2 * Copyright (c) 2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <mach/mach_types.h>
29 #include <kern/assert.h>
30 #include <kern/clock.h>
31 #include <kern/coalition.h>
32 #include <kern/debug.h>
33 #include <kern/host.h>
34 #include <kern/kalloc.h>
35 #include <kern/kern_types.h>
36 #include <kern/machine.h>
37 #include <kern/simple_lock.h>
38 #include <kern/misc_protos.h>
39 #include <kern/sched.h>
40 #include <kern/sched_prim.h>
42 #include <kern/timer_call.h>
43 #include <kern/waitq.h>
44 #include <kern/ledger.h>
45 #include <kern/policy_internal.h>
47 #include <machine/atomic.h>
49 #include <pexpert/pexpert.h>
51 #include <libkern/kernel_mach_header.h>
53 #include <sys/kdebug.h>
60 #define dprintf(...) kprintf(__VA_ARGS__)
62 #define dprintf(...) do { } while(0)
66 * SFI (Selective Forced Idle) operates by enabling a global
67 * timer on the SFI window interval. When it fires, all processors
68 * running a thread that should be SFI-ed are sent an AST.
69 * As threads become runnable while in their "off phase", they
70 * are placed on a deferred ready queue. When a per-class
71 * "on timer" fires, the ready threads for that class are
72 * re-enqueued for running. As an optimization to avoid spurious
73 * wakeups, the timer may be lazily programmed.
77 * The "sfi_lock" simple lock guards access to static configuration
78 * parameters (as specified by userspace), dynamic state changes
79 * (as updated by the timer event routine), and timer data structures.
80 * Since it can be taken with interrupts disabled in some cases, all
81 * uses should be taken with interrupts disabled at splsched(). The
82 * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and
83 * must only be accessed with it held.
85 * When an "on timer" fires, we must deterministically be able to drain
86 * the wait queue, since if any threads are added to the queue afterwards,
87 * they may never get woken out of SFI wait. So sfi_lock must be
88 * taken before the wait queue's own spinlock.
90 * The wait queue will take the thread's scheduling lock. We may also take
91 * the thread_lock directly to update the "sfi_class" field and determine
92 * if the thread should block in the wait queue, but the lock will be
93 * released before doing so.
95 * The pset lock may also be taken, but not while any other locks are held.
97 * The task and thread mutex may also be held while reevaluating sfi state.
99 * splsched ---> sfi_lock ---> waitq ---> thread_lock
100 * \ \ \__ thread_lock (*)
106 decl_simple_lock_data(static, sfi_lock
);
107 static timer_call_data_t sfi_timer_call_entry
;
108 volatile boolean_t sfi_is_enabled
;
110 boolean_t sfi_window_is_set
;
111 uint64_t sfi_window_usecs
;
112 uint64_t sfi_window_interval
;
113 uint64_t sfi_next_off_deadline
;
116 sfi_class_id_t class_id
;
117 thread_continue_t class_continuation
;
118 const char * class_name
;
119 const char * class_ledger_name
;
120 } sfi_class_registration_t
;
123 * To add a new SFI class:
125 * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h
126 * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness.
127 * 3) Add a call to SFI_CLASS_REGISTER below
128 * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible.
129 * 5) Modify thermald to use the SFI class
132 static inline void _sfi_wait_cleanup(void);
134 #define SFI_CLASS_REGISTER(clsid, ledger_name) \
135 static void __attribute__((noinline, noreturn)) \
136 SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \
138 _sfi_wait_cleanup(); \
139 thread_exception_return(); \
142 _Static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \
144 __attribute__((section("__DATA,__sfi_class_reg"), used)) \
145 static sfi_class_registration_t SFI_ ## clsid ## _registration = { \
146 .class_id = SFI_CLASS_ ## clsid, \
147 .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \
148 .class_name = "SFI_CLASS_" # clsid, \
149 .class_ledger_name = "SFI_CLASS_" # ledger_name, \
152 /* SFI_CLASS_UNSPECIFIED not included here */
153 SFI_CLASS_REGISTER(MAINTENANCE
, MAINTENANCE
);
154 SFI_CLASS_REGISTER(DARWIN_BG
, DARWIN_BG
);
155 SFI_CLASS_REGISTER(APP_NAP
, APP_NAP
);
156 SFI_CLASS_REGISTER(MANAGED_FOCAL
, MANAGED
);
157 SFI_CLASS_REGISTER(MANAGED_NONFOCAL
, MANAGED
);
158 SFI_CLASS_REGISTER(UTILITY
, UTILITY
);
159 SFI_CLASS_REGISTER(DEFAULT_FOCAL
, DEFAULT
);
160 SFI_CLASS_REGISTER(DEFAULT_NONFOCAL
, DEFAULT
);
161 SFI_CLASS_REGISTER(LEGACY_FOCAL
, LEGACY
);
162 SFI_CLASS_REGISTER(LEGACY_NONFOCAL
, LEGACY
);
163 SFI_CLASS_REGISTER(USER_INITIATED_FOCAL
, USER_INITIATED
);
164 SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL
, USER_INITIATED
);
165 SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL
, USER_INTERACTIVE
);
166 SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL
, USER_INTERACTIVE
);
167 SFI_CLASS_REGISTER(KERNEL
, OPTED_OUT
);
168 SFI_CLASS_REGISTER(OPTED_OUT
, OPTED_OUT
);
170 struct sfi_class_state
{
171 uint64_t off_time_usecs
;
172 uint64_t off_time_interval
;
174 timer_call_data_t on_timer
;
175 uint64_t on_timer_deadline
;
176 boolean_t on_timer_programmed
;
178 boolean_t class_sfi_is_enabled
;
179 volatile boolean_t class_in_on_phase
;
181 struct waitq waitq
; /* threads in ready state */
182 thread_continue_t continuation
;
184 const char * class_name
;
185 const char * class_ledger_name
;
188 /* Static configuration performed in sfi_early_init() */
189 struct sfi_class_state sfi_classes
[MAX_SFI_CLASS_ID
];
191 int sfi_enabled_class_count
;
193 static void sfi_timer_global_off(
194 timer_call_param_t param0
,
195 timer_call_param_t param1
);
197 static void sfi_timer_per_class_on(
198 timer_call_param_t param0
,
199 timer_call_param_t param1
);
201 static sfi_class_registration_t
*
202 sfi_get_registration_data(unsigned long *count
)
204 unsigned long sectlen
= 0;
207 sectdata
= getsectdatafromheader(&_mh_execute_header
, "__DATA", "__sfi_class_reg", §len
);
209 if (sectlen
% sizeof(sfi_class_registration_t
) != 0) {
211 panic("__sfi_class_reg section has invalid size %lu", sectlen
);
212 __builtin_unreachable();
215 *count
= sectlen
/ sizeof(sfi_class_registration_t
);
216 return (sfi_class_registration_t
*)sectdata
;
218 panic("__sfi_class_reg section not found");
219 __builtin_unreachable();
223 /* Called early in boot, when kernel is single-threaded */
227 unsigned long i
, count
;
228 sfi_class_registration_t
*registrations
;
230 registrations
= sfi_get_registration_data(&count
);
231 for (i
= 0; i
< count
; i
++) {
232 sfi_class_id_t class_id
= registrations
[i
].class_id
;
234 assert(class_id
< MAX_SFI_CLASS_ID
); /* should be caught at compile-time */
235 if (class_id
< MAX_SFI_CLASS_ID
) {
236 if (sfi_classes
[class_id
].continuation
!= NULL
) {
237 panic("Duplicate SFI registration for class 0x%x", class_id
);
239 sfi_classes
[class_id
].class_sfi_is_enabled
= FALSE
;
240 sfi_classes
[class_id
].class_in_on_phase
= TRUE
;
241 sfi_classes
[class_id
].continuation
= registrations
[i
].class_continuation
;
242 sfi_classes
[class_id
].class_name
= registrations
[i
].class_name
;
243 sfi_classes
[class_id
].class_ledger_name
= registrations
[i
].class_ledger_name
;
254 simple_lock_init(&sfi_lock
, 0);
255 timer_call_setup(&sfi_timer_call_entry
, sfi_timer_global_off
, NULL
);
256 sfi_window_is_set
= FALSE
;
257 sfi_enabled_class_count
= 0;
258 sfi_is_enabled
= FALSE
;
260 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
261 /* If the class was set up in sfi_early_init(), initialize remaining fields */
262 if (sfi_classes
[i
].continuation
) {
263 timer_call_setup(&sfi_classes
[i
].on_timer
, sfi_timer_per_class_on
, (void *)(uintptr_t)i
);
264 sfi_classes
[i
].on_timer_programmed
= FALSE
;
266 kret
= waitq_init(&sfi_classes
[i
].waitq
, SYNC_POLICY_FIFO
| SYNC_POLICY_DISABLE_IRQ
);
267 assert(kret
== KERN_SUCCESS
);
269 /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */
270 if (i
!= SFI_CLASS_UNSPECIFIED
) {
271 panic("Gap in registered SFI classes");
277 /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */
279 sfi_get_ledger_alias_for_class(sfi_class_id_t class_id
)
282 const char *ledger_name
= NULL
;
284 ledger_name
= sfi_classes
[class_id
].class_ledger_name
;
286 /* Find the first class in the registration table with this ledger name */
288 for (i
= SFI_CLASS_UNSPECIFIED
+ 1; i
< class_id
; i
++) {
289 if (0 == strcmp(sfi_classes
[i
].class_ledger_name
, ledger_name
)) {
290 dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id
, i
);
295 /* This class is the primary one for the ledger, so there is no alias */
296 dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id
, SFI_CLASS_UNSPECIFIED
);
297 return SFI_CLASS_UNSPECIFIED
;
300 /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */
301 return SFI_CLASS_UNSPECIFIED
;
305 sfi_ledger_entry_add(ledger_template_t
template, sfi_class_id_t class_id
)
307 const char *ledger_name
= NULL
;
309 ledger_name
= sfi_classes
[class_id
].class_ledger_name
;
311 dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n", template, class_id
, ledger_name
);
312 return ledger_entry_add(template, ledger_name
, "sfi", "MATUs");
316 sfi_timer_global_off(
317 timer_call_param_t param0 __unused
,
318 timer_call_param_t param1 __unused
)
320 uint64_t now
= mach_absolute_time();
322 processor_set_t pset
, nset
;
323 processor_t processor
;
324 uint32_t needs_cause_ast_mask
= 0x0;
329 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
330 if (!sfi_is_enabled
) {
331 /* If SFI has been disabled, let all "on" timers drain naturally */
332 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_NONE
, 1, 0, 0, 0, 0);
334 simple_unlock(&sfi_lock
);
339 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
341 /* First set all configured classes into the off state, and program their "on" timer */
342 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
343 if (sfi_classes
[i
].class_sfi_is_enabled
) {
344 uint64_t on_timer_deadline
;
346 sfi_classes
[i
].class_in_on_phase
= FALSE
;
347 sfi_classes
[i
].on_timer_programmed
= TRUE
;
349 /* Push out on-timer */
350 on_timer_deadline
= now
+ sfi_classes
[i
].off_time_interval
;
351 sfi_classes
[i
].on_timer_deadline
= on_timer_deadline
;
353 timer_call_enter1(&sfi_classes
[i
].on_timer
, NULL
, on_timer_deadline
, TIMER_CALL_SYS_CRITICAL
);
355 /* If this class no longer needs SFI, make sure the timer is cancelled */
356 sfi_classes
[i
].class_in_on_phase
= TRUE
;
357 if (sfi_classes
[i
].on_timer_programmed
) {
358 sfi_classes
[i
].on_timer_programmed
= FALSE
;
359 sfi_classes
[i
].on_timer_deadline
= ~0ULL;
360 timer_call_cancel(&sfi_classes
[i
].on_timer
);
364 simple_unlock(&sfi_lock
);
366 /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */
367 processor
= processor_list
;
368 pset
= processor
->processor_set
;
373 nset
= processor
->processor_set
;
380 /* "processor" and its pset are locked */
381 if (processor
->state
== PROCESSOR_RUNNING
) {
382 if (AST_NONE
!= sfi_processor_needs_ast(processor
)) {
383 needs_cause_ast_mask
|= (1U << processor
->cpu_id
);
386 } while ((processor
= processor
->processor_list
) != NULL
);
390 for (int cpuid
= lsb_first(needs_cause_ast_mask
); cpuid
>= 0; cpuid
= lsb_next(needs_cause_ast_mask
, cpuid
)) {
391 processor
= processor_array
[cpuid
];
392 if (processor
== current_processor()) {
395 cause_ast_check(processor
);
399 /* Re-arm timer if still enabled */
400 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
401 if (sfi_is_enabled
) {
402 clock_deadline_for_periodic_event(sfi_window_interval
,
404 &sfi_next_off_deadline
);
405 timer_call_enter1(&sfi_timer_call_entry
,
407 sfi_next_off_deadline
,
408 TIMER_CALL_SYS_CRITICAL
);
411 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_OFF_TIMER
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
413 simple_unlock(&sfi_lock
);
419 sfi_timer_per_class_on(
420 timer_call_param_t param0
,
421 timer_call_param_t param1 __unused
)
423 sfi_class_id_t sfi_class_id
= (sfi_class_id_t
)(uintptr_t)param0
;
424 struct sfi_class_state
*sfi_class
= &sfi_classes
[sfi_class_id
];
430 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
432 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_ON_TIMER
) | DBG_FUNC_START
, sfi_class_id
, 0, 0, 0, 0);
435 * Any threads that may have accumulated in the ready queue for this class should get re-enqueued.
436 * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect
437 * no new threads to be put on this wait queue until the global "off timer" has fired.
440 sfi_class
->class_in_on_phase
= TRUE
;
441 sfi_class
->on_timer_programmed
= FALSE
;
443 kret
= waitq_wakeup64_all(&sfi_class
->waitq
,
444 CAST_EVENT64_T(sfi_class_id
),
445 THREAD_AWAKENED
, WAITQ_ALL_PRIORITIES
);
446 assert(kret
== KERN_SUCCESS
|| kret
== KERN_NOT_WAITING
);
448 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_ON_TIMER
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
450 simple_unlock(&sfi_lock
);
457 sfi_set_window(uint64_t window_usecs
)
459 uint64_t interval
, deadline
;
460 uint64_t now
= mach_absolute_time();
463 uint64_t largest_class_off_interval
= 0;
465 if (window_usecs
< MIN_SFI_WINDOW_USEC
) {
466 window_usecs
= MIN_SFI_WINDOW_USEC
;
469 if (window_usecs
> UINT32_MAX
) {
470 return KERN_INVALID_ARGUMENT
;
473 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_SET_WINDOW
), window_usecs
, 0, 0, 0, 0);
475 clock_interval_to_absolutetime_interval((uint32_t)window_usecs
, NSEC_PER_USEC
, &interval
);
476 deadline
= now
+ interval
;
480 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
482 /* Check that we are not bringing in the SFI window smaller than any class */
483 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
484 if (sfi_classes
[i
].class_sfi_is_enabled
) {
485 largest_class_off_interval
= MAX(largest_class_off_interval
, sfi_classes
[i
].off_time_interval
);
490 * Off window must be strictly greater than all enabled classes,
491 * otherwise threads would build up on ready queue and never be able to run.
493 if (interval
<= largest_class_off_interval
) {
494 simple_unlock(&sfi_lock
);
496 return KERN_INVALID_ARGUMENT
;
500 * If the new "off" deadline is further out than the current programmed timer,
501 * just let the current one expire (and the new cadence will be established thereafter).
502 * If the new "off" deadline is nearer than the current one, bring it in, so we
503 * can start the new behavior sooner. Note that this may cause the "off" timer to
504 * fire before some of the class "on" timers have fired.
506 sfi_window_usecs
= window_usecs
;
507 sfi_window_interval
= interval
;
508 sfi_window_is_set
= TRUE
;
510 if (sfi_enabled_class_count
== 0) {
511 /* Can't program timer yet */
512 } else if (!sfi_is_enabled
) {
513 sfi_is_enabled
= TRUE
;
514 sfi_next_off_deadline
= deadline
;
515 timer_call_enter1(&sfi_timer_call_entry
,
517 sfi_next_off_deadline
,
518 TIMER_CALL_SYS_CRITICAL
);
519 } else if (deadline
>= sfi_next_off_deadline
) {
520 sfi_next_off_deadline
= deadline
;
522 sfi_next_off_deadline
= deadline
;
523 timer_call_enter1(&sfi_timer_call_entry
,
525 sfi_next_off_deadline
,
526 TIMER_CALL_SYS_CRITICAL
);
529 simple_unlock(&sfi_lock
);
536 sfi_window_cancel(void)
542 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_CANCEL_WINDOW
), 0, 0, 0, 0, 0);
544 /* Disable globals so that global "off-timer" is not re-armed */
545 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
546 sfi_window_is_set
= FALSE
;
547 sfi_window_usecs
= 0;
548 sfi_window_interval
= 0;
549 sfi_next_off_deadline
= 0;
550 sfi_is_enabled
= FALSE
;
551 simple_unlock(&sfi_lock
);
558 /* Defers SFI off and per-class on timers (if live) by the specified interval
559 * in Mach Absolute Time Units. Currently invoked to align with the global
560 * forced idle mechanism. Making some simplifying assumptions, the iterative GFI
561 * induced SFI on+off deferrals form a geometric series that converges to yield
562 * an effective SFI duty cycle that is scaled by the GFI duty cycle. Initial phase
563 * alignment and congruency of the SFI/GFI periods can distort this to some extent.
567 sfi_defer(uint64_t sfi_defer_matus
)
570 kern_return_t kr
= KERN_FAILURE
;
573 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_GLOBAL_DEFER
), sfi_defer_matus
, 0, 0, 0, 0);
575 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
576 if (!sfi_is_enabled
) {
580 assert(sfi_next_off_deadline
!= 0);
582 sfi_next_off_deadline
+= sfi_defer_matus
;
583 timer_call_enter1(&sfi_timer_call_entry
, NULL
, sfi_next_off_deadline
, TIMER_CALL_SYS_CRITICAL
);
586 for (i
= 0; i
< MAX_SFI_CLASS_ID
; i
++) {
587 if (sfi_classes
[i
].class_sfi_is_enabled
) {
588 if (sfi_classes
[i
].on_timer_programmed
) {
589 uint64_t new_on_deadline
= sfi_classes
[i
].on_timer_deadline
+ sfi_defer_matus
;
590 sfi_classes
[i
].on_timer_deadline
= new_on_deadline
;
591 timer_call_enter1(&sfi_classes
[i
].on_timer
, NULL
, new_on_deadline
, TIMER_CALL_SYS_CRITICAL
);
598 simple_unlock(&sfi_lock
);
607 sfi_get_window(uint64_t *window_usecs
)
610 uint64_t off_window_us
;
613 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
615 off_window_us
= sfi_window_usecs
;
617 simple_unlock(&sfi_lock
);
620 *window_usecs
= off_window_us
;
627 sfi_set_class_offtime(sfi_class_id_t class_id
, uint64_t offtime_usecs
)
631 uint64_t off_window_interval
;
633 if (offtime_usecs
< MIN_SFI_WINDOW_USEC
) {
634 offtime_usecs
= MIN_SFI_WINDOW_USEC
;
637 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
) {
638 return KERN_INVALID_ARGUMENT
;
641 if (offtime_usecs
> UINT32_MAX
) {
642 return KERN_INVALID_ARGUMENT
;
645 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_SET_CLASS_OFFTIME
), offtime_usecs
, class_id
, 0, 0, 0);
647 clock_interval_to_absolutetime_interval((uint32_t)offtime_usecs
, NSEC_PER_USEC
, &interval
);
651 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
652 off_window_interval
= sfi_window_interval
;
654 /* Check that we are not bringing in class off-time larger than the SFI window */
655 if (off_window_interval
&& (interval
>= off_window_interval
)) {
656 simple_unlock(&sfi_lock
);
658 return KERN_INVALID_ARGUMENT
;
661 /* We never re-program the per-class on-timer, but rather just let it expire naturally */
662 if (!sfi_classes
[class_id
].class_sfi_is_enabled
) {
663 sfi_enabled_class_count
++;
665 sfi_classes
[class_id
].off_time_usecs
= offtime_usecs
;
666 sfi_classes
[class_id
].off_time_interval
= interval
;
667 sfi_classes
[class_id
].class_sfi_is_enabled
= TRUE
;
669 if (sfi_window_is_set
&& !sfi_is_enabled
) {
670 /* start global off timer */
671 sfi_is_enabled
= TRUE
;
672 sfi_next_off_deadline
= mach_absolute_time() + sfi_window_interval
;
673 timer_call_enter1(&sfi_timer_call_entry
,
675 sfi_next_off_deadline
,
676 TIMER_CALL_SYS_CRITICAL
);
679 simple_unlock(&sfi_lock
);
687 sfi_class_offtime_cancel(sfi_class_id_t class_id
)
691 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
) {
692 return KERN_INVALID_ARGUMENT
;
697 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_CANCEL_CLASS_OFFTIME
), class_id
, 0, 0, 0, 0);
699 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
701 /* We never re-program the per-class on-timer, but rather just let it expire naturally */
702 if (sfi_classes
[class_id
].class_sfi_is_enabled
) {
703 sfi_enabled_class_count
--;
705 sfi_classes
[class_id
].off_time_usecs
= 0;
706 sfi_classes
[class_id
].off_time_interval
= 0;
707 sfi_classes
[class_id
].class_sfi_is_enabled
= FALSE
;
709 if (sfi_enabled_class_count
== 0) {
710 sfi_is_enabled
= FALSE
;
713 simple_unlock(&sfi_lock
);
721 sfi_get_class_offtime(sfi_class_id_t class_id
, uint64_t *offtime_usecs
)
723 uint64_t off_time_us
;
726 if (class_id
== SFI_CLASS_UNSPECIFIED
|| class_id
>= MAX_SFI_CLASS_ID
) {
732 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
733 off_time_us
= sfi_classes
[class_id
].off_time_usecs
;
734 simple_unlock(&sfi_lock
);
738 *offtime_usecs
= off_time_us
;
744 * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical
745 * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be
746 * set. As the thread is unwinding to userspace, sfi_ast() performs full locking
747 * and determines whether the thread should enter an SFI wait state. Because of
748 * the inherent races between the time the AST is set and when it is evaluated,
749 * thread classification can be inaccurate (but should always be safe). This is
750 * especially the case for sfi_processor_active_thread_classify, which must
751 * classify the active thread on a remote processor without taking the thread lock.
752 * When in doubt, classification should err on the side of *not* classifying a
753 * thread at all, and wait for the thread itself to either hit a quantum expiration
754 * or block inside the kernel.
758 * Thread must be locked. Ultimately, the real decision to enter
759 * SFI wait happens at the AST boundary.
762 sfi_thread_classify(thread_t thread
)
764 task_t task
= thread
->task
;
765 boolean_t is_kernel_thread
= (task
== kernel_task
);
766 sched_mode_t thmode
= thread
->sched_mode
;
767 boolean_t focal
= FALSE
;
769 int task_role
= proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
);
770 int latency_qos
= proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
);
771 int managed_task
= proc_get_effective_task_policy(task
, TASK_POLICY_SFI_MANAGED
);
773 int thread_qos
= proc_get_effective_thread_policy(thread
, TASK_POLICY_QOS
);
774 int thread_bg
= proc_get_effective_thread_policy(thread
, TASK_POLICY_DARWIN_BG
);
776 /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */
777 if (is_kernel_thread
) {
778 return SFI_CLASS_KERNEL
;
781 if (thread_qos
== THREAD_QOS_MAINTENANCE
) {
782 return SFI_CLASS_MAINTENANCE
;
785 if (thread_bg
|| thread_qos
== THREAD_QOS_BACKGROUND
) {
786 return SFI_CLASS_DARWIN_BG
;
789 if (latency_qos
!= 0) {
790 int latency_qos_wtf
= latency_qos
- 1;
792 if ((latency_qos_wtf
>= 4) && (latency_qos_wtf
<= 5)) {
793 return SFI_CLASS_APP_NAP
;
798 * Realtime and fixed priority threads express their duty cycle constraints
799 * via other mechanisms, and are opted out of (most) forms of SFI
801 if (thmode
== TH_MODE_REALTIME
|| thmode
== TH_MODE_FIXED
|| task_role
== TASK_GRAPHICS_SERVER
) {
802 return SFI_CLASS_OPTED_OUT
;
806 * Threads with unspecified, legacy, or user-initiated QOS class can be individually managed.
809 case TASK_CONTROL_APPLICATION
:
810 case TASK_FOREGROUND_APPLICATION
:
813 case TASK_BACKGROUND_APPLICATION
:
814 case TASK_DEFAULT_APPLICATION
:
815 case TASK_UNSPECIFIED
:
816 /* Focal if the task is in a coalition with a FG/focal app */
817 if (task_coalition_focal_count(thread
->task
) > 0) {
821 case TASK_THROTTLE_APPLICATION
:
822 case TASK_DARWINBG_APPLICATION
:
823 case TASK_NONUI_APPLICATION
:
824 /* Definitely not focal */
830 switch (thread_qos
) {
831 case THREAD_QOS_UNSPECIFIED
:
832 case THREAD_QOS_LEGACY
:
833 case THREAD_QOS_USER_INITIATED
:
835 return SFI_CLASS_MANAGED_FOCAL
;
837 return SFI_CLASS_MANAGED_NONFOCAL
;
844 if (thread_qos
== THREAD_QOS_UTILITY
) {
845 return SFI_CLASS_UTILITY
;
849 * Classify threads in non-managed tasks
852 switch (thread_qos
) {
853 case THREAD_QOS_USER_INTERACTIVE
:
854 return SFI_CLASS_USER_INTERACTIVE_FOCAL
;
855 case THREAD_QOS_USER_INITIATED
:
856 return SFI_CLASS_USER_INITIATED_FOCAL
;
857 case THREAD_QOS_LEGACY
:
858 return SFI_CLASS_LEGACY_FOCAL
;
860 return SFI_CLASS_DEFAULT_FOCAL
;
863 switch (thread_qos
) {
864 case THREAD_QOS_USER_INTERACTIVE
:
865 return SFI_CLASS_USER_INTERACTIVE_NONFOCAL
;
866 case THREAD_QOS_USER_INITIATED
:
867 return SFI_CLASS_USER_INITIATED_NONFOCAL
;
868 case THREAD_QOS_LEGACY
:
869 return SFI_CLASS_LEGACY_NONFOCAL
;
871 return SFI_CLASS_DEFAULT_NONFOCAL
;
877 * pset must be locked.
880 sfi_processor_active_thread_classify(processor_t processor
)
882 return processor
->current_sfi_class
;
886 * thread must be locked. This is inherently racy, with the intent that
887 * at the AST boundary, it will be fully evaluated whether we need to
888 * perform an AST wait
891 sfi_thread_needs_ast(thread_t thread
, sfi_class_id_t
*out_class
)
893 sfi_class_id_t class_id
;
895 class_id
= sfi_thread_classify(thread
);
898 *out_class
= class_id
;
901 /* No lock taken, so a stale value may be used. */
902 if (!sfi_classes
[class_id
].class_in_on_phase
) {
910 * pset must be locked. We take the SFI class for
911 * the currently running thread which is cached on
912 * the processor_t, and assume it is accurate. In the
913 * worst case, the processor will get an IPI and be asked
914 * to evaluate if the current running thread at that
915 * later point in time should be in an SFI wait.
918 sfi_processor_needs_ast(processor_t processor
)
920 sfi_class_id_t class_id
;
922 class_id
= sfi_processor_active_thread_classify(processor
);
924 /* No lock taken, so a stale value may be used. */
925 if (!sfi_classes
[class_id
].class_in_on_phase
) {
933 _sfi_wait_cleanup(void)
935 thread_t self
= current_thread();
937 spl_t s
= splsched();
938 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
940 sfi_class_id_t current_sfi_wait_class
= self
->sfi_wait_class
;
942 assert((SFI_CLASS_UNSPECIFIED
< current_sfi_wait_class
) &&
943 (current_sfi_wait_class
< MAX_SFI_CLASS_ID
));
945 self
->sfi_wait_class
= SFI_CLASS_UNSPECIFIED
;
947 simple_unlock(&sfi_lock
);
951 * It's possible for the thread to be woken up due to the SFI period
952 * ending *before* it finishes blocking. In that case,
953 * wait_sfi_begin_time won't be set.
955 * Derive the time sacrificed to SFI by looking at when this thread was
956 * awoken by the on-timer, to avoid counting the time this thread spent
957 * waiting to get scheduled.
959 * Note that last_made_runnable_time could be reset if this thread
960 * gets preempted before we read the value. To fix that, we'd need to
961 * track wait time in a thread timer, sample the timer before blocking,
962 * pass the value through thread->parameter, and subtract that.
965 if (self
->wait_sfi_begin_time
!= 0) {
967 uint64_t made_runnable
= os_atomic_load(&self
->last_made_runnable_time
, relaxed
);
968 int64_t sfi_wait_time
= made_runnable
- self
->wait_sfi_begin_time
;
969 assert(sfi_wait_time
>= 0);
971 ledger_credit(self
->task
->ledger
, task_ledgers
.sfi_wait_times
[current_sfi_wait_class
],
973 #endif /* !CONFIG_EMBEDDED */
975 self
->wait_sfi_begin_time
= 0;
980 * Called at AST context to fully evaluate if the current thread
981 * (which is obviously running) should instead block in an SFI wait.
982 * We must take the sfi_lock to check whether we are in the "off" period
983 * for the class, and if so, block.
986 sfi_ast(thread_t thread
)
988 sfi_class_id_t class_id
;
990 struct sfi_class_state
*sfi_class
;
991 wait_result_t waitret
;
992 boolean_t did_wait
= FALSE
;
993 thread_continue_t continuation
;
997 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
999 if (!sfi_is_enabled
) {
1001 * SFI is not enabled, or has recently been disabled.
1002 * There is no point putting this thread on a deferred ready
1003 * queue, even if it were classified as needing it, since
1004 * SFI will truly be off at the next global off timer
1006 simple_unlock(&sfi_lock
);
1012 thread_lock(thread
);
1013 thread
->sfi_class
= class_id
= sfi_thread_classify(thread
);
1014 thread_unlock(thread
);
1017 * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we
1018 * are committed to transitioning to whatever state is indicated by "->class_in_on_phase".
1019 * If another thread tries to call sfi_reevaluate() after this point, it will take the
1020 * sfi_lock and see the thread in this wait state. If another thread calls
1021 * sfi_reevaluate() before this point, it would see a runnable thread and at most
1022 * attempt to send an AST to this processor, but we would have the most accurate
1026 sfi_class
= &sfi_classes
[class_id
];
1027 if (!sfi_class
->class_in_on_phase
) {
1028 /* Need to block thread in wait queue */
1029 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_THREAD_DEFER
),
1030 thread_tid(thread
), class_id
, 0, 0, 0);
1032 waitret
= waitq_assert_wait64(&sfi_class
->waitq
,
1033 CAST_EVENT64_T(class_id
),
1034 THREAD_INTERRUPTIBLE
| THREAD_WAIT_NOREPORT
, 0);
1035 if (waitret
== THREAD_WAITING
) {
1036 thread
->sfi_wait_class
= class_id
;
1038 continuation
= sfi_class
->continuation
;
1040 /* thread may be exiting already, all other errors are unexpected */
1041 assert(waitret
== THREAD_INTERRUPTED
);
1044 simple_unlock(&sfi_lock
);
1049 assert(thread
->wait_sfi_begin_time
== 0);
1051 thread_block_reason(continuation
, NULL
, AST_SFI
);
1055 /* Thread must be unlocked */
1057 sfi_reevaluate(thread_t thread
)
1061 sfi_class_id_t class_id
, current_class_id
;
1066 simple_lock(&sfi_lock
, LCK_GRP_NULL
);
1068 thread_lock(thread
);
1069 sfi_ast
= sfi_thread_needs_ast(thread
, &class_id
);
1070 thread
->sfi_class
= class_id
;
1073 * This routine chiefly exists to boost threads out of an SFI wait
1074 * if their classification changes before the "on" timer fires.
1076 * If we calculate that a thread is in a different ->sfi_wait_class
1077 * than we think it should be (including no-SFI-wait), we need to
1080 * If the thread is in SFI wait and should not be (or should be waiting
1081 * on a different class' "on" timer), we wake it up. If needed, the
1082 * thread may immediately block again in the different SFI wait state.
1084 * If the thread is not in an SFI wait state and it should be, we need
1085 * to get that thread's attention, possibly by sending an AST to another
1089 if ((current_class_id
= thread
->sfi_wait_class
) != SFI_CLASS_UNSPECIFIED
) {
1090 thread_unlock(thread
); /* not needed anymore */
1092 assert(current_class_id
< MAX_SFI_CLASS_ID
);
1094 if ((sfi_ast
== AST_NONE
) || (class_id
!= current_class_id
)) {
1095 struct sfi_class_state
*sfi_class
= &sfi_classes
[current_class_id
];
1097 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI
, SFI_WAIT_CANCELED
), thread_tid(thread
), current_class_id
, class_id
, 0, 0);
1099 kret
= waitq_wakeup64_thread(&sfi_class
->waitq
,
1100 CAST_EVENT64_T(current_class_id
),
1103 assert(kret
== KERN_SUCCESS
|| kret
== KERN_NOT_WAITING
);
1107 * Thread's current SFI wait class is not set, and because we
1108 * have the sfi_lock, it won't get set.
1111 if ((thread
->state
& (TH_RUN
| TH_IDLE
)) == TH_RUN
) {
1112 if (sfi_ast
!= AST_NONE
) {
1113 if (thread
== current_thread()) {
1116 processor_t processor
= thread
->last_processor
;
1118 if (processor
!= PROCESSOR_NULL
&&
1119 processor
->state
== PROCESSOR_RUNNING
&&
1120 processor
->active_thread
== thread
) {
1121 cause_ast_check(processor
);
1124 * Runnable thread that's not on a CPU currently. When a processor
1125 * does context switch to it, the AST will get set based on whether
1126 * the thread is in its "off time".
1133 thread_unlock(thread
);
1136 simple_unlock(&sfi_lock
);
1140 #else /* !CONFIG_SCHED_SFI */
1143 sfi_set_window(uint64_t window_usecs __unused
)
1145 return KERN_NOT_SUPPORTED
;
1149 sfi_window_cancel(void)
1151 return KERN_NOT_SUPPORTED
;
1156 sfi_get_window(uint64_t *window_usecs __unused
)
1158 return KERN_NOT_SUPPORTED
;
1163 sfi_set_class_offtime(sfi_class_id_t class_id __unused
, uint64_t offtime_usecs __unused
)
1165 return KERN_NOT_SUPPORTED
;
1169 sfi_class_offtime_cancel(sfi_class_id_t class_id __unused
)
1171 return KERN_NOT_SUPPORTED
;
1175 sfi_get_class_offtime(sfi_class_id_t class_id __unused
, uint64_t *offtime_usecs __unused
)
1177 return KERN_NOT_SUPPORTED
;
1181 sfi_reevaluate(thread_t thread __unused
)
1187 sfi_thread_classify(thread_t thread
)
1189 task_t task
= thread
->task
;
1190 boolean_t is_kernel_thread
= (task
== kernel_task
);
1192 if (is_kernel_thread
) {
1193 return SFI_CLASS_KERNEL
;
1196 return SFI_CLASS_OPTED_OUT
;
1199 #endif /* !CONFIG_SCHED_SFI */