returning to
530 wrmsr64(MSR_IA32_LSTAR
, DBLMAP((uintptr_t) hi64_syscall
));
531 wrmsr64(MSR_IA32_STAR
, (((uint64_t)USER_CS
) << 48) | (((uint64_t)KERNEL64_CS
) << 32));
533 * Emulate eflags cleared by sysenter but note that
534 * we also clear the trace trap to avoid the complications
535 * of single-stepping into a syscall. The nested task bit
536 * is also cleared to avoid a spurious "task switch"
537 * should we choose to return via an IRET.
539 wrmsr64(MSR_IA32_FMASK
, EFL_DF
|EFL_IF
|EFL_TF
|EFL_NT
);
542 extern vm_offset_t
dyn_dblmap(vm_offset_t
, vm_offset_t
);
543 uint64_t ldt_alias_offset
;
546 cpu_data_alloc(boolean_t is_boot_cpu
)
552 assert(real_ncpus
== 1);
554 if (cdp
->cpu_processor
== NULL
) {
555 simple_lock_init(&ncpus_lock
, 0);
556 cdp
->cpu_processor
= cpu_processor_alloc(TRUE
);
557 #if NCOPY_WINDOWS > 0
558 cdp
->cpu_pmap
= pmap_cpu_alloc(TRUE
);
564 boolean_t do_ldt_alloc
= FALSE
;
565 simple_lock(&ncpus_lock
);
566 int cnum
= real_ncpus
;
568 if (dyn_ldts
== NULL
) {
571 simple_unlock(&ncpus_lock
);
574 * Allocate per-cpu data:
577 cdp
= &scdatas
[cnum
];
578 bzero((void*) cdp
, sizeof(cpu_data_t
));
580 cdp
->cpu_number
= cnum
;
581 cdp
->cd_shadow
= &cpshadows
[cnum
];
583 * Allocate interrupt stack:
585 ret
= kmem_alloc(kernel_map
,
586 (vm_offset_t
*) &cdp
->cpu_int_stack_top
,
587 INTSTACK_SIZE
, VM_KERN_MEMORY_CPU
);
588 if (ret
!= KERN_SUCCESS
) {
589 panic("cpu_data_alloc() int stack failed, ret=%d\n", ret
);
591 bzero((void*) cdp
->cpu_int_stack_top
, INTSTACK_SIZE
);
592 cdp
->cpu_int_stack_top
+= INTSTACK_SIZE
;
595 * Allocate descriptor table:
598 cdp
->cpu_desc_tablep
= (struct cpu_desc_table
*) &scdtables
[cnum
];
603 boolean_t do_ldt_free
= FALSE
;
604 vm_offset_t sldtoffset
= 0;
608 vm_offset_t ldtalloc
= 0, ldtallocsz
= round_page_64(MAX_CPUS
* sizeof(struct real_descriptor
) * LDTSZ
);
609 ret
= kmem_alloc(kernel_map
, (vm_offset_t
*) &ldtalloc
, ldtallocsz
, VM_KERN_MEMORY_CPU
);
610 if (ret
!= KERN_SUCCESS
) {
611 panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret
);
614 simple_lock(&ncpus_lock
);
615 if (dyn_ldts
== NULL
) {
616 dyn_ldts
= (cldt_t
*)ldtalloc
;
620 simple_unlock(&ncpus_lock
);
623 kmem_free(kernel_map
, ldtalloc
, ldtallocsz
);
625 /* CPU registration and startup are expected to execute
626 * serially, as invoked by the platform driver.
627 * Create trampoline alias of LDT region.
629 sldtoffset
= dyn_dblmap(ldtalloc
, ldtallocsz
);
630 ldt_alias_offset
= sldtoffset
;
633 cdp
->cpu_ldtp
= &dyn_ldts
[cnum
].pcldts
[0];
636 /* Machine-check shadow register allocation. */
641 * Before this cpu has been assigned a real thread context,
642 * we give it a fake, unique, non-zero thread id which the locking
643 * primitives use as their lock value.
644 * Note that this does not apply to the boot processor, cpu 0, which
645 * transitions to a thread context well before other processors are
648 cdp
->cpu_active_thread
= (thread_t
) (uintptr_t) cdp
->cpu_number
;
650 cdp
->cpu_nanotime
= &pal_rtc_nanotime_info
;
652 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
654 "int_stack: 0x%lx-0x%lx\n",
655 cdp
->cpu_number
, cdp
, cdp
->cpu_desc_tablep
, cdp
->cpu_ldtp
,
656 (long)(cdp
->cpu_int_stack_top
- INTSTACK_SIZE
), (long)(cdp
->cpu_int_stack_top
));
657 cpu_data_ptr
[cnum
] = cdp
;
664 valid_user_data_selector(uint16_t selector
)
666 sel_t sel
= selector_to_sel(selector
);
671 if (sel
.ti
== SEL_LDT
)
673 else if (sel
.index
< GDTSZ
) {
674 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
)
681 valid_user_code_selector(uint16_t selector
)
683 sel_t sel
= selector_to_sel(selector
);
688 if (sel
.ti
== SEL_LDT
) {
689 if (sel
.rpl
== USER_PRIV
)
692 else if (sel
.index
< GDTSZ
&& sel
.rpl
== USER_PRIV
) {
693 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
)
695 /* Explicitly validate the system code selectors
696 * even if not instantaneously privileged,
697 * since they are dynamically re-privileged
700 if ((selector
== USER_CS
) || (selector
== USER64_CS
))
708 valid_user_stack_selector(uint16_t selector
)
710 sel_t sel
= selector_to_sel(selector
);
715 if (sel
.ti
== SEL_LDT
) {
716 if (sel
.rpl
== USER_PRIV
)
719 else if (sel
.index
< GDTSZ
&& sel
.rpl
== USER_PRIV
) {
720 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
)
728 valid_user_segment_selectors(uint16_t cs
,
735 return valid_user_code_selector(cs
) &&
736 valid_user_stack_selector(ss
) &&
737 valid_user_data_selector(ds
) &&
738 valid_user_data_selector(es
) &&
739 valid_user_data_selector(fs
) &&
740 valid_user_data_selector(gs
);
743 #if NCOPY_WINDOWS > 0
745 static vm_offset_t user_window_base
= 0;
748 cpu_userwindow_init(int cpu
)
750 cpu_data_t
*cdp
= cpu_data_ptr
[cpu
];
751 vm_offset_t user_window
;
755 num_cpus
= ml_get_max_cpus();
758 panic("cpu_userwindow_init: cpu > num_cpus");
760 if (user_window_base
== 0) {
762 if (vm_allocate(kernel_map
, &vaddr
,
763 (NBPDE
* NCOPY_WINDOWS
* num_cpus
) + NBPDE
,
764 VM_FLAGS_ANYWHERE
| VM_MAKE_TAG(VM_KERN_MEMORY_CPU
)) != KERN_SUCCESS
)
765 panic("cpu_userwindow_init: "
766 "couldn't allocate user map window");
769 * window must start on a page table boundary
770 * in the virtual address space
772 user_window_base
= (vaddr
+ (NBPDE
- 1)) & ~(NBPDE
- 1);
775 * get rid of any allocation leading up to our
778 vm_deallocate(kernel_map
, vaddr
, user_window_base
- vaddr
);
781 * get rid of tail that we don't need
783 user_window
= user_window_base
+
784 (NBPDE
* NCOPY_WINDOWS
* num_cpus
);
786 vm_deallocate(kernel_map
, user_window
,
788 ((NBPDE
* NCOPY_WINDOWS
* num_cpus
) + NBPDE
)) -
792 user_window
= user_window_base
+ (cpu
* NCOPY_WINDOWS
* NBPDE
);
794 cdp
->cpu_copywindow_base
= user_window
;
796 * Abuse this pdp entry, the pdp now actually points to
797 * an array of copy windows addresses.
799 cdp
->cpu_copywindow_pdp
= pmap_pde(kernel_pmap
, user_window
);
804 cpu_physwindow_init(int cpu
)
806 cpu_data_t
*cdp
= cpu_data_ptr
[cpu
];
807 vm_offset_t phys_window
= cdp
->cpu_physwindow_base
;
809 if (phys_window
== 0) {
810 if (vm_allocate(kernel_map
, &phys_window
,
811 PAGE_SIZE
, VM_FLAGS_ANYWHERE
| VM_MAKE_TAG(VM_KERN_MEMORY_CPU
))
813 panic("cpu_physwindow_init: "
814 "couldn't allocate phys map window");
817 * make sure the page that encompasses the
818 * pte pointer we're interested in actually
819 * exists in the page table
821 pmap_expand(kernel_pmap
, phys_window
, PMAP_EXPAND_OPTIONS_NONE
);
823 cdp
->cpu_physwindow_base
= phys_window
;
824 cdp
->cpu_physwindow_ptep
= vtopte(phys_window
);
827 #endif /* NCOPY_WINDOWS > 0 */
830 * Allocate a new interrupt stack for the boot processor from the
831 * heap rather than continue to use the statically allocated space.
832 * Also switch to a dynamically allocated cpu data area.
835 cpu_data_realloc(void)
842 ret
= kmem_alloc(kernel_map
, &istk
, INTSTACK_SIZE
, VM_KERN_MEMORY_CPU
);
843 if (ret
!= KERN_SUCCESS
) {
844 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret
);
846 bzero((void*) istk
, INTSTACK_SIZE
);
847 istk
+= INTSTACK_SIZE
;
851 /* Copy old contents into new area and make fix-ups */
852 assert(cpu_number() == 0);
853 bcopy((void *) cpu_data_ptr
[0], (void*) cdp
, sizeof(cpu_data_t
));
855 cdp
->cpu_int_stack_top
= istk
;
856 timer_call_queue_init(&cdp
->rtclock_timer
.queue
);
857 cdp
->cpu_desc_tablep
= (struct cpu_desc_table
*) &scdtables
[0];
858 cpu_desc_table64_t
*cdt
= (cpu_desc_table64_t
*) cdp
->cpu_desc_tablep
;
860 uint8_t *cfstk
= &scfstks
[cdp
->cpu_number
].fstk
[0];
865 * With interrupts disabled commmit the new areas.
867 istate
= ml_set_interrupts_enabled(FALSE
);
868 cpu_data_ptr
[0] = cdp
;
869 master_ktss64
.ist2
= DBLMAP((uintptr_t) cfstk
);
870 master_ktss64
.ist1
= DBLMAP((uintptr_t) cfstk
- sizeof(x86_64_intr_stack_frame_t
));
871 wrmsr64(MSR_IA32_GS_BASE
, (uintptr_t) cdp
);
872 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, (uintptr_t) cdp
);
873 (void) ml_set_interrupts_enabled(istate
);
875 kprintf("Reallocated master cpu data: %p,"
876 " interrupt stack: %p, fault stack: %p\n",
877 (void *) cdp
, (void *) istk
, (void *) cfstk
);