]>
Commit | Line | Data |
---|---|---|
3e170ce0 A |
1 | /* |
2 | * Copyright (c) 2014 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <sys/errno.h> | |
30 | ||
31 | #include <mach/mach_types.h> | |
32 | #include <mach/mach_traps.h> | |
33 | #include <mach/host_priv.h> | |
34 | #include <mach/kern_return.h> | |
35 | #include <mach/memory_object_control.h> | |
36 | #include <mach/memory_object_types.h> | |
37 | #include <mach/port.h> | |
38 | #include <mach/policy.h> | |
39 | #include <mach/upl.h> | |
40 | #include <mach/thread_act.h> | |
41 | #include <mach/mach_vm.h> | |
42 | ||
43 | #include <kern/host.h> | |
44 | #include <kern/kalloc.h> | |
45 | #include <kern/page_decrypt.h> | |
46 | #include <kern/queue.h> | |
47 | #include <kern/thread.h> | |
39037602 | 48 | #include <kern/ipc_kobject.h> |
3e170ce0 A |
49 | |
50 | #include <ipc/ipc_port.h> | |
51 | #include <ipc/ipc_space.h> | |
52 | ||
3e170ce0 A |
53 | #include <vm/vm_fault.h> |
54 | #include <vm/vm_map.h> | |
55 | #include <vm/vm_pageout.h> | |
56 | #include <vm/memory_object.h> | |
57 | #include <vm/vm_pageout.h> | |
58 | #include <vm/vm_protos.h> | |
39037602 | 59 | #include <vm/vm_kern.h> |
3e170ce0 A |
60 | |
61 | ||
62 | /* | |
63 | * 4K MEMORY PAGER | |
64 | * | |
65 | * This external memory manager (EMM) handles memory mappings that are | |
66 | * 4K-aligned but not page-aligned and can therefore not be mapped directly. | |
67 | * | |
68 | * It mostly handles page-in requests (from memory_object_data_request()) by | |
69 | * getting the data needed to fill in each 4K-chunk. That can require | |
70 | * getting data from one or two pages from its backing VM object | |
71 | * (a file or a "apple-protected" pager backed by an encrypted file), and | |
72 | * copies the data to another page so that it is aligned as expected by | |
73 | * the mapping. | |
74 | * | |
75 | * Returned pages can never be dirtied and must always be mapped copy-on-write, | |
76 | * so the memory manager does not need to handle page-out requests (from | |
77 | * memory_object_data_return()). | |
78 | * | |
79 | */ | |
80 | ||
81 | /* forward declarations */ | |
82 | void fourk_pager_reference(memory_object_t mem_obj); | |
83 | void fourk_pager_deallocate(memory_object_t mem_obj); | |
84 | kern_return_t fourk_pager_init(memory_object_t mem_obj, | |
85 | memory_object_control_t control, | |
86 | memory_object_cluster_size_t pg_size); | |
87 | kern_return_t fourk_pager_terminate(memory_object_t mem_obj); | |
88 | kern_return_t fourk_pager_data_request(memory_object_t mem_obj, | |
89 | memory_object_offset_t offset, | |
90 | memory_object_cluster_size_t length, | |
91 | vm_prot_t protection_required, | |
92 | memory_object_fault_info_t fault_info); | |
93 | kern_return_t fourk_pager_data_return(memory_object_t mem_obj, | |
94 | memory_object_offset_t offset, | |
95 | memory_object_cluster_size_t data_cnt, | |
96 | memory_object_offset_t *resid_offset, | |
97 | int *io_error, | |
98 | boolean_t dirty, | |
99 | boolean_t kernel_copy, | |
100 | int upl_flags); | |
101 | kern_return_t fourk_pager_data_initialize(memory_object_t mem_obj, | |
102 | memory_object_offset_t offset, | |
103 | memory_object_cluster_size_t data_cnt); | |
104 | kern_return_t fourk_pager_data_unlock(memory_object_t mem_obj, | |
105 | memory_object_offset_t offset, | |
106 | memory_object_size_t size, | |
107 | vm_prot_t desired_access); | |
108 | kern_return_t fourk_pager_synchronize(memory_object_t mem_obj, | |
109 | memory_object_offset_t offset, | |
110 | memory_object_size_t length, | |
111 | vm_sync_t sync_flags); | |
112 | kern_return_t fourk_pager_map(memory_object_t mem_obj, | |
113 | vm_prot_t prot); | |
114 | kern_return_t fourk_pager_last_unmap(memory_object_t mem_obj); | |
115 | ||
116 | /* | |
117 | * Vector of VM operations for this EMM. | |
118 | * These routines are invoked by VM via the memory_object_*() interfaces. | |
119 | */ | |
120 | const struct memory_object_pager_ops fourk_pager_ops = { | |
121 | fourk_pager_reference, | |
122 | fourk_pager_deallocate, | |
123 | fourk_pager_init, | |
124 | fourk_pager_terminate, | |
125 | fourk_pager_data_request, | |
126 | fourk_pager_data_return, | |
127 | fourk_pager_data_initialize, | |
128 | fourk_pager_data_unlock, | |
129 | fourk_pager_synchronize, | |
130 | fourk_pager_map, | |
131 | fourk_pager_last_unmap, | |
132 | NULL, /* data_reclaim */ | |
133 | "fourk_pager" | |
134 | }; | |
135 | ||
136 | /* | |
137 | * The "fourk_pager" describes a memory object backed by | |
138 | * the "4K" EMM. | |
139 | */ | |
140 | #define FOURK_PAGER_SLOTS 4 /* 16K / 4K */ | |
141 | typedef struct fourk_pager_backing { | |
142 | vm_object_t backing_object; | |
143 | vm_object_offset_t backing_offset; | |
144 | } *fourk_pager_backing_t; | |
145 | typedef struct fourk_pager { | |
146 | struct ipc_object_header pager_header; /* fake ip_kotype() */ | |
147 | memory_object_pager_ops_t pager_ops; /* == &fourk_pager_ops */ | |
148 | memory_object_control_t pager_control; /* mem object control handle */ | |
149 | queue_chain_t pager_queue; /* next & prev pagers */ | |
150 | unsigned int ref_count; /* reference count */ | |
151 | int is_ready; /* is this pager ready ? */ | |
152 | int is_mapped; /* is this mem_obj mapped ? */ | |
153 | struct fourk_pager_backing slots[FOURK_PAGER_SLOTS]; /* backing for each | |
154 | 4K-chunk */ | |
155 | } *fourk_pager_t; | |
156 | #define FOURK_PAGER_NULL ((fourk_pager_t) NULL) | |
157 | #define pager_ikot pager_header.io_bits | |
158 | ||
159 | /* | |
160 | * List of memory objects managed by this EMM. | |
161 | * The list is protected by the "fourk_pager_lock" lock. | |
162 | */ | |
163 | int fourk_pager_count = 0; /* number of pagers */ | |
164 | int fourk_pager_count_mapped = 0; /* number of unmapped pagers */ | |
165 | queue_head_t fourk_pager_queue; | |
166 | decl_lck_mtx_data(,fourk_pager_lock) | |
167 | ||
168 | /* | |
169 | * Maximum number of unmapped pagers we're willing to keep around. | |
170 | */ | |
171 | int fourk_pager_cache_limit = 0; | |
172 | ||
173 | /* | |
174 | * Statistics & counters. | |
175 | */ | |
176 | int fourk_pager_count_max = 0; | |
177 | int fourk_pager_count_unmapped_max = 0; | |
178 | int fourk_pager_num_trim_max = 0; | |
179 | int fourk_pager_num_trim_total = 0; | |
180 | ||
181 | ||
182 | lck_grp_t fourk_pager_lck_grp; | |
183 | lck_grp_attr_t fourk_pager_lck_grp_attr; | |
184 | lck_attr_t fourk_pager_lck_attr; | |
185 | ||
186 | ||
187 | /* internal prototypes */ | |
188 | fourk_pager_t fourk_pager_lookup(memory_object_t mem_obj); | |
189 | void fourk_pager_dequeue(fourk_pager_t pager); | |
190 | void fourk_pager_deallocate_internal(fourk_pager_t pager, | |
191 | boolean_t locked); | |
192 | void fourk_pager_terminate_internal(fourk_pager_t pager); | |
193 | void fourk_pager_trim(void); | |
194 | ||
195 | ||
196 | #if DEBUG | |
197 | int fourk_pagerdebug = 0; | |
198 | #define PAGER_ALL 0xffffffff | |
199 | #define PAGER_INIT 0x00000001 | |
200 | #define PAGER_PAGEIN 0x00000002 | |
201 | ||
202 | #define PAGER_DEBUG(LEVEL, A) \ | |
203 | MACRO_BEGIN \ | |
204 | if ((fourk_pagerdebug & LEVEL)==LEVEL) { \ | |
205 | printf A; \ | |
206 | } \ | |
207 | MACRO_END | |
208 | #else | |
209 | #define PAGER_DEBUG(LEVEL, A) | |
210 | #endif | |
211 | ||
212 | ||
213 | void | |
214 | fourk_pager_bootstrap(void) | |
215 | { | |
216 | lck_grp_attr_setdefault(&fourk_pager_lck_grp_attr); | |
217 | lck_grp_init(&fourk_pager_lck_grp, "4K-pager", &fourk_pager_lck_grp_attr); | |
218 | lck_attr_setdefault(&fourk_pager_lck_attr); | |
219 | lck_mtx_init(&fourk_pager_lock, &fourk_pager_lck_grp, &fourk_pager_lck_attr); | |
220 | queue_init(&fourk_pager_queue); | |
221 | } | |
222 | ||
223 | /* | |
224 | * fourk_pager_init() | |
225 | * | |
226 | * Initialize the memory object and makes it ready to be used and mapped. | |
227 | */ | |
228 | kern_return_t | |
229 | fourk_pager_init( | |
230 | memory_object_t mem_obj, | |
231 | memory_object_control_t control, | |
232 | #if !DEBUG | |
233 | __unused | |
234 | #endif | |
235 | memory_object_cluster_size_t pg_size) | |
236 | { | |
237 | fourk_pager_t pager; | |
238 | kern_return_t kr; | |
239 | memory_object_attr_info_data_t attributes; | |
240 | ||
241 | PAGER_DEBUG(PAGER_ALL, | |
242 | ("fourk_pager_init: %p, %p, %x\n", | |
243 | mem_obj, control, pg_size)); | |
244 | ||
245 | if (control == MEMORY_OBJECT_CONTROL_NULL) | |
246 | return KERN_INVALID_ARGUMENT; | |
247 | ||
248 | pager = fourk_pager_lookup(mem_obj); | |
249 | ||
250 | memory_object_control_reference(control); | |
251 | ||
252 | pager->pager_control = control; | |
253 | ||
254 | attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
255 | /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/ | |
256 | attributes.cluster_size = (1 << (PAGE_SHIFT)); | |
257 | attributes.may_cache_object = FALSE; | |
258 | attributes.temporary = TRUE; | |
259 | ||
260 | kr = memory_object_change_attributes( | |
261 | control, | |
262 | MEMORY_OBJECT_ATTRIBUTE_INFO, | |
263 | (memory_object_info_t) &attributes, | |
264 | MEMORY_OBJECT_ATTR_INFO_COUNT); | |
265 | if (kr != KERN_SUCCESS) | |
266 | panic("fourk_pager_init: " | |
267 | "memory_object_change_attributes() failed"); | |
268 | ||
39037602 A |
269 | #if CONFIG_SECLUDED_MEMORY |
270 | if (secluded_for_filecache) { | |
271 | memory_object_mark_eligible_for_secluded(control, TRUE); | |
272 | } | |
273 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
274 | ||
3e170ce0 A |
275 | return KERN_SUCCESS; |
276 | } | |
277 | ||
278 | /* | |
279 | * fourk_pager_data_return() | |
280 | * | |
281 | * Handles page-out requests from VM. This should never happen since | |
282 | * the pages provided by this EMM are not supposed to be dirty or dirtied | |
283 | * and VM should simply discard the contents and reclaim the pages if it | |
284 | * needs to. | |
285 | */ | |
286 | kern_return_t | |
287 | fourk_pager_data_return( | |
288 | __unused memory_object_t mem_obj, | |
289 | __unused memory_object_offset_t offset, | |
290 | __unused memory_object_cluster_size_t data_cnt, | |
291 | __unused memory_object_offset_t *resid_offset, | |
292 | __unused int *io_error, | |
293 | __unused boolean_t dirty, | |
294 | __unused boolean_t kernel_copy, | |
295 | __unused int upl_flags) | |
296 | { | |
297 | panic("fourk_pager_data_return: should never get called"); | |
298 | return KERN_FAILURE; | |
299 | } | |
300 | ||
301 | kern_return_t | |
302 | fourk_pager_data_initialize( | |
303 | __unused memory_object_t mem_obj, | |
304 | __unused memory_object_offset_t offset, | |
305 | __unused memory_object_cluster_size_t data_cnt) | |
306 | { | |
307 | panic("fourk_pager_data_initialize: should never get called"); | |
308 | return KERN_FAILURE; | |
309 | } | |
310 | ||
311 | kern_return_t | |
312 | fourk_pager_data_unlock( | |
313 | __unused memory_object_t mem_obj, | |
314 | __unused memory_object_offset_t offset, | |
315 | __unused memory_object_size_t size, | |
316 | __unused vm_prot_t desired_access) | |
317 | { | |
318 | return KERN_FAILURE; | |
319 | } | |
320 | ||
321 | /* | |
322 | * fourk_pager_reference() | |
323 | * | |
324 | * Get a reference on this memory object. | |
325 | * For external usage only. Assumes that the initial reference count is not 0, | |
326 | * i.e one should not "revive" a dead pager this way. | |
327 | */ | |
328 | void | |
329 | fourk_pager_reference( | |
330 | memory_object_t mem_obj) | |
331 | { | |
332 | fourk_pager_t pager; | |
333 | ||
334 | pager = fourk_pager_lookup(mem_obj); | |
335 | ||
336 | lck_mtx_lock(&fourk_pager_lock); | |
337 | assert(pager->ref_count > 0); | |
338 | pager->ref_count++; | |
339 | lck_mtx_unlock(&fourk_pager_lock); | |
340 | } | |
341 | ||
342 | ||
343 | /* | |
344 | * fourk_pager_dequeue: | |
345 | * | |
346 | * Removes a pager from the list of pagers. | |
347 | * | |
348 | * The caller must hold "fourk_pager_lock". | |
349 | */ | |
350 | void | |
351 | fourk_pager_dequeue( | |
352 | fourk_pager_t pager) | |
353 | { | |
354 | assert(!pager->is_mapped); | |
355 | ||
356 | queue_remove(&fourk_pager_queue, | |
357 | pager, | |
358 | fourk_pager_t, | |
359 | pager_queue); | |
360 | pager->pager_queue.next = NULL; | |
361 | pager->pager_queue.prev = NULL; | |
362 | ||
363 | fourk_pager_count--; | |
364 | } | |
365 | ||
366 | /* | |
367 | * fourk_pager_terminate_internal: | |
368 | * | |
369 | * Trigger the asynchronous termination of the memory object associated | |
370 | * with this pager. | |
371 | * When the memory object is terminated, there will be one more call | |
372 | * to memory_object_deallocate() (i.e. fourk_pager_deallocate()) | |
373 | * to finish the clean up. | |
374 | * | |
375 | * "fourk_pager_lock" should not be held by the caller. | |
376 | * We don't need the lock because the pager has already been removed from | |
377 | * the pagers' list and is now ours exclusively. | |
378 | */ | |
379 | void | |
380 | fourk_pager_terminate_internal( | |
381 | fourk_pager_t pager) | |
382 | { | |
383 | int i; | |
384 | ||
385 | assert(pager->is_ready); | |
386 | assert(!pager->is_mapped); | |
387 | ||
388 | for (i = 0; i < FOURK_PAGER_SLOTS; i++) { | |
389 | if (pager->slots[i].backing_object != VM_OBJECT_NULL && | |
390 | pager->slots[i].backing_object != (vm_object_t) -1) { | |
391 | vm_object_deallocate(pager->slots[i].backing_object); | |
392 | pager->slots[i].backing_object = (vm_object_t) -1; | |
393 | pager->slots[i].backing_offset = (vm_object_offset_t) -1; | |
394 | } | |
395 | } | |
396 | ||
397 | /* trigger the destruction of the memory object */ | |
398 | memory_object_destroy(pager->pager_control, 0); | |
399 | } | |
400 | ||
401 | /* | |
402 | * fourk_pager_deallocate_internal() | |
403 | * | |
404 | * Release a reference on this pager and free it when the last | |
405 | * reference goes away. | |
406 | * Can be called with fourk_pager_lock held or not but always returns | |
407 | * with it unlocked. | |
408 | */ | |
409 | void | |
410 | fourk_pager_deallocate_internal( | |
411 | fourk_pager_t pager, | |
412 | boolean_t locked) | |
413 | { | |
414 | boolean_t needs_trimming; | |
415 | int count_unmapped; | |
416 | ||
417 | if (! locked) { | |
418 | lck_mtx_lock(&fourk_pager_lock); | |
419 | } | |
420 | ||
421 | count_unmapped = (fourk_pager_count - | |
422 | fourk_pager_count_mapped); | |
423 | if (count_unmapped > fourk_pager_cache_limit) { | |
424 | /* we have too many unmapped pagers: trim some */ | |
425 | needs_trimming = TRUE; | |
426 | } else { | |
427 | needs_trimming = FALSE; | |
428 | } | |
429 | ||
430 | /* drop a reference on this pager */ | |
431 | pager->ref_count--; | |
432 | ||
433 | if (pager->ref_count == 1) { | |
434 | /* | |
435 | * Only the "named" reference is left, which means that | |
436 | * no one is really holding on to this pager anymore. | |
437 | * Terminate it. | |
438 | */ | |
439 | fourk_pager_dequeue(pager); | |
440 | /* the pager is all ours: no need for the lock now */ | |
441 | lck_mtx_unlock(&fourk_pager_lock); | |
442 | fourk_pager_terminate_internal(pager); | |
443 | } else if (pager->ref_count == 0) { | |
444 | /* | |
445 | * Dropped the existence reference; the memory object has | |
446 | * been terminated. Do some final cleanup and release the | |
447 | * pager structure. | |
448 | */ | |
449 | lck_mtx_unlock(&fourk_pager_lock); | |
450 | if (pager->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
451 | memory_object_control_deallocate(pager->pager_control); | |
452 | pager->pager_control = MEMORY_OBJECT_CONTROL_NULL; | |
453 | } | |
454 | kfree(pager, sizeof (*pager)); | |
455 | pager = FOURK_PAGER_NULL; | |
456 | } else { | |
457 | /* there are still plenty of references: keep going... */ | |
458 | lck_mtx_unlock(&fourk_pager_lock); | |
459 | } | |
460 | ||
461 | if (needs_trimming) { | |
462 | fourk_pager_trim(); | |
463 | } | |
464 | /* caution: lock is not held on return... */ | |
465 | } | |
466 | ||
467 | /* | |
468 | * fourk_pager_deallocate() | |
469 | * | |
470 | * Release a reference on this pager and free it when the last | |
471 | * reference goes away. | |
472 | */ | |
473 | void | |
474 | fourk_pager_deallocate( | |
475 | memory_object_t mem_obj) | |
476 | { | |
477 | fourk_pager_t pager; | |
478 | ||
479 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_deallocate: %p\n", mem_obj)); | |
480 | pager = fourk_pager_lookup(mem_obj); | |
481 | fourk_pager_deallocate_internal(pager, FALSE); | |
482 | } | |
483 | ||
484 | /* | |
485 | * | |
486 | */ | |
487 | kern_return_t | |
488 | fourk_pager_terminate( | |
489 | #if !DEBUG | |
490 | __unused | |
491 | #endif | |
492 | memory_object_t mem_obj) | |
493 | { | |
494 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_terminate: %p\n", mem_obj)); | |
495 | ||
496 | return KERN_SUCCESS; | |
497 | } | |
498 | ||
499 | /* | |
500 | * | |
501 | */ | |
502 | kern_return_t | |
503 | fourk_pager_synchronize( | |
504 | memory_object_t mem_obj, | |
505 | memory_object_offset_t offset, | |
506 | memory_object_size_t length, | |
507 | __unused vm_sync_t sync_flags) | |
508 | { | |
509 | fourk_pager_t pager; | |
510 | ||
511 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_synchronize: %p\n", mem_obj)); | |
512 | ||
513 | pager = fourk_pager_lookup(mem_obj); | |
514 | ||
515 | memory_object_synchronize_completed(pager->pager_control, | |
516 | offset, length); | |
517 | ||
518 | return KERN_SUCCESS; | |
519 | } | |
520 | ||
521 | /* | |
522 | * fourk_pager_map() | |
523 | * | |
524 | * This allows VM to let us, the EMM, know that this memory object | |
525 | * is currently mapped one or more times. This is called by VM each time | |
526 | * the memory object gets mapped and we take one extra reference on the | |
527 | * memory object to account for all its mappings. | |
528 | */ | |
529 | kern_return_t | |
530 | fourk_pager_map( | |
531 | memory_object_t mem_obj, | |
532 | __unused vm_prot_t prot) | |
533 | { | |
534 | fourk_pager_t pager; | |
535 | ||
536 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_map: %p\n", mem_obj)); | |
537 | ||
538 | pager = fourk_pager_lookup(mem_obj); | |
539 | ||
540 | lck_mtx_lock(&fourk_pager_lock); | |
541 | assert(pager->is_ready); | |
542 | assert(pager->ref_count > 0); /* pager is alive */ | |
543 | if (pager->is_mapped == FALSE) { | |
544 | /* | |
545 | * First mapping of this pager: take an extra reference | |
546 | * that will remain until all the mappings of this pager | |
547 | * are removed. | |
548 | */ | |
549 | pager->is_mapped = TRUE; | |
550 | pager->ref_count++; | |
551 | fourk_pager_count_mapped++; | |
552 | } | |
553 | lck_mtx_unlock(&fourk_pager_lock); | |
554 | ||
555 | return KERN_SUCCESS; | |
556 | } | |
557 | ||
558 | /* | |
559 | * fourk_pager_last_unmap() | |
560 | * | |
561 | * This is called by VM when this memory object is no longer mapped anywhere. | |
562 | */ | |
563 | kern_return_t | |
564 | fourk_pager_last_unmap( | |
565 | memory_object_t mem_obj) | |
566 | { | |
567 | fourk_pager_t pager; | |
568 | int count_unmapped; | |
569 | ||
570 | PAGER_DEBUG(PAGER_ALL, | |
571 | ("fourk_pager_last_unmap: %p\n", mem_obj)); | |
572 | ||
573 | pager = fourk_pager_lookup(mem_obj); | |
574 | ||
575 | lck_mtx_lock(&fourk_pager_lock); | |
576 | if (pager->is_mapped) { | |
577 | /* | |
578 | * All the mappings are gone, so let go of the one extra | |
579 | * reference that represents all the mappings of this pager. | |
580 | */ | |
581 | fourk_pager_count_mapped--; | |
582 | count_unmapped = (fourk_pager_count - | |
583 | fourk_pager_count_mapped); | |
584 | if (count_unmapped > fourk_pager_count_unmapped_max) { | |
585 | fourk_pager_count_unmapped_max = count_unmapped; | |
586 | } | |
587 | pager->is_mapped = FALSE; | |
588 | fourk_pager_deallocate_internal(pager, TRUE); | |
589 | /* caution: deallocate_internal() released the lock ! */ | |
590 | } else { | |
591 | lck_mtx_unlock(&fourk_pager_lock); | |
592 | } | |
593 | ||
594 | return KERN_SUCCESS; | |
595 | } | |
596 | ||
597 | ||
598 | /* | |
599 | * | |
600 | */ | |
601 | fourk_pager_t | |
602 | fourk_pager_lookup( | |
603 | memory_object_t mem_obj) | |
604 | { | |
605 | fourk_pager_t pager; | |
606 | ||
607 | pager = (fourk_pager_t) mem_obj; | |
608 | assert(pager->pager_ops == &fourk_pager_ops); | |
609 | assert(pager->ref_count > 0); | |
610 | return pager; | |
611 | } | |
612 | ||
613 | void | |
614 | fourk_pager_trim(void) | |
615 | { | |
616 | fourk_pager_t pager, prev_pager; | |
617 | queue_head_t trim_queue; | |
618 | int num_trim; | |
619 | int count_unmapped; | |
620 | ||
621 | lck_mtx_lock(&fourk_pager_lock); | |
622 | ||
623 | /* | |
624 | * We have too many pagers, try and trim some unused ones, | |
625 | * starting with the oldest pager at the end of the queue. | |
626 | */ | |
627 | queue_init(&trim_queue); | |
628 | num_trim = 0; | |
629 | ||
630 | for (pager = (fourk_pager_t) | |
631 | queue_last(&fourk_pager_queue); | |
632 | !queue_end(&fourk_pager_queue, | |
633 | (queue_entry_t) pager); | |
634 | pager = prev_pager) { | |
635 | /* get prev elt before we dequeue */ | |
636 | prev_pager = (fourk_pager_t) | |
637 | queue_prev(&pager->pager_queue); | |
638 | ||
639 | if (pager->ref_count == 2 && | |
640 | pager->is_ready && | |
641 | !pager->is_mapped) { | |
642 | /* this pager can be trimmed */ | |
643 | num_trim++; | |
644 | /* remove this pager from the main list ... */ | |
645 | fourk_pager_dequeue(pager); | |
646 | /* ... and add it to our trim queue */ | |
647 | queue_enter_first(&trim_queue, | |
648 | pager, | |
649 | fourk_pager_t, | |
650 | pager_queue); | |
651 | ||
652 | count_unmapped = (fourk_pager_count - | |
653 | fourk_pager_count_mapped); | |
654 | if (count_unmapped <= fourk_pager_cache_limit) { | |
655 | /* we have enough pagers to trim */ | |
656 | break; | |
657 | } | |
658 | } | |
659 | } | |
660 | if (num_trim > fourk_pager_num_trim_max) { | |
661 | fourk_pager_num_trim_max = num_trim; | |
662 | } | |
663 | fourk_pager_num_trim_total += num_trim; | |
664 | ||
665 | lck_mtx_unlock(&fourk_pager_lock); | |
666 | ||
667 | /* terminate the trimmed pagers */ | |
668 | while (!queue_empty(&trim_queue)) { | |
669 | queue_remove_first(&trim_queue, | |
670 | pager, | |
671 | fourk_pager_t, | |
672 | pager_queue); | |
673 | pager->pager_queue.next = NULL; | |
674 | pager->pager_queue.prev = NULL; | |
675 | assert(pager->ref_count == 2); | |
676 | /* | |
677 | * We can't call deallocate_internal() because the pager | |
678 | * has already been dequeued, but we still need to remove | |
679 | * a reference. | |
680 | */ | |
681 | pager->ref_count--; | |
682 | fourk_pager_terminate_internal(pager); | |
683 | } | |
684 | } | |
685 | ||
686 | ||
687 | ||
688 | ||
689 | ||
690 | ||
691 | vm_object_t | |
692 | fourk_pager_to_vm_object( | |
693 | memory_object_t mem_obj) | |
694 | { | |
695 | fourk_pager_t pager; | |
696 | vm_object_t object; | |
697 | ||
698 | pager = fourk_pager_lookup(mem_obj); | |
699 | if (pager == NULL) { | |
700 | return VM_OBJECT_NULL; | |
701 | } | |
702 | ||
703 | assert(pager->ref_count > 0); | |
704 | assert(pager->pager_control != MEMORY_OBJECT_CONTROL_NULL); | |
705 | object = memory_object_control_to_vm_object(pager->pager_control); | |
706 | assert(object != VM_OBJECT_NULL); | |
707 | return object; | |
708 | } | |
709 | ||
710 | memory_object_t | |
711 | fourk_pager_create(void) | |
712 | { | |
713 | fourk_pager_t pager; | |
714 | memory_object_control_t control; | |
715 | kern_return_t kr; | |
716 | int i; | |
717 | ||
718 | #if 00 | |
719 | if (PAGE_SIZE_64 == FOURK_PAGE_SIZE) { | |
720 | panic("fourk_pager_create: page size is 4K !?"); | |
721 | } | |
722 | #endif | |
723 | ||
724 | pager = (fourk_pager_t) kalloc(sizeof (*pager)); | |
725 | if (pager == FOURK_PAGER_NULL) { | |
726 | return MEMORY_OBJECT_NULL; | |
727 | } | |
728 | bzero(pager, sizeof (*pager)); | |
729 | ||
730 | /* | |
731 | * The vm_map call takes both named entry ports and raw memory | |
732 | * objects in the same parameter. We need to make sure that | |
733 | * vm_map does not see this object as a named entry port. So, | |
734 | * we reserve the first word in the object for a fake ip_kotype | |
735 | * setting - that will tell vm_map to use it as a memory object. | |
736 | */ | |
737 | pager->pager_ops = &fourk_pager_ops; | |
738 | pager->pager_ikot = IKOT_MEMORY_OBJECT; | |
739 | pager->pager_control = MEMORY_OBJECT_CONTROL_NULL; | |
740 | pager->ref_count = 2; /* existence + setup reference */ | |
741 | pager->is_ready = FALSE;/* not ready until it has a "name" */ | |
742 | pager->is_mapped = FALSE; | |
743 | ||
744 | for (i = 0; i < FOURK_PAGER_SLOTS; i++) { | |
745 | pager->slots[i].backing_object = (vm_object_t) -1; | |
746 | pager->slots[i].backing_offset = (vm_object_offset_t) -1; | |
747 | } | |
748 | ||
749 | lck_mtx_lock(&fourk_pager_lock); | |
750 | ||
751 | /* enter new pager at the head of our list of pagers */ | |
752 | queue_enter_first(&fourk_pager_queue, | |
753 | pager, | |
754 | fourk_pager_t, | |
755 | pager_queue); | |
756 | fourk_pager_count++; | |
757 | if (fourk_pager_count > fourk_pager_count_max) { | |
758 | fourk_pager_count_max = fourk_pager_count; | |
759 | } | |
760 | lck_mtx_unlock(&fourk_pager_lock); | |
761 | ||
762 | kr = memory_object_create_named((memory_object_t) pager, | |
763 | 0, | |
764 | &control); | |
765 | assert(kr == KERN_SUCCESS); | |
766 | ||
767 | lck_mtx_lock(&fourk_pager_lock); | |
768 | /* the new pager is now ready to be used */ | |
769 | pager->is_ready = TRUE; | |
770 | lck_mtx_unlock(&fourk_pager_lock); | |
771 | ||
772 | /* wakeup anyone waiting for this pager to be ready */ | |
773 | thread_wakeup(&pager->is_ready); | |
774 | ||
775 | return (memory_object_t) pager; | |
776 | } | |
777 | ||
778 | /* | |
779 | * fourk_pager_data_request() | |
780 | * | |
781 | * Handles page-in requests from VM. | |
782 | */ | |
783 | int fourk_pager_data_request_debug = 0; | |
784 | kern_return_t | |
785 | fourk_pager_data_request( | |
786 | memory_object_t mem_obj, | |
787 | memory_object_offset_t offset, | |
788 | memory_object_cluster_size_t length, | |
789 | #if !DEBUG | |
790 | __unused | |
791 | #endif | |
792 | vm_prot_t protection_required, | |
793 | memory_object_fault_info_t mo_fault_info) | |
794 | { | |
795 | fourk_pager_t pager; | |
796 | memory_object_control_t mo_control; | |
797 | upl_t upl; | |
798 | int upl_flags; | |
799 | upl_size_t upl_size; | |
800 | upl_page_info_t *upl_pl; | |
801 | unsigned int pl_count; | |
802 | vm_object_t dst_object; | |
803 | kern_return_t kr, retval; | |
804 | vm_map_offset_t kernel_mapping; | |
805 | vm_offset_t src_vaddr, dst_vaddr; | |
806 | vm_offset_t cur_offset; | |
807 | int sub_page; | |
808 | int sub_page_idx, sub_page_cnt; | |
809 | ||
810 | pager = fourk_pager_lookup(mem_obj); | |
811 | assert(pager->is_ready); | |
812 | assert(pager->ref_count > 1); /* pager is alive and mapped */ | |
813 | ||
814 | PAGER_DEBUG(PAGER_PAGEIN, ("fourk_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj, offset, length, protection_required, pager)); | |
815 | ||
816 | retval = KERN_SUCCESS; | |
817 | kernel_mapping = 0; | |
818 | ||
819 | offset = memory_object_trunc_page(offset); | |
820 | ||
821 | /* | |
822 | * Gather in a UPL all the VM pages requested by VM. | |
823 | */ | |
824 | mo_control = pager->pager_control; | |
825 | ||
826 | upl_size = length; | |
827 | upl_flags = | |
828 | UPL_RET_ONLY_ABSENT | | |
829 | UPL_SET_LITE | | |
830 | UPL_NO_SYNC | | |
831 | UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */ | |
832 | UPL_SET_INTERNAL; | |
833 | pl_count = 0; | |
834 | kr = memory_object_upl_request(mo_control, | |
835 | offset, upl_size, | |
836 | &upl, NULL, NULL, upl_flags); | |
837 | if (kr != KERN_SUCCESS) { | |
838 | retval = kr; | |
839 | goto done; | |
840 | } | |
841 | dst_object = mo_control->moc_object; | |
842 | assert(dst_object != VM_OBJECT_NULL); | |
843 | ||
844 | #if __x86_64__ || __arm__ || __arm64__ | |
845 | /* use the 1-to-1 mapping of physical memory */ | |
846 | #else /* __x86_64__ || __arm__ || __arm64__ */ | |
847 | /* | |
848 | * Reserve 2 virtual pages in the kernel address space to map the | |
849 | * source and destination physical pages when it's their turn to | |
850 | * be processed. | |
851 | */ | |
852 | vm_map_entry_t map_entry; | |
853 | ||
854 | vm_object_reference(kernel_object); /* ref. for mapping */ | |
855 | kr = vm_map_find_space(kernel_map, | |
856 | &kernel_mapping, | |
857 | 2 * PAGE_SIZE_64, | |
858 | 0, | |
859 | 0, | |
860 | &map_entry); | |
861 | if (kr != KERN_SUCCESS) { | |
862 | vm_object_deallocate(kernel_object); | |
863 | retval = kr; | |
864 | goto done; | |
865 | } | |
866 | map_entry->object.vm_object = kernel_object; | |
867 | map_entry->offset = kernel_mapping; | |
868 | vm_map_unlock(kernel_map); | |
869 | src_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping); | |
870 | dst_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping + PAGE_SIZE_64); | |
871 | #endif /* __x86_64__ || __arm__ || __arm64__ */ | |
872 | ||
873 | /* | |
874 | * Fill in the contents of the pages requested by VM. | |
875 | */ | |
876 | upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
877 | pl_count = length / PAGE_SIZE; | |
878 | for (cur_offset = 0; | |
879 | retval == KERN_SUCCESS && cur_offset < length; | |
880 | cur_offset += PAGE_SIZE) { | |
881 | ppnum_t dst_pnum; | |
882 | int num_subpg_signed, num_subpg_validated; | |
883 | int num_subpg_tainted, num_subpg_nx; | |
884 | ||
885 | if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) { | |
886 | /* this page is not in the UPL: skip it */ | |
887 | continue; | |
888 | } | |
889 | ||
890 | /* | |
891 | * Establish an explicit pmap mapping of the destination | |
892 | * physical page. | |
893 | * We can't do a regular VM mapping because the VM page | |
894 | * is "busy". | |
895 | */ | |
896 | dst_pnum = (ppnum_t) | |
897 | upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE)); | |
898 | assert(dst_pnum != 0); | |
899 | #if __x86_64__ | |
900 | dst_vaddr = (vm_map_offset_t) | |
901 | PHYSMAP_PTOV((pmap_paddr_t)dst_pnum << PAGE_SHIFT); | |
902 | #else | |
903 | pmap_enter(kernel_pmap, | |
904 | dst_vaddr, | |
905 | dst_pnum, | |
906 | VM_PROT_READ | VM_PROT_WRITE, | |
907 | VM_PROT_NONE, | |
908 | 0, | |
909 | TRUE); | |
910 | #endif | |
911 | ||
912 | /* retrieve appropriate data for each 4K-page in this page */ | |
913 | if (PAGE_SHIFT == FOURK_PAGE_SHIFT && | |
914 | page_shift_user32 == SIXTEENK_PAGE_SHIFT) { | |
915 | /* | |
916 | * Find the slot for the requested 4KB page in | |
917 | * the 16K page... | |
918 | */ | |
919 | assert(PAGE_SHIFT == FOURK_PAGE_SHIFT); | |
920 | assert(page_shift_user32 == SIXTEENK_PAGE_SHIFT); | |
921 | sub_page_idx = ((offset & SIXTEENK_PAGE_MASK) / | |
922 | PAGE_SIZE); | |
923 | /* | |
924 | * ... and provide only that one 4KB page. | |
925 | */ | |
926 | sub_page_cnt = 1; | |
927 | } else { | |
928 | /* | |
929 | * Iterate over all slots, i.e. retrieve all four 4KB | |
930 | * pages in the requested 16KB page. | |
931 | */ | |
932 | assert(PAGE_SHIFT == SIXTEENK_PAGE_SHIFT); | |
933 | sub_page_idx = 0; | |
934 | sub_page_cnt = FOURK_PAGER_SLOTS; | |
935 | } | |
936 | ||
937 | num_subpg_signed = 0; | |
938 | num_subpg_validated = 0; | |
939 | num_subpg_tainted = 0; | |
940 | num_subpg_nx = 0; | |
941 | ||
942 | /* retrieve appropriate data for each 4K-page in this page */ | |
943 | for (sub_page = sub_page_idx; | |
944 | sub_page < sub_page_idx + sub_page_cnt; | |
945 | sub_page++) { | |
946 | vm_object_t src_object; | |
947 | memory_object_offset_t src_offset; | |
948 | vm_offset_t offset_in_src_page; | |
949 | kern_return_t error_code; | |
39037602 | 950 | vm_object_t src_page_object; |
3e170ce0 A |
951 | vm_page_t src_page; |
952 | vm_page_t top_page; | |
953 | vm_prot_t prot; | |
954 | int interruptible; | |
955 | struct vm_object_fault_info fault_info; | |
956 | boolean_t subpg_validated; | |
957 | unsigned subpg_tainted; | |
958 | ||
959 | ||
960 | if (offset < SIXTEENK_PAGE_SIZE) { | |
961 | /* | |
962 | * The 1st 16K-page can cover multiple | |
963 | * sub-mappings, as described in the | |
964 | * pager->slots[] array. | |
965 | */ | |
966 | src_object = | |
967 | pager->slots[sub_page].backing_object; | |
968 | src_offset = | |
969 | pager->slots[sub_page].backing_offset; | |
970 | } else { | |
971 | fourk_pager_backing_t slot; | |
972 | ||
973 | /* | |
974 | * Beyond the 1st 16K-page in the pager is | |
975 | * an extension of the last "sub page" in | |
976 | * the pager->slots[] array. | |
977 | */ | |
978 | slot = &pager->slots[FOURK_PAGER_SLOTS-1]; | |
979 | src_object = slot->backing_object; | |
980 | src_offset = slot->backing_offset; | |
981 | src_offset += FOURK_PAGE_SIZE; | |
982 | src_offset += | |
983 | (vm_map_trunc_page(offset, | |
984 | SIXTEENK_PAGE_MASK) | |
985 | - SIXTEENK_PAGE_SIZE); | |
986 | src_offset += sub_page * FOURK_PAGE_SIZE; | |
987 | } | |
988 | offset_in_src_page = src_offset & PAGE_MASK_64; | |
989 | src_offset = vm_object_trunc_page(src_offset); | |
990 | ||
991 | if (src_object == VM_OBJECT_NULL || | |
992 | src_object == (vm_object_t) -1) { | |
993 | /* zero-fill */ | |
994 | bzero((char *)(dst_vaddr + | |
995 | ((sub_page-sub_page_idx) | |
996 | * FOURK_PAGE_SIZE)), | |
997 | FOURK_PAGE_SIZE); | |
998 | if (fourk_pager_data_request_debug) { | |
999 | printf("fourk_pager_data_request" | |
1000 | "(%p,0x%llx+0x%lx+0x%04x): " | |
1001 | "ZERO\n", | |
1002 | pager, | |
1003 | offset, | |
1004 | cur_offset, | |
1005 | ((sub_page - sub_page_idx) | |
1006 | * FOURK_PAGE_SIZE)); | |
1007 | } | |
1008 | continue; | |
1009 | } | |
1010 | ||
1011 | /* fault in the source page from src_object */ | |
1012 | retry_src_fault: | |
1013 | src_page = VM_PAGE_NULL; | |
1014 | top_page = VM_PAGE_NULL; | |
1015 | fault_info = *((struct vm_object_fault_info *) | |
1016 | (uintptr_t)mo_fault_info); | |
1017 | fault_info.stealth = TRUE; | |
1018 | fault_info.io_sync = FALSE; | |
1019 | fault_info.mark_zf_absent = FALSE; | |
1020 | fault_info.batch_pmap_op = FALSE; | |
1021 | interruptible = fault_info.interruptible; | |
1022 | prot = VM_PROT_READ; | |
1023 | error_code = 0; | |
1024 | ||
1025 | vm_object_lock(src_object); | |
1026 | vm_object_paging_begin(src_object); | |
1027 | kr = vm_fault_page(src_object, | |
1028 | src_offset, | |
1029 | VM_PROT_READ, | |
1030 | FALSE, | |
1031 | FALSE, /* src_page not looked up */ | |
1032 | &prot, | |
1033 | &src_page, | |
1034 | &top_page, | |
1035 | NULL, | |
1036 | &error_code, | |
1037 | FALSE, | |
1038 | FALSE, | |
1039 | &fault_info); | |
1040 | switch (kr) { | |
1041 | case VM_FAULT_SUCCESS: | |
1042 | break; | |
1043 | case VM_FAULT_RETRY: | |
1044 | goto retry_src_fault; | |
1045 | case VM_FAULT_MEMORY_SHORTAGE: | |
1046 | if (vm_page_wait(interruptible)) { | |
1047 | goto retry_src_fault; | |
1048 | } | |
1049 | /* fall thru */ | |
1050 | case VM_FAULT_INTERRUPTED: | |
1051 | retval = MACH_SEND_INTERRUPTED; | |
1052 | goto src_fault_done; | |
1053 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
1054 | /* success but no VM page: fail */ | |
1055 | vm_object_paging_end(src_object); | |
1056 | vm_object_unlock(src_object); | |
1057 | /*FALLTHROUGH*/ | |
1058 | case VM_FAULT_MEMORY_ERROR: | |
1059 | /* the page is not there! */ | |
1060 | if (error_code) { | |
1061 | retval = error_code; | |
1062 | } else { | |
1063 | retval = KERN_MEMORY_ERROR; | |
1064 | } | |
1065 | goto src_fault_done; | |
1066 | default: | |
1067 | panic("fourk_pager_data_request: " | |
1068 | "vm_fault_page() unexpected error 0x%x\n", | |
1069 | kr); | |
1070 | } | |
1071 | assert(src_page != VM_PAGE_NULL); | |
1072 | assert(src_page->busy); | |
1073 | ||
39037602 A |
1074 | src_page_object = VM_PAGE_OBJECT(src_page); |
1075 | ||
1076 | if (( !VM_PAGE_PAGEABLE(src_page)) && | |
3e170ce0 A |
1077 | !VM_PAGE_WIRED(src_page)) { |
1078 | vm_page_lockspin_queues(); | |
39037602 | 1079 | if (( !VM_PAGE_PAGEABLE(src_page)) && |
3e170ce0 A |
1080 | !VM_PAGE_WIRED(src_page)) { |
1081 | vm_page_deactivate(src_page); | |
1082 | } | |
1083 | vm_page_unlock_queues(); | |
1084 | } | |
1085 | ||
1086 | #if __x86_64__ | |
1087 | src_vaddr = (vm_map_offset_t) | |
39037602 | 1088 | PHYSMAP_PTOV((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(src_page) |
3e170ce0 A |
1089 | << PAGE_SHIFT); |
1090 | #else | |
1091 | /* | |
1092 | * Establish an explicit mapping of the source | |
1093 | * physical page. | |
1094 | */ | |
1095 | pmap_enter(kernel_pmap, | |
1096 | src_vaddr, | |
39037602 | 1097 | VM_PAGE_GET_PHYS_PAGE(src_page), |
3e170ce0 A |
1098 | VM_PROT_READ, |
1099 | VM_PROT_NONE, | |
1100 | 0, | |
1101 | TRUE); | |
1102 | #endif | |
1103 | ||
1104 | /* | |
1105 | * Validate the 4K page we want from | |
1106 | * this source page... | |
1107 | */ | |
1108 | subpg_validated = FALSE; | |
1109 | subpg_tainted = 0; | |
39037602 | 1110 | if (src_page_object->code_signed) { |
3e170ce0 A |
1111 | vm_page_validate_cs_mapped_chunk( |
1112 | src_page, | |
1113 | (const void *) src_vaddr, | |
1114 | offset_in_src_page, | |
39037602 | 1115 | FOURK_PAGE_SIZE, |
3e170ce0 A |
1116 | &subpg_validated, |
1117 | &subpg_tainted); | |
1118 | num_subpg_signed++; | |
1119 | if (subpg_validated) { | |
1120 | num_subpg_validated++; | |
1121 | } | |
1122 | if (subpg_tainted & CS_VALIDATE_TAINTED) { | |
1123 | num_subpg_tainted++; | |
1124 | } | |
1125 | if (subpg_tainted & CS_VALIDATE_NX) { | |
1126 | /* subpg should not be executable */ | |
1127 | if (sub_page_cnt > 1) { | |
1128 | /* | |
1129 | * The destination page has | |
1130 | * more than 1 subpage and its | |
1131 | * other subpages might need | |
1132 | * EXEC, so we do not propagate | |
1133 | * CS_VALIDATE_NX to the | |
1134 | * destination page... | |
1135 | */ | |
1136 | } else { | |
1137 | num_subpg_nx++; | |
1138 | } | |
1139 | } | |
1140 | } | |
1141 | ||
1142 | /* | |
1143 | * Copy the relevant portion of the source page | |
1144 | * into the appropriate part of the destination page. | |
1145 | */ | |
1146 | bcopy((const char *)(src_vaddr + offset_in_src_page), | |
1147 | (char *)(dst_vaddr + | |
1148 | ((sub_page - sub_page_idx) * | |
1149 | FOURK_PAGE_SIZE)), | |
1150 | FOURK_PAGE_SIZE); | |
1151 | if (fourk_pager_data_request_debug) { | |
1152 | printf("fourk_data_request" | |
1153 | "(%p,0x%llx+0x%lx+0x%04x): " | |
1154 | "backed by [%p:0x%llx]: " | |
1155 | "[0x%016llx 0x%016llx] " | |
1156 | "code_signed=%d " | |
1157 | "cs_valid=%d cs_tainted=%d cs_nx=%d\n", | |
1158 | pager, | |
1159 | offset, cur_offset, | |
1160 | (sub_page-sub_page_idx)*FOURK_PAGE_SIZE, | |
39037602 | 1161 | src_page_object, |
3e170ce0 A |
1162 | src_page->offset + offset_in_src_page, |
1163 | *(uint64_t *)(dst_vaddr + | |
1164 | ((sub_page-sub_page_idx) * | |
1165 | FOURK_PAGE_SIZE)), | |
1166 | *(uint64_t *)(dst_vaddr + | |
1167 | ((sub_page-sub_page_idx) * | |
1168 | FOURK_PAGE_SIZE) + | |
1169 | 8), | |
39037602 | 1170 | src_page_object->code_signed, |
3e170ce0 A |
1171 | subpg_validated, |
1172 | !!(subpg_tainted & CS_VALIDATE_TAINTED), | |
1173 | !!(subpg_tainted & CS_VALIDATE_NX)); | |
1174 | } | |
1175 | ||
1176 | #if __x86_64__ || __arm__ || __arm64__ | |
1177 | /* we used the 1-to-1 mapping of physical memory */ | |
1178 | src_vaddr = 0; | |
1179 | #else /* __x86_64__ || __arm__ || __arm64__ */ | |
1180 | /* | |
1181 | * Remove the pmap mapping of the source page | |
1182 | * in the kernel. | |
1183 | */ | |
1184 | pmap_remove(kernel_pmap, | |
1185 | (addr64_t) src_vaddr, | |
1186 | (addr64_t) src_vaddr + PAGE_SIZE_64); | |
1187 | #endif /* __x86_64__ || __arm__ || __arm64__ */ | |
1188 | ||
1189 | src_fault_done: | |
1190 | /* | |
1191 | * Cleanup the result of vm_fault_page(). | |
1192 | */ | |
1193 | if (src_page) { | |
39037602 | 1194 | assert(VM_PAGE_OBJECT(src_page) == src_page_object); |
3e170ce0 | 1195 | |
3e170ce0 A |
1196 | PAGE_WAKEUP_DONE(src_page); |
1197 | src_page = VM_PAGE_NULL; | |
1198 | vm_object_paging_end(src_page_object); | |
1199 | vm_object_unlock(src_page_object); | |
1200 | if (top_page) { | |
1201 | vm_object_t top_object; | |
1202 | ||
39037602 | 1203 | top_object = VM_PAGE_OBJECT(top_page); |
3e170ce0 A |
1204 | vm_object_lock(top_object); |
1205 | VM_PAGE_FREE(top_page); | |
1206 | top_page = VM_PAGE_NULL; | |
1207 | vm_object_paging_end(top_object); | |
1208 | vm_object_unlock(top_object); | |
1209 | } | |
1210 | } | |
1211 | } | |
1212 | if (num_subpg_signed > 0) { | |
1213 | /* some code-signing involved with this 16K page */ | |
1214 | if (num_subpg_tainted > 0) { | |
1215 | /* a tainted subpage taints entire 16K page */ | |
1216 | UPL_SET_CS_TAINTED(upl_pl, | |
1217 | cur_offset / PAGE_SIZE, | |
1218 | TRUE); | |
1219 | /* also mark as "validated" for consisteny */ | |
1220 | UPL_SET_CS_VALIDATED(upl_pl, | |
1221 | cur_offset / PAGE_SIZE, | |
1222 | TRUE); | |
1223 | } else if (num_subpg_validated == num_subpg_signed) { | |
1224 | /* | |
1225 | * All the code-signed 4K subpages of this | |
1226 | * 16K page are validated: our 16K page is | |
1227 | * considered validated. | |
1228 | */ | |
1229 | UPL_SET_CS_VALIDATED(upl_pl, | |
1230 | cur_offset / PAGE_SIZE, | |
1231 | TRUE); | |
1232 | } | |
1233 | if (num_subpg_nx > 0) { | |
1234 | UPL_SET_CS_NX(upl_pl, | |
1235 | cur_offset / PAGE_SIZE, | |
1236 | TRUE); | |
1237 | } | |
1238 | } | |
1239 | } | |
1240 | ||
1241 | done: | |
1242 | if (upl != NULL) { | |
1243 | /* clean up the UPL */ | |
1244 | ||
1245 | /* | |
1246 | * The pages are currently dirty because we've just been | |
1247 | * writing on them, but as far as we're concerned, they're | |
1248 | * clean since they contain their "original" contents as | |
1249 | * provided by us, the pager. | |
1250 | * Tell the UPL to mark them "clean". | |
1251 | */ | |
1252 | upl_clear_dirty(upl, TRUE); | |
1253 | ||
1254 | /* abort or commit the UPL */ | |
1255 | if (retval != KERN_SUCCESS) { | |
1256 | upl_abort(upl, 0); | |
1257 | if (retval == KERN_ABORTED) { | |
1258 | wait_result_t wait_result; | |
1259 | ||
1260 | /* | |
1261 | * We aborted the fault and did not provide | |
1262 | * any contents for the requested pages but | |
1263 | * the pages themselves are not invalid, so | |
1264 | * let's return success and let the caller | |
1265 | * retry the fault, in case it might succeed | |
1266 | * later (when the decryption code is up and | |
1267 | * running in the kernel, for example). | |
1268 | */ | |
1269 | retval = KERN_SUCCESS; | |
1270 | /* | |
1271 | * Wait a little bit first to avoid using | |
1272 | * too much CPU time retrying and failing | |
1273 | * the same fault over and over again. | |
1274 | */ | |
1275 | wait_result = assert_wait_timeout( | |
1276 | (event_t) fourk_pager_data_request, | |
1277 | THREAD_UNINT, | |
1278 | 10000, /* 10ms */ | |
1279 | NSEC_PER_USEC); | |
1280 | assert(wait_result == THREAD_WAITING); | |
1281 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1282 | assert(wait_result == THREAD_TIMED_OUT); | |
1283 | } | |
1284 | } else { | |
1285 | boolean_t empty; | |
1286 | upl_commit_range(upl, 0, upl->size, | |
1287 | UPL_COMMIT_CS_VALIDATED | UPL_COMMIT_WRITTEN_BY_KERNEL, | |
1288 | upl_pl, pl_count, &empty); | |
1289 | } | |
1290 | ||
1291 | /* and deallocate the UPL */ | |
1292 | upl_deallocate(upl); | |
1293 | upl = NULL; | |
1294 | } | |
1295 | if (kernel_mapping != 0) { | |
1296 | /* clean up the mapping of the source and destination pages */ | |
1297 | kr = vm_map_remove(kernel_map, | |
1298 | kernel_mapping, | |
1299 | kernel_mapping + (2 * PAGE_SIZE_64), | |
1300 | VM_MAP_NO_FLAGS); | |
1301 | assert(kr == KERN_SUCCESS); | |
1302 | kernel_mapping = 0; | |
1303 | src_vaddr = 0; | |
1304 | dst_vaddr = 0; | |
1305 | } | |
1306 | ||
1307 | return retval; | |
1308 | } | |
1309 | ||
1310 | ||
1311 | ||
1312 | kern_return_t | |
1313 | fourk_pager_populate( | |
1314 | memory_object_t mem_obj, | |
1315 | boolean_t overwrite, | |
1316 | int index, | |
1317 | vm_object_t new_backing_object, | |
1318 | vm_object_offset_t new_backing_offset, | |
1319 | vm_object_t *old_backing_object, | |
1320 | vm_object_offset_t *old_backing_offset) | |
1321 | { | |
1322 | fourk_pager_t pager; | |
1323 | ||
1324 | pager = fourk_pager_lookup(mem_obj); | |
1325 | if (pager == NULL) { | |
1326 | return KERN_INVALID_ARGUMENT; | |
1327 | } | |
1328 | ||
1329 | assert(pager->ref_count > 0); | |
1330 | assert(pager->pager_control != MEMORY_OBJECT_CONTROL_NULL); | |
1331 | ||
1332 | if (index < 0 || index > FOURK_PAGER_SLOTS) { | |
1333 | return KERN_INVALID_ARGUMENT; | |
1334 | } | |
1335 | ||
1336 | if (!overwrite && | |
1337 | (pager->slots[index].backing_object != (vm_object_t) -1 || | |
1338 | pager->slots[index].backing_offset != (vm_object_offset_t) -1)) { | |
1339 | return KERN_INVALID_ADDRESS; | |
1340 | } | |
1341 | ||
1342 | *old_backing_object = pager->slots[index].backing_object; | |
1343 | *old_backing_offset = pager->slots[index].backing_offset; | |
1344 | ||
1345 | pager->slots[index].backing_object = new_backing_object; | |
1346 | pager->slots[index].backing_offset = new_backing_offset; | |
1347 | ||
1348 | return KERN_SUCCESS; | |
1349 | } | |
1350 |