2 * Copyright (c) 2014 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/errno.h>
31 #include <mach/mach_types.h>
32 #include <mach/mach_traps.h>
33 #include <mach/host_priv.h>
34 #include <mach/kern_return.h>
35 #include <mach/memory_object_control.h>
36 #include <mach/memory_object_types.h>
37 #include <mach/port.h>
38 #include <mach/policy.h>
40 #include <mach/thread_act.h>
41 #include <mach/mach_vm.h>
43 #include <kern/host.h>
44 #include <kern/kalloc.h>
45 #include <kern/page_decrypt.h>
46 #include <kern/queue.h>
47 #include <kern/thread.h>
48 #include <kern/ipc_kobject.h>
50 #include <ipc/ipc_port.h>
51 #include <ipc/ipc_space.h>
53 #include <vm/vm_fault.h>
54 #include <vm/vm_map.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/memory_object.h>
57 #include <vm/vm_pageout.h>
58 #include <vm/vm_protos.h>
59 #include <vm/vm_kern.h>
65 * This external memory manager (EMM) handles memory mappings that are
66 * 4K-aligned but not page-aligned and can therefore not be mapped directly.
68 * It mostly handles page-in requests (from memory_object_data_request()) by
69 * getting the data needed to fill in each 4K-chunk. That can require
70 * getting data from one or two pages from its backing VM object
71 * (a file or a "apple-protected" pager backed by an encrypted file), and
72 * copies the data to another page so that it is aligned as expected by
75 * Returned pages can never be dirtied and must always be mapped copy-on-write,
76 * so the memory manager does not need to handle page-out requests (from
77 * memory_object_data_return()).
81 /* forward declarations */
82 void fourk_pager_reference(memory_object_t mem_obj
);
83 void fourk_pager_deallocate(memory_object_t mem_obj
);
84 kern_return_t
fourk_pager_init(memory_object_t mem_obj
,
85 memory_object_control_t control
,
86 memory_object_cluster_size_t pg_size
);
87 kern_return_t
fourk_pager_terminate(memory_object_t mem_obj
);
88 kern_return_t
fourk_pager_data_request(memory_object_t mem_obj
,
89 memory_object_offset_t offset
,
90 memory_object_cluster_size_t length
,
91 vm_prot_t protection_required
,
92 memory_object_fault_info_t fault_info
);
93 kern_return_t
fourk_pager_data_return(memory_object_t mem_obj
,
94 memory_object_offset_t offset
,
95 memory_object_cluster_size_t data_cnt
,
96 memory_object_offset_t
*resid_offset
,
99 boolean_t kernel_copy
,
101 kern_return_t
fourk_pager_data_initialize(memory_object_t mem_obj
,
102 memory_object_offset_t offset
,
103 memory_object_cluster_size_t data_cnt
);
104 kern_return_t
fourk_pager_data_unlock(memory_object_t mem_obj
,
105 memory_object_offset_t offset
,
106 memory_object_size_t size
,
107 vm_prot_t desired_access
);
108 kern_return_t
fourk_pager_synchronize(memory_object_t mem_obj
,
109 memory_object_offset_t offset
,
110 memory_object_size_t length
,
111 vm_sync_t sync_flags
);
112 kern_return_t
fourk_pager_map(memory_object_t mem_obj
,
114 kern_return_t
fourk_pager_last_unmap(memory_object_t mem_obj
);
117 * Vector of VM operations for this EMM.
118 * These routines are invoked by VM via the memory_object_*() interfaces.
120 const struct memory_object_pager_ops fourk_pager_ops
= {
121 fourk_pager_reference
,
122 fourk_pager_deallocate
,
124 fourk_pager_terminate
,
125 fourk_pager_data_request
,
126 fourk_pager_data_return
,
127 fourk_pager_data_initialize
,
128 fourk_pager_data_unlock
,
129 fourk_pager_synchronize
,
131 fourk_pager_last_unmap
,
132 NULL
, /* data_reclaim */
137 * The "fourk_pager" describes a memory object backed by
140 #define FOURK_PAGER_SLOTS 4 /* 16K / 4K */
141 typedef struct fourk_pager_backing
{
142 vm_object_t backing_object
;
143 vm_object_offset_t backing_offset
;
144 } *fourk_pager_backing_t
;
145 typedef struct fourk_pager
{
146 struct ipc_object_header pager_header
; /* fake ip_kotype() */
147 memory_object_pager_ops_t pager_ops
; /* == &fourk_pager_ops */
148 memory_object_control_t pager_control
; /* mem object control handle */
149 queue_chain_t pager_queue
; /* next & prev pagers */
150 unsigned int ref_count
; /* reference count */
151 int is_ready
; /* is this pager ready ? */
152 int is_mapped
; /* is this mem_obj mapped ? */
153 struct fourk_pager_backing slots
[FOURK_PAGER_SLOTS
]; /* backing for each
156 #define FOURK_PAGER_NULL ((fourk_pager_t) NULL)
157 #define pager_ikot pager_header.io_bits
160 * List of memory objects managed by this EMM.
161 * The list is protected by the "fourk_pager_lock" lock.
163 int fourk_pager_count
= 0; /* number of pagers */
164 int fourk_pager_count_mapped
= 0; /* number of unmapped pagers */
165 queue_head_t fourk_pager_queue
;
166 decl_lck_mtx_data(,fourk_pager_lock
)
169 * Maximum number of unmapped pagers we're willing to keep around.
171 int fourk_pager_cache_limit
= 0;
174 * Statistics & counters.
176 int fourk_pager_count_max
= 0;
177 int fourk_pager_count_unmapped_max
= 0;
178 int fourk_pager_num_trim_max
= 0;
179 int fourk_pager_num_trim_total
= 0;
182 lck_grp_t fourk_pager_lck_grp
;
183 lck_grp_attr_t fourk_pager_lck_grp_attr
;
184 lck_attr_t fourk_pager_lck_attr
;
187 /* internal prototypes */
188 fourk_pager_t
fourk_pager_lookup(memory_object_t mem_obj
);
189 void fourk_pager_dequeue(fourk_pager_t pager
);
190 void fourk_pager_deallocate_internal(fourk_pager_t pager
,
192 void fourk_pager_terminate_internal(fourk_pager_t pager
);
193 void fourk_pager_trim(void);
197 int fourk_pagerdebug
= 0;
198 #define PAGER_ALL 0xffffffff
199 #define PAGER_INIT 0x00000001
200 #define PAGER_PAGEIN 0x00000002
202 #define PAGER_DEBUG(LEVEL, A) \
204 if ((fourk_pagerdebug & LEVEL)==LEVEL) { \
209 #define PAGER_DEBUG(LEVEL, A)
214 fourk_pager_bootstrap(void)
216 lck_grp_attr_setdefault(&fourk_pager_lck_grp_attr
);
217 lck_grp_init(&fourk_pager_lck_grp
, "4K-pager", &fourk_pager_lck_grp_attr
);
218 lck_attr_setdefault(&fourk_pager_lck_attr
);
219 lck_mtx_init(&fourk_pager_lock
, &fourk_pager_lck_grp
, &fourk_pager_lck_attr
);
220 queue_init(&fourk_pager_queue
);
226 * Initialize the memory object and makes it ready to be used and mapped.
230 memory_object_t mem_obj
,
231 memory_object_control_t control
,
235 memory_object_cluster_size_t pg_size
)
239 memory_object_attr_info_data_t attributes
;
241 PAGER_DEBUG(PAGER_ALL
,
242 ("fourk_pager_init: %p, %p, %x\n",
243 mem_obj
, control
, pg_size
));
245 if (control
== MEMORY_OBJECT_CONTROL_NULL
)
246 return KERN_INVALID_ARGUMENT
;
248 pager
= fourk_pager_lookup(mem_obj
);
250 memory_object_control_reference(control
);
252 pager
->pager_control
= control
;
254 attributes
.copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
255 /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/
256 attributes
.cluster_size
= (1 << (PAGE_SHIFT
));
257 attributes
.may_cache_object
= FALSE
;
258 attributes
.temporary
= TRUE
;
260 kr
= memory_object_change_attributes(
262 MEMORY_OBJECT_ATTRIBUTE_INFO
,
263 (memory_object_info_t
) &attributes
,
264 MEMORY_OBJECT_ATTR_INFO_COUNT
);
265 if (kr
!= KERN_SUCCESS
)
266 panic("fourk_pager_init: "
267 "memory_object_change_attributes() failed");
269 #if CONFIG_SECLUDED_MEMORY
270 if (secluded_for_filecache
) {
271 memory_object_mark_eligible_for_secluded(control
, TRUE
);
273 #endif /* CONFIG_SECLUDED_MEMORY */
279 * fourk_pager_data_return()
281 * Handles page-out requests from VM. This should never happen since
282 * the pages provided by this EMM are not supposed to be dirty or dirtied
283 * and VM should simply discard the contents and reclaim the pages if it
287 fourk_pager_data_return(
288 __unused memory_object_t mem_obj
,
289 __unused memory_object_offset_t offset
,
290 __unused memory_object_cluster_size_t data_cnt
,
291 __unused memory_object_offset_t
*resid_offset
,
292 __unused
int *io_error
,
293 __unused boolean_t dirty
,
294 __unused boolean_t kernel_copy
,
295 __unused
int upl_flags
)
297 panic("fourk_pager_data_return: should never get called");
302 fourk_pager_data_initialize(
303 __unused memory_object_t mem_obj
,
304 __unused memory_object_offset_t offset
,
305 __unused memory_object_cluster_size_t data_cnt
)
307 panic("fourk_pager_data_initialize: should never get called");
312 fourk_pager_data_unlock(
313 __unused memory_object_t mem_obj
,
314 __unused memory_object_offset_t offset
,
315 __unused memory_object_size_t size
,
316 __unused vm_prot_t desired_access
)
322 * fourk_pager_reference()
324 * Get a reference on this memory object.
325 * For external usage only. Assumes that the initial reference count is not 0,
326 * i.e one should not "revive" a dead pager this way.
329 fourk_pager_reference(
330 memory_object_t mem_obj
)
334 pager
= fourk_pager_lookup(mem_obj
);
336 lck_mtx_lock(&fourk_pager_lock
);
337 assert(pager
->ref_count
> 0);
339 lck_mtx_unlock(&fourk_pager_lock
);
344 * fourk_pager_dequeue:
346 * Removes a pager from the list of pagers.
348 * The caller must hold "fourk_pager_lock".
354 assert(!pager
->is_mapped
);
356 queue_remove(&fourk_pager_queue
,
360 pager
->pager_queue
.next
= NULL
;
361 pager
->pager_queue
.prev
= NULL
;
367 * fourk_pager_terminate_internal:
369 * Trigger the asynchronous termination of the memory object associated
371 * When the memory object is terminated, there will be one more call
372 * to memory_object_deallocate() (i.e. fourk_pager_deallocate())
373 * to finish the clean up.
375 * "fourk_pager_lock" should not be held by the caller.
376 * We don't need the lock because the pager has already been removed from
377 * the pagers' list and is now ours exclusively.
380 fourk_pager_terminate_internal(
385 assert(pager
->is_ready
);
386 assert(!pager
->is_mapped
);
388 for (i
= 0; i
< FOURK_PAGER_SLOTS
; i
++) {
389 if (pager
->slots
[i
].backing_object
!= VM_OBJECT_NULL
&&
390 pager
->slots
[i
].backing_object
!= (vm_object_t
) -1) {
391 vm_object_deallocate(pager
->slots
[i
].backing_object
);
392 pager
->slots
[i
].backing_object
= (vm_object_t
) -1;
393 pager
->slots
[i
].backing_offset
= (vm_object_offset_t
) -1;
397 /* trigger the destruction of the memory object */
398 memory_object_destroy(pager
->pager_control
, 0);
402 * fourk_pager_deallocate_internal()
404 * Release a reference on this pager and free it when the last
405 * reference goes away.
406 * Can be called with fourk_pager_lock held or not but always returns
410 fourk_pager_deallocate_internal(
414 boolean_t needs_trimming
;
418 lck_mtx_lock(&fourk_pager_lock
);
421 count_unmapped
= (fourk_pager_count
-
422 fourk_pager_count_mapped
);
423 if (count_unmapped
> fourk_pager_cache_limit
) {
424 /* we have too many unmapped pagers: trim some */
425 needs_trimming
= TRUE
;
427 needs_trimming
= FALSE
;
430 /* drop a reference on this pager */
433 if (pager
->ref_count
== 1) {
435 * Only the "named" reference is left, which means that
436 * no one is really holding on to this pager anymore.
439 fourk_pager_dequeue(pager
);
440 /* the pager is all ours: no need for the lock now */
441 lck_mtx_unlock(&fourk_pager_lock
);
442 fourk_pager_terminate_internal(pager
);
443 } else if (pager
->ref_count
== 0) {
445 * Dropped the existence reference; the memory object has
446 * been terminated. Do some final cleanup and release the
449 lck_mtx_unlock(&fourk_pager_lock
);
450 if (pager
->pager_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
451 memory_object_control_deallocate(pager
->pager_control
);
452 pager
->pager_control
= MEMORY_OBJECT_CONTROL_NULL
;
454 kfree(pager
, sizeof (*pager
));
455 pager
= FOURK_PAGER_NULL
;
457 /* there are still plenty of references: keep going... */
458 lck_mtx_unlock(&fourk_pager_lock
);
461 if (needs_trimming
) {
464 /* caution: lock is not held on return... */
468 * fourk_pager_deallocate()
470 * Release a reference on this pager and free it when the last
471 * reference goes away.
474 fourk_pager_deallocate(
475 memory_object_t mem_obj
)
479 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_deallocate: %p\n", mem_obj
));
480 pager
= fourk_pager_lookup(mem_obj
);
481 fourk_pager_deallocate_internal(pager
, FALSE
);
488 fourk_pager_terminate(
492 memory_object_t mem_obj
)
494 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_terminate: %p\n", mem_obj
));
503 fourk_pager_synchronize(
504 memory_object_t mem_obj
,
505 memory_object_offset_t offset
,
506 memory_object_size_t length
,
507 __unused vm_sync_t sync_flags
)
511 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_synchronize: %p\n", mem_obj
));
513 pager
= fourk_pager_lookup(mem_obj
);
515 memory_object_synchronize_completed(pager
->pager_control
,
524 * This allows VM to let us, the EMM, know that this memory object
525 * is currently mapped one or more times. This is called by VM each time
526 * the memory object gets mapped and we take one extra reference on the
527 * memory object to account for all its mappings.
531 memory_object_t mem_obj
,
532 __unused vm_prot_t prot
)
536 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_map: %p\n", mem_obj
));
538 pager
= fourk_pager_lookup(mem_obj
);
540 lck_mtx_lock(&fourk_pager_lock
);
541 assert(pager
->is_ready
);
542 assert(pager
->ref_count
> 0); /* pager is alive */
543 if (pager
->is_mapped
== FALSE
) {
545 * First mapping of this pager: take an extra reference
546 * that will remain until all the mappings of this pager
549 pager
->is_mapped
= TRUE
;
551 fourk_pager_count_mapped
++;
553 lck_mtx_unlock(&fourk_pager_lock
);
559 * fourk_pager_last_unmap()
561 * This is called by VM when this memory object is no longer mapped anywhere.
564 fourk_pager_last_unmap(
565 memory_object_t mem_obj
)
570 PAGER_DEBUG(PAGER_ALL
,
571 ("fourk_pager_last_unmap: %p\n", mem_obj
));
573 pager
= fourk_pager_lookup(mem_obj
);
575 lck_mtx_lock(&fourk_pager_lock
);
576 if (pager
->is_mapped
) {
578 * All the mappings are gone, so let go of the one extra
579 * reference that represents all the mappings of this pager.
581 fourk_pager_count_mapped
--;
582 count_unmapped
= (fourk_pager_count
-
583 fourk_pager_count_mapped
);
584 if (count_unmapped
> fourk_pager_count_unmapped_max
) {
585 fourk_pager_count_unmapped_max
= count_unmapped
;
587 pager
->is_mapped
= FALSE
;
588 fourk_pager_deallocate_internal(pager
, TRUE
);
589 /* caution: deallocate_internal() released the lock ! */
591 lck_mtx_unlock(&fourk_pager_lock
);
603 memory_object_t mem_obj
)
607 pager
= (fourk_pager_t
) mem_obj
;
608 assert(pager
->pager_ops
== &fourk_pager_ops
);
609 assert(pager
->ref_count
> 0);
614 fourk_pager_trim(void)
616 fourk_pager_t pager
, prev_pager
;
617 queue_head_t trim_queue
;
621 lck_mtx_lock(&fourk_pager_lock
);
624 * We have too many pagers, try and trim some unused ones,
625 * starting with the oldest pager at the end of the queue.
627 queue_init(&trim_queue
);
630 for (pager
= (fourk_pager_t
)
631 queue_last(&fourk_pager_queue
);
632 !queue_end(&fourk_pager_queue
,
633 (queue_entry_t
) pager
);
634 pager
= prev_pager
) {
635 /* get prev elt before we dequeue */
636 prev_pager
= (fourk_pager_t
)
637 queue_prev(&pager
->pager_queue
);
639 if (pager
->ref_count
== 2 &&
642 /* this pager can be trimmed */
644 /* remove this pager from the main list ... */
645 fourk_pager_dequeue(pager
);
646 /* ... and add it to our trim queue */
647 queue_enter_first(&trim_queue
,
652 count_unmapped
= (fourk_pager_count
-
653 fourk_pager_count_mapped
);
654 if (count_unmapped
<= fourk_pager_cache_limit
) {
655 /* we have enough pagers to trim */
660 if (num_trim
> fourk_pager_num_trim_max
) {
661 fourk_pager_num_trim_max
= num_trim
;
663 fourk_pager_num_trim_total
+= num_trim
;
665 lck_mtx_unlock(&fourk_pager_lock
);
667 /* terminate the trimmed pagers */
668 while (!queue_empty(&trim_queue
)) {
669 queue_remove_first(&trim_queue
,
673 pager
->pager_queue
.next
= NULL
;
674 pager
->pager_queue
.prev
= NULL
;
675 assert(pager
->ref_count
== 2);
677 * We can't call deallocate_internal() because the pager
678 * has already been dequeued, but we still need to remove
682 fourk_pager_terminate_internal(pager
);
692 fourk_pager_to_vm_object(
693 memory_object_t mem_obj
)
698 pager
= fourk_pager_lookup(mem_obj
);
700 return VM_OBJECT_NULL
;
703 assert(pager
->ref_count
> 0);
704 assert(pager
->pager_control
!= MEMORY_OBJECT_CONTROL_NULL
);
705 object
= memory_object_control_to_vm_object(pager
->pager_control
);
706 assert(object
!= VM_OBJECT_NULL
);
711 fourk_pager_create(void)
714 memory_object_control_t control
;
719 if (PAGE_SIZE_64
== FOURK_PAGE_SIZE
) {
720 panic("fourk_pager_create: page size is 4K !?");
724 pager
= (fourk_pager_t
) kalloc(sizeof (*pager
));
725 if (pager
== FOURK_PAGER_NULL
) {
726 return MEMORY_OBJECT_NULL
;
728 bzero(pager
, sizeof (*pager
));
731 * The vm_map call takes both named entry ports and raw memory
732 * objects in the same parameter. We need to make sure that
733 * vm_map does not see this object as a named entry port. So,
734 * we reserve the first word in the object for a fake ip_kotype
735 * setting - that will tell vm_map to use it as a memory object.
737 pager
->pager_ops
= &fourk_pager_ops
;
738 pager
->pager_ikot
= IKOT_MEMORY_OBJECT
;
739 pager
->pager_control
= MEMORY_OBJECT_CONTROL_NULL
;
740 pager
->ref_count
= 2; /* existence + setup reference */
741 pager
->is_ready
= FALSE
;/* not ready until it has a "name" */
742 pager
->is_mapped
= FALSE
;
744 for (i
= 0; i
< FOURK_PAGER_SLOTS
; i
++) {
745 pager
->slots
[i
].backing_object
= (vm_object_t
) -1;
746 pager
->slots
[i
].backing_offset
= (vm_object_offset_t
) -1;
749 lck_mtx_lock(&fourk_pager_lock
);
751 /* enter new pager at the head of our list of pagers */
752 queue_enter_first(&fourk_pager_queue
,
757 if (fourk_pager_count
> fourk_pager_count_max
) {
758 fourk_pager_count_max
= fourk_pager_count
;
760 lck_mtx_unlock(&fourk_pager_lock
);
762 kr
= memory_object_create_named((memory_object_t
) pager
,
765 assert(kr
== KERN_SUCCESS
);
767 lck_mtx_lock(&fourk_pager_lock
);
768 /* the new pager is now ready to be used */
769 pager
->is_ready
= TRUE
;
770 lck_mtx_unlock(&fourk_pager_lock
);
772 /* wakeup anyone waiting for this pager to be ready */
773 thread_wakeup(&pager
->is_ready
);
775 return (memory_object_t
) pager
;
779 * fourk_pager_data_request()
781 * Handles page-in requests from VM.
783 int fourk_pager_data_request_debug
= 0;
785 fourk_pager_data_request(
786 memory_object_t mem_obj
,
787 memory_object_offset_t offset
,
788 memory_object_cluster_size_t length
,
792 vm_prot_t protection_required
,
793 memory_object_fault_info_t mo_fault_info
)
796 memory_object_control_t mo_control
;
800 upl_page_info_t
*upl_pl
;
801 unsigned int pl_count
;
802 vm_object_t dst_object
;
803 kern_return_t kr
, retval
;
804 vm_map_offset_t kernel_mapping
;
805 vm_offset_t src_vaddr
, dst_vaddr
;
806 vm_offset_t cur_offset
;
808 int sub_page_idx
, sub_page_cnt
;
810 pager
= fourk_pager_lookup(mem_obj
);
811 assert(pager
->is_ready
);
812 assert(pager
->ref_count
> 1); /* pager is alive and mapped */
814 PAGER_DEBUG(PAGER_PAGEIN
, ("fourk_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj
, offset
, length
, protection_required
, pager
));
816 retval
= KERN_SUCCESS
;
819 offset
= memory_object_trunc_page(offset
);
822 * Gather in a UPL all the VM pages requested by VM.
824 mo_control
= pager
->pager_control
;
828 UPL_RET_ONLY_ABSENT
|
831 UPL_CLEAN_IN_PLACE
| /* triggers UPL_CLEAR_DIRTY */
834 kr
= memory_object_upl_request(mo_control
,
836 &upl
, NULL
, NULL
, upl_flags
);
837 if (kr
!= KERN_SUCCESS
) {
841 dst_object
= mo_control
->moc_object
;
842 assert(dst_object
!= VM_OBJECT_NULL
);
844 #if __x86_64__ || __arm__ || __arm64__
845 /* use the 1-to-1 mapping of physical memory */
846 #else /* __x86_64__ || __arm__ || __arm64__ */
848 * Reserve 2 virtual pages in the kernel address space to map the
849 * source and destination physical pages when it's their turn to
852 vm_map_entry_t map_entry
;
854 vm_object_reference(kernel_object
); /* ref. for mapping */
855 kr
= vm_map_find_space(kernel_map
,
861 if (kr
!= KERN_SUCCESS
) {
862 vm_object_deallocate(kernel_object
);
866 map_entry
->object
.vm_object
= kernel_object
;
867 map_entry
->offset
= kernel_mapping
;
868 vm_map_unlock(kernel_map
);
869 src_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
);
870 dst_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
+ PAGE_SIZE_64
);
871 #endif /* __x86_64__ || __arm__ || __arm64__ */
874 * Fill in the contents of the pages requested by VM.
876 upl_pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
877 pl_count
= length
/ PAGE_SIZE
;
879 retval
== KERN_SUCCESS
&& cur_offset
< length
;
880 cur_offset
+= PAGE_SIZE
) {
882 int num_subpg_signed
, num_subpg_validated
;
883 int num_subpg_tainted
, num_subpg_nx
;
885 if (!upl_page_present(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
))) {
886 /* this page is not in the UPL: skip it */
891 * Establish an explicit pmap mapping of the destination
893 * We can't do a regular VM mapping because the VM page
897 upl_phys_page(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
));
898 assert(dst_pnum
!= 0);
900 dst_vaddr
= (vm_map_offset_t
)
901 PHYSMAP_PTOV((pmap_paddr_t
)dst_pnum
<< PAGE_SHIFT
);
903 pmap_enter(kernel_pmap
,
906 VM_PROT_READ
| VM_PROT_WRITE
,
912 /* retrieve appropriate data for each 4K-page in this page */
913 if (PAGE_SHIFT
== FOURK_PAGE_SHIFT
&&
914 page_shift_user32
== SIXTEENK_PAGE_SHIFT
) {
916 * Find the slot for the requested 4KB page in
919 assert(PAGE_SHIFT
== FOURK_PAGE_SHIFT
);
920 assert(page_shift_user32
== SIXTEENK_PAGE_SHIFT
);
921 sub_page_idx
= ((offset
& SIXTEENK_PAGE_MASK
) /
924 * ... and provide only that one 4KB page.
929 * Iterate over all slots, i.e. retrieve all four 4KB
930 * pages in the requested 16KB page.
932 assert(PAGE_SHIFT
== SIXTEENK_PAGE_SHIFT
);
934 sub_page_cnt
= FOURK_PAGER_SLOTS
;
937 num_subpg_signed
= 0;
938 num_subpg_validated
= 0;
939 num_subpg_tainted
= 0;
942 /* retrieve appropriate data for each 4K-page in this page */
943 for (sub_page
= sub_page_idx
;
944 sub_page
< sub_page_idx
+ sub_page_cnt
;
946 vm_object_t src_object
;
947 memory_object_offset_t src_offset
;
948 vm_offset_t offset_in_src_page
;
949 kern_return_t error_code
;
950 vm_object_t src_page_object
;
955 struct vm_object_fault_info fault_info
;
956 boolean_t subpg_validated
;
957 unsigned subpg_tainted
;
960 if (offset
< SIXTEENK_PAGE_SIZE
) {
962 * The 1st 16K-page can cover multiple
963 * sub-mappings, as described in the
964 * pager->slots[] array.
967 pager
->slots
[sub_page
].backing_object
;
969 pager
->slots
[sub_page
].backing_offset
;
971 fourk_pager_backing_t slot
;
974 * Beyond the 1st 16K-page in the pager is
975 * an extension of the last "sub page" in
976 * the pager->slots[] array.
978 slot
= &pager
->slots
[FOURK_PAGER_SLOTS
-1];
979 src_object
= slot
->backing_object
;
980 src_offset
= slot
->backing_offset
;
981 src_offset
+= FOURK_PAGE_SIZE
;
983 (vm_map_trunc_page(offset
,
985 - SIXTEENK_PAGE_SIZE
);
986 src_offset
+= sub_page
* FOURK_PAGE_SIZE
;
988 offset_in_src_page
= src_offset
& PAGE_MASK_64
;
989 src_offset
= vm_object_trunc_page(src_offset
);
991 if (src_object
== VM_OBJECT_NULL
||
992 src_object
== (vm_object_t
) -1) {
994 bzero((char *)(dst_vaddr
+
995 ((sub_page
-sub_page_idx
)
998 if (fourk_pager_data_request_debug
) {
999 printf("fourk_pager_data_request"
1000 "(%p,0x%llx+0x%lx+0x%04x): "
1005 ((sub_page
- sub_page_idx
)
1006 * FOURK_PAGE_SIZE
));
1011 /* fault in the source page from src_object */
1013 src_page
= VM_PAGE_NULL
;
1014 top_page
= VM_PAGE_NULL
;
1015 fault_info
= *((struct vm_object_fault_info
*)
1016 (uintptr_t)mo_fault_info
);
1017 fault_info
.stealth
= TRUE
;
1018 fault_info
.io_sync
= FALSE
;
1019 fault_info
.mark_zf_absent
= FALSE
;
1020 fault_info
.batch_pmap_op
= FALSE
;
1021 interruptible
= fault_info
.interruptible
;
1022 prot
= VM_PROT_READ
;
1025 vm_object_lock(src_object
);
1026 vm_object_paging_begin(src_object
);
1027 kr
= vm_fault_page(src_object
,
1031 FALSE
, /* src_page not looked up */
1041 case VM_FAULT_SUCCESS
:
1043 case VM_FAULT_RETRY
:
1044 goto retry_src_fault
;
1045 case VM_FAULT_MEMORY_SHORTAGE
:
1046 if (vm_page_wait(interruptible
)) {
1047 goto retry_src_fault
;
1050 case VM_FAULT_INTERRUPTED
:
1051 retval
= MACH_SEND_INTERRUPTED
;
1052 goto src_fault_done
;
1053 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
1054 /* success but no VM page: fail */
1055 vm_object_paging_end(src_object
);
1056 vm_object_unlock(src_object
);
1058 case VM_FAULT_MEMORY_ERROR
:
1059 /* the page is not there! */
1061 retval
= error_code
;
1063 retval
= KERN_MEMORY_ERROR
;
1065 goto src_fault_done
;
1067 panic("fourk_pager_data_request: "
1068 "vm_fault_page() unexpected error 0x%x\n",
1071 assert(src_page
!= VM_PAGE_NULL
);
1072 assert(src_page
->busy
);
1074 src_page_object
= VM_PAGE_OBJECT(src_page
);
1076 if (( !VM_PAGE_PAGEABLE(src_page
)) &&
1077 !VM_PAGE_WIRED(src_page
)) {
1078 vm_page_lockspin_queues();
1079 if (( !VM_PAGE_PAGEABLE(src_page
)) &&
1080 !VM_PAGE_WIRED(src_page
)) {
1081 vm_page_deactivate(src_page
);
1083 vm_page_unlock_queues();
1087 src_vaddr
= (vm_map_offset_t
)
1088 PHYSMAP_PTOV((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(src_page
)
1092 * Establish an explicit mapping of the source
1095 pmap_enter(kernel_pmap
,
1097 VM_PAGE_GET_PHYS_PAGE(src_page
),
1105 * Validate the 4K page we want from
1106 * this source page...
1108 subpg_validated
= FALSE
;
1110 if (src_page_object
->code_signed
) {
1111 vm_page_validate_cs_mapped_chunk(
1113 (const void *) src_vaddr
,
1119 if (subpg_validated
) {
1120 num_subpg_validated
++;
1122 if (subpg_tainted
& CS_VALIDATE_TAINTED
) {
1123 num_subpg_tainted
++;
1125 if (subpg_tainted
& CS_VALIDATE_NX
) {
1126 /* subpg should not be executable */
1127 if (sub_page_cnt
> 1) {
1129 * The destination page has
1130 * more than 1 subpage and its
1131 * other subpages might need
1132 * EXEC, so we do not propagate
1133 * CS_VALIDATE_NX to the
1134 * destination page...
1143 * Copy the relevant portion of the source page
1144 * into the appropriate part of the destination page.
1146 bcopy((const char *)(src_vaddr
+ offset_in_src_page
),
1147 (char *)(dst_vaddr
+
1148 ((sub_page
- sub_page_idx
) *
1151 if (fourk_pager_data_request_debug
) {
1152 printf("fourk_data_request"
1153 "(%p,0x%llx+0x%lx+0x%04x): "
1154 "backed by [%p:0x%llx]: "
1155 "[0x%016llx 0x%016llx] "
1157 "cs_valid=%d cs_tainted=%d cs_nx=%d\n",
1160 (sub_page
-sub_page_idx
)*FOURK_PAGE_SIZE
,
1162 src_page
->offset
+ offset_in_src_page
,
1163 *(uint64_t *)(dst_vaddr
+
1164 ((sub_page
-sub_page_idx
) *
1166 *(uint64_t *)(dst_vaddr
+
1167 ((sub_page
-sub_page_idx
) *
1170 src_page_object
->code_signed
,
1172 !!(subpg_tainted
& CS_VALIDATE_TAINTED
),
1173 !!(subpg_tainted
& CS_VALIDATE_NX
));
1176 #if __x86_64__ || __arm__ || __arm64__
1177 /* we used the 1-to-1 mapping of physical memory */
1179 #else /* __x86_64__ || __arm__ || __arm64__ */
1181 * Remove the pmap mapping of the source page
1184 pmap_remove(kernel_pmap
,
1185 (addr64_t
) src_vaddr
,
1186 (addr64_t
) src_vaddr
+ PAGE_SIZE_64
);
1187 #endif /* __x86_64__ || __arm__ || __arm64__ */
1191 * Cleanup the result of vm_fault_page().
1194 assert(VM_PAGE_OBJECT(src_page
) == src_page_object
);
1196 PAGE_WAKEUP_DONE(src_page
);
1197 src_page
= VM_PAGE_NULL
;
1198 vm_object_paging_end(src_page_object
);
1199 vm_object_unlock(src_page_object
);
1201 vm_object_t top_object
;
1203 top_object
= VM_PAGE_OBJECT(top_page
);
1204 vm_object_lock(top_object
);
1205 VM_PAGE_FREE(top_page
);
1206 top_page
= VM_PAGE_NULL
;
1207 vm_object_paging_end(top_object
);
1208 vm_object_unlock(top_object
);
1212 if (num_subpg_signed
> 0) {
1213 /* some code-signing involved with this 16K page */
1214 if (num_subpg_tainted
> 0) {
1215 /* a tainted subpage taints entire 16K page */
1216 UPL_SET_CS_TAINTED(upl_pl
,
1217 cur_offset
/ PAGE_SIZE
,
1219 /* also mark as "validated" for consisteny */
1220 UPL_SET_CS_VALIDATED(upl_pl
,
1221 cur_offset
/ PAGE_SIZE
,
1223 } else if (num_subpg_validated
== num_subpg_signed
) {
1225 * All the code-signed 4K subpages of this
1226 * 16K page are validated: our 16K page is
1227 * considered validated.
1229 UPL_SET_CS_VALIDATED(upl_pl
,
1230 cur_offset
/ PAGE_SIZE
,
1233 if (num_subpg_nx
> 0) {
1234 UPL_SET_CS_NX(upl_pl
,
1235 cur_offset
/ PAGE_SIZE
,
1243 /* clean up the UPL */
1246 * The pages are currently dirty because we've just been
1247 * writing on them, but as far as we're concerned, they're
1248 * clean since they contain their "original" contents as
1249 * provided by us, the pager.
1250 * Tell the UPL to mark them "clean".
1252 upl_clear_dirty(upl
, TRUE
);
1254 /* abort or commit the UPL */
1255 if (retval
!= KERN_SUCCESS
) {
1257 if (retval
== KERN_ABORTED
) {
1258 wait_result_t wait_result
;
1261 * We aborted the fault and did not provide
1262 * any contents for the requested pages but
1263 * the pages themselves are not invalid, so
1264 * let's return success and let the caller
1265 * retry the fault, in case it might succeed
1266 * later (when the decryption code is up and
1267 * running in the kernel, for example).
1269 retval
= KERN_SUCCESS
;
1271 * Wait a little bit first to avoid using
1272 * too much CPU time retrying and failing
1273 * the same fault over and over again.
1275 wait_result
= assert_wait_timeout(
1276 (event_t
) fourk_pager_data_request
,
1280 assert(wait_result
== THREAD_WAITING
);
1281 wait_result
= thread_block(THREAD_CONTINUE_NULL
);
1282 assert(wait_result
== THREAD_TIMED_OUT
);
1286 upl_commit_range(upl
, 0, upl
->size
,
1287 UPL_COMMIT_CS_VALIDATED
| UPL_COMMIT_WRITTEN_BY_KERNEL
,
1288 upl_pl
, pl_count
, &empty
);
1291 /* and deallocate the UPL */
1292 upl_deallocate(upl
);
1295 if (kernel_mapping
!= 0) {
1296 /* clean up the mapping of the source and destination pages */
1297 kr
= vm_map_remove(kernel_map
,
1299 kernel_mapping
+ (2 * PAGE_SIZE_64
),
1301 assert(kr
== KERN_SUCCESS
);
1313 fourk_pager_populate(
1314 memory_object_t mem_obj
,
1315 boolean_t overwrite
,
1317 vm_object_t new_backing_object
,
1318 vm_object_offset_t new_backing_offset
,
1319 vm_object_t
*old_backing_object
,
1320 vm_object_offset_t
*old_backing_offset
)
1322 fourk_pager_t pager
;
1324 pager
= fourk_pager_lookup(mem_obj
);
1325 if (pager
== NULL
) {
1326 return KERN_INVALID_ARGUMENT
;
1329 assert(pager
->ref_count
> 0);
1330 assert(pager
->pager_control
!= MEMORY_OBJECT_CONTROL_NULL
);
1332 if (index
< 0 || index
> FOURK_PAGER_SLOTS
) {
1333 return KERN_INVALID_ARGUMENT
;
1337 (pager
->slots
[index
].backing_object
!= (vm_object_t
) -1 ||
1338 pager
->slots
[index
].backing_offset
!= (vm_object_offset_t
) -1)) {
1339 return KERN_INVALID_ADDRESS
;
1342 *old_backing_object
= pager
->slots
[index
].backing_object
;
1343 *old_backing_offset
= pager
->slots
[index
].backing_offset
;
1345 pager
->slots
[index
].backing_object
= new_backing_object
;
1346 pager
->slots
[index
].backing_offset
= new_backing_offset
;
1348 return KERN_SUCCESS
;