2 * Copyright (c) 2004-2011 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * CPU-specific power management support.
32 * Implements the "wrappers" to the KEXT.
35 #include <i386/machine_cpu.h>
37 #include <i386/machine_routines.h>
38 #include <i386/proc_reg.h>
39 #include <i386/pmap.h>
40 #include <i386/misc_protos.h>
41 #include <kern/machine.h>
43 #include <kern/processor.h>
44 #include <kern/timer_queue.h>
45 #include <i386/cpu_threads.h>
46 #include <i386/pmCPU.h>
47 #include <i386/cpuid.h>
48 #include <i386/rtclock_protos.h>
49 #include <kern/sched_prim.h>
50 #include <i386/lapic.h>
51 #include <i386/pal_routines.h>
52 #include <sys/kdebug.h>
55 extern int disableConsoleOutput
;
57 #define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL
59 uint64_t cpu_itime_bins
[CPU_ITIME_BINS
] = {16* NSEC_PER_USEC
, 32* NSEC_PER_USEC
, 64* NSEC_PER_USEC
, 128* NSEC_PER_USEC
, 256* NSEC_PER_USEC
, 512* NSEC_PER_USEC
, 1024* NSEC_PER_USEC
, 2048* NSEC_PER_USEC
, 4096* NSEC_PER_USEC
, 8192* NSEC_PER_USEC
, 16384* NSEC_PER_USEC
, 32768* NSEC_PER_USEC
};
60 uint64_t *cpu_rtime_bins
= &cpu_itime_bins
[0];
63 * The following is set when the KEXT loads and initializes.
65 pmDispatch_t
*pmDispatch
= NULL
;
67 uint32_t pmInitDone
= 0;
68 static boolean_t earlyTopology
= FALSE
;
69 static uint64_t earlyMaxBusDelay
= DELAY_UNSET
;
70 static uint64_t earlyMaxIntDelay
= DELAY_UNSET
;
73 * Initialize the Cstate change code.
76 power_management_init(void)
78 if (pmDispatch
!= NULL
&& pmDispatch
->cstateInit
!= NULL
)
79 (*pmDispatch
->cstateInit
)();
82 static inline void machine_classify_interval(uint64_t interval
, uint64_t *bins
, uint64_t *binvals
, uint32_t nbins
) {
84 for (i
= 0; i
< nbins
; i
++) {
85 if (interval
< binvals
[i
]) {
92 uint64_t idle_pending_timers_processed
;
93 uint32_t idle_entry_timer_processing_hdeadline_threshold
= 5000000;
96 * Called when the CPU is idle. It calls into the power management kext
97 * to determine the best way to idle the CPU.
102 cpu_data_t
*my_cpu
= current_cpu_datap();
103 __unused
uint32_t cnum
= my_cpu
->cpu_number
;
104 uint64_t ctime
, rtime
, itime
;
105 #if CST_DEMOTION_DEBUG
106 processor_t cproc
= my_cpu
->cpu_processor
;
107 uint64_t cwakeups
= PROCESSOR_DATA(cproc
, wakeups_issued_total
);
108 #endif /* CST_DEMOTION_DEBUG */
109 uint64_t esdeadline
, ehdeadline
;
110 boolean_t do_process_pending_timers
= FALSE
;
112 ctime
= mach_absolute_time();
113 esdeadline
= my_cpu
->rtclock_timer
.queue
.earliest_soft_deadline
;
114 ehdeadline
= my_cpu
->rtclock_timer
.deadline
;
115 /* Determine if pending timers exist */
116 if ((ctime
>= esdeadline
) && (ctime
< ehdeadline
) &&
117 ((ehdeadline
- ctime
) < idle_entry_timer_processing_hdeadline_threshold
)) {
118 idle_pending_timers_processed
++;
119 do_process_pending_timers
= TRUE
;
120 goto machine_idle_exit
;
122 TCOAL_DEBUG(0xCCCC0000, ctime
, my_cpu
->rtclock_timer
.queue
.earliest_soft_deadline
, my_cpu
->rtclock_timer
.deadline
, idle_pending_timers_processed
, 0);
125 my_cpu
->lcpu
.state
= LCPU_IDLE
;
126 DBGLOG(cpu_handle
, cpu_number(), MP_IDLE
);
129 rtime
= ctime
- my_cpu
->cpu_ixtime
;
131 my_cpu
->cpu_rtime_total
+= rtime
;
132 machine_classify_interval(rtime
, &my_cpu
->cpu_rtimes
[0], &cpu_rtime_bins
[0], CPU_RTIME_BINS
);
133 #if CST_DEMOTION_DEBUG
134 uint32_t cl
= 0, ch
= 0;
135 uint64_t c3res
, c6res
, c7res
;
136 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY
, &cl
, &ch
);
137 c3res
= ((uint64_t)ch
<< 32) | cl
;
138 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY
, &cl
, &ch
);
139 c6res
= ((uint64_t)ch
<< 32) | cl
;
140 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY
, &cl
, &ch
);
141 c7res
= ((uint64_t)ch
<< 32) | cl
;
146 * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay()
147 * were called prior to the CPU PM kext being registered. We do
148 * this here since we know at this point the values will be first
149 * used since idle is where the decisions using these values is made.
151 if (earlyMaxBusDelay
!= DELAY_UNSET
)
152 ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay
& 0xFFFFFFFF));
153 if (earlyMaxIntDelay
!= DELAY_UNSET
)
154 ml_set_maxintdelay(earlyMaxIntDelay
);
158 && pmDispatch
!= NULL
159 && pmDispatch
->MachineIdle
!= NULL
)
160 (*pmDispatch
->MachineIdle
)(0x7FFFFFFFFFFFFFFFULL
);
163 * If no power management, re-enable interrupts and halt.
164 * This will keep the CPU from spinning through the scheduler
165 * and will allow at least some minimal power savings (but it
166 * cause problems in some MP configurations w.r.t. the APIC
167 * stopping during a GV3 transition).
170 /* Once woken, re-disable interrupts. */
175 * Mark the CPU as running again.
177 MARK_CPU_ACTIVE(cnum
);
178 DBGLOG(cpu_handle
, cnum
, MP_UNIDLE
);
179 my_cpu
->lcpu
.state
= LCPU_RUN
;
180 uint64_t ixtime
= my_cpu
->cpu_ixtime
= mach_absolute_time();
181 itime
= ixtime
- ctime
;
182 my_cpu
->cpu_idle_exits
++;
183 my_cpu
->cpu_itime_total
+= itime
;
184 machine_classify_interval(itime
, &my_cpu
->cpu_itimes
[0], &cpu_itime_bins
[0], CPU_ITIME_BINS
);
185 #if CST_DEMOTION_DEBUG
187 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY
, &cl
, &ch
);
188 c3res
= (((uint64_t)ch
<< 32) | cl
) - c3res
;
189 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY
, &cl
, &ch
);
190 c6res
= (((uint64_t)ch
<< 32) | cl
) - c6res
;
191 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY
, &cl
, &ch
);
192 c7res
= (((uint64_t)ch
<< 32) | cl
) - c7res
;
194 uint64_t ndelta
= itime
- tmrCvt(c3res
+ c6res
+ c7res
, tscFCvtt2n
);
195 KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta
, itime
, c7res
, c6res
, c3res
);
196 if ((itime
> 1000000) && (ndelta
> 250000))
197 KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta
, itime
, c7res
, c6res
, c3res
);
202 * Re-enable interrupts.
207 if (do_process_pending_timers
) {
208 TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START
, ctime
, esdeadline
, ehdeadline
, idle_pending_timers_processed
, 0);
210 /* Adjust to reflect that this isn't truly a package idle exit */
211 __sync_fetch_and_sub(&my_cpu
->lcpu
.package
->num_idle
, 1);
212 lapic_timer_swi(); /* Trigger software timer interrupt */
213 __sync_fetch_and_add(&my_cpu
->lcpu
.package
->num_idle
, 1);
215 TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END
, ctime
, esdeadline
, idle_pending_timers_processed
, 0, 0);
217 #if CST_DEMOTION_DEBUG
218 uint64_t nwakeups
= PROCESSOR_DATA(cproc
, wakeups_issued_total
);
220 if ((nwakeups
== cwakeups
) && (topoParms
.nLThreadsPerPackage
== my_cpu
->lcpu
.package
->num_idle
)) {
221 KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups
, 0, 0, 0, 0);
227 * Called when the CPU is to be halted. It will choose the best C-State
231 pmCPUHalt(uint32_t reason
)
233 cpu_data_t
*cpup
= current_cpu_datap();
237 cpup
->lcpu
.state
= LCPU_PAUSE
;
242 cpup
->lcpu
.state
= LCPU_PAUSE
;
252 && pmDispatch
!= NULL
253 && pmDispatch
->pmCPUHalt
!= NULL
) {
255 * Halt the CPU (and put it in a low power state.
257 (*pmDispatch
->pmCPUHalt
)();
260 * We've exited halt, so get the CPU schedulable again.
261 * - by calling the fast init routine for a slave, or
262 * - by returning if we're the master processor.
264 if (cpup
->cpu_number
!= master_cpu
) {
265 i386_init_slave_fast();
266 panic("init_slave_fast returned");
271 * If no power managment and a processor is taken off-line,
272 * then invalidate the cache and halt it (it will not be able
273 * to be brought back on-line without resetting the CPU).
275 __asm__
volatile ("wbinvd");
276 cpup
->lcpu
.state
= LCPU_HALT
;
279 panic("back from Halt");
287 pmMarkAllCPUsOff(void)
290 && pmDispatch
!= NULL
291 && pmDispatch
->markAllCPUsOff
!= NULL
)
292 (*pmDispatch
->markAllCPUsOff
)();
299 && pmDispatch
!= NULL
300 && pmDispatch
->pmCPUStateInit
!= NULL
) {
301 (*pmDispatch
->pmCPUStateInit
)();
302 earlyTopology
= FALSE
;
308 pmGetLogicalCPU(int cpu
)
310 return(cpu_to_lcpu(cpu
));
314 pmGetMyLogicalCPU(void)
316 cpu_data_t
*cpup
= current_cpu_datap();
324 return(cpu_to_core(cpu
));
330 cpu_data_t
*cpup
= current_cpu_datap();
332 return(cpup
->lcpu
.core
);
338 return(cpu_to_die(cpu
));
344 cpu_data_t
*cpup
= current_cpu_datap();
346 return(cpup
->lcpu
.die
);
350 pmGetPackage(int cpu
)
352 return(cpu_to_package(cpu
));
358 cpu_data_t
*cpup
= current_cpu_datap();
360 return(cpup
->lcpu
.package
);
364 pmLockCPUTopology(int lock
)
367 simple_lock(&x86_topo_lock
);
369 simple_unlock(&x86_topo_lock
);
374 * Called to get the next deadline that has been set by the
375 * power management code.
376 * Note: a return of 0 from AICPM and this routine signifies
377 * that no deadline is set.
380 pmCPUGetDeadline(cpu_data_t
*cpu
)
382 uint64_t deadline
= 0;
385 && pmDispatch
!= NULL
386 && pmDispatch
->GetDeadline
!= NULL
)
387 deadline
= (*pmDispatch
->GetDeadline
)(&cpu
->lcpu
);
393 * Called to determine if the supplied deadline or the power management
394 * deadline is sooner. Returns which ever one is first.
398 pmCPUSetDeadline(cpu_data_t
*cpu
, uint64_t deadline
)
401 && pmDispatch
!= NULL
402 && pmDispatch
->SetDeadline
!= NULL
)
403 deadline
= (*pmDispatch
->SetDeadline
)(&cpu
->lcpu
, deadline
);
409 * Called when a power management deadline expires.
412 pmCPUDeadline(cpu_data_t
*cpu
)
415 && pmDispatch
!= NULL
416 && pmDispatch
->Deadline
!= NULL
)
417 (*pmDispatch
->Deadline
)(&cpu
->lcpu
);
421 * Called to get a CPU out of idle.
424 pmCPUExitIdle(cpu_data_t
*cpu
)
429 && pmDispatch
!= NULL
430 && pmDispatch
->exitIdle
!= NULL
)
431 do_ipi
= (*pmDispatch
->exitIdle
)(&cpu
->lcpu
);
439 pmCPUExitHalt(int cpu
)
441 kern_return_t rc
= KERN_INVALID_ARGUMENT
;
444 && pmDispatch
!= NULL
445 && pmDispatch
->exitHalt
!= NULL
)
446 rc
= pmDispatch
->exitHalt(cpu_to_lcpu(cpu
));
452 pmCPUExitHaltToOff(int cpu
)
454 kern_return_t rc
= KERN_SUCCESS
;
457 && pmDispatch
!= NULL
458 && pmDispatch
->exitHaltToOff
!= NULL
)
459 rc
= pmDispatch
->exitHaltToOff(cpu_to_lcpu(cpu
));
465 * Called to initialize the power management structures for the CPUs.
470 if (pmDispatch
!= NULL
&& pmDispatch
->pmCPUStateInit
!= NULL
)
471 (*pmDispatch
->pmCPUStateInit
)();
473 earlyTopology
= TRUE
;
477 * Called when a CPU is being restarted after being powered off (as in S3).
480 pmCPUMarkRunning(cpu_data_t
*cpu
)
482 cpu_data_t
*cpup
= current_cpu_datap();
485 && pmDispatch
!= NULL
486 && pmDispatch
->markCPURunning
!= NULL
)
487 (*pmDispatch
->markCPURunning
)(&cpu
->lcpu
);
489 cpup
->lcpu
.state
= LCPU_RUN
;
493 * Called to get/set CPU power management state.
496 pmCPUControl(uint32_t cmd
, void *datap
)
500 if (pmDispatch
!= NULL
501 && pmDispatch
->pmCPUControl
!= NULL
)
502 rc
= (*pmDispatch
->pmCPUControl
)(cmd
, datap
);
508 * Called to save the timer state used by power management prior
514 if (pmDispatch
!= NULL
515 && pmDispatch
->pmTimerStateSave
!= NULL
)
516 (*pmDispatch
->pmTimerStateSave
)();
520 * Called to restore the timer state used by power management after
521 * waking from "sleep".
526 if (pmDispatch
!= NULL
527 && pmDispatch
->pmTimerStateRestore
!= NULL
)
528 (*pmDispatch
->pmTimerStateRestore
)();
532 * Set the worst-case time for the C4 to C2 transition.
533 * No longer does anything.
536 ml_set_maxsnoop(__unused
uint32_t maxdelay
)
542 * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds.
545 ml_get_maxsnoop(void)
547 uint64_t max_snoop
= 0;
550 && pmDispatch
!= NULL
551 && pmDispatch
->getMaxSnoop
!= NULL
)
552 max_snoop
= pmDispatch
->getMaxSnoop();
554 return((unsigned)(max_snoop
& 0xffffffff));
559 ml_get_maxbusdelay(void)
561 uint64_t max_delay
= 0;
564 && pmDispatch
!= NULL
565 && pmDispatch
->getMaxBusDelay
!= NULL
)
566 max_delay
= pmDispatch
->getMaxBusDelay();
568 return((uint32_t)(max_delay
& 0xffffffff));
572 * Advertise a memory access latency tolerance of "mdelay" ns
575 ml_set_maxbusdelay(uint32_t mdelay
)
577 uint64_t maxdelay
= mdelay
;
579 if (pmDispatch
!= NULL
580 && pmDispatch
->setMaxBusDelay
!= NULL
) {
581 earlyMaxBusDelay
= DELAY_UNSET
;
582 pmDispatch
->setMaxBusDelay(maxdelay
);
584 earlyMaxBusDelay
= maxdelay
;
588 ml_get_maxintdelay(void)
590 uint64_t max_delay
= 0;
592 if (pmDispatch
!= NULL
593 && pmDispatch
->getMaxIntDelay
!= NULL
)
594 max_delay
= pmDispatch
->getMaxIntDelay();
600 * Set the maximum delay allowed for an interrupt.
603 ml_set_maxintdelay(uint64_t mdelay
)
605 if (pmDispatch
!= NULL
606 && pmDispatch
->setMaxIntDelay
!= NULL
) {
607 earlyMaxIntDelay
= DELAY_UNSET
;
608 pmDispatch
->setMaxIntDelay(mdelay
);
610 earlyMaxIntDelay
= mdelay
;
614 ml_get_interrupt_prewake_applicable()
616 boolean_t applicable
= FALSE
;
619 && pmDispatch
!= NULL
620 && pmDispatch
->pmInterruptPrewakeApplicable
!= NULL
)
621 applicable
= pmDispatch
->pmInterruptPrewakeApplicable();
627 * Put a CPU into "safe" mode with respect to power.
629 * Some systems cannot operate at a continuous "normal" speed without
630 * exceeding the thermal design. This is called per-CPU to place the
631 * CPUs into a "safe" operating mode.
634 pmSafeMode(x86_lcpu_t
*lcpu
, uint32_t flags
)
636 if (pmDispatch
!= NULL
637 && pmDispatch
->pmCPUSafeMode
!= NULL
)
638 pmDispatch
->pmCPUSafeMode(lcpu
, flags
);
641 * Do something reasonable if the KEXT isn't present.
643 * We only look at the PAUSE and RESUME flags. The other flag(s)
644 * will not make any sense without the KEXT, so just ignore them.
646 * We set the CPU's state to indicate that it's halted. If this
647 * is the CPU we're currently running on, then spin until the
648 * state becomes non-halted.
650 if (flags
& PM_SAFE_FL_PAUSE
) {
651 lcpu
->state
= LCPU_PAUSE
;
652 if (lcpu
== x86_lcpu()) {
653 while (lcpu
->state
== LCPU_PAUSE
)
659 * Clear the halted flag for the specified CPU, that will
660 * get it out of it's spin loop.
662 if (flags
& PM_SAFE_FL_RESUME
) {
663 lcpu
->state
= LCPU_RUN
;
668 static uint32_t saved_run_count
= 0;
671 machine_run_count(uint32_t count
)
673 if (pmDispatch
!= NULL
674 && pmDispatch
->pmSetRunCount
!= NULL
)
675 pmDispatch
->pmSetRunCount(count
);
677 saved_run_count
= count
;
681 machine_choose_processor(processor_set_t pset
,
682 processor_t preferred
)
696 startCPU
= pset
->cpu_set_low
;
697 endCPU
= pset
->cpu_set_hi
;
700 if (preferred
== NULL
)
703 preferredCPU
= preferred
->cpu_id
;
705 if (pmDispatch
!= NULL
706 && pmDispatch
->pmChooseCPU
!= NULL
) {
707 chosenCPU
= pmDispatch
->pmChooseCPU(startCPU
, endCPU
, preferredCPU
);
711 return(cpu_datap(chosenCPU
)->cpu_processor
);
718 pmThreadGetUrgency(uint64_t *rt_period
, uint64_t *rt_deadline
)
723 urgency
= thread_get_urgency(current_processor()->next_thread
, &arg1
, &arg2
);
725 if (urgency
== THREAD_URGENCY_REAL_TIME
) {
726 if (rt_period
!= NULL
)
729 if (rt_deadline
!= NULL
)
733 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_GET_URGENCY
), urgency
, arg1
, arg2
, 0, 0);
739 uint32_t urgency_stats
[64][THREAD_URGENCY_MAX
];
742 #define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000)
743 uint64_t urgency_notification_assert_abstime_threshold
, urgency_notification_max_recorded
;
746 thread_tell_urgency(int urgency
,
748 uint64_t rt_deadline
,
751 uint64_t urgency_notification_time_start
, delta
;
752 boolean_t urgency_assert
= (urgency_notification_assert_abstime_threshold
!= 0);
753 assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE
);
755 urgency_stats
[cpu_number() % 64][urgency
]++;
758 || pmDispatch
== NULL
759 || pmDispatch
->pmThreadTellUrgency
== NULL
)
762 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
,MACH_URGENCY
) | DBG_FUNC_START
, urgency
, rt_period
, rt_deadline
, 0, 0);
764 if (__improbable((urgency_assert
== TRUE
)))
765 urgency_notification_time_start
= mach_absolute_time();
767 current_cpu_datap()->cpu_nthread
= nthread
;
768 pmDispatch
->pmThreadTellUrgency(urgency
, rt_period
, rt_deadline
);
770 if (__improbable((urgency_assert
== TRUE
))) {
771 delta
= mach_absolute_time() - urgency_notification_time_start
;
773 if (__improbable(delta
> urgency_notification_max_recorded
)) {
774 /* This is not synchronized, but it doesn't matter
775 * if we (rarely) miss an event, as it is statistically
776 * unlikely that it will never recur.
778 urgency_notification_max_recorded
= delta
;
780 if (__improbable((delta
> urgency_notification_assert_abstime_threshold
) && !machine_timeout_suspended()))
781 panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch
->pmThreadTellUrgency
, delta
);
785 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
,MACH_URGENCY
) | DBG_FUNC_END
, urgency
, rt_period
, rt_deadline
, 0, 0);
789 active_rt_threads(boolean_t active
)
792 || pmDispatch
== NULL
793 || pmDispatch
->pmActiveRTThreads
== NULL
)
796 pmDispatch
->pmActiveRTThreads(active
);
800 pmGetSavedRunCount(void)
802 return(saved_run_count
);
806 * Returns the root of the package tree.
815 pmCPUGetHibernate(int cpu
)
817 return(cpu_datap(cpu
)->cpu_hibernate
);
821 pmLCPUtoProcessor(int lcpu
)
823 return(cpu_datap(lcpu
)->cpu_processor
);
827 pmReSyncDeadlines(int cpu
)
829 static boolean_t registered
= FALSE
;
832 PM_interrupt_register(&timer_resync_deadlines
);
836 if ((uint32_t)cpu
== current_cpu_datap()->lcpu
.cpu_num
)
837 timer_resync_deadlines();
839 cpu_PM_interrupt(cpu
);
845 lapic_send_ipi(cpu
, LAPIC_PM_INTERRUPT
);
849 pmGetNanotimeInfo(pm_rtc_nanotime_t
*rtc_nanotime
)
852 * Make sure that nanotime didn't change while we were reading it.
855 rtc_nanotime
->generation
= pal_rtc_nanotime_info
.generation
; /* must be first */
856 rtc_nanotime
->tsc_base
= pal_rtc_nanotime_info
.tsc_base
;
857 rtc_nanotime
->ns_base
= pal_rtc_nanotime_info
.ns_base
;
858 rtc_nanotime
->scale
= pal_rtc_nanotime_info
.scale
;
859 rtc_nanotime
->shift
= pal_rtc_nanotime_info
.shift
;
860 } while(pal_rtc_nanotime_info
.generation
!= 0
861 && rtc_nanotime
->generation
!= pal_rtc_nanotime_info
.generation
);
865 pmTimerQueueMigrate(int target_cpu
)
867 /* Call the etimer code to do this. */
868 return (target_cpu
!= cpu_number())
869 ? timer_queue_migrate_cpu(target_cpu
)
875 * Called by the power management kext to register itself and to get the
876 * callbacks it might need into other kernel functions. This interface
877 * is versioned to allow for slight mis-matches between the kext and the
881 pmKextRegister(uint32_t version
, pmDispatch_t
*cpuFuncs
,
882 pmCallBacks_t
*callbacks
)
884 if (callbacks
!= NULL
&& version
== PM_DISPATCH_VERSION
) {
885 callbacks
->setRTCPop
= setPop
;
886 callbacks
->resyncDeadlines
= pmReSyncDeadlines
;
887 callbacks
->initComplete
= pmInitComplete
;
888 callbacks
->GetLCPU
= pmGetLogicalCPU
;
889 callbacks
->GetCore
= pmGetCore
;
890 callbacks
->GetDie
= pmGetDie
;
891 callbacks
->GetPackage
= pmGetPackage
;
892 callbacks
->GetMyLCPU
= pmGetMyLogicalCPU
;
893 callbacks
->GetMyCore
= pmGetMyCore
;
894 callbacks
->GetMyDie
= pmGetMyDie
;
895 callbacks
->GetMyPackage
= pmGetMyPackage
;
896 callbacks
->GetPkgRoot
= pmGetPkgRoot
;
897 callbacks
->LockCPUTopology
= pmLockCPUTopology
;
898 callbacks
->GetHibernate
= pmCPUGetHibernate
;
899 callbacks
->LCPUtoProcessor
= pmLCPUtoProcessor
;
900 callbacks
->ThreadBind
= thread_bind
;
901 callbacks
->GetSavedRunCount
= pmGetSavedRunCount
;
902 callbacks
->GetNanotimeInfo
= pmGetNanotimeInfo
;
903 callbacks
->ThreadGetUrgency
= pmThreadGetUrgency
;
904 callbacks
->RTCClockAdjust
= rtc_clock_adjust
;
905 callbacks
->timerQueueMigrate
= pmTimerQueueMigrate
;
906 callbacks
->topoParms
= &topoParms
;
907 callbacks
->pmSendIPI
= pmSendIPI
;
908 callbacks
->InterruptPending
= lapic_is_interrupt_pending
;
909 callbacks
->IsInterrupting
= lapic_is_interrupting
;
910 callbacks
->InterruptStats
= lapic_interrupt_counts
;
911 callbacks
->DisableApicTimer
= lapic_disable_timer
;
913 panic("Version mis-match between Kernel and CPU PM");
916 if (cpuFuncs
!= NULL
) {
918 panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p", pmDispatch
, cpuFuncs
);
921 pmDispatch
= cpuFuncs
;
924 && pmDispatch
->pmCPUStateInit
!= NULL
) {
925 (*pmDispatch
->pmCPUStateInit
)();
926 earlyTopology
= FALSE
;
929 if (pmDispatch
->pmIPIHandler
!= NULL
) {
930 lapic_set_pm_func((i386_intr_func_t
)pmDispatch
->pmIPIHandler
);
936 * Unregisters the power management functions from the kext.
939 pmUnRegister(pmDispatch_t
*cpuFuncs
)
941 if (cpuFuncs
!= NULL
&& pmDispatch
== cpuFuncs
) {
946 void machine_track_platform_idle(boolean_t entry
) {
947 cpu_data_t
*my_cpu
= current_cpu_datap();
950 (void)__sync_fetch_and_add(&my_cpu
->lcpu
.package
->num_idle
, 1);
953 uint32_t nidle
= __sync_fetch_and_sub(&my_cpu
->lcpu
.package
->num_idle
, 1);
954 if (nidle
== topoParms
.nLThreadsPerPackage
) {
955 my_cpu
->lcpu
.package
->package_idle_exits
++;