]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/pmCPU.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / pmCPU.c
1 /*
2 * Copyright (c) 2004-2011 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * CPU-specific power management support.
31 *
32 * Implements the "wrappers" to the KEXT.
33 */
34 #include <i386/asm.h>
35 #include <i386/machine_cpu.h>
36 #include <i386/mp.h>
37 #include <i386/machine_routines.h>
38 #include <i386/proc_reg.h>
39 #include <i386/pmap.h>
40 #include <i386/misc_protos.h>
41 #include <kern/machine.h>
42 #include <kern/pms.h>
43 #include <kern/processor.h>
44 #include <kern/timer_queue.h>
45 #include <i386/cpu_threads.h>
46 #include <i386/pmCPU.h>
47 #include <i386/cpuid.h>
48 #include <i386/rtclock_protos.h>
49 #include <kern/sched_prim.h>
50 #include <i386/lapic.h>
51 #include <i386/pal_routines.h>
52 #include <sys/kdebug.h>
53 #include <i386/tsc.h>
54
55 #include <kern/sched_urgency.h>
56
57 extern int disableConsoleOutput;
58
59 #define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL
60
61 uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16 * NSEC_PER_USEC, 32 * NSEC_PER_USEC, 64 * NSEC_PER_USEC, 128 * NSEC_PER_USEC, 256 * NSEC_PER_USEC, 512 * NSEC_PER_USEC, 1024 * NSEC_PER_USEC, 2048 * NSEC_PER_USEC, 4096 * NSEC_PER_USEC, 8192 * NSEC_PER_USEC, 16384 * NSEC_PER_USEC, 32768 * NSEC_PER_USEC};
62 uint64_t *cpu_rtime_bins = &cpu_itime_bins[0];
63
64 /*
65 * The following is set when the KEXT loads and initializes.
66 */
67 pmDispatch_t *pmDispatch = NULL;
68
69 uint32_t pmInitDone = 0;
70 static boolean_t earlyTopology = FALSE;
71 static uint64_t earlyMaxBusDelay = DELAY_UNSET;
72 static uint64_t earlyMaxIntDelay = DELAY_UNSET;
73
74 /*
75 * Initialize the Cstate change code.
76 */
77 void
78 power_management_init(void)
79 {
80 if (pmDispatch != NULL && pmDispatch->cstateInit != NULL) {
81 (*pmDispatch->cstateInit)();
82 }
83 }
84
85 static inline void
86 machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins)
87 {
88 uint32_t i;
89 for (i = 0; i < nbins; i++) {
90 if (interval < binvals[i]) {
91 bins[i]++;
92 break;
93 }
94 }
95 }
96
97 uint64_t idle_pending_timers_processed;
98 uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000;
99
100 /*
101 * Called when the CPU is idle. It calls into the power management kext
102 * to determine the best way to idle the CPU.
103 */
104 void
105 machine_idle(void)
106 {
107 cpu_data_t *my_cpu = current_cpu_datap();
108 __unused uint32_t cnum = my_cpu->cpu_number;
109 uint64_t ctime, rtime, itime;
110 #if CST_DEMOTION_DEBUG
111 processor_t cproc = my_cpu->cpu_processor;
112 uint64_t cwakeups = my_cpu->cpu_wakeups_issued_total;
113 #endif /* CST_DEMOTION_DEBUG */
114 uint64_t esdeadline, ehdeadline;
115 boolean_t do_process_pending_timers = FALSE;
116
117 ctime = mach_absolute_time();
118 esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline;
119 ehdeadline = my_cpu->rtclock_timer.deadline;
120 /* Determine if pending timers exist */
121 if ((ctime >= esdeadline) && (ctime < ehdeadline) &&
122 ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) {
123 idle_pending_timers_processed++;
124 do_process_pending_timers = TRUE;
125 goto machine_idle_exit;
126 } else {
127 TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0);
128 }
129
130 my_cpu->lcpu.state = LCPU_IDLE;
131 DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
132 MARK_CPU_IDLE(cnum);
133
134 rtime = ctime - my_cpu->cpu_ixtime;
135
136 my_cpu->cpu_rtime_total += rtime;
137 machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS);
138 #if CST_DEMOTION_DEBUG
139 uint32_t cl = 0, ch = 0;
140 uint64_t c3res, c6res, c7res;
141 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
142 c3res = ((uint64_t)ch << 32) | cl;
143 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
144 c6res = ((uint64_t)ch << 32) | cl;
145 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
146 c7res = ((uint64_t)ch << 32) | cl;
147 #endif
148
149 if (pmInitDone) {
150 /*
151 * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay()
152 * were called prior to the CPU PM kext being registered. We do
153 * this here since we know at this point the values will be first
154 * used since idle is where the decisions using these values is made.
155 */
156 if (earlyMaxBusDelay != DELAY_UNSET) {
157 ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF));
158 }
159 if (earlyMaxIntDelay != DELAY_UNSET) {
160 ml_set_maxintdelay(earlyMaxIntDelay);
161 }
162 }
163
164 if (pmInitDone
165 && pmDispatch != NULL
166 && pmDispatch->MachineIdle != NULL) {
167 (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL);
168 } else {
169 /*
170 * If no power management, re-enable interrupts and halt.
171 * This will keep the CPU from spinning through the scheduler
172 * and will allow at least some minimal power savings (but it
173 * cause problems in some MP configurations w.r.t. the APIC
174 * stopping during a GV3 transition).
175 */
176 pal_hlt();
177 /* Once woken, re-disable interrupts. */
178 pal_cli();
179 }
180
181 /*
182 * Mark the CPU as running again.
183 */
184 MARK_CPU_ACTIVE(cnum);
185 DBGLOG(cpu_handle, cnum, MP_UNIDLE);
186 my_cpu->lcpu.state = LCPU_RUN;
187 uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time();
188 itime = ixtime - ctime;
189 my_cpu->cpu_idle_exits++;
190 my_cpu->cpu_itime_total += itime;
191 machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS);
192 #if CST_DEMOTION_DEBUG
193 cl = ch = 0;
194 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
195 c3res = (((uint64_t)ch << 32) | cl) - c3res;
196 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
197 c6res = (((uint64_t)ch << 32) | cl) - c6res;
198 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
199 c7res = (((uint64_t)ch << 32) | cl) - c7res;
200
201 uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n);
202 KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res);
203 if ((itime > 1000000) && (ndelta > 250000)) {
204 KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res);
205 }
206 #endif
207
208 machine_idle_exit:
209 /*
210 * Re-enable interrupts.
211 */
212
213 pal_sti();
214
215 if (do_process_pending_timers) {
216 TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0);
217
218 /* Adjust to reflect that this isn't truly a package idle exit */
219 __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
220 lapic_timer_swi(); /* Trigger software timer interrupt */
221 __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
222
223 TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0);
224 }
225 #if CST_DEMOTION_DEBUG
226 uint64_t nwakeups = my_cpu->cpu_wakeups_issued_total;
227
228 if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) {
229 KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0);
230 }
231 #endif
232 }
233
234 /*
235 * Called when the CPU is to be halted. It will choose the best C-State
236 * to be in.
237 */
238 void
239 pmCPUHalt(uint32_t reason)
240 {
241 cpu_data_t *cpup = current_cpu_datap();
242
243 switch (reason) {
244 case PM_HALT_DEBUG:
245 cpup->lcpu.state = LCPU_PAUSE;
246 pal_stop_cpu(FALSE);
247 break;
248
249 case PM_HALT_PANIC:
250 cpup->lcpu.state = LCPU_PAUSE;
251 pal_stop_cpu(TRUE);
252 break;
253
254 case PM_HALT_NORMAL:
255 case PM_HALT_SLEEP:
256 default:
257 pal_cli();
258
259 if (pmInitDone
260 && pmDispatch != NULL
261 && pmDispatch->pmCPUHalt != NULL) {
262 /*
263 * Halt the CPU (and put it in a low power state.
264 */
265 (*pmDispatch->pmCPUHalt)();
266
267 /*
268 * We've exited halt, so get the CPU schedulable again.
269 * - by calling the fast init routine for a slave, or
270 * - by returning if we're the master processor.
271 */
272 if (cpup->cpu_number != master_cpu) {
273 i386_init_slave_fast();
274 panic("init_slave_fast returned");
275 }
276 } else {
277 /*
278 * If no power managment and a processor is taken off-line,
279 * then invalidate the cache and halt it (it will not be able
280 * to be brought back on-line without resetting the CPU).
281 */
282 __asm__ volatile ("wbinvd");
283 cpup->lcpu.state = LCPU_HALT;
284 pal_stop_cpu(FALSE);
285
286 panic("back from Halt");
287 }
288
289 break;
290 }
291 }
292
293 void
294 pmMarkAllCPUsOff(void)
295 {
296 if (pmInitDone
297 && pmDispatch != NULL
298 && pmDispatch->markAllCPUsOff != NULL) {
299 (*pmDispatch->markAllCPUsOff)();
300 }
301 }
302
303 static void
304 pmInitComplete(void)
305 {
306 if (earlyTopology
307 && pmDispatch != NULL
308 && pmDispatch->pmCPUStateInit != NULL) {
309 (*pmDispatch->pmCPUStateInit)();
310 earlyTopology = FALSE;
311 }
312 pmInitDone = 1;
313 }
314
315 x86_lcpu_t *
316 pmGetLogicalCPU(int cpu)
317 {
318 return cpu_to_lcpu(cpu);
319 }
320
321 x86_lcpu_t *
322 pmGetMyLogicalCPU(void)
323 {
324 cpu_data_t *cpup = current_cpu_datap();
325
326 return &cpup->lcpu;
327 }
328
329 static x86_core_t *
330 pmGetCore(int cpu)
331 {
332 return cpu_to_core(cpu);
333 }
334
335 static x86_core_t *
336 pmGetMyCore(void)
337 {
338 cpu_data_t *cpup = current_cpu_datap();
339
340 return cpup->lcpu.core;
341 }
342
343 static x86_die_t *
344 pmGetDie(int cpu)
345 {
346 return cpu_to_die(cpu);
347 }
348
349 static x86_die_t *
350 pmGetMyDie(void)
351 {
352 cpu_data_t *cpup = current_cpu_datap();
353
354 return cpup->lcpu.die;
355 }
356
357 static x86_pkg_t *
358 pmGetPackage(int cpu)
359 {
360 return cpu_to_package(cpu);
361 }
362
363 static x86_pkg_t *
364 pmGetMyPackage(void)
365 {
366 cpu_data_t *cpup = current_cpu_datap();
367
368 return cpup->lcpu.package;
369 }
370
371 static void
372 pmLockCPUTopology(int lock)
373 {
374 if (lock) {
375 mp_safe_spin_lock(&x86_topo_lock);
376 } else {
377 simple_unlock(&x86_topo_lock);
378 }
379 }
380
381 /*
382 * Called to get the next deadline that has been set by the
383 * power management code.
384 * Note: a return of 0 from AICPM and this routine signifies
385 * that no deadline is set.
386 */
387 uint64_t
388 pmCPUGetDeadline(cpu_data_t *cpu)
389 {
390 uint64_t deadline = 0;
391
392 if (pmInitDone
393 && pmDispatch != NULL
394 && pmDispatch->GetDeadline != NULL) {
395 deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu);
396 }
397
398 return deadline;
399 }
400
401 /*
402 * Called to determine if the supplied deadline or the power management
403 * deadline is sooner. Returns which ever one is first.
404 */
405
406 uint64_t
407 pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline)
408 {
409 if (pmInitDone
410 && pmDispatch != NULL
411 && pmDispatch->SetDeadline != NULL) {
412 deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline);
413 }
414
415 return deadline;
416 }
417
418 /*
419 * Called when a power management deadline expires.
420 */
421 void
422 pmCPUDeadline(cpu_data_t *cpu)
423 {
424 if (pmInitDone
425 && pmDispatch != NULL
426 && pmDispatch->Deadline != NULL) {
427 (*pmDispatch->Deadline)(&cpu->lcpu);
428 }
429 }
430
431 /*
432 * Called to get a CPU out of idle.
433 */
434 boolean_t
435 pmCPUExitIdle(cpu_data_t *cpu)
436 {
437 boolean_t do_ipi;
438
439 if (pmInitDone
440 && pmDispatch != NULL
441 && pmDispatch->exitIdle != NULL) {
442 do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu);
443 } else {
444 do_ipi = TRUE;
445 }
446
447 return do_ipi;
448 }
449
450 kern_return_t
451 pmCPUExitHalt(int cpu)
452 {
453 kern_return_t rc = KERN_INVALID_ARGUMENT;
454
455 if (pmInitDone
456 && pmDispatch != NULL
457 && pmDispatch->exitHalt != NULL) {
458 rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu));
459 }
460
461 return rc;
462 }
463
464 kern_return_t
465 pmCPUExitHaltToOff(int cpu)
466 {
467 kern_return_t rc = KERN_SUCCESS;
468
469 if (pmInitDone
470 && pmDispatch != NULL
471 && pmDispatch->exitHaltToOff != NULL) {
472 rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu));
473 }
474
475 return rc;
476 }
477
478 /*
479 * Called to initialize the power management structures for the CPUs.
480 */
481 void
482 pmCPUStateInit(void)
483 {
484 if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL) {
485 (*pmDispatch->pmCPUStateInit)();
486 } else {
487 earlyTopology = TRUE;
488 }
489 }
490
491 /*
492 * Called when a CPU is being restarted after being powered off (as in S3).
493 */
494 void
495 pmCPUMarkRunning(cpu_data_t *cpu)
496 {
497 cpu_data_t *cpup = current_cpu_datap();
498
499 if (pmInitDone
500 && pmDispatch != NULL
501 && pmDispatch->markCPURunning != NULL) {
502 (*pmDispatch->markCPURunning)(&cpu->lcpu);
503 } else {
504 cpup->lcpu.state = LCPU_RUN;
505 }
506 }
507
508 /*
509 * Called to get/set CPU power management state.
510 */
511 int
512 pmCPUControl(uint32_t cmd, void *datap)
513 {
514 int rc = -1;
515
516 if (pmDispatch != NULL
517 && pmDispatch->pmCPUControl != NULL) {
518 rc = (*pmDispatch->pmCPUControl)(cmd, datap);
519 }
520
521 return rc;
522 }
523
524 /*
525 * Called to save the timer state used by power management prior
526 * to "sleeping".
527 */
528 void
529 pmTimerSave(void)
530 {
531 if (pmDispatch != NULL
532 && pmDispatch->pmTimerStateSave != NULL) {
533 (*pmDispatch->pmTimerStateSave)();
534 }
535 }
536
537 /*
538 * Called to restore the timer state used by power management after
539 * waking from "sleep".
540 */
541 void
542 pmTimerRestore(void)
543 {
544 if (pmDispatch != NULL
545 && pmDispatch->pmTimerStateRestore != NULL) {
546 (*pmDispatch->pmTimerStateRestore)();
547 }
548 }
549
550 /*
551 * Set the worst-case time for the C4 to C2 transition.
552 * No longer does anything.
553 */
554 void
555 ml_set_maxsnoop(__unused uint32_t maxdelay)
556 {
557 }
558
559
560 /*
561 * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds.
562 */
563 unsigned
564 ml_get_maxsnoop(void)
565 {
566 uint64_t max_snoop = 0;
567
568 if (pmInitDone
569 && pmDispatch != NULL
570 && pmDispatch->getMaxSnoop != NULL) {
571 max_snoop = pmDispatch->getMaxSnoop();
572 }
573
574 return (unsigned)(max_snoop & 0xffffffff);
575 }
576
577
578 uint32_t
579 ml_get_maxbusdelay(void)
580 {
581 uint64_t max_delay = 0;
582
583 if (pmInitDone
584 && pmDispatch != NULL
585 && pmDispatch->getMaxBusDelay != NULL) {
586 max_delay = pmDispatch->getMaxBusDelay();
587 }
588
589 return (uint32_t)(max_delay & 0xffffffff);
590 }
591
592 /*
593 * Advertise a memory access latency tolerance of "mdelay" ns
594 */
595 void
596 ml_set_maxbusdelay(uint32_t mdelay)
597 {
598 uint64_t maxdelay = mdelay;
599
600 if (pmDispatch != NULL
601 && pmDispatch->setMaxBusDelay != NULL) {
602 earlyMaxBusDelay = DELAY_UNSET;
603 pmDispatch->setMaxBusDelay(maxdelay);
604 } else {
605 earlyMaxBusDelay = maxdelay;
606 }
607 }
608
609 uint64_t
610 ml_get_maxintdelay(void)
611 {
612 uint64_t max_delay = 0;
613
614 if (pmDispatch != NULL
615 && pmDispatch->getMaxIntDelay != NULL) {
616 max_delay = pmDispatch->getMaxIntDelay();
617 }
618
619 return max_delay;
620 }
621
622 /*
623 * Set the maximum delay allowed for an interrupt.
624 */
625 void
626 ml_set_maxintdelay(uint64_t mdelay)
627 {
628 if (pmDispatch != NULL
629 && pmDispatch->setMaxIntDelay != NULL) {
630 earlyMaxIntDelay = DELAY_UNSET;
631 pmDispatch->setMaxIntDelay(mdelay);
632 } else {
633 earlyMaxIntDelay = mdelay;
634 }
635 }
636
637 boolean_t
638 ml_get_interrupt_prewake_applicable()
639 {
640 boolean_t applicable = FALSE;
641
642 if (pmInitDone
643 && pmDispatch != NULL
644 && pmDispatch->pmInterruptPrewakeApplicable != NULL) {
645 applicable = pmDispatch->pmInterruptPrewakeApplicable();
646 }
647
648 return applicable;
649 }
650
651 /*
652 * Put a CPU into "safe" mode with respect to power.
653 *
654 * Some systems cannot operate at a continuous "normal" speed without
655 * exceeding the thermal design. This is called per-CPU to place the
656 * CPUs into a "safe" operating mode.
657 */
658 void
659 pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags)
660 {
661 if (pmDispatch != NULL
662 && pmDispatch->pmCPUSafeMode != NULL) {
663 pmDispatch->pmCPUSafeMode(lcpu, flags);
664 } else {
665 /*
666 * Do something reasonable if the KEXT isn't present.
667 *
668 * We only look at the PAUSE and RESUME flags. The other flag(s)
669 * will not make any sense without the KEXT, so just ignore them.
670 *
671 * We set the CPU's state to indicate that it's halted. If this
672 * is the CPU we're currently running on, then spin until the
673 * state becomes non-halted.
674 */
675 if (flags & PM_SAFE_FL_PAUSE) {
676 lcpu->state = LCPU_PAUSE;
677 if (lcpu == x86_lcpu()) {
678 while (lcpu->state == LCPU_PAUSE) {
679 cpu_pause();
680 }
681 }
682 }
683
684 /*
685 * Clear the halted flag for the specified CPU, that will
686 * get it out of it's spin loop.
687 */
688 if (flags & PM_SAFE_FL_RESUME) {
689 lcpu->state = LCPU_RUN;
690 }
691 }
692 }
693
694 static uint32_t saved_run_count = 0;
695
696 void
697 machine_run_count(uint32_t count)
698 {
699 if (pmDispatch != NULL
700 && pmDispatch->pmSetRunCount != NULL) {
701 pmDispatch->pmSetRunCount(count);
702 } else {
703 saved_run_count = count;
704 }
705 }
706
707 processor_t
708 machine_choose_processor(processor_set_t pset,
709 processor_t preferred)
710 {
711 int startCPU;
712 int endCPU;
713 int preferredCPU;
714 int chosenCPU;
715
716 if (!pmInitDone) {
717 return preferred;
718 }
719
720 if (pset == NULL) {
721 startCPU = -1;
722 endCPU = -1;
723 } else {
724 startCPU = pset->cpu_set_low;
725 endCPU = pset->cpu_set_hi;
726 }
727
728 if (preferred == NULL) {
729 preferredCPU = -1;
730 } else {
731 preferredCPU = preferred->cpu_id;
732 }
733
734 if (pmDispatch != NULL
735 && pmDispatch->pmChooseCPU != NULL) {
736 chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU);
737
738 if (chosenCPU == -1) {
739 return NULL;
740 }
741 return cpu_datap(chosenCPU)->cpu_processor;
742 }
743
744 return preferred;
745 }
746
747 static int
748 pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline)
749 {
750 thread_urgency_t urgency;
751 uint64_t arg1, arg2;
752
753 urgency = thread_get_urgency(THREAD_NULL, &arg1, &arg2);
754
755 if (urgency == THREAD_URGENCY_REAL_TIME) {
756 if (rt_period != NULL) {
757 *rt_period = arg1;
758 }
759
760 if (rt_deadline != NULL) {
761 *rt_deadline = arg2;
762 }
763 }
764
765 return (int)urgency;
766 }
767
768 #if DEBUG
769 uint32_t urgency_stats[64][THREAD_URGENCY_MAX];
770 #endif
771
772 #define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000)
773 uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded;
774
775 void
776 thread_tell_urgency(thread_urgency_t urgency,
777 uint64_t rt_period,
778 uint64_t rt_deadline,
779 uint64_t sched_latency,
780 thread_t nthread)
781 {
782 uint64_t urgency_notification_time_start = 0, delta;
783 boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0);
784 assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE);
785 #if DEBUG
786 urgency_stats[cpu_number() % 64][urgency]++;
787 #endif
788 if (!pmInitDone
789 || pmDispatch == NULL
790 || pmDispatch->pmThreadTellUrgency == NULL) {
791 return;
792 }
793
794 SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, sched_latency, 0);
795
796 if (__improbable((urgency_assert == TRUE))) {
797 urgency_notification_time_start = mach_absolute_time();
798 }
799
800 current_cpu_datap()->cpu_nthread = nthread;
801 pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline);
802
803 if (__improbable((urgency_assert == TRUE))) {
804 delta = mach_absolute_time() - urgency_notification_time_start;
805
806 if (__improbable(delta > urgency_notification_max_recorded)) {
807 /* This is not synchronized, but it doesn't matter
808 * if we (rarely) miss an event, as it is statistically
809 * unlikely that it will never recur.
810 */
811 urgency_notification_max_recorded = delta;
812
813 if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended())) {
814 panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch->pmThreadTellUrgency, delta);
815 }
816 }
817 }
818
819 SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0);
820 }
821
822 void
823 machine_thread_going_on_core(__unused thread_t new_thread,
824 __unused thread_urgency_t urgency,
825 __unused uint64_t sched_latency,
826 __unused uint64_t same_pri_latency,
827 __unused uint64_t dispatch_time)
828 {
829 }
830
831 void
832 machine_thread_going_off_core(thread_t old_thread, boolean_t thread_terminating,
833 uint64_t last_dispatch, boolean_t thread_runnable)
834 {
835 if (!pmInitDone
836 || pmDispatch == NULL
837 || pmDispatch->pmThreadGoingOffCore == NULL) {
838 return;
839 }
840
841 pmDispatch->pmThreadGoingOffCore(old_thread, thread_terminating,
842 last_dispatch, thread_runnable);
843 }
844
845 void
846 machine_max_runnable_latency(__unused uint64_t bg_max_latency,
847 __unused uint64_t default_max_latency,
848 __unused uint64_t realtime_max_latency)
849 {
850 }
851
852 void
853 machine_work_interval_notify(__unused thread_t thread,
854 __unused struct kern_work_interval_args* kwi_args)
855 {
856 }
857
858
859 void
860 machine_switch_perfcontrol_context(__unused perfcontrol_event event,
861 __unused uint64_t timestamp,
862 __unused uint32_t flags,
863 __unused uint64_t new_thread_same_pri_latency,
864 __unused thread_t old,
865 __unused thread_t new)
866 {
867 }
868
869 void
870 machine_switch_perfcontrol_state_update(__unused perfcontrol_event event,
871 __unused uint64_t timestamp,
872 __unused uint32_t flags,
873 __unused thread_t thread)
874 {
875 }
876
877 void
878 active_rt_threads(boolean_t active)
879 {
880 if (!pmInitDone
881 || pmDispatch == NULL
882 || pmDispatch->pmActiveRTThreads == NULL) {
883 return;
884 }
885
886 pmDispatch->pmActiveRTThreads(active);
887 }
888
889 static uint32_t
890 pmGetSavedRunCount(void)
891 {
892 return saved_run_count;
893 }
894
895 /*
896 * Returns the root of the package tree.
897 */
898 x86_pkg_t *
899 pmGetPkgRoot(void)
900 {
901 return x86_pkgs;
902 }
903
904 static boolean_t
905 pmCPUGetHibernate(int cpu)
906 {
907 return cpu_datap(cpu)->cpu_hibernate;
908 }
909
910 processor_t
911 pmLCPUtoProcessor(int lcpu)
912 {
913 return cpu_datap(lcpu)->cpu_processor;
914 }
915
916 static void
917 pmReSyncDeadlines(int cpu)
918 {
919 static boolean_t registered = FALSE;
920
921 if (!registered) {
922 PM_interrupt_register(&timer_resync_deadlines);
923 registered = TRUE;
924 }
925
926 if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num) {
927 timer_resync_deadlines();
928 } else {
929 cpu_PM_interrupt(cpu);
930 }
931 }
932
933 static void
934 pmSendIPI(int cpu)
935 {
936 lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT);
937 }
938
939 static void
940 pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime)
941 {
942 /*
943 * Make sure that nanotime didn't change while we were reading it.
944 */
945 do {
946 rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */
947 rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base;
948 rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base;
949 rtc_nanotime->scale = pal_rtc_nanotime_info.scale;
950 rtc_nanotime->shift = pal_rtc_nanotime_info.shift;
951 } while (pal_rtc_nanotime_info.generation != 0
952 && rtc_nanotime->generation != pal_rtc_nanotime_info.generation);
953 }
954
955 uint32_t
956 pmTimerQueueMigrate(int target_cpu)
957 {
958 /* Call the etimer code to do this. */
959 return (target_cpu != cpu_number())
960 ? timer_queue_migrate_cpu(target_cpu)
961 : 0;
962 }
963
964
965 /*
966 * Called by the power management kext to register itself and to get the
967 * callbacks it might need into other kernel functions. This interface
968 * is versioned to allow for slight mis-matches between the kext and the
969 * kernel.
970 */
971 void
972 pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs,
973 pmCallBacks_t *callbacks)
974 {
975 if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
976 callbacks->setRTCPop = setPop;
977 callbacks->resyncDeadlines = pmReSyncDeadlines;
978 callbacks->initComplete = pmInitComplete;
979 callbacks->GetLCPU = pmGetLogicalCPU;
980 callbacks->GetCore = pmGetCore;
981 callbacks->GetDie = pmGetDie;
982 callbacks->GetPackage = pmGetPackage;
983 callbacks->GetMyLCPU = pmGetMyLogicalCPU;
984 callbacks->GetMyCore = pmGetMyCore;
985 callbacks->GetMyDie = pmGetMyDie;
986 callbacks->GetMyPackage = pmGetMyPackage;
987 callbacks->GetPkgRoot = pmGetPkgRoot;
988 callbacks->LockCPUTopology = pmLockCPUTopology;
989 callbacks->GetHibernate = pmCPUGetHibernate;
990 callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
991 callbacks->ThreadBind = thread_bind;
992 callbacks->GetSavedRunCount = pmGetSavedRunCount;
993 callbacks->GetNanotimeInfo = pmGetNanotimeInfo;
994 callbacks->ThreadGetUrgency = pmThreadGetUrgency;
995 callbacks->RTCClockAdjust = rtc_clock_adjust;
996 callbacks->timerQueueMigrate = pmTimerQueueMigrate;
997 callbacks->topoParms = &topoParms;
998 callbacks->pmSendIPI = pmSendIPI;
999 callbacks->InterruptPending = lapic_is_interrupt_pending;
1000 callbacks->IsInterrupting = lapic_is_interrupting;
1001 callbacks->InterruptStats = lapic_interrupt_counts;
1002 callbacks->DisableApicTimer = lapic_disable_timer;
1003 } else {
1004 panic("Version mis-match between Kernel and CPU PM");
1005 }
1006
1007 if (cpuFuncs != NULL) {
1008 if (pmDispatch) {
1009 panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p", pmDispatch, cpuFuncs);
1010 }
1011
1012 pmDispatch = cpuFuncs;
1013
1014 if (earlyTopology
1015 && pmDispatch->pmCPUStateInit != NULL) {
1016 (*pmDispatch->pmCPUStateInit)();
1017 earlyTopology = FALSE;
1018 }
1019
1020 if (pmDispatch->pmIPIHandler != NULL) {
1021 lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler);
1022 }
1023 }
1024 }
1025
1026 /*
1027 * Unregisters the power management functions from the kext.
1028 */
1029 void
1030 pmUnRegister(pmDispatch_t *cpuFuncs)
1031 {
1032 if (cpuFuncs != NULL && pmDispatch == cpuFuncs) {
1033 pmDispatch = NULL;
1034 }
1035 }
1036
1037 void
1038 machine_track_platform_idle(boolean_t entry)
1039 {
1040 cpu_data_t *my_cpu = current_cpu_datap();
1041
1042 if (entry) {
1043 (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
1044 } else {
1045 uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
1046 if (nidle == topoParms.nLThreadsPerPackage) {
1047 my_cpu->lcpu.package->package_idle_exits++;
1048 }
1049 }
1050 }