]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/cpuid.c
xnu-1228.3.13.tar.gz
[apple/xnu.git] / osfmk / i386 / cpuid.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 #include <platforms.h>
32 #include <mach_kdb.h>
33 #include <vm/vm_page.h>
34 #include <pexpert/pexpert.h>
35
36 #include "cpuid.h"
37 #if MACH_KDB
38 #include <i386/db_machdep.h>
39 #include <ddb/db_aout.h>
40 #include <ddb/db_access.h>
41 #include <ddb/db_sym.h>
42 #include <ddb/db_variables.h>
43 #include <ddb/db_command.h>
44 #include <ddb/db_output.h>
45 #include <ddb/db_expr.h>
46 #endif
47
48 #define min(a,b) ((a) < (b) ? (a) : (b))
49 #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
50
51 #define bit(n) (1UL << (n))
52 #define bitmask(h,l) ((bit(h)|(bit(h)-1)) & ~(bit(l)-1))
53 #define bitfield(x,h,l) (((x) & bitmask(h,l)) >> l)
54
55 /*
56 * CPU identification routines.
57 */
58
59 static i386_cpu_info_t *cpuid_cpu_infop = NULL;
60 static i386_cpu_info_t cpuid_cpu_info;
61
62 /* this function is Intel-specific */
63 static void
64 cpuid_set_cache_info( i386_cpu_info_t * info_p )
65 {
66 uint32_t cpuid_result[4];
67 uint32_t reg[4];
68 uint32_t index;
69 uint32_t linesizes[LCACHE_MAX];
70 unsigned int i;
71 unsigned int j;
72 boolean_t cpuid_deterministic_supported = FALSE;
73
74 bzero( linesizes, sizeof(linesizes) );
75
76 /* Get processor cache descriptor info using leaf 2. We don't use
77 * this internally, but must publish it for KEXTs.
78 */
79 do_cpuid(2, cpuid_result);
80 for (j = 0; j < 4; j++) {
81 if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
82 continue;
83 ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j];
84 }
85 /* first byte gives number of cpuid calls to get all descriptors */
86 for (i = 1; i < info_p->cache_info[0]; i++) {
87 if (i*16 > sizeof(info_p->cache_info))
88 break;
89 do_cpuid(2, cpuid_result);
90 for (j = 0; j < 4; j++) {
91 if ((cpuid_result[j] >> 31) == 1)
92 continue;
93 ((uint32_t *) info_p->cache_info)[4*i+j] =
94 cpuid_result[j];
95 }
96 }
97
98 /*
99 * Get cache info using leaf 4, the "deterministic cache parameters."
100 * Most processors Mac OS X supports implement this flavor of CPUID.
101 * Loop over each cache on the processor.
102 */
103 do_cpuid(0, cpuid_result);
104 if (cpuid_result[eax] >= 4)
105 cpuid_deterministic_supported = TRUE;
106
107 for (index = 0; cpuid_deterministic_supported; index++) {
108 cache_type_t type = Lnone;
109 uint32_t cache_type;
110 uint32_t cache_level;
111 uint32_t cache_sharing;
112 uint32_t cache_linesize;
113 uint32_t cache_sets;
114 uint32_t cache_associativity;
115 uint32_t cache_size;
116 uint32_t cache_partitions;
117 uint32_t colors;
118
119 reg[eax] = 4; /* cpuid request 4 */
120 reg[ecx] = index; /* index starting at 0 */
121 cpuid(reg);
122 //kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]);
123 cache_type = bitfield(reg[eax], 4, 0);
124 if (cache_type == 0)
125 break; /* no more caches */
126 cache_level = bitfield(reg[eax], 7, 5);
127 cache_sharing = bitfield(reg[eax], 25, 14) + 1;
128 info_p->cpuid_cores_per_package
129 = bitfield(reg[eax], 31, 26) + 1;
130 cache_linesize = bitfield(reg[ebx], 11, 0) + 1;
131 cache_partitions = bitfield(reg[ebx], 21, 12) + 1;
132 cache_associativity = bitfield(reg[ebx], 31, 22) + 1;
133 cache_sets = bitfield(reg[ecx], 31, 0) + 1;
134
135 /* Map type/levels returned by CPUID into cache_type_t */
136 switch (cache_level) {
137 case 1:
138 type = cache_type == 1 ? L1D :
139 cache_type == 2 ? L1I :
140 Lnone;
141 break;
142 case 2:
143 type = cache_type == 3 ? L2U :
144 Lnone;
145 break;
146 case 3:
147 type = cache_type == 3 ? L3U :
148 Lnone;
149 break;
150 default:
151 type = Lnone;
152 }
153
154 /* The total size of a cache is:
155 * ( linesize * sets * associativity )
156 */
157 if (type != Lnone) {
158 cache_size = cache_linesize * cache_sets * cache_associativity;
159 info_p->cache_size[type] = cache_size;
160 info_p->cache_sharing[type] = cache_sharing;
161 info_p->cache_partitions[type] = cache_partitions;
162 linesizes[type] = cache_linesize;
163
164 /* Compute the number of page colors for this cache,
165 * which is:
166 * ( linesize * sets ) / page_size
167 *
168 * To help visualize this, consider two views of a
169 * physical address. To the cache, it is composed
170 * of a line offset, a set selector, and a tag.
171 * To VM, it is composed of a page offset, a page
172 * color, and other bits in the pageframe number:
173 *
174 * +-----------------+---------+--------+
175 * cache: | tag | set | offset |
176 * +-----------------+---------+--------+
177 *
178 * +-----------------+-------+----------+
179 * VM: | don't care | color | pg offset|
180 * +-----------------+-------+----------+
181 *
182 * The color is those bits in (set+offset) not covered
183 * by the page offset.
184 */
185 colors = ( cache_linesize * cache_sets ) >> 12;
186
187 if ( colors > vm_cache_geometry_colors )
188 vm_cache_geometry_colors = colors;
189 }
190 }
191
192 /*
193 * If deterministic cache parameters are not available, use
194 * something else
195 */
196 if (info_p->cpuid_cores_per_package == 0) {
197 info_p->cpuid_cores_per_package = 1;
198
199 /* cpuid define in 1024 quantities */
200 info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024;
201 info_p->cache_sharing[L2U] = 1;
202 info_p->cache_partitions[L2U] = 1;
203
204 linesizes[L2U] = info_p->cpuid_cache_linesize;
205 }
206
207 /*
208 * What linesize to publish? We use the L2 linesize if any,
209 * else the L1D.
210 */
211 if ( linesizes[L2U] )
212 info_p->cache_linesize = linesizes[L2U];
213 else if (linesizes[L1D])
214 info_p->cache_linesize = linesizes[L1D];
215 else panic("no linesize");
216 }
217
218 static void
219 cpuid_set_generic_info(i386_cpu_info_t *info_p)
220 {
221 uint32_t cpuid_reg[4];
222 uint32_t max_extid;
223 char str[128], *p;
224
225 /* do cpuid 0 to get vendor */
226 do_cpuid(0, cpuid_reg);
227 bcopy((char *)&cpuid_reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
228 bcopy((char *)&cpuid_reg[ecx], &info_p->cpuid_vendor[8], 4);
229 bcopy((char *)&cpuid_reg[edx], &info_p->cpuid_vendor[4], 4);
230 info_p->cpuid_vendor[12] = 0;
231
232 /* get extended cpuid results */
233 do_cpuid(0x80000000, cpuid_reg);
234 max_extid = cpuid_reg[eax];
235
236 /* check to see if we can get brand string */
237 if (max_extid >= 0x80000004) {
238 /*
239 * The brand string 48 bytes (max), guaranteed to
240 * be NUL terminated.
241 */
242 do_cpuid(0x80000002, cpuid_reg);
243 bcopy((char *)cpuid_reg, &str[0], 16);
244 do_cpuid(0x80000003, cpuid_reg);
245 bcopy((char *)cpuid_reg, &str[16], 16);
246 do_cpuid(0x80000004, cpuid_reg);
247 bcopy((char *)cpuid_reg, &str[32], 16);
248 for (p = str; *p != '\0'; p++) {
249 if (*p != ' ') break;
250 }
251 strlcpy(info_p->cpuid_brand_string,
252 p, sizeof(info_p->cpuid_brand_string));
253
254 if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
255 min(sizeof(info_p->cpuid_brand_string),
256 strlen(CPUID_STRING_UNKNOWN) + 1))) {
257 /*
258 * This string means we have a firmware-programmable brand string,
259 * and the firmware couldn't figure out what sort of CPU we have.
260 */
261 info_p->cpuid_brand_string[0] = '\0';
262 }
263 }
264
265 /* Get cache and addressing info. */
266 if (max_extid >= 0x80000006) {
267 do_cpuid(0x80000006, cpuid_reg);
268 info_p->cpuid_cache_linesize = bitfield(cpuid_reg[ecx], 7, 0);
269 info_p->cpuid_cache_L2_associativity =
270 bitfield(cpuid_reg[ecx],15,12);
271 info_p->cpuid_cache_size = bitfield(cpuid_reg[ecx],31,16);
272 do_cpuid(0x80000008, cpuid_reg);
273 info_p->cpuid_address_bits_physical =
274 bitfield(cpuid_reg[eax], 7, 0);
275 info_p->cpuid_address_bits_virtual =
276 bitfield(cpuid_reg[eax],15, 8);
277 }
278
279 /* get processor signature and decode */
280 do_cpuid(1, cpuid_reg);
281 info_p->cpuid_signature = cpuid_reg[eax];
282 info_p->cpuid_stepping = bitfield(cpuid_reg[eax], 3, 0);
283 info_p->cpuid_model = bitfield(cpuid_reg[eax], 7, 4);
284 info_p->cpuid_family = bitfield(cpuid_reg[eax], 11, 8);
285 info_p->cpuid_type = bitfield(cpuid_reg[eax], 13, 12);
286 info_p->cpuid_extmodel = bitfield(cpuid_reg[eax], 19, 16);
287 info_p->cpuid_extfamily = bitfield(cpuid_reg[eax], 27, 20);
288 info_p->cpuid_brand = bitfield(cpuid_reg[ebx], 7, 0);
289 info_p->cpuid_features = quad(cpuid_reg[ecx], cpuid_reg[edx]);
290
291 /* Fold extensions into family/model */
292 if (info_p->cpuid_family == 0x0f)
293 info_p->cpuid_family += info_p->cpuid_extfamily;
294 if (info_p->cpuid_family == 0x0f || info_p->cpuid_family== 0x06)
295 info_p->cpuid_model += (info_p->cpuid_extmodel << 4);
296
297 if (info_p->cpuid_features & CPUID_FEATURE_HTT)
298 info_p->cpuid_logical_per_package =
299 bitfield(cpuid_reg[ebx], 23, 16);
300 else
301 info_p->cpuid_logical_per_package = 1;
302
303 if (max_extid >= 0x80000001) {
304 do_cpuid(0x80000001, cpuid_reg);
305 info_p->cpuid_extfeatures =
306 quad(cpuid_reg[ecx], cpuid_reg[edx]);
307 }
308
309 if (info_p->cpuid_extfeatures && CPUID_FEATURE_MONITOR) {
310 /*
311 * Extract the Monitor/Mwait Leaf info:
312 */
313 do_cpuid(5, cpuid_reg);
314 info_p->cpuid_mwait_linesize_min = cpuid_reg[eax];
315 info_p->cpuid_mwait_linesize_max = cpuid_reg[ebx];
316 info_p->cpuid_mwait_extensions = cpuid_reg[ecx];
317 info_p->cpuid_mwait_sub_Cstates = cpuid_reg[edx];
318
319 /*
320 * And the thermal and Power Leaf while we're at it:
321 */
322 do_cpuid(6, cpuid_reg);
323 info_p->cpuid_thermal_sensor =
324 bitfield(cpuid_reg[eax], 0, 0);
325 info_p->cpuid_thermal_dynamic_acceleration =
326 bitfield(cpuid_reg[eax], 1, 1);
327 info_p->cpuid_thermal_thresholds =
328 bitfield(cpuid_reg[ebx], 3, 0);
329 info_p->cpuid_thermal_ACNT_MCNT =
330 bitfield(cpuid_reg[ecx], 0, 0);
331
332 /*
333 * And the Architectural Performance Monitoring Leaf:
334 */
335 do_cpuid(0xa, cpuid_reg);
336 info_p->cpuid_arch_perf_version =
337 bitfield(cpuid_reg[eax], 7, 0);
338 info_p->cpuid_arch_perf_number =
339 bitfield(cpuid_reg[eax],15, 8);
340 info_p->cpuid_arch_perf_width =
341 bitfield(cpuid_reg[eax],23,16);
342 info_p->cpuid_arch_perf_events_number =
343 bitfield(cpuid_reg[eax],31,24);
344 info_p->cpuid_arch_perf_events =
345 cpuid_reg[ebx];
346 info_p->cpuid_arch_perf_fixed_number =
347 bitfield(cpuid_reg[edx], 4, 0);
348 info_p->cpuid_arch_perf_fixed_width =
349 bitfield(cpuid_reg[edx],12, 5);
350
351 }
352
353 return;
354 }
355
356 void
357 cpuid_set_info(void)
358 {
359 bzero((void *)&cpuid_cpu_info, sizeof(cpuid_cpu_info));
360
361 cpuid_set_generic_info(&cpuid_cpu_info);
362
363 /* verify we are running on a supported CPU */
364 if ((strncmp(CPUID_VID_INTEL, cpuid_cpu_info.cpuid_vendor,
365 min(strlen(CPUID_STRING_UNKNOWN) + 1,
366 sizeof(cpuid_cpu_info.cpuid_vendor)))) ||
367 (cpuid_cpu_info.cpuid_family != 6) ||
368 (cpuid_cpu_info.cpuid_model < 13))
369 panic("Unsupported CPU");
370
371 cpuid_cpu_info.cpuid_cpu_type = CPU_TYPE_X86;
372 cpuid_cpu_info.cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
373
374 cpuid_set_cache_info(&cpuid_cpu_info);
375
376 cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */
377 }
378
379 static struct {
380 uint64_t mask;
381 const char *name;
382 } feature_map[] = {
383 {CPUID_FEATURE_FPU, "FPU",},
384 {CPUID_FEATURE_VME, "VME",},
385 {CPUID_FEATURE_DE, "DE",},
386 {CPUID_FEATURE_PSE, "PSE",},
387 {CPUID_FEATURE_TSC, "TSC",},
388 {CPUID_FEATURE_MSR, "MSR",},
389 {CPUID_FEATURE_PAE, "PAE",},
390 {CPUID_FEATURE_MCE, "MCE",},
391 {CPUID_FEATURE_CX8, "CX8",},
392 {CPUID_FEATURE_APIC, "APIC",},
393 {CPUID_FEATURE_SEP, "SEP",},
394 {CPUID_FEATURE_MTRR, "MTRR",},
395 {CPUID_FEATURE_PGE, "PGE",},
396 {CPUID_FEATURE_MCA, "MCA",},
397 {CPUID_FEATURE_CMOV, "CMOV",},
398 {CPUID_FEATURE_PAT, "PAT",},
399 {CPUID_FEATURE_PSE36, "PSE36",},
400 {CPUID_FEATURE_PSN, "PSN",},
401 {CPUID_FEATURE_CLFSH, "CLFSH",},
402 {CPUID_FEATURE_DS, "DS",},
403 {CPUID_FEATURE_ACPI, "ACPI",},
404 {CPUID_FEATURE_MMX, "MMX",},
405 {CPUID_FEATURE_FXSR, "FXSR",},
406 {CPUID_FEATURE_SSE, "SSE",},
407 {CPUID_FEATURE_SSE2, "SSE2",},
408 {CPUID_FEATURE_SS, "SS",},
409 {CPUID_FEATURE_HTT, "HTT",},
410 {CPUID_FEATURE_TM, "TM",},
411 {CPUID_FEATURE_SSE3, "SSE3"},
412 {CPUID_FEATURE_MONITOR, "MON"},
413 {CPUID_FEATURE_DSCPL, "DSCPL"},
414 {CPUID_FEATURE_VMX, "VMX"},
415 {CPUID_FEATURE_SMX, "SMX"},
416 {CPUID_FEATURE_EST, "EST"},
417 {CPUID_FEATURE_TM2, "TM2"},
418 {CPUID_FEATURE_SSSE3, "SSSE3"},
419 {CPUID_FEATURE_CID, "CID"},
420 {CPUID_FEATURE_CX16, "CX16"},
421 {CPUID_FEATURE_xTPR, "TPR"},
422 {CPUID_FEATURE_PDCM, "PDCM"},
423 {CPUID_FEATURE_SSE4_1, "SSE4.1"},
424 {CPUID_FEATURE_SSE4_2, "SSE4.2"},
425 {CPUID_FEATURE_POPCNT, "POPCNT"},
426 {0, 0}
427 },
428 extfeature_map[] = {
429 {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"},
430 {CPUID_EXTFEATURE_XD, "XD"},
431 {CPUID_EXTFEATURE_EM64T, "EM64T"},
432 {CPUID_EXTFEATURE_LAHF, "LAHF"},
433 {0, 0}
434 };
435
436 i386_cpu_info_t *
437 cpuid_info(void)
438 {
439 /* Set-up the cpuid_indo stucture lazily */
440 if (cpuid_cpu_infop == NULL) {
441 cpuid_set_info();
442 cpuid_cpu_infop = &cpuid_cpu_info;
443 }
444 return cpuid_cpu_infop;
445 }
446
447 char *
448 cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len)
449 {
450 int len = -1;
451 char *p = buf;
452 int i;
453
454 for (i = 0; feature_map[i].mask != 0; i++) {
455 if ((features & feature_map[i].mask) == 0)
456 continue;
457 if (len > 0)
458 *p++ = ' ';
459 len = min(strlen(feature_map[i].name), (buf_len-1) - (p-buf));
460 if (len == 0)
461 break;
462 bcopy(feature_map[i].name, p, len);
463 p += len;
464 }
465 *p = '\0';
466 return buf;
467 }
468
469 char *
470 cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len)
471 {
472 int len = -1;
473 char *p = buf;
474 int i;
475
476 for (i = 0; extfeature_map[i].mask != 0; i++) {
477 if ((extfeatures & extfeature_map[i].mask) == 0)
478 continue;
479 if (len > 0)
480 *p++ = ' ';
481 len = min(strlen(extfeature_map[i].name), (buf_len-1)-(p-buf));
482 if (len == 0)
483 break;
484 bcopy(extfeature_map[i].name, p, len);
485 p += len;
486 }
487 *p = '\0';
488 return buf;
489 }
490
491
492 #if CONFIG_NO_KPRINTF_STRINGS
493 void
494 cpuid_feature_display(
495 __unused const char *header)
496 {
497 }
498
499 void
500 cpuid_extfeature_display(
501 __unused const char *header)
502 {
503 }
504
505 void
506 cpuid_cpu_display(
507 __unused const char *header)
508 {
509 }
510 #else /* CONFIG_NO_KPRINTF_STRINGS */
511 void
512 cpuid_feature_display(
513 const char *header)
514 {
515 char buf[256];
516
517 kprintf("%s: %s\n", header,
518 cpuid_get_feature_names(cpuid_features(),
519 buf, sizeof(buf)));
520 if (cpuid_features() & CPUID_FEATURE_HTT) {
521 #define s_if_plural(n) ((n > 1) ? "s" : "")
522 kprintf(" HTT: %d core%s per package;"
523 " %d logical cpu%s per package\n",
524 cpuid_cpu_info.cpuid_cores_per_package,
525 s_if_plural(cpuid_cpu_info.cpuid_cores_per_package),
526 cpuid_cpu_info.cpuid_logical_per_package,
527 s_if_plural(cpuid_cpu_info.cpuid_logical_per_package));
528 }
529 }
530
531 void
532 cpuid_extfeature_display(
533 const char *header)
534 {
535 char buf[256];
536
537 kprintf("%s: %s\n", header,
538 cpuid_get_extfeature_names(cpuid_extfeatures(),
539 buf, sizeof(buf)));
540 }
541
542 void
543 cpuid_cpu_display(
544 const char *header)
545 {
546 if (cpuid_cpu_info.cpuid_brand_string[0] != '\0') {
547 kprintf("%s: %s\n", header, cpuid_cpu_info.cpuid_brand_string);
548 }
549 }
550 #endif /* !CONFIG_NO_KPRINTF_STRINGS */
551
552 unsigned int
553 cpuid_family(void)
554 {
555 return cpuid_info()->cpuid_family;
556 }
557
558 cpu_type_t
559 cpuid_cputype(void)
560 {
561 return cpuid_info()->cpuid_cpu_type;
562 }
563
564 cpu_subtype_t
565 cpuid_cpusubtype(void)
566 {
567 return cpuid_info()->cpuid_cpu_subtype;
568 }
569
570 uint64_t
571 cpuid_features(void)
572 {
573 static int checked = 0;
574 char fpu_arg[16] = { 0 };
575
576 (void) cpuid_info();
577 if (!checked) {
578 /* check for boot-time fpu limitations */
579 if (PE_parse_boot_arg("_fpu", &fpu_arg[0])) {
580 printf("limiting fpu features to: %s\n", fpu_arg);
581 if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
582 printf("no sse or sse2\n");
583 cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
584 } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
585 printf("no sse2\n");
586 cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE2);
587 }
588 }
589 checked = 1;
590 }
591 return cpuid_cpu_info.cpuid_features;
592 }
593
594 uint64_t
595 cpuid_extfeatures(void)
596 {
597 return cpuid_info()->cpuid_extfeatures;
598 }
599
600
601 #if MACH_KDB
602
603 /*
604 * Display the cpuid
605 * *
606 * cp
607 */
608 void
609 db_cpuid(__unused db_expr_t addr,
610 __unused int have_addr,
611 __unused db_expr_t count,
612 __unused char *modif)
613 {
614
615 uint32_t i, mid;
616 uint32_t cpid[4];
617
618 do_cpuid(0, cpid); /* Get the first cpuid which is the number of
619 * basic ids */
620 db_printf("%08X - %08X %08X %08X %08X\n",
621 0, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
622
623 mid = cpid[eax]; /* Set the number */
624 for (i = 1; i <= mid; i++) { /* Dump 'em out */
625 do_cpuid(i, cpid); /* Get the next */
626 db_printf("%08X - %08X %08X %08X %08X\n",
627 i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
628 }
629 db_printf("\n");
630
631 do_cpuid(0x80000000, cpid); /* Get the first extended cpuid which
632 * is the number of extended ids */
633 db_printf("%08X - %08X %08X %08X %08X\n",
634 0x80000000, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
635
636 mid = cpid[eax]; /* Set the number */
637 for (i = 0x80000001; i <= mid; i++) { /* Dump 'em out */
638 do_cpuid(i, cpid); /* Get the next */
639 db_printf("%08X - %08X %08X %08X %08X\n",
640 i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
641 }
642 }
643
644 #endif