]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/mp_desc.c
xnu-4570.41.2.tar.gz
[apple/xnu.git] / osfmk / i386 / mp_desc.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 */
59
60 #include <kern/cpu_number.h>
61 #include <kern/kalloc.h>
62 #include <kern/cpu_data.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <mach/vm_map.h>
66 #include <mach/machine/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_map.h>
69
70 #include <i386/bit_routines.h>
71 #include <i386/mp_desc.h>
72 #include <i386/misc_protos.h>
73 #include <i386/mp.h>
74 #include <i386/pmap.h>
75 #include <i386/postcode.h>
76 #include <i386/pmap_internal.h>
77 #if CONFIG_MCA
78 #include <i386/machine_check.h>
79 #endif
80
81 #include <kern/misc_protos.h>
82
83 #if MONOTONIC
84 #include <kern/monotonic.h>
85 #endif /* MONOTONIC */
86 #include <san/kasan.h>
87
88 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
89 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
90
91 // Declare macros that will declare the externs
92 #define TRAP(n, name) extern void *name ;
93 #define TRAP_ERR(n, name) extern void *name ;
94 #define TRAP_SPC(n, name) extern void *name ;
95 #define TRAP_IST1(n, name) extern void *name ;
96 #define TRAP_IST2(n, name) extern void *name ;
97 #define INTERRUPT(n) extern void *_intr_ ## n ;
98 #define USER_TRAP(n, name) extern void *name ;
99 #define USER_TRAP_SPC(n, name) extern void *name ;
100
101 // Include the table to declare the externs
102 #include "../x86_64/idt_table.h"
103
104 // Undef the macros, then redefine them so we can declare the table
105 #undef TRAP
106 #undef TRAP_ERR
107 #undef TRAP_SPC
108 #undef TRAP_IST1
109 #undef TRAP_IST2
110 #undef INTERRUPT
111 #undef USER_TRAP
112 #undef USER_TRAP_SPC
113
114 #define TRAP(n, name) \
115 [n] = { \
116 (uintptr_t)&name, \
117 KERNEL64_CS, \
118 0, \
119 K_INTR_GATE, \
120 0 \
121 },
122
123 #define TRAP_ERR TRAP
124 #define TRAP_SPC TRAP
125
126 #define TRAP_IST1(n, name) \
127 [n] = { \
128 (uintptr_t)&name, \
129 KERNEL64_CS, \
130 1, \
131 K_INTR_GATE, \
132 0 \
133 },
134
135 #define TRAP_IST2(n, name) \
136 [n] = { \
137 (uintptr_t)&name, \
138 KERNEL64_CS, \
139 2, \
140 K_INTR_GATE, \
141 0 \
142 },
143
144 #define INTERRUPT(n) \
145 [n] = { \
146 (uintptr_t)&_intr_ ## n,\
147 KERNEL64_CS, \
148 0, \
149 K_INTR_GATE, \
150 0 \
151 },
152
153 #define USER_TRAP(n, name) \
154 [n] = { \
155 (uintptr_t)&name, \
156 KERNEL64_CS, \
157 0, \
158 U_INTR_GATE, \
159 0 \
160 },
161
162 #define USER_TRAP_SPC USER_TRAP
163
164 // Declare the table using the macros we just set up
165 struct fake_descriptor64 master_idt64[IDTSZ]
166 __attribute__ ((section("__HIB,__desc")))
167 __attribute__ ((aligned(PAGE_SIZE))) = {
168 #include "../x86_64/idt_table.h"
169 };
170
171 /*
172 * First cpu`s interrupt stack.
173 */
174 extern uint32_t low_intstack[]; /* bottom */
175 extern uint32_t low_eintstack[]; /* top */
176
177 /*
178 * Per-cpu data area pointers.
179 */
180 cpu_data_t cpshadows[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
181 cpu_data_t scdatas[MAX_CPUS] __attribute__((aligned(64))) = {
182 [0].cpu_this = &scdatas[0],
183 [0].cpu_nanotime = &pal_rtc_nanotime_info,
184 [0].cpu_int_stack_top = (vm_offset_t) low_eintstack,
185 [0].cd_shadow = &cpshadows[0]
186 };
187 cpu_data_t *cpu_data_master = &scdatas[0];
188
189 cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &scdatas[0] };
190
191 decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */
192 unsigned int real_ncpus = 1;
193 unsigned int max_ncpus = MAX_CPUS;
194
195 extern void hi64_sysenter(void);
196 extern void hi64_syscall(void);
197
198 typedef struct {
199 struct real_descriptor pcldts[LDTSZ];
200 } cldt_t;
201
202 cpu_desc_table64_t scdtables[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
203 cpu_fault_stack_t scfstks[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
204
205 cldt_t *dyn_ldts;
206
207 /*
208 * Multiprocessor i386/i486 systems use a separate copy of the
209 * GDT, IDT, LDT, and kernel TSS per processor. The first three
210 * are separate to avoid lock contention: the i386 uses locked
211 * memory cycles to access the descriptor tables. The TSS is
212 * separate since each processor needs its own kernel stack,
213 * and since using a TSS marks it busy.
214 */
215
216 /*
217 * Allocate and initialize the per-processor descriptor tables.
218 */
219
220 /*
221 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
222 * When switching to 64-bit mode this replaces KERNEL_LDT entry
223 * and the following empty slot. This enables the LDT to be referenced
224 * in the uber-space remapping window on the kernel.
225 */
226 struct fake_descriptor64 kernel_ldt_desc64 = {
227 0,
228 LDTSZ_MIN*sizeof(struct fake_descriptor)-1,
229 0,
230 ACC_P|ACC_PL_K|ACC_LDT,
231 0
232 };
233
234 /*
235 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
236 * It is follows pattern of the KERNEL_LDT.
237 */
238 struct fake_descriptor64 kernel_tss_desc64 = {
239 0,
240 sizeof(struct x86_64_tss)-1,
241 0,
242 ACC_P|ACC_PL_K|ACC_TSS,
243 0
244 };
245
246 /*
247 * Convert a descriptor from fake to real format.
248 *
249 * Fake descriptor format:
250 * bytes 0..3 base 31..0
251 * bytes 4..5 limit 15..0
252 * byte 6 access byte 2 | limit 19..16
253 * byte 7 access byte 1
254 *
255 * Real descriptor format:
256 * bytes 0..1 limit 15..0
257 * bytes 2..3 base 15..0
258 * byte 4 base 23..16
259 * byte 5 access byte 1
260 * byte 6 access byte 2 | limit 19..16
261 * byte 7 base 31..24
262 *
263 * Fake gate format:
264 * bytes 0..3 offset
265 * bytes 4..5 selector
266 * byte 6 word count << 4 (to match fake descriptor)
267 * byte 7 access byte 1
268 *
269 * Real gate format:
270 * bytes 0..1 offset 15..0
271 * bytes 2..3 selector
272 * byte 4 word count
273 * byte 5 access byte 1
274 * bytes 6..7 offset 31..16
275 */
276 void
277 fix_desc(void *d, int num_desc) {
278 //early_kprintf("fix_desc(%x, %x)\n", d, num_desc);
279 uint8_t *desc = (uint8_t*) d;
280
281 do {
282 if ((desc[7] & 0x14) == 0x04) { /* gate */
283 uint32_t offset;
284 uint16_t selector;
285 uint8_t wordcount;
286 uint8_t acc;
287
288 offset = *((uint32_t*)(desc));
289 selector = *((uint32_t*)(desc+4));
290 wordcount = desc[6] >> 4;
291 acc = desc[7];
292
293 *((uint16_t*)desc) = offset & 0xFFFF;
294 *((uint16_t*)(desc+2)) = selector;
295 desc[4] = wordcount;
296 desc[5] = acc;
297 *((uint16_t*)(desc+6)) = offset >> 16;
298
299 } else { /* descriptor */
300 uint32_t base;
301 uint16_t limit;
302 uint8_t acc1, acc2;
303
304 base = *((uint32_t*)(desc));
305 limit = *((uint16_t*)(desc+4));
306 acc2 = desc[6];
307 acc1 = desc[7];
308
309 *((uint16_t*)(desc)) = limit;
310 *((uint16_t*)(desc+2)) = base & 0xFFFF;
311 desc[4] = (base >> 16) & 0xFF;
312 desc[5] = acc1;
313 desc[6] = acc2;
314 desc[7] = base >> 24;
315 }
316 desc += 8;
317 } while (--num_desc);
318 }
319
320 void
321 fix_desc64(void *descp, int count)
322 {
323 struct fake_descriptor64 *fakep;
324 union {
325 struct real_gate64 gate;
326 struct real_descriptor64 desc;
327 } real;
328 int i;
329
330 fakep = (struct fake_descriptor64 *) descp;
331
332 for (i = 0; i < count; i++, fakep++) {
333 /*
334 * Construct the real decriptor locally.
335 */
336
337 bzero((void *) &real, sizeof(real));
338
339 switch (fakep->access & ACC_TYPE) {
340 case 0:
341 break;
342 case ACC_CALL_GATE:
343 case ACC_INTR_GATE:
344 case ACC_TRAP_GATE:
345 real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
346 real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
347 real.gate.IST = fakep->size_or_IST & 0x7;
348 real.gate.access8 = fakep->access;
349 real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF);
350 real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32);
351 break;
352 default: /* Otherwise */
353 real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
354 real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
355 real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
356 real.desc.access8 = fakep->access;
357 real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
358 real.desc.granularity4 = fakep->size_or_IST;
359 real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
360 real.desc.base_top32 = (uint32_t)(fakep->offset64>>32);
361 }
362
363 /*
364 * Now copy back over the fake structure.
365 */
366 bcopy((void *) &real, (void *) fakep, sizeof(real));
367 }
368 }
369
370 extern unsigned mldtsz;
371 void
372 cpu_desc_init(cpu_data_t *cdp)
373 {
374 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
375
376 if (cdp == cpu_data_master) {
377 /*
378 * Populate the double-mapped 'u' and base 'b' fields in the
379 * KTSS with I/G/LDT and sysenter stack data.
380 */
381 cdi->cdi_ktssu = (void *)DBLMAP(&master_ktss64);
382 cdi->cdi_ktssb = (void *)&master_ktss64;
383 cdi->cdi_sstku = (vm_offset_t) DBLMAP(&master_sstk.top);
384 cdi->cdi_sstkb = (vm_offset_t) &master_sstk.top;
385
386 cdi->cdi_gdtu.ptr = (void *)DBLMAP((uintptr_t) &master_gdt);
387 cdi->cdi_gdtb.ptr = (void *)&master_gdt;
388 cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
389 cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64);
390 cdi->cdi_ldtu = (struct fake_descriptor *) (void *) DBLMAP((uintptr_t)&master_ldt[0]);
391 cdi->cdi_ldtb = (struct fake_descriptor *) (void *) &master_ldt[0];
392
393 /* Replace the expanded LDTs and TSS slots in the GDT */
394 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
395 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
396 kernel_ldt_desc64;
397 *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
398 kernel_ldt_desc64;
399 kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64);
400 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
401 kernel_tss_desc64;
402
403 /* Fix up the expanded descriptors for 64-bit. */
404 fix_desc64((void *) &master_idt64, IDTSZ);
405 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
406 fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1);
407 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
408
409 /*
410 * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
411 */
412 master_ktss64.ist2 = (uintptr_t) low_eintstack;
413 master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t);
414 } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
415 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
416
417 cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
418
419 cdi->cdi_ktssu = (void *)DBLMAP(&cdt->ktss);
420 cdi->cdi_ktssb = (void *)(&cdt->ktss);
421 cdi->cdi_sstku = (vm_offset_t)DBLMAP(&cdt->sstk.top);
422 cdi->cdi_sstkb = (vm_offset_t)(&cdt->sstk.top);
423 cdi->cdi_ldtu = (void *)LDTALIAS(cdp->cpu_ldtp);
424 cdi->cdi_ldtb = (void *)(cdp->cpu_ldtp);
425
426 /*
427 * Copy the tables
428 */
429 bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
430 bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, mldtsz);
431 bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
432 cdi->cdi_gdtu.ptr = (void *)DBLMAP(cdt->gdt);
433 cdi->cdi_gdtb.ptr = (void *)(cdt->gdt);
434 /*
435 * Fix up the entries in the GDT to point to
436 * this LDT and this TSS.
437 * Note reuse of global 'kernel_ldt_desc64, which is not
438 * concurrency-safe. Higher level synchronization is expected
439 */
440 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
441 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
442 kernel_ldt_desc64;
443 fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
444
445 kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
446 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
447 kernel_ldt_desc64;
448 fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
449
450 kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu;
451 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
452 kernel_tss_desc64;
453 fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
454
455 /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
456 uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
457 cdt->fstkp = cfstk;
458 bzero((void *) cfstk, FSTK_SZ);
459 cdt->ktss.ist2 = DBLMAP((uint64_t)cdt->fstkp + FSTK_SZ);
460 cdt->ktss.ist1 = cdt->ktss.ist2 - sizeof(x86_64_intr_stack_frame_t);
461 }
462
463 /* Require that the top of the sysenter stack is 16-byte aligned */
464 if ((cdi->cdi_sstku % 16) != 0)
465 panic("cpu_desc_init() sysenter stack not 16-byte aligned");
466 }
467 void
468 cpu_desc_load(cpu_data_t *cdp)
469 {
470 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
471
472 postcode(CPU_DESC_LOAD_ENTRY);
473
474 /* Stuff the kernel per-cpu data area address into the MSRs */
475 postcode(CPU_DESC_LOAD_GS_BASE);
476 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
477 postcode(CPU_DESC_LOAD_KERNEL_GS_BASE);
478 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
479
480 /*
481 * Ensure the TSS segment's busy bit is clear. This is required
482 * for the case of reloading descriptors at wake to avoid
483 * their complete re-initialization.
484 */
485 gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
486
487 /* Load the GDT, LDT, IDT and TSS */
488 cdi->cdi_gdtb.size = sizeof(struct real_descriptor)*GDTSZ - 1;
489 cdi->cdi_gdtu.size = cdi->cdi_gdtb.size;
490 cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number;
491 cdi->cdi_idtu.size = cdi->cdi_idtb.size;
492
493 postcode(CPU_DESC_LOAD_GDT);
494 lgdt((uintptr_t *) &cdi->cdi_gdtu);
495 postcode(CPU_DESC_LOAD_IDT);
496 lidt((uintptr_t *) &cdi->cdi_idtu);
497 postcode(CPU_DESC_LOAD_LDT);
498 lldt(KERNEL_LDT);
499 postcode(CPU_DESC_LOAD_TSS);
500 set_tr(KERNEL_TSS);
501
502 #if GPROF // Hack to enable mcount to work on K64
503 __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS)));
504 #endif
505 postcode(CPU_DESC_LOAD_EXIT);
506 }
507
508 /*
509 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
510 */
511 void
512 cpu_syscall_init(cpu_data_t *cdp)
513 {
514 #if MONOTONIC
515 mt_cpu_up(cdp);
516 #else /* MONOTONIC */
517 #pragma unused(cdp)
518 #endif /* !MONOTONIC */
519 wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
520 wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter));
521 wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku);
522 /* Enable syscall/sysret */
523 wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
524
525 /*
526 * MSRs for 64-bit syscall/sysret
527 * Note USER_CS because sysret uses this + 16 when returning to
528 * 64-bit code.
529 */
530 wrmsr64(MSR_IA32_LSTAR, DBLMAP((uintptr_t) hi64_syscall));
531 wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | (((uint64_t)KERNEL64_CS) << 32));
532 /*
533 * Emulate eflags cleared by sysenter but note that
534 * we also clear the trace trap to avoid the complications
535 * of single-stepping into a syscall. The nested task bit
536 * is also cleared to avoid a spurious "task switch"
537 * should we choose to return via an IRET.
538 */
539 wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
540
541 }
542 extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
543 uint64_t ldt_alias_offset;
544
545 cpu_data_t *
546 cpu_data_alloc(boolean_t is_boot_cpu)
547 {
548 int ret;
549 cpu_data_t *cdp;
550
551 if (is_boot_cpu) {
552 assert(real_ncpus == 1);
553 cdp = cpu_datap(0);
554 if (cdp->cpu_processor == NULL) {
555 simple_lock_init(&ncpus_lock, 0);
556 cdp->cpu_processor = cpu_processor_alloc(TRUE);
557 #if NCOPY_WINDOWS > 0
558 cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
559 #endif
560 }
561 return cdp;
562 }
563
564 boolean_t do_ldt_alloc = FALSE;
565 simple_lock(&ncpus_lock);
566 int cnum = real_ncpus;
567 real_ncpus++;
568 if (dyn_ldts == NULL) {
569 do_ldt_alloc = TRUE;
570 }
571 simple_unlock(&ncpus_lock);
572
573 /*
574 * Allocate per-cpu data:
575 */
576
577 cdp = &scdatas[cnum];
578 bzero((void*) cdp, sizeof(cpu_data_t));
579 cdp->cpu_this = cdp;
580 cdp->cpu_number = cnum;
581 cdp->cd_shadow = &cpshadows[cnum];
582 /*
583 * Allocate interrupt stack:
584 */
585 ret = kmem_alloc(kernel_map,
586 (vm_offset_t *) &cdp->cpu_int_stack_top,
587 INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
588 if (ret != KERN_SUCCESS) {
589 panic("cpu_data_alloc() int stack failed, ret=%d\n", ret);
590 }
591 bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
592 cdp->cpu_int_stack_top += INTSTACK_SIZE;
593
594 /*
595 * Allocate descriptor table:
596 */
597
598 cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[cnum];
599 /*
600 * Allocate LDT
601 */
602 if (do_ldt_alloc) {
603 boolean_t do_ldt_free = FALSE;
604 vm_offset_t sldtoffset = 0;
605 /*
606 * Allocate LDT
607 */
608 vm_offset_t ldtalloc = 0, ldtallocsz = round_page_64(MAX_CPUS * sizeof(struct real_descriptor) * LDTSZ);
609 ret = kmem_alloc(kernel_map, (vm_offset_t *) &ldtalloc, ldtallocsz, VM_KERN_MEMORY_CPU);
610 if (ret != KERN_SUCCESS) {
611 panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret);
612 }
613
614 simple_lock(&ncpus_lock);
615 if (dyn_ldts == NULL) {
616 dyn_ldts = (cldt_t *)ldtalloc;
617 } else {
618 do_ldt_free = TRUE;
619 }
620 simple_unlock(&ncpus_lock);
621
622 if (do_ldt_free) {
623 kmem_free(kernel_map, ldtalloc, ldtallocsz);
624 } else {
625 /* CPU registration and startup are expected to execute
626 * serially, as invoked by the platform driver.
627 * Create trampoline alias of LDT region.
628 */
629 sldtoffset = dyn_dblmap(ldtalloc, ldtallocsz);
630 ldt_alias_offset = sldtoffset;
631 }
632 }
633 cdp->cpu_ldtp = &dyn_ldts[cnum].pcldts[0];
634
635 #if CONFIG_MCA
636 /* Machine-check shadow register allocation. */
637 mca_cpu_alloc(cdp);
638 #endif
639
640 /*
641 * Before this cpu has been assigned a real thread context,
642 * we give it a fake, unique, non-zero thread id which the locking
643 * primitives use as their lock value.
644 * Note that this does not apply to the boot processor, cpu 0, which
645 * transitions to a thread context well before other processors are
646 * started.
647 */
648 cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
649
650 cdp->cpu_nanotime = &pal_rtc_nanotime_info;
651
652 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
653 "ldt: %p "
654 "int_stack: 0x%lx-0x%lx\n",
655 cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
656 (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
657 cpu_data_ptr[cnum] = cdp;
658
659 return cdp;
660
661 }
662
663 boolean_t
664 valid_user_data_selector(uint16_t selector)
665 {
666 sel_t sel = selector_to_sel(selector);
667
668 if (selector == 0)
669 return (TRUE);
670
671 if (sel.ti == SEL_LDT)
672 return (TRUE);
673 else if (sel.index < GDTSZ) {
674 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
675 return (TRUE);
676 }
677 return (FALSE);
678 }
679
680 boolean_t
681 valid_user_code_selector(uint16_t selector)
682 {
683 sel_t sel = selector_to_sel(selector);
684
685 if (selector == 0)
686 return (FALSE);
687
688 if (sel.ti == SEL_LDT) {
689 if (sel.rpl == USER_PRIV)
690 return (TRUE);
691 }
692 else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
693 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
694 return (TRUE);
695 /* Explicitly validate the system code selectors
696 * even if not instantaneously privileged,
697 * since they are dynamically re-privileged
698 * at context switch
699 */
700 if ((selector == USER_CS) || (selector == USER64_CS))
701 return (TRUE);
702 }
703
704 return (FALSE);
705 }
706
707 boolean_t
708 valid_user_stack_selector(uint16_t selector)
709 {
710 sel_t sel = selector_to_sel(selector);
711
712 if (selector == 0)
713 return (FALSE);
714
715 if (sel.ti == SEL_LDT) {
716 if (sel.rpl == USER_PRIV)
717 return (TRUE);
718 }
719 else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
720 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
721 return (TRUE);
722 }
723
724 return (FALSE);
725 }
726
727 boolean_t
728 valid_user_segment_selectors(uint16_t cs,
729 uint16_t ss,
730 uint16_t ds,
731 uint16_t es,
732 uint16_t fs,
733 uint16_t gs)
734 {
735 return valid_user_code_selector(cs) &&
736 valid_user_stack_selector(ss) &&
737 valid_user_data_selector(ds) &&
738 valid_user_data_selector(es) &&
739 valid_user_data_selector(fs) &&
740 valid_user_data_selector(gs);
741 }
742
743 #if NCOPY_WINDOWS > 0
744
745 static vm_offset_t user_window_base = 0;
746
747 void
748 cpu_userwindow_init(int cpu)
749 {
750 cpu_data_t *cdp = cpu_data_ptr[cpu];
751 vm_offset_t user_window;
752 vm_offset_t vaddr;
753 int num_cpus;
754
755 num_cpus = ml_get_max_cpus();
756
757 if (cpu >= num_cpus)
758 panic("cpu_userwindow_init: cpu > num_cpus");
759
760 if (user_window_base == 0) {
761
762 if (vm_allocate(kernel_map, &vaddr,
763 (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
764 VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS)
765 panic("cpu_userwindow_init: "
766 "couldn't allocate user map window");
767
768 /*
769 * window must start on a page table boundary
770 * in the virtual address space
771 */
772 user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1);
773
774 /*
775 * get rid of any allocation leading up to our
776 * starting boundary
777 */
778 vm_deallocate(kernel_map, vaddr, user_window_base - vaddr);
779
780 /*
781 * get rid of tail that we don't need
782 */
783 user_window = user_window_base +
784 (NBPDE * NCOPY_WINDOWS * num_cpus);
785
786 vm_deallocate(kernel_map, user_window,
787 (vaddr +
788 ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
789 user_window);
790 }
791
792 user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
793
794 cdp->cpu_copywindow_base = user_window;
795 /*
796 * Abuse this pdp entry, the pdp now actually points to
797 * an array of copy windows addresses.
798 */
799 cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
800
801 }
802
803 void
804 cpu_physwindow_init(int cpu)
805 {
806 cpu_data_t *cdp = cpu_data_ptr[cpu];
807 vm_offset_t phys_window = cdp->cpu_physwindow_base;
808
809 if (phys_window == 0) {
810 if (vm_allocate(kernel_map, &phys_window,
811 PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU))
812 != KERN_SUCCESS)
813 panic("cpu_physwindow_init: "
814 "couldn't allocate phys map window");
815
816 /*
817 * make sure the page that encompasses the
818 * pte pointer we're interested in actually
819 * exists in the page table
820 */
821 pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE);
822
823 cdp->cpu_physwindow_base = phys_window;
824 cdp->cpu_physwindow_ptep = vtopte(phys_window);
825 }
826 }
827 #endif /* NCOPY_WINDOWS > 0 */
828
829 /*
830 * Allocate a new interrupt stack for the boot processor from the
831 * heap rather than continue to use the statically allocated space.
832 * Also switch to a dynamically allocated cpu data area.
833 */
834 void
835 cpu_data_realloc(void)
836 {
837 int ret;
838 vm_offset_t istk;
839 cpu_data_t *cdp;
840 boolean_t istate;
841
842 ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
843 if (ret != KERN_SUCCESS) {
844 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
845 }
846 bzero((void*) istk, INTSTACK_SIZE);
847 istk += INTSTACK_SIZE;
848
849 cdp = &scdatas[0];
850
851 /* Copy old contents into new area and make fix-ups */
852 assert(cpu_number() == 0);
853 bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t));
854 cdp->cpu_this = cdp;
855 cdp->cpu_int_stack_top = istk;
856 timer_call_queue_init(&cdp->rtclock_timer.queue);
857 cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0];
858 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
859
860 uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
861 cdt->fstkp = cfstk;
862 cfstk += FSTK_SZ;
863
864 /*
865 * With interrupts disabled commmit the new areas.
866 */
867 istate = ml_set_interrupts_enabled(FALSE);
868 cpu_data_ptr[0] = cdp;
869 master_ktss64.ist2 = DBLMAP((uintptr_t) cfstk);
870 master_ktss64.ist1 = DBLMAP((uintptr_t) cfstk - sizeof(x86_64_intr_stack_frame_t));
871 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
872 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
873 (void) ml_set_interrupts_enabled(istate);
874
875 kprintf("Reallocated master cpu data: %p,"
876 " interrupt stack: %p, fault stack: %p\n",
877 (void *) cdp, (void *) istk, (void *) cfstk);
878 }