]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/commpage/commpage.c
xnu-1699.22.81.tar.gz
[apple/xnu.git] / osfmk / i386 / commpage / commpage.c
1 /*
2 * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Here's what to do if you want to add a new routine to the comm page:
31 *
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
34 *
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
40 *
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
44 *
45 * 4. Write the code in Libc to use the new routine.
46 */
47
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
54 #include <i386/tsc.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
65
66 #include <ipc/ipc_port.h>
67
68 #include <kern/page_decrypt.h>
69 #include <kern/processor.h>
70
71 /* the lists of commpage routines are in commpage_asm.s */
72 extern commpage_descriptor* commpage_32_routines[];
73 extern commpage_descriptor* commpage_64_routines[];
74
75 extern vm_map_t commpage32_map; // the shared submap, set up in vm init
76 extern vm_map_t commpage64_map; // the shared submap, set up in vm init
77
78 char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
79 char *commPagePtr64 = NULL; // ...and of 64-bit commpage
80 uint32_t _cpu_capabilities = 0; // define the capability vector
81
82 int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
83
84 typedef uint32_t commpage_address_t;
85
86 static commpage_address_t next; // next available address in comm page
87 static commpage_address_t cur_routine; // comm page address of "current" routine
88 static boolean_t matched; // true if we've found a match for "current" routine
89
90 static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
91 static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
92
93 static commpage_time_data *time_data32 = NULL;
94 static commpage_time_data *time_data64 = NULL;
95
96 decl_simple_lock_data(static,commpage_active_cpus_lock);
97
98 /* Allocate the commpage and add to the shared submap created by vm:
99 * 1. allocate a page in the kernel map (RW)
100 * 2. wire it down
101 * 3. make a memory entry out of it
102 * 4. map that entry into the shared comm region map (R-only)
103 */
104
105 static void*
106 commpage_allocate(
107 vm_map_t submap, // commpage32_map or commpage_map64
108 size_t area_used ) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
109 {
110 vm_offset_t kernel_addr = 0; // address of commpage in kernel map
111 vm_offset_t zero = 0;
112 vm_size_t size = area_used; // size actually populated
113 vm_map_entry_t entry;
114 ipc_port_t handle;
115
116 if (submap == NULL)
117 panic("commpage submap is null");
118
119 if (vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE))
120 panic("cannot allocate commpage");
121
122 if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE))
123 panic("cannot wire commpage");
124
125 /*
126 * Now that the object is created and wired into the kernel map, mark it so that no delay
127 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
128 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
129 * that would be a real disaster.
130 *
131 * JMM - What we really need is a way to create it like this in the first place.
132 */
133 if (!vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map)
134 panic("cannot find commpage entry");
135 entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
136
137 if (mach_make_memory_entry( kernel_map, // target map
138 &size, // size
139 kernel_addr, // offset (address in kernel map)
140 VM_PROT_ALL, // map it RWX
141 &handle, // this is the object handle we get
142 NULL )) // parent_entry (what is this?)
143 panic("cannot make entry for commpage");
144
145 if (vm_map_64( submap, // target map (shared submap)
146 &zero, // address (map into 1st page in submap)
147 area_used, // size
148 0, // mask
149 VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
150 handle, // port is the memory entry we just made
151 0, // offset (map 1st page in memory entry)
152 FALSE, // copy
153 VM_PROT_READ|VM_PROT_EXECUTE, // cur_protection (R-only in user map)
154 VM_PROT_READ|VM_PROT_EXECUTE, // max_protection
155 VM_INHERIT_SHARE )) // inheritance
156 panic("cannot map commpage");
157
158 ipc_port_release(handle);
159
160 // Initialize the text section of the commpage with INT3
161 char *commpage_ptr = (char*)(intptr_t)kernel_addr;
162 vm_size_t i;
163 for( i = _COMM_PAGE_TEXT_START - _COMM_PAGE_START_ADDRESS; i < size; i++ )
164 // This is the hex for the X86 opcode INT3
165 commpage_ptr[i] = 0xCC;
166
167 return (void*)(intptr_t)kernel_addr; // return address in kernel map
168 }
169
170 /* Get address (in kernel map) of a commpage field. */
171
172 static void*
173 commpage_addr_of(
174 commpage_address_t addr_at_runtime )
175 {
176 return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
177 }
178
179 /* Determine number of CPUs on this system. We cannot rely on
180 * machine_info.max_cpus this early in the boot.
181 */
182 static int
183 commpage_cpus( void )
184 {
185 int cpus;
186
187 cpus = ml_get_max_cpus(); // NB: this call can block
188
189 if (cpus == 0)
190 panic("commpage cpus==0");
191 if (cpus > 0xFF)
192 cpus = 0xFF;
193
194 return cpus;
195 }
196
197 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
198
199 static void
200 commpage_init_cpu_capabilities( void )
201 {
202 uint32_t bits;
203 int cpus;
204 ml_cpu_info_t cpu_info;
205
206 bits = 0;
207 ml_cpu_get_info(&cpu_info);
208
209 switch (cpu_info.vector_unit) {
210 case 9:
211 bits |= kHasAVX1_0;
212 /* fall thru */
213 case 8:
214 bits |= kHasSSE4_2;
215 /* fall thru */
216 case 7:
217 bits |= kHasSSE4_1;
218 /* fall thru */
219 case 6:
220 bits |= kHasSupplementalSSE3;
221 /* fall thru */
222 case 5:
223 bits |= kHasSSE3;
224 /* fall thru */
225 case 4:
226 bits |= kHasSSE2;
227 /* fall thru */
228 case 3:
229 bits |= kHasSSE;
230 /* fall thru */
231 case 2:
232 bits |= kHasMMX;
233 default:
234 break;
235 }
236 switch (cpu_info.cache_line_size) {
237 case 128:
238 bits |= kCache128;
239 break;
240 case 64:
241 bits |= kCache64;
242 break;
243 case 32:
244 bits |= kCache32;
245 break;
246 default:
247 break;
248 }
249 cpus = commpage_cpus(); // how many CPUs do we have
250
251 if (cpus == 1)
252 bits |= kUP;
253
254 bits |= (cpus << kNumCPUsShift);
255
256 bits |= kFastThreadLocalStorage; // we use %gs for TLS
257
258 if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
259 bits |= k64Bit;
260
261 if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */
262 bits |= kSlow;
263
264 if (cpuid_features() & CPUID_FEATURE_AES)
265 bits |= kHasAES;
266
267 _cpu_capabilities = bits; // set kernel version for use by drivers etc
268 }
269
270 int
271 _get_cpu_capabilities(void)
272 {
273 return _cpu_capabilities;
274 }
275
276 /* Copy data into commpage. */
277
278 static void
279 commpage_stuff(
280 commpage_address_t address,
281 const void *source,
282 int length )
283 {
284 void *dest = commpage_addr_of(address);
285
286 if (address < next)
287 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
288
289 bcopy(source,dest,length);
290
291 next = address + length;
292 }
293
294 /* Copy a routine into comm page if it matches running machine.
295 */
296 static void
297 commpage_stuff_routine(
298 commpage_descriptor *rd )
299 {
300 uint32_t must,cant;
301
302 if (rd->commpage_address != cur_routine) {
303 if ((cur_routine!=0) && (matched==0))
304 panic("commpage no match for last, next address %08x", rd->commpage_address);
305 cur_routine = rd->commpage_address;
306 matched = 0;
307 }
308
309 must = _cpu_capabilities & rd->musthave;
310 cant = _cpu_capabilities & rd->canthave;
311
312 if ((must == rd->musthave) && (cant == 0)) {
313 if (matched)
314 panic("commpage multiple matches for address %08x", rd->commpage_address);
315 matched = 1;
316
317 commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
318 }
319 }
320
321 /* Fill in the 32- or 64-bit commpage. Called once for each.
322 */
323
324 static void
325 commpage_populate_one(
326 vm_map_t submap, // commpage32_map or compage64_map
327 char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
328 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
329 commpage_address_t base_offset, // will become commPageBaseOffset
330 commpage_descriptor** commpage_routines, // list of routine ptrs for this commpage
331 commpage_time_data** time_data, // &time_data32 or &time_data64
332 const char* signature ) // "commpage 32-bit" or "commpage 64-bit"
333 {
334 uint8_t c1;
335 short c2;
336 int c4;
337 uint64_t c8;
338 uint32_t cfamily;
339 commpage_descriptor **rd;
340 short version = _COMM_PAGE_THIS_VERSION;
341
342 next = 0;
343 cur_routine = 0;
344 commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used );
345 *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
346 commPageBaseOffset = base_offset;
347
348 *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
349
350 /* Stuff in the constants. We move things into the comm page in strictly
351 * ascending order, so we can check for overlap and panic if so.
352 */
353 commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)strlen(signature));
354 commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
355 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(int));
356
357 c2 = 32; // default
358 if (_cpu_capabilities & kCache64)
359 c2 = 64;
360 else if (_cpu_capabilities & kCache128)
361 c2 = 128;
362 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
363
364 c4 = MP_SPIN_TRIES;
365 commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
366
367 /* machine_info valid after ml_get_max_cpus() */
368 c1 = machine_info.physical_cpu_max;
369 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
370 c1 = machine_info.logical_cpu_max;
371 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
372
373 c8 = ml_cpu_cache_size(0);
374 commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
375
376 cfamily = cpuid_info()->cpuid_cpufamily;
377 commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
378
379 for( rd = commpage_routines; *rd != NULL ; rd++ )
380 commpage_stuff_routine(*rd);
381
382 if (!matched)
383 panic("commpage no match on last routine");
384
385 if (next > _COMM_PAGE_END)
386 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
387
388 }
389
390
391 /* Fill in commpages: called once, during kernel initialization, from the
392 * startup thread before user-mode code is running.
393 *
394 * See the top of this file for a list of what you have to do to add
395 * a new routine to the commpage.
396 */
397
398 void
399 commpage_populate( void )
400 {
401 commpage_init_cpu_capabilities();
402
403 commpage_populate_one( commpage32_map,
404 &commPagePtr32,
405 _COMM_PAGE32_AREA_USED,
406 _COMM_PAGE32_BASE_ADDRESS,
407 commpage_32_routines,
408 &time_data32,
409 "commpage 32-bit");
410 #ifndef __LP64__
411 pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
412 _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
413 #endif
414 time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
415
416 if (_cpu_capabilities & k64Bit) {
417 commpage_populate_one( commpage64_map,
418 &commPagePtr64,
419 _COMM_PAGE64_AREA_USED,
420 _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
421 commpage_64_routines,
422 &time_data64,
423 "commpage 64-bit");
424 #ifndef __LP64__
425 pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
426 _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
427 #endif
428 }
429
430 simple_lock_init(&commpage_active_cpus_lock, 0);
431
432 commpage_update_active_cpus();
433 rtc_nanotime_init_commpage();
434 }
435
436
437 /* Update commpage nanotime information. Note that we interleave
438 * setting the 32- and 64-bit commpages, in order to keep nanotime more
439 * nearly in sync between the two environments.
440 *
441 * This routine must be serialized by some external means, ie a lock.
442 */
443
444 void
445 commpage_set_nanotime(
446 uint64_t tsc_base,
447 uint64_t ns_base,
448 uint32_t scale,
449 uint32_t shift )
450 {
451 commpage_time_data *p32 = time_data32;
452 commpage_time_data *p64 = time_data64;
453 static uint32_t generation = 0;
454 uint32_t next_gen;
455
456 if (p32 == NULL) /* have commpages been allocated yet? */
457 return;
458
459 if ( generation != p32->nt_generation )
460 panic("nanotime trouble 1"); /* possibly not serialized */
461 if ( ns_base < p32->nt_ns_base )
462 panic("nanotime trouble 2");
463 if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) )
464 panic("nanotime trouble 3");
465
466 next_gen = ++generation;
467 if (next_gen == 0)
468 next_gen = ++generation;
469
470 p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
471 p64->nt_generation = 0;
472
473 p32->nt_tsc_base = tsc_base;
474 p64->nt_tsc_base = tsc_base;
475
476 p32->nt_ns_base = ns_base;
477 p64->nt_ns_base = ns_base;
478
479 p32->nt_scale = scale;
480 p64->nt_scale = scale;
481
482 p32->nt_shift = shift;
483 p64->nt_shift = shift;
484
485 p32->nt_generation = next_gen; /* mark data as valid */
486 p64->nt_generation = next_gen;
487 }
488
489
490 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
491
492 void
493 commpage_disable_timestamp( void )
494 {
495 time_data32->gtod_generation = 0;
496 time_data64->gtod_generation = 0;
497 }
498
499
500 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
501 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
502 * between the two environments.
503 *
504 * This routine must be serializeed by some external means, ie a lock.
505 */
506
507 void
508 commpage_set_timestamp(
509 uint64_t abstime,
510 uint64_t secs )
511 {
512 commpage_time_data *p32 = time_data32;
513 commpage_time_data *p64 = time_data64;
514 static uint32_t generation = 0;
515 uint32_t next_gen;
516
517 next_gen = ++generation;
518 if (next_gen == 0)
519 next_gen = ++generation;
520
521 p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
522 p64->gtod_generation = 0;
523
524 p32->gtod_ns_base = abstime;
525 p64->gtod_ns_base = abstime;
526
527 p32->gtod_sec_base = secs;
528 p64->gtod_sec_base = secs;
529
530 p32->gtod_generation = next_gen; /* mark data as valid */
531 p64->gtod_generation = next_gen;
532 }
533
534
535 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
536
537 void
538 commpage_set_memory_pressure(
539 unsigned int pressure )
540 {
541 char *cp;
542 uint32_t *ip;
543
544 cp = commPagePtr32;
545 if ( cp ) {
546 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
547 ip = (uint32_t*) cp;
548 *ip = (uint32_t) pressure;
549 }
550
551 cp = commPagePtr64;
552 if ( cp ) {
553 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
554 ip = (uint32_t*) cp;
555 *ip = (uint32_t) pressure;
556 }
557
558 }
559
560
561 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
562
563 void
564 commpage_set_spin_count(
565 unsigned int count )
566 {
567 char *cp;
568 uint32_t *ip;
569
570 if (count == 0) /* we test for 0 after decrement, not before */
571 count = 1;
572
573 cp = commPagePtr32;
574 if ( cp ) {
575 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
576 ip = (uint32_t*) cp;
577 *ip = (uint32_t) count;
578 }
579
580 cp = commPagePtr64;
581 if ( cp ) {
582 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
583 ip = (uint32_t*) cp;
584 *ip = (uint32_t) count;
585 }
586
587 }
588
589 /* Updated every time a logical CPU goes offline/online */
590 void
591 commpage_update_active_cpus(void)
592 {
593 char *cp;
594 volatile uint8_t *ip;
595
596 /* At least 32-bit commpage must be initialized */
597 if (!commPagePtr32)
598 return;
599
600 simple_lock(&commpage_active_cpus_lock);
601
602 cp = commPagePtr32;
603 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
604 ip = (volatile uint8_t*) cp;
605 *ip = (uint8_t) processor_avail_count;
606
607 cp = commPagePtr64;
608 if ( cp ) {
609 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
610 ip = (volatile uint8_t*) cp;
611 *ip = (uint8_t) processor_avail_count;
612 }
613
614 simple_unlock(&commpage_active_cpus_lock);
615 }
616
617
618 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
619
620 uint32_t
621 commpage_is_in_pfz32(uint32_t addr32)
622 {
623 if ( (addr32 >= _COMM_PAGE_PFZ_START) && (addr32 < _COMM_PAGE_PFZ_END)) {
624 return 1;
625 }
626 else
627 return 0;
628 }
629
630 uint32_t
631 commpage_is_in_pfz64(addr64_t addr64)
632 {
633 if ( (addr64 >= _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_START))
634 && (addr64 < _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_END))) {
635 return 1;
636 }
637 else
638 return 0;
639 }
640