]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_input.c
xnu-1228.3.13.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_input.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/sysctl.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/proc.h> /* for proc0 declaration */
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/syslog.h>
81
82 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
83
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
92 #include <netinet/in_var.h>
93 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
94 #include <netinet/in_pcb.h>
95 #include <netinet/ip_var.h>
96 #if INET6
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_pcb.h>
102 #endif
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #if INET6
109 #include <netinet6/tcp6_var.h>
110 #endif
111 #include <netinet/tcpip.h>
112 #if TCPDEBUG
113 #include <netinet/tcp_debug.h>
114 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
115 struct tcphdr tcp_savetcp;
116 #endif /* TCPDEBUG */
117
118 #if IPSEC
119 #include <netinet6/ipsec.h>
120 #if INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netkey/key.h>
124 #endif /*IPSEC*/
125
126 #if CONFIG_MACF_NET || CONFIG_MACF_SOCKET
127 #include <security/mac_framework.h>
128 #endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */
129
130 #include <sys/kdebug.h>
131
132 #ifndef __APPLE__
133 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
134 #endif
135
136 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
137 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
138 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
139 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
140
141 static int tcprexmtthresh = 2;
142 tcp_cc tcp_ccgen;
143
144 #if IPSEC
145 extern int ipsec_bypass;
146 #endif
147
148 struct tcpstat tcpstat;
149
150 static int log_in_vain = 0;
151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
152 &log_in_vain, 0, "Log all incoming TCP connections");
153
154 static int blackhole = 0;
155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
156 &blackhole, 0, "Do not send RST when dropping refused connections");
157
158 int tcp_delack_enabled = 3;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
160 &tcp_delack_enabled, 0,
161 "Delay ACK to try and piggyback it onto a data packet");
162
163 int tcp_lq_overflow = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW,
165 &tcp_lq_overflow, 0,
166 "Listen Queue Overflow");
167
168 #if TCP_DROP_SYNFIN
169 static int drop_synfin = 1;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
171 &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
172 #endif
173
174 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0,
175 "TCP Segment Reassembly Queue");
176
177 __private_extern__ int tcp_reass_maxseg = 0;
178 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RW,
179 &tcp_reass_maxseg, 0,
180 "Global maximum number of TCP Segments in Reassembly Queue");
181
182 __private_extern__ int tcp_reass_qsize = 0;
183 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
184 &tcp_reass_qsize, 0,
185 "Global number of TCP Segments currently in Reassembly Queue");
186
187 static int tcp_reass_overflows = 0;
188 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
189 &tcp_reass_overflows, 0,
190 "Global number of TCP Segment Reassembly Queue Overflows");
191
192
193 __private_extern__ int slowlink_wsize = 8192;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, slowlink_wsize, CTLFLAG_RW,
195 &slowlink_wsize, 0, "Maximum advertised window size for slowlink");
196
197 static int maxseg_unacked = 8;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxseg_unacked, CTLFLAG_RW,
199 &maxseg_unacked, 0, "Maximum number of outstanding segments left unacked");
200
201 static int tcp_do_rfc3465 = 1;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
203 &tcp_do_rfc3465, 0, "");
204 extern int tcp_TCPTV_MIN;
205
206 u_long tcp_now;
207
208 struct inpcbhead tcb;
209 #define tcb6 tcb /* for KAME src sync over BSD*'s */
210 struct inpcbinfo tcbinfo;
211
212 static void tcp_dooptions(struct tcpcb *,
213 u_char *, int, struct tcphdr *, struct tcpopt *);
214 static void tcp_pulloutofband(struct socket *,
215 struct tcphdr *, struct mbuf *, int);
216 static int tcp_reass(struct tcpcb *, struct tcphdr *, int *,
217 struct mbuf *);
218 static void tcp_xmit_timer(struct tcpcb *, int);
219 static inline unsigned int tcp_maxmtu(struct rtentry *);
220 #if INET6
221 static inline unsigned int tcp_maxmtu6(struct rtentry *);
222 #endif
223
224 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
225 #if INET6
226 #define ND6_HINT(tp) \
227 do { \
228 if ((tp) && (tp)->t_inpcb && \
229 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
230 (tp)->t_inpcb->in6p_route.ro_rt) \
231 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
232 } while (0)
233 #else
234 #define ND6_HINT(tp)
235 #endif
236
237 extern u_long *delack_bitmask;
238
239 extern void add_to_time_wait(struct tcpcb *);
240 extern void postevent(struct socket *, struct sockbuf *, int);
241
242 extern void ipfwsyslog( int level, const char *format,...);
243 extern int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr );
244 extern int fw_verbose;
245 __private_extern__ int tcp_sockthreshold;
246 __private_extern__ int tcp_win_scale;
247
248 #if IPFIREWALL
249 #define log_in_vain_log( a ) { \
250 if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \
251 ipfwsyslog a ; \
252 } \
253 else log a ; \
254 }
255 #else
256 #define log_in_vain_log( a ) { log a; }
257 #endif
258
259
260 /*
261 * Indicate whether this ack should be delayed.
262 * We can delay the ack if:
263 * - delayed acks are enabled (set to 1) and
264 * - our last ack wasn't a 0-sized window. We never want to delay
265 * the ack that opens up a 0-sized window.
266 * - delayed acks are enabled (set to 2, "more compatible") and
267 * - our last ack wasn't a 0-sized window.
268 * - if the peer hasn't sent us a TH_PUSH data packet (this solves 3649245)
269 * - the peer hasn't sent us a TH_PUSH data packet, if he did, take this as a clue that we
270 * need to ACK with no delay. This helps higher level protocols who won't send
271 * us more data even if the window is open because their last "segment" hasn't been ACKed
272 * - delayed acks are enabled (set to 3, "streaming detection") and
273 * - if we receive more than "maxseg_unacked" full packets per second on this socket
274 * - if we don't have more than "maxseg_unacked" delayed so far
275 * - if those criteria aren't met, acts like "2". Allowing faster acking while browsing for example.
276 *
277 */
278 #define DELAY_ACK(tp) \
279 (((tcp_delack_enabled == 1) && ((tp->t_flags & TF_RXWIN0SENT) == 0)) || \
280 (((tcp_delack_enabled == 2) && (tp->t_flags & TF_RXWIN0SENT) == 0) && \
281 ((thflags & TH_PUSH) == 0) && ((tp->t_flags & TF_DELACK) == 0)) || \
282 (((tcp_delack_enabled == 3) && (tp->t_flags & TF_RXWIN0SENT) == 0) && \
283 (tp->t_rcvtime == 0) && ((thflags & TH_PUSH) == 0) && \
284 (((tp->t_unacksegs == 0)) || \
285 ((tp->rcv_byps > (maxseg_unacked * tp->t_maxseg)) && (tp->t_unacksegs < maxseg_unacked)))))
286
287 static int tcp_dropdropablreq(struct socket *head);
288 static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
289
290
291 static int
292 tcp_reass(tp, th, tlenp, m)
293 register struct tcpcb *tp;
294 register struct tcphdr *th;
295 int *tlenp;
296 struct mbuf *m;
297 {
298 struct tseg_qent *q;
299 struct tseg_qent *p = NULL;
300 struct tseg_qent *nq;
301 struct tseg_qent *te = NULL;
302 struct socket *so = tp->t_inpcb->inp_socket;
303 int flags;
304 int dowakeup = 0;
305
306 /*
307 * Call with th==0 after become established to
308 * force pre-ESTABLISHED data up to user socket.
309 */
310 if (th == NULL)
311 goto present;
312
313 /*
314 * Limit the number of segments in the reassembly queue to prevent
315 * holding on to too many segments (and thus running out of mbufs).
316 * Make sure to let the missing segment through which caused this
317 * queue. Always keep one global queue entry spare to be able to
318 * process the missing segment.
319 */
320 if (th->th_seq != tp->rcv_nxt &&
321 tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
322 tcp_reass_overflows++;
323 tcpstat.tcps_rcvmemdrop++;
324 m_freem(m);
325 *tlenp = 0;
326 return (0);
327 }
328
329 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
330 MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
331 M_NOWAIT);
332 if (te == NULL) {
333 tcpstat.tcps_rcvmemdrop++;
334 m_freem(m);
335 return (0);
336 }
337 tcp_reass_qsize++;
338
339 /*
340 * Find a segment which begins after this one does.
341 */
342 LIST_FOREACH(q, &tp->t_segq, tqe_q) {
343 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
344 break;
345 p = q;
346 }
347
348 /*
349 * If there is a preceding segment, it may provide some of
350 * our data already. If so, drop the data from the incoming
351 * segment. If it provides all of our data, drop us.
352 */
353 if (p != NULL) {
354 register int i;
355 /* conversion to int (in i) handles seq wraparound */
356 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
357 if (i > 0) {
358 if (i >= *tlenp) {
359 tcpstat.tcps_rcvduppack++;
360 tcpstat.tcps_rcvdupbyte += *tlenp;
361 m_freem(m);
362 FREE(te, M_TSEGQ);
363 tcp_reass_qsize--;
364 /*
365 * Try to present any queued data
366 * at the left window edge to the user.
367 * This is needed after the 3-WHS
368 * completes.
369 */
370 goto present; /* ??? */
371 }
372 m_adj(m, i);
373 *tlenp -= i;
374 th->th_seq += i;
375 }
376 }
377 tcpstat.tcps_rcvoopack++;
378 tcpstat.tcps_rcvoobyte += *tlenp;
379
380 /*
381 * While we overlap succeeding segments trim them or,
382 * if they are completely covered, dequeue them.
383 */
384 while (q) {
385 register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
386 if (i <= 0)
387 break;
388 if (i < q->tqe_len) {
389 q->tqe_th->th_seq += i;
390 q->tqe_len -= i;
391 m_adj(q->tqe_m, i);
392 break;
393 }
394
395 nq = LIST_NEXT(q, tqe_q);
396 LIST_REMOVE(q, tqe_q);
397 m_freem(q->tqe_m);
398 FREE(q, M_TSEGQ);
399 tcp_reass_qsize--;
400 q = nq;
401 }
402
403 /* Insert the new segment queue entry into place. */
404 te->tqe_m = m;
405 te->tqe_th = th;
406 te->tqe_len = *tlenp;
407
408 if (p == NULL) {
409 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
410 } else {
411 LIST_INSERT_AFTER(p, te, tqe_q);
412 }
413
414 present:
415 /*
416 * Present data to user, advancing rcv_nxt through
417 * completed sequence space.
418 */
419 if (!TCPS_HAVEESTABLISHED(tp->t_state))
420 return (0);
421 q = LIST_FIRST(&tp->t_segq);
422 if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
423 return (0);
424 do {
425 tp->rcv_nxt += q->tqe_len;
426 flags = q->tqe_th->th_flags & TH_FIN;
427 nq = LIST_NEXT(q, tqe_q);
428 LIST_REMOVE(q, tqe_q);
429 if (so->so_state & SS_CANTRCVMORE)
430 m_freem(q->tqe_m);
431 else {
432 if (sbappendstream(&so->so_rcv, q->tqe_m))
433 dowakeup = 1;
434 }
435 FREE(q, M_TSEGQ);
436 tcp_reass_qsize--;
437 q = nq;
438 } while (q && q->tqe_th->th_seq == tp->rcv_nxt);
439 ND6_HINT(tp);
440
441 #if INET6
442 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
443
444 KERNEL_DEBUG(DBG_LAYER_BEG,
445 ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport),
446 (((tp->t_inpcb->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
447 (tp->t_inpcb->in6p_faddr.s6_addr16[0] & 0xffff)),
448 0,0,0);
449 }
450 else
451 #endif
452 {
453 KERNEL_DEBUG(DBG_LAYER_BEG,
454 ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport),
455 (((tp->t_inpcb->inp_laddr.s_addr & 0xffff) << 16) |
456 (tp->t_inpcb->inp_faddr.s_addr & 0xffff)),
457 0,0,0);
458 }
459 if (dowakeup)
460 sorwakeup(so); /* done with socket lock held */
461 return (flags);
462
463 }
464
465 /*
466 * Reduce congestion window.
467 */
468 static void
469 tcp_reduce_congestion_window(
470 struct tcpcb *tp)
471 {
472 u_int win;
473
474 win = min(tp->snd_wnd, tp->snd_cwnd) /
475 2 / tp->t_maxseg;
476 if (win < 2)
477 win = 2;
478 tp->snd_ssthresh = win * tp->t_maxseg;
479 ENTER_FASTRECOVERY(tp);
480 tp->snd_recover = tp->snd_max;
481 tp->t_timer[TCPT_REXMT] = 0;
482 tp->t_rtttime = 0;
483 tp->ecn_flags |= TE_SENDCWR;
484 tp->snd_cwnd = tp->snd_ssthresh +
485 tp->t_maxseg * tcprexmtthresh;
486 }
487
488
489 /*
490 * TCP input routine, follows pages 65-76 of the
491 * protocol specification dated September, 1981 very closely.
492 */
493 #if INET6
494 int
495 tcp6_input(mp, offp)
496 struct mbuf **mp;
497 int *offp;
498 {
499 register struct mbuf *m = *mp;
500 struct in6_ifaddr *ia6;
501
502 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
503
504 /*
505 * draft-itojun-ipv6-tcp-to-anycast
506 * better place to put this in?
507 */
508 ia6 = ip6_getdstifaddr(m);
509 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
510 struct ip6_hdr *ip6;
511
512 ip6 = mtod(m, struct ip6_hdr *);
513 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
514 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
515 return IPPROTO_DONE;
516 }
517
518 tcp_input(m, *offp);
519 return IPPROTO_DONE;
520 }
521 #endif
522
523 void
524 tcp_input(m, off0)
525 struct mbuf *m;
526 int off0;
527 {
528 register struct tcphdr *th;
529 register struct ip *ip = NULL;
530 register struct ipovly *ipov;
531 register struct inpcb *inp;
532 u_char *optp = NULL;
533 int optlen = 0;
534 int len, tlen, off;
535 int drop_hdrlen;
536 register struct tcpcb *tp = 0;
537 register int thflags;
538 struct socket *so = 0;
539 int todrop, acked, ourfinisacked, needoutput = 0;
540 struct in_addr laddr;
541 #if INET6
542 struct in6_addr laddr6;
543 #endif
544 int dropsocket = 0;
545 int iss = 0;
546 int nosock = 0;
547 u_long tiwin;
548 struct tcpopt to; /* options in this segment */
549 struct sockaddr_in *next_hop = NULL;
550 #if TCPDEBUG
551 short ostate = 0;
552 #endif
553 struct m_tag *fwd_tag;
554 u_char ip_ecn = IPTOS_ECN_NOTECT;
555
556 /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
557 fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPFORWARD, NULL);
558 if (fwd_tag != NULL) {
559 struct ip_fwd_tag *ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
560
561 next_hop = ipfwd_tag->next_hop;
562 m_tag_delete(m, fwd_tag);
563 }
564
565 #if INET6
566 struct ip6_hdr *ip6 = NULL;
567 int isipv6;
568 #endif /* INET6 */
569 int rstreason; /* For badport_bandlim accounting purposes */
570 struct proc *proc0=current_proc();
571
572 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0);
573
574 #if INET6
575 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
576 #endif
577 bzero((char *)&to, sizeof(to));
578
579 tcpstat.tcps_rcvtotal++;
580
581
582
583 #if INET6
584 if (isipv6) {
585 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
586 ip6 = mtod(m, struct ip6_hdr *);
587 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
588 if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
589 tcpstat.tcps_rcvbadsum++;
590 goto dropnosock;
591 }
592 th = (struct tcphdr *)((caddr_t)ip6 + off0);
593
594 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
595 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
596 th->th_seq, th->th_ack, th->th_win);
597 /*
598 * Be proactive about unspecified IPv6 address in source.
599 * As we use all-zero to indicate unbounded/unconnected pcb,
600 * unspecified IPv6 address can be used to confuse us.
601 *
602 * Note that packets with unspecified IPv6 destination is
603 * already dropped in ip6_input.
604 */
605 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
606 /* XXX stat */
607 goto dropnosock;
608 }
609 } else
610 #endif /* INET6 */
611 {
612 /*
613 * Get IP and TCP header together in first mbuf.
614 * Note: IP leaves IP header in first mbuf.
615 */
616 if (off0 > sizeof (struct ip)) {
617 ip_stripoptions(m, (struct mbuf *)0);
618 off0 = sizeof(struct ip);
619 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
620 m->m_pkthdr.csum_flags = 0; /* invalidate hwcksuming */
621
622 }
623 if (m->m_len < sizeof (struct tcpiphdr)) {
624 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
625 tcpstat.tcps_rcvshort++;
626 return;
627 }
628 }
629 ip = mtod(m, struct ip *);
630 ipov = (struct ipovly *)ip;
631 th = (struct tcphdr *)((caddr_t)ip + off0);
632 tlen = ip->ip_len;
633
634 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
635 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
636 th->th_seq, th->th_ack, th->th_win);
637
638 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
639 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) {
640 u_short pseudo;
641 char b[9];
642 *(uint32_t*)&b[0] = *(uint32_t*)&ipov->ih_x1[0];
643 *(uint32_t*)&b[4] = *(uint32_t*)&ipov->ih_x1[4];
644 *(uint8_t*)&b[8] = *(uint8_t*)&ipov->ih_x1[8];
645
646 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
647 ipov->ih_len = (u_short)tlen;
648 HTONS(ipov->ih_len);
649 pseudo = in_cksum(m, sizeof (struct ip));
650
651 *(uint32_t*)&ipov->ih_x1[0] = *(uint32_t*)&b[0];
652 *(uint32_t*)&ipov->ih_x1[4] = *(uint32_t*)&b[4];
653 *(uint8_t*)&ipov->ih_x1[8] = *(uint8_t*)&b[8];
654
655 th->th_sum = in_addword(pseudo, (m->m_pkthdr.csum_data & 0xFFFF));
656 } else {
657 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
658 th->th_sum = m->m_pkthdr.csum_data;
659 else
660 th->th_sum = in_pseudo(ip->ip_src.s_addr,
661 ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data +
662 ip->ip_len + IPPROTO_TCP));
663 }
664 th->th_sum ^= 0xffff;
665 } else {
666 char b[9];
667 /*
668 * Checksum extended TCP header and data.
669 */
670 *(uint32_t*)&b[0] = *(uint32_t*)&ipov->ih_x1[0];
671 *(uint32_t*)&b[4] = *(uint32_t*)&ipov->ih_x1[4];
672 *(uint8_t*)&b[8] = *(uint8_t*)&ipov->ih_x1[8];
673
674 len = sizeof (struct ip) + tlen;
675 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
676 ipov->ih_len = (u_short)tlen;
677 HTONS(ipov->ih_len);
678 th->th_sum = in_cksum(m, len);
679
680 *(uint32_t*)&ipov->ih_x1[0] = *(uint32_t*)&b[0];
681 *(uint32_t*)&ipov->ih_x1[4] = *(uint32_t*)&b[4];
682 *(uint8_t*)&ipov->ih_x1[8] = *(uint8_t*)&b[8];
683
684 tcp_in_cksum_stats(len);
685 }
686 if (th->th_sum) {
687 tcpstat.tcps_rcvbadsum++;
688 goto dropnosock;
689 }
690 #if INET6
691 /* Re-initialization for later version check */
692 ip->ip_v = IPVERSION;
693 #endif
694 ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
695 }
696
697 /*
698 * Check that TCP offset makes sense,
699 * pull out TCP options and adjust length. XXX
700 */
701 off = th->th_off << 2;
702 if (off < sizeof (struct tcphdr) || off > tlen) {
703 tcpstat.tcps_rcvbadoff++;
704 goto dropnosock;
705 }
706 tlen -= off; /* tlen is used instead of ti->ti_len */
707 if (off > sizeof (struct tcphdr)) {
708 #if INET6
709 if (isipv6) {
710 IP6_EXTHDR_CHECK(m, off0, off, return);
711 ip6 = mtod(m, struct ip6_hdr *);
712 th = (struct tcphdr *)((caddr_t)ip6 + off0);
713 } else
714 #endif /* INET6 */
715 {
716 if (m->m_len < sizeof(struct ip) + off) {
717 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
718 tcpstat.tcps_rcvshort++;
719 return;
720 }
721 ip = mtod(m, struct ip *);
722 ipov = (struct ipovly *)ip;
723 th = (struct tcphdr *)((caddr_t)ip + off0);
724 }
725 }
726 optlen = off - sizeof (struct tcphdr);
727 optp = (u_char *)(th + 1);
728 /*
729 * Do quick retrieval of timestamp options ("options
730 * prediction?"). If timestamp is the only option and it's
731 * formatted as recommended in RFC 1323 appendix A, we
732 * quickly get the values now and not bother calling
733 * tcp_dooptions(), etc.
734 */
735 if ((optlen == TCPOLEN_TSTAMP_APPA ||
736 (optlen > TCPOLEN_TSTAMP_APPA &&
737 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
738 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
739 (th->th_flags & TH_SYN) == 0) {
740 to.to_flags |= TOF_TS;
741 to.to_tsval = ntohl(*(u_int32_t *)(optp + 4));
742 to.to_tsecr = ntohl(*(u_int32_t *)(optp + 8));
743 optp = NULL; /* we've parsed the options */
744 }
745 }
746 thflags = th->th_flags;
747
748 #if TCP_DROP_SYNFIN
749 /*
750 * If the drop_synfin option is enabled, drop all packets with
751 * both the SYN and FIN bits set. This prevents e.g. nmap from
752 * identifying the TCP/IP stack.
753 *
754 * This is a violation of the TCP specification.
755 */
756 if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
757 goto dropnosock;
758 #endif
759
760 /*
761 * Convert TCP protocol specific fields to host format.
762 */
763 NTOHL(th->th_seq);
764 NTOHL(th->th_ack);
765 NTOHS(th->th_win);
766 NTOHS(th->th_urp);
767
768 /*
769 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
770 * until after ip6_savecontrol() is called and before other functions
771 * which don't want those proto headers.
772 * Because ip6_savecontrol() is going to parse the mbuf to
773 * search for data to be passed up to user-land, it wants mbuf
774 * parameters to be unchanged.
775 */
776 drop_hdrlen = off0 + off;
777
778 /*
779 * Locate pcb for segment.
780 */
781 findpcb:
782 #if IPFIREWALL_FORWARD
783 if (next_hop != NULL
784 #if INET6
785 && isipv6 == 0 /* IPv6 support is not yet */
786 #endif /* INET6 */
787 ) {
788 /*
789 * Diverted. Pretend to be the destination.
790 * already got one like this?
791 */
792 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
793 ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
794 if (!inp) {
795 /*
796 * No, then it's new. Try find the ambushing socket
797 */
798 if (!next_hop->sin_port) {
799 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
800 th->th_sport, next_hop->sin_addr,
801 th->th_dport, 1, m->m_pkthdr.rcvif);
802 } else {
803 inp = in_pcblookup_hash(&tcbinfo,
804 ip->ip_src, th->th_sport,
805 next_hop->sin_addr,
806 ntohs(next_hop->sin_port), 1,
807 m->m_pkthdr.rcvif);
808 }
809 }
810 } else
811 #endif /* IPFIREWALL_FORWARD */
812 {
813 #if INET6
814 if (isipv6)
815 inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
816 &ip6->ip6_dst, th->th_dport, 1,
817 m->m_pkthdr.rcvif);
818 else
819 #endif /* INET6 */
820 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
821 ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
822 }
823
824 #if IPSEC
825 if (ipsec_bypass == 0) {
826 #if INET6
827 if (isipv6) {
828 if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
829 IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
830 goto dropnosock;
831 }
832 } else
833 #endif /* INET6 */
834 if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
835 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
836 goto dropnosock;
837 }
838 }
839 #endif /*IPSEC*/
840
841 /*
842 * If the state is CLOSED (i.e., TCB does not exist) then
843 * all data in the incoming segment is discarded.
844 * If the TCB exists but is in CLOSED state, it is embryonic,
845 * but should either do a listen or a connect soon.
846 */
847 if (inp == NULL) {
848 if (log_in_vain) {
849 #if INET6
850 char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
851 #else /* INET6 */
852 char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN];
853 #endif /* INET6 */
854
855 #if INET6
856 if (isipv6) {
857 inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
858 inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
859 } else
860 #endif
861 {
862 inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
863 inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
864 }
865 switch (log_in_vain) {
866 case 1:
867 if(thflags & TH_SYN)
868 log(LOG_INFO,
869 "Connection attempt to TCP %s:%d from %s:%d\n",
870 dbuf, ntohs(th->th_dport),
871 sbuf,
872 ntohs(th->th_sport));
873 break;
874 case 2:
875 log(LOG_INFO,
876 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
877 dbuf, ntohs(th->th_dport), sbuf,
878 ntohs(th->th_sport), thflags);
879 break;
880 case 3:
881 if ((thflags & TH_SYN) &&
882 !(m->m_flags & (M_BCAST | M_MCAST)) &&
883 #if INET6
884 ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
885 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))
886 #else
887 ip->ip_dst.s_addr != ip->ip_src.s_addr
888 #endif
889 )
890 log_in_vain_log((LOG_INFO,
891 "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
892 dbuf, ntohs(th->th_dport),
893 sbuf,
894 ntohs(th->th_sport)));
895 break;
896 default:
897 break;
898 }
899 }
900 if (blackhole) {
901 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP)
902 switch (blackhole) {
903 case 1:
904 if (thflags & TH_SYN)
905 goto dropnosock;
906 break;
907 case 2:
908 goto dropnosock;
909 default:
910 goto dropnosock;
911 }
912 }
913 rstreason = BANDLIM_RST_CLOSEDPORT;
914 goto dropwithresetnosock;
915 }
916 so = inp->inp_socket;
917 if (so == NULL) {
918 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING)
919 inp = NULL; // pretend we didn't find it
920 #if TEMPDEBUG
921 printf("tcp_input: no more socket for inp=%x\n", inp);
922 #endif
923 goto dropnosock;
924 }
925
926 #ifdef __APPLE__
927 /*
928 * Bogus state when listening port owned by SharedIP with loopback as the
929 * only configured interface: BlueBox does not filters loopback
930 */
931 if (so == &tcbinfo.nat_dummy_socket)
932 goto drop;
933
934 #endif
935 tcp_lock(so, 1, 2);
936 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
937 tcp_unlock(so, 1, 2);
938 inp = NULL; // pretend we didn't find it
939 goto dropnosock;
940 }
941
942 tp = intotcpcb(inp);
943 if (tp == 0) {
944 rstreason = BANDLIM_RST_CLOSEDPORT;
945 goto dropwithreset;
946 }
947 if (tp->t_state == TCPS_CLOSED)
948 goto drop;
949
950 /* Unscale the window into a 32-bit value. */
951 if ((thflags & TH_SYN) == 0)
952 tiwin = th->th_win << tp->snd_scale;
953 else
954 tiwin = th->th_win;
955
956 #if CONFIG_MACF_NET
957 if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM))
958 goto drop;
959 #endif
960
961 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
962 #if TCPDEBUG
963 if (so->so_options & SO_DEBUG) {
964 ostate = tp->t_state;
965 #if INET6
966 if (isipv6)
967 bcopy((char *)ip6, (char *)tcp_saveipgen,
968 sizeof(*ip6));
969 else
970 #endif /* INET6 */
971 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
972 tcp_savetcp = *th;
973 }
974 #endif
975 if (so->so_options & SO_ACCEPTCONN) {
976 register struct tcpcb *tp0 = tp;
977 struct socket *so2;
978 struct socket *oso;
979 struct sockaddr_storage from;
980 #if INET6
981 struct inpcb *oinp = sotoinpcb(so);
982 #endif /* INET6 */
983 int ogencnt = so->so_gencnt;
984
985 #if !IPSEC
986 /*
987 * Current IPsec implementation makes incorrect IPsec
988 * cache if this check is done here.
989 * So delay this until duplicated socket is created.
990 */
991 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
992 /*
993 * Note: dropwithreset makes sure we don't
994 * send a RST in response to a RST.
995 */
996 if (thflags & TH_ACK) {
997 tcpstat.tcps_badsyn++;
998 rstreason = BANDLIM_RST_OPENPORT;
999 goto dropwithreset;
1000 }
1001 goto drop;
1002 }
1003 #endif
1004 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0);
1005
1006 #if INET6
1007 /*
1008 * If deprecated address is forbidden,
1009 * we do not accept SYN to deprecated interface
1010 * address to prevent any new inbound connection from
1011 * getting established.
1012 * When we do not accept SYN, we send a TCP RST,
1013 * with deprecated source address (instead of dropping
1014 * it). We compromise it as it is much better for peer
1015 * to send a RST, and RST will be the final packet
1016 * for the exchange.
1017 *
1018 * If we do not forbid deprecated addresses, we accept
1019 * the SYN packet. RFC2462 does not suggest dropping
1020 * SYN in this case.
1021 * If we decipher RFC2462 5.5.4, it says like this:
1022 * 1. use of deprecated addr with existing
1023 * communication is okay - "SHOULD continue to be
1024 * used"
1025 * 2. use of it with new communication:
1026 * (2a) "SHOULD NOT be used if alternate address
1027 * with sufficient scope is available"
1028 * (2b) nothing mentioned otherwise.
1029 * Here we fall into (2b) case as we have no choice in
1030 * our source address selection - we must obey the peer.
1031 *
1032 * The wording in RFC2462 is confusing, and there are
1033 * multiple description text for deprecated address
1034 * handling - worse, they are not exactly the same.
1035 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1036 */
1037 if (isipv6 && !ip6_use_deprecated) {
1038 struct in6_ifaddr *ia6;
1039
1040 if ((ia6 = ip6_getdstifaddr(m)) &&
1041 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1042 tp = NULL;
1043 rstreason = BANDLIM_RST_OPENPORT;
1044 goto dropwithreset;
1045 }
1046 }
1047 #endif
1048 if (so->so_filt) {
1049 #if INET6
1050 if (isipv6) {
1051 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from;
1052
1053 sin6->sin6_len = sizeof(*sin6);
1054 sin6->sin6_family = AF_INET6;
1055 sin6->sin6_port = th->th_sport;
1056 sin6->sin6_flowinfo = 0;
1057 sin6->sin6_addr = ip6->ip6_src;
1058 sin6->sin6_scope_id = 0;
1059 }
1060 else
1061 #endif
1062 {
1063 struct sockaddr_in *sin = (struct sockaddr_in*)&from;
1064
1065 sin->sin_len = sizeof(*sin);
1066 sin->sin_family = AF_INET;
1067 sin->sin_port = th->th_sport;
1068 sin->sin_addr = ip->ip_src;
1069 }
1070 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1071 } else {
1072 so2 = sonewconn(so, 0, NULL);
1073 }
1074 if (so2 == 0) {
1075 tcpstat.tcps_listendrop++;
1076 if (tcp_dropdropablreq(so)) {
1077 if (so->so_filt)
1078 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1079 else
1080 so2 = sonewconn(so, 0, NULL);
1081 }
1082 if (!so2)
1083 goto drop;
1084 }
1085 /*
1086 * Make sure listening socket did not get closed during socket allocation,
1087 * not only this is incorrect but it is know to cause panic
1088 */
1089 if (so->so_gencnt != ogencnt)
1090 goto drop;
1091
1092 oso = so;
1093 tcp_unlock(so, 0, 0); /* Unlock but keep a reference on listener for now */
1094
1095 so = so2;
1096 tcp_lock(so, 1, 0);
1097 /*
1098 * This is ugly, but ....
1099 *
1100 * Mark socket as temporary until we're
1101 * committed to keeping it. The code at
1102 * ``drop'' and ``dropwithreset'' check the
1103 * flag dropsocket to see if the temporary
1104 * socket created here should be discarded.
1105 * We mark the socket as discardable until
1106 * we're committed to it below in TCPS_LISTEN.
1107 */
1108 dropsocket++;
1109 inp = (struct inpcb *)so->so_pcb;
1110 #if INET6
1111 if (isipv6)
1112 inp->in6p_laddr = ip6->ip6_dst;
1113 else {
1114 inp->inp_vflag &= ~INP_IPV6;
1115 inp->inp_vflag |= INP_IPV4;
1116 #endif /* INET6 */
1117 inp->inp_laddr = ip->ip_dst;
1118 #if INET6
1119 }
1120 #endif /* INET6 */
1121 inp->inp_lport = th->th_dport;
1122 if (in_pcbinshash(inp, 0) != 0) {
1123 /*
1124 * Undo the assignments above if we failed to
1125 * put the PCB on the hash lists.
1126 */
1127 #if INET6
1128 if (isipv6)
1129 inp->in6p_laddr = in6addr_any;
1130 else
1131 #endif /* INET6 */
1132 inp->inp_laddr.s_addr = INADDR_ANY;
1133 inp->inp_lport = 0;
1134 tcp_lock(oso, 0, 0); /* release ref on parent */
1135 tcp_unlock(oso, 1, 0);
1136 goto drop;
1137 }
1138 #if IPSEC
1139 /*
1140 * To avoid creating incorrectly cached IPsec
1141 * association, this is need to be done here.
1142 *
1143 * Subject: (KAME-snap 748)
1144 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
1145 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
1146 */
1147 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1148 /*
1149 * Note: dropwithreset makes sure we don't
1150 * send a RST in response to a RST.
1151 */
1152 tcp_lock(oso, 0, 0); /* release ref on parent */
1153 tcp_unlock(oso, 1, 0);
1154 if (thflags & TH_ACK) {
1155 tcpstat.tcps_badsyn++;
1156 rstreason = BANDLIM_RST_OPENPORT;
1157 goto dropwithreset;
1158 }
1159 goto drop;
1160 }
1161 #endif
1162 #if INET6
1163 if (isipv6) {
1164 /*
1165 * Inherit socket options from the listening
1166 * socket.
1167 * Note that in6p_inputopts are not (even
1168 * should not be) copied, since it stores
1169 * previously received options and is used to
1170 * detect if each new option is different than
1171 * the previous one and hence should be passed
1172 * to a user.
1173 * If we copied in6p_inputopts, a user would
1174 * not be able to receive options just after
1175 * calling the accept system call.
1176 */
1177 inp->inp_flags |=
1178 oinp->inp_flags & INP_CONTROLOPTS;
1179 if (oinp->in6p_outputopts)
1180 inp->in6p_outputopts =
1181 ip6_copypktopts(oinp->in6p_outputopts,
1182 M_NOWAIT);
1183 } else
1184 #endif /* INET6 */
1185 inp->inp_options = ip_srcroute();
1186 tcp_lock(oso, 0, 0);
1187 #if IPSEC
1188 /* copy old policy into new socket's */
1189 if (sotoinpcb(oso)->inp_sp)
1190 {
1191 int error = 0;
1192 /* Is it a security hole here to silently fail to copy the policy? */
1193 if (inp->inp_sp != NULL)
1194 error = ipsec_init_policy(so, &inp->inp_sp);
1195 if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
1196 printf("tcp_input: could not copy policy\n");
1197 }
1198 #endif
1199 tcp_unlock(oso, 1, 0); /* now drop the reference on the listener */
1200 tp = intotcpcb(inp);
1201 tp->t_state = TCPS_LISTEN;
1202 tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY);
1203 tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
1204 /* Compute proper scaling value from buffer space */
1205 if (inp->inp_pcbinfo->ipi_count < tcp_sockthreshold) {
1206 tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
1207 so->so_rcv.sb_hiwat = lmin(TCP_MAXWIN << tp->request_r_scale, (sb_max / (MSIZE+MCLBYTES)) * MCLBYTES);
1208 }
1209 else {
1210 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
1211 TCP_MAXWIN << tp->request_r_scale <
1212 so->so_rcv.sb_hiwat)
1213 tp->request_r_scale++;
1214 }
1215
1216 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0);
1217 }
1218 }
1219
1220 #if 1
1221 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1222 #endif
1223 /*
1224 * Radar 3529618
1225 * This is the second part of the MSS DoS prevention code (after
1226 * minmss on the sending side) and it deals with too many too small
1227 * tcp packets in a too short timeframe (1 second).
1228 *
1229 * For every full second we count the number of received packets
1230 * and bytes. If we get a lot of packets per second for this connection
1231 * (tcp_minmssoverload) we take a closer look at it and compute the
1232 * average packet size for the past second. If that is less than
1233 * tcp_minmss we get too many packets with very small payload which
1234 * is not good and burdens our system (and every packet generates
1235 * a wakeup to the process connected to our socket). We can reasonable
1236 * expect this to be small packet DoS attack to exhaust our CPU
1237 * cycles.
1238 *
1239 * Care has to be taken for the minimum packet overload value. This
1240 * value defines the minimum number of packets per second before we
1241 * start to worry. This must not be too low to avoid killing for
1242 * example interactive connections with many small packets like
1243 * telnet or SSH.
1244 *
1245 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1246 * this check.
1247 *
1248 * Account for packet if payload packet, skip over ACK, etc.
1249 *
1250 * The packet per second count is done all the time and is also used
1251 * by "DELAY_ACK" to detect streaming situations.
1252 *
1253 */
1254 if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1255 if (tp->rcv_reset > tcp_now) {
1256 tp->rcv_pps++;
1257 tp->rcv_byps += tlen + off;
1258 if (tp->rcv_byps > tp->rcv_maxbyps)
1259 tp->rcv_maxbyps = tp->rcv_byps;
1260 /*
1261 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1262 * the check.
1263 */
1264 if (tcp_minmss && tcp_minmssoverload && tp->rcv_pps > tcp_minmssoverload) {
1265 if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1266 char ipstrbuf[MAX_IPv6_STR_LEN];
1267 printf("too many small tcp packets from "
1268 "%s:%u, av. %lubyte/packet, "
1269 "dropping connection\n",
1270 #if INET6
1271 isipv6 ?
1272 inet_ntop(AF_INET6, &inp->in6p_faddr, ipstrbuf,
1273 sizeof(ipstrbuf)) :
1274 #endif
1275 inet_ntop(AF_INET, &inp->inp_faddr, ipstrbuf,
1276 sizeof(ipstrbuf)),
1277 inp->inp_fport,
1278 tp->rcv_byps / tp->rcv_pps);
1279 tp = tcp_drop(tp, ECONNRESET);
1280 /* tcpstat.tcps_minmssdrops++; */
1281 goto drop;
1282 }
1283 }
1284 } else {
1285 tp->rcv_reset = tcp_now + TCP_RETRANSHZ;
1286 tp->rcv_pps = 1;
1287 tp->rcv_byps = tlen + off;
1288 }
1289 }
1290
1291 #if TRAFFIC_MGT
1292 if (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) {
1293 tcpstat.tcps_bg_rcvtotal++;
1294
1295 /* Take snapshots of pkts recv;
1296 * tcpcb should have been initialized to 0 when allocated,
1297 * so if 0 then this is the first time we're doing this
1298 */
1299 if (!tp->tot_recv_snapshot) {
1300 tp->tot_recv_snapshot = tcpstat.tcps_rcvtotal;
1301 }
1302 if (!tp->bg_recv_snapshot) {
1303 tp->bg_recv_snapshot = tcpstat.tcps_bg_rcvtotal;
1304 }
1305 }
1306 #endif /* TRAFFIC_MGT */
1307
1308 /*
1309 Explicit Congestion Notification - Flag that we need to send ECT if
1310 + The IP Congestion experienced flag was set.
1311 + Socket is in established state
1312 + We negotiated ECN in the TCP setup
1313 + This isn't a pure ack (tlen > 0)
1314 + The data is in the valid window
1315
1316 TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
1317 */
1318 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
1319 (tp->ecn_flags & (TE_SETUPSENT | TE_SETUPRECEIVED)) ==
1320 (TE_SETUPSENT | TE_SETUPRECEIVED) && tlen > 0 &&
1321 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1322 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1323 tp->ecn_flags |= TE_SENDECE;
1324 }
1325
1326 /*
1327 Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
1328 bother doing extensive checks for state and whatnot.
1329 */
1330 if ((thflags & TH_CWR) == TH_CWR) {
1331 tp->ecn_flags &= ~TE_SENDECE;
1332 }
1333
1334 /*
1335 * Segment received on connection.
1336 * Reset idle time and keep-alive timer.
1337 */
1338 tp->t_rcvtime = 0;
1339 if (TCPS_HAVEESTABLISHED(tp->t_state))
1340 tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp);
1341
1342 /*
1343 * Process options if not in LISTEN state,
1344 * else do it below (after getting remote address).
1345 */
1346 if (tp->t_state != TCPS_LISTEN && optp)
1347 tcp_dooptions(tp, optp, optlen, th, &to);
1348
1349 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1350 if (to.to_flags & TOF_SCALE) {
1351 tp->t_flags |= TF_RCVD_SCALE;
1352 tp->requested_s_scale = to.to_requested_s_scale;
1353 tp->snd_wnd = th->th_win << tp->snd_scale;
1354 tiwin = tp->snd_wnd;
1355 }
1356 if (to.to_flags & TOF_TS) {
1357 tp->t_flags |= TF_RCVD_TSTMP;
1358 tp->ts_recent = to.to_tsval;
1359 tp->ts_recent_age = tcp_now;
1360 }
1361 if (to.to_flags & TOF_MSS)
1362 tcp_mss(tp, to.to_mss);
1363 if (tp->sack_enable) {
1364 if (!(to.to_flags & TOF_SACK))
1365 tp->sack_enable = 0;
1366 else
1367 tp->t_flags |= TF_SACK_PERMIT;
1368 }
1369 }
1370
1371 /*
1372 * Header prediction: check for the two common cases
1373 * of a uni-directional data xfer. If the packet has
1374 * no control flags, is in-sequence, the window didn't
1375 * change and we're not retransmitting, it's a
1376 * candidate. If the length is zero and the ack moved
1377 * forward, we're the sender side of the xfer. Just
1378 * free the data acked & wake any higher level process
1379 * that was blocked waiting for space. If the length
1380 * is non-zero and the ack didn't move, we're the
1381 * receiver side. If we're getting packets in-order
1382 * (the reassembly queue is empty), add the data to
1383 * the socket buffer and note that we need a delayed ack.
1384 * Make sure that the hidden state-flags are also off.
1385 * Since we check for TCPS_ESTABLISHED above, it can only
1386 * be TH_NEEDSYN.
1387 */
1388 if (tp->t_state == TCPS_ESTABLISHED &&
1389 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE)) == TH_ACK &&
1390 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1391 ((to.to_flags & TOF_TS) == 0 ||
1392 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1393 th->th_seq == tp->rcv_nxt &&
1394 tiwin && tiwin == tp->snd_wnd &&
1395 tp->snd_nxt == tp->snd_max) {
1396
1397 /*
1398 * If last ACK falls within this segment's sequence numbers,
1399 * record the timestamp.
1400 * NOTE that the test is modified according to the latest
1401 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1402 */
1403 if ((to.to_flags & TOF_TS) != 0 &&
1404 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1405 tp->ts_recent_age = tcp_now;
1406 tp->ts_recent = to.to_tsval;
1407 }
1408
1409 if (tlen == 0) {
1410 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1411 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1412 tp->snd_cwnd >= tp->snd_ssthresh &&
1413 ((!tcp_do_newreno && !tp->sack_enable &&
1414 tp->t_dupacks < tcprexmtthresh) ||
1415 ((tcp_do_newreno || tp->sack_enable) &&
1416 !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1417 TAILQ_EMPTY(&tp->snd_holes)))) {
1418 /*
1419 * this is a pure ack for outstanding data.
1420 */
1421 ++tcpstat.tcps_predack;
1422 /*
1423 * "bad retransmit" recovery
1424 */
1425 if (tp->t_rxtshift == 1 &&
1426 tcp_now < tp->t_badrxtwin) {
1427 ++tcpstat.tcps_sndrexmitbad;
1428 tp->snd_cwnd = tp->snd_cwnd_prev;
1429 tp->snd_ssthresh =
1430 tp->snd_ssthresh_prev;
1431 tp->snd_recover = tp->snd_recover_prev;
1432 if (tp->t_flags & TF_WASFRECOVERY)
1433 ENTER_FASTRECOVERY(tp);
1434 tp->snd_nxt = tp->snd_max;
1435 tp->t_badrxtwin = 0;
1436 }
1437 /*
1438 * Recalculate the transmit timer / rtt.
1439 *
1440 * Some boxes send broken timestamp replies
1441 * during the SYN+ACK phase, ignore
1442 * timestamps of 0 or we could calculate a
1443 * huge RTT and blow up the retransmit timer.
1444 */
1445 if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0)) { /* Makes sure we already have a TS */
1446 if (!tp->t_rttlow ||
1447 tp->t_rttlow > tcp_now - to.to_tsecr)
1448 tp->t_rttlow = tcp_now - to.to_tsecr;
1449 tcp_xmit_timer(tp,
1450 tcp_now - to.to_tsecr);
1451 } else if (tp->t_rtttime &&
1452 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1453 if (!tp->t_rttlow ||
1454 tp->t_rttlow > tcp_now - tp->t_rtttime)
1455 tp->t_rttlow = tcp_now - tp->t_rtttime;
1456 tcp_xmit_timer(tp, tp->t_rtttime);
1457 }
1458 acked = th->th_ack - tp->snd_una;
1459 tcpstat.tcps_rcvackpack++;
1460 tcpstat.tcps_rcvackbyte += acked;
1461 /*
1462 * Grow the congestion window, if the
1463 * connection is cwnd bound.
1464 */
1465 sbdrop(&so->so_snd, acked);
1466 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1467 SEQ_LEQ(th->th_ack, tp->snd_recover))
1468 tp->snd_recover = th->th_ack - 1;
1469 tp->snd_una = th->th_ack;
1470 /*
1471 * pull snd_wl2 up to prevent seq wrap relative
1472 * to th_ack.
1473 */
1474 tp->snd_wl2 = th->th_ack;
1475 tp->t_dupacks = 0;
1476 m_freem(m);
1477 ND6_HINT(tp); /* some progress has been done */
1478
1479 /*
1480 * If all outstanding data are acked, stop
1481 * retransmit timer, otherwise restart timer
1482 * using current (possibly backed-off) value.
1483 * If process is waiting for space,
1484 * wakeup/selwakeup/signal. If data
1485 * are ready to send, let tcp_output
1486 * decide between more output or persist.
1487 */
1488 if (tp->snd_una == tp->snd_max)
1489 tp->t_timer[TCPT_REXMT] = 0;
1490 else if (tp->t_timer[TCPT_PERSIST] == 0)
1491 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1492
1493 sowwakeup(so); /* has to be done with socket lock held */
1494 if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
1495 tp->t_unacksegs = 0;
1496 (void) tcp_output(tp);
1497 }
1498 tcp_unlock(so, 1, 0);
1499 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
1500 return;
1501 }
1502 } else if (th->th_ack == tp->snd_una &&
1503 LIST_EMPTY(&tp->t_segq) &&
1504 tlen <= tcp_sbspace(tp)) {
1505 /*
1506 * this is a pure, in-sequence data packet
1507 * with nothing on the reassembly queue and
1508 * we have enough buffer space to take it.
1509 */
1510 /* Clean receiver SACK report if present */
1511 if (tp->sack_enable && tp->rcv_numsacks)
1512 tcp_clean_sackreport(tp);
1513 ++tcpstat.tcps_preddat;
1514 tp->rcv_nxt += tlen;
1515 /*
1516 * Pull snd_wl1 up to prevent seq wrap relative to
1517 * th_seq.
1518 */
1519 tp->snd_wl1 = th->th_seq;
1520 /*
1521 * Pull rcv_up up to prevent seq wrap relative to
1522 * rcv_nxt.
1523 */
1524 tp->rcv_up = tp->rcv_nxt;
1525 tcpstat.tcps_rcvpack++;
1526 tcpstat.tcps_rcvbyte += tlen;
1527 ND6_HINT(tp); /* some progress has been done */
1528 /*
1529 * Add data to socket buffer.
1530 */
1531 m_adj(m, drop_hdrlen); /* delayed header drop */
1532 if (sbappendstream(&so->so_rcv, m))
1533 sorwakeup(so);
1534 #if INET6
1535 if (isipv6) {
1536 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
1537 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1538 th->th_seq, th->th_ack, th->th_win);
1539 }
1540 else
1541 #endif
1542 {
1543 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
1544 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1545 th->th_seq, th->th_ack, th->th_win);
1546 }
1547 if (DELAY_ACK(tp)) {
1548 tp->t_flags |= TF_DELACK;
1549 tp->t_unacksegs++;
1550 } else {
1551 tp->t_unacksegs = 0;
1552 tp->t_flags |= TF_ACKNOW;
1553 tcp_output(tp);
1554 }
1555 tcp_unlock(so, 1, 0);
1556 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
1557 return;
1558 }
1559 }
1560
1561 /*
1562 * Calculate amount of space in receive window,
1563 * and then do TCP input processing.
1564 * Receive window is amount of space in rcv queue,
1565 * but not less than advertised window.
1566 */
1567 #if 1
1568 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1569 #endif
1570 { int win;
1571
1572 win = tcp_sbspace(tp);
1573
1574 if (win < 0)
1575 win = 0;
1576 else { /* clip rcv window to 4K for modems */
1577 if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0)
1578 win = min(win, slowlink_wsize);
1579 }
1580 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1581 }
1582
1583 switch (tp->t_state) {
1584
1585 /*
1586 * If the state is LISTEN then ignore segment if it contains an RST.
1587 * If the segment contains an ACK then it is bad and send a RST.
1588 * If it does not contain a SYN then it is not interesting; drop it.
1589 * If it is from this socket, drop it, it must be forged.
1590 * Don't bother responding if the destination was a broadcast.
1591 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1592 * tp->iss, and send a segment:
1593 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1594 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1595 * Fill in remote peer address fields if not previously specified.
1596 * Enter SYN_RECEIVED state, and process any other fields of this
1597 * segment in this state.
1598 */
1599 case TCPS_LISTEN: {
1600 register struct sockaddr_in *sin;
1601 #if INET6
1602 register struct sockaddr_in6 *sin6;
1603 #endif
1604
1605 #if 1
1606 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1607 #endif
1608 if (thflags & TH_RST)
1609 goto drop;
1610 if (thflags & TH_ACK) {
1611 rstreason = BANDLIM_RST_OPENPORT;
1612 goto dropwithreset;
1613 }
1614 if ((thflags & TH_SYN) == 0)
1615 goto drop;
1616 if (th->th_dport == th->th_sport) {
1617 #if INET6
1618 if (isipv6) {
1619 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1620 &ip6->ip6_src))
1621 goto drop;
1622 } else
1623 #endif /* INET6 */
1624 if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1625 goto drop;
1626 }
1627 /*
1628 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1629 * in_broadcast() should never return true on a received
1630 * packet with M_BCAST not set.
1631 *
1632 * Packets with a multicast source address should also
1633 * be discarded.
1634 */
1635 if (m->m_flags & (M_BCAST|M_MCAST))
1636 goto drop;
1637 #if INET6
1638 if (isipv6) {
1639 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1640 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1641 goto drop;
1642 } else
1643 #endif
1644 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1645 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1646 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1647 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1648 goto drop;
1649 #if INET6
1650 if (isipv6) {
1651 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
1652 M_SONAME, M_NOWAIT);
1653 if (sin6 == NULL)
1654 goto drop;
1655 bzero(sin6, sizeof(*sin6));
1656 sin6->sin6_family = AF_INET6;
1657 sin6->sin6_len = sizeof(*sin6);
1658 sin6->sin6_addr = ip6->ip6_src;
1659 sin6->sin6_port = th->th_sport;
1660 laddr6 = inp->in6p_laddr;
1661 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1662 inp->in6p_laddr = ip6->ip6_dst;
1663 if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
1664 proc0)) {
1665 inp->in6p_laddr = laddr6;
1666 FREE(sin6, M_SONAME);
1667 goto drop;
1668 }
1669 FREE(sin6, M_SONAME);
1670 } else
1671 #endif
1672 {
1673 #if 0
1674 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1675 #endif
1676 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
1677 M_NOWAIT);
1678 if (sin == NULL)
1679 goto drop;
1680 sin->sin_family = AF_INET;
1681 sin->sin_len = sizeof(*sin);
1682 sin->sin_addr = ip->ip_src;
1683 sin->sin_port = th->th_sport;
1684 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1685 laddr = inp->inp_laddr;
1686 if (inp->inp_laddr.s_addr == INADDR_ANY)
1687 inp->inp_laddr = ip->ip_dst;
1688 if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0)) {
1689 inp->inp_laddr = laddr;
1690 FREE(sin, M_SONAME);
1691 goto drop;
1692 }
1693 FREE(sin, M_SONAME);
1694 }
1695
1696 tcp_dooptions(tp, optp, optlen, th, &to);
1697
1698 if (tp->sack_enable) {
1699 if (!(to.to_flags & TOF_SACK))
1700 tp->sack_enable = 0;
1701 else
1702 tp->t_flags |= TF_SACK_PERMIT;
1703 }
1704
1705 if (iss)
1706 tp->iss = iss;
1707 else {
1708 tp->iss = tcp_new_isn(tp);
1709 }
1710 tp->irs = th->th_seq;
1711 tcp_sendseqinit(tp);
1712 tcp_rcvseqinit(tp);
1713 tp->snd_recover = tp->snd_una;
1714 /*
1715 * Initialization of the tcpcb for transaction;
1716 * set SND.WND = SEG.WND,
1717 * initialize CCsend and CCrecv.
1718 */
1719 tp->snd_wnd = tiwin; /* initial send-window */
1720 tp->t_flags |= TF_ACKNOW;
1721 tp->t_unacksegs = 0;
1722 tp->t_state = TCPS_SYN_RECEIVED;
1723 tp->t_timer[TCPT_KEEP] = tcp_keepinit;
1724 dropsocket = 0; /* committed to socket */
1725 tcpstat.tcps_accepts++;
1726 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
1727 /* ECN-setup SYN */
1728 tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
1729 }
1730 goto trimthenstep6;
1731 }
1732
1733 /*
1734 * If the state is SYN_RECEIVED:
1735 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1736 */
1737 case TCPS_SYN_RECEIVED:
1738 if ((thflags & TH_ACK) &&
1739 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1740 SEQ_GT(th->th_ack, tp->snd_max))) {
1741 rstreason = BANDLIM_RST_OPENPORT;
1742 goto dropwithreset;
1743 }
1744 break;
1745
1746 /*
1747 * If the state is SYN_SENT:
1748 * if seg contains an ACK, but not for our SYN, drop the input.
1749 * if seg contains a RST, then drop the connection.
1750 * if seg does not contain SYN, then drop it.
1751 * Otherwise this is an acceptable SYN segment
1752 * initialize tp->rcv_nxt and tp->irs
1753 * if seg contains ack then advance tp->snd_una
1754 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1755 * arrange for segment to be acked (eventually)
1756 * continue processing rest of data/controls, beginning with URG
1757 */
1758 case TCPS_SYN_SENT:
1759 if ((thflags & TH_ACK) &&
1760 (SEQ_LEQ(th->th_ack, tp->iss) ||
1761 SEQ_GT(th->th_ack, tp->snd_max))) {
1762 rstreason = BANDLIM_UNLIMITED;
1763 goto dropwithreset;
1764 }
1765 if (thflags & TH_RST) {
1766 if ((thflags & TH_ACK) != 0) {
1767 tp = tcp_drop(tp, ECONNREFUSED);
1768 postevent(so, 0, EV_RESET);
1769 }
1770 goto drop;
1771 }
1772 if ((thflags & TH_SYN) == 0)
1773 goto drop;
1774 tp->snd_wnd = th->th_win; /* initial send window */
1775
1776 tp->irs = th->th_seq;
1777 tcp_rcvseqinit(tp);
1778 if (thflags & TH_ACK) {
1779 tcpstat.tcps_connects++;
1780
1781 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
1782 /* ECN-setup SYN-ACK */
1783 tp->ecn_flags |= TE_SETUPRECEIVED;
1784 }
1785 else {
1786 /* non-ECN-setup SYN-ACK */
1787 tp->ecn_flags &= ~TE_SENDIPECT;
1788 }
1789
1790 #if CONFIG_MACF_NET && CONFIG_MACF_SOCKET
1791 /* XXXMAC: recursive lock: SOCK_LOCK(so); */
1792 mac_socketpeer_label_associate_mbuf(m, so);
1793 /* XXXMAC: SOCK_UNLOCK(so); */
1794 #endif
1795 /* Do window scaling on this connection? */
1796 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1797 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1798 tp->snd_scale = tp->requested_s_scale;
1799 tp->rcv_scale = tp->request_r_scale;
1800 }
1801 tp->rcv_adv += tp->rcv_wnd;
1802 tp->snd_una++; /* SYN is acked */
1803 /*
1804 * If there's data, delay ACK; if there's also a FIN
1805 * ACKNOW will be turned on later.
1806 */
1807 if (DELAY_ACK(tp) && tlen != 0) {
1808 tp->t_flags |= TF_DELACK;
1809 tp->t_unacksegs++;
1810 }
1811 else {
1812 tp->t_flags |= TF_ACKNOW;
1813 tp->t_unacksegs = 0;
1814 }
1815 /*
1816 * Received <SYN,ACK> in SYN_SENT[*] state.
1817 * Transitions:
1818 * SYN_SENT --> ESTABLISHED
1819 * SYN_SENT* --> FIN_WAIT_1
1820 */
1821 tp->t_starttime = 0;
1822 if (tp->t_flags & TF_NEEDFIN) {
1823 tp->t_state = TCPS_FIN_WAIT_1;
1824 tp->t_flags &= ~TF_NEEDFIN;
1825 thflags &= ~TH_SYN;
1826 } else {
1827 tp->t_state = TCPS_ESTABLISHED;
1828 tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp);
1829 }
1830 /* soisconnected may lead to socket_unlock in case of upcalls,
1831 * make sure this is done when everything is setup.
1832 */
1833 soisconnected(so);
1834 } else {
1835 /*
1836 * Received initial SYN in SYN-SENT[*] state => simul-
1837 * taneous open. If segment contains CC option and there is
1838 * a cached CC, apply TAO test; if it succeeds, connection is
1839 * half-synchronized. Otherwise, do 3-way handshake:
1840 * SYN-SENT -> SYN-RECEIVED
1841 * SYN-SENT* -> SYN-RECEIVED*
1842 */
1843 tp->t_flags |= TF_ACKNOW;
1844 tp->t_timer[TCPT_REXMT] = 0;
1845 tp->t_state = TCPS_SYN_RECEIVED;
1846
1847 }
1848
1849 trimthenstep6:
1850 /*
1851 * Advance th->th_seq to correspond to first data byte.
1852 * If data, trim to stay within window,
1853 * dropping FIN if necessary.
1854 */
1855 th->th_seq++;
1856 if (tlen > tp->rcv_wnd) {
1857 todrop = tlen - tp->rcv_wnd;
1858 m_adj(m, -todrop);
1859 tlen = tp->rcv_wnd;
1860 thflags &= ~TH_FIN;
1861 tcpstat.tcps_rcvpackafterwin++;
1862 tcpstat.tcps_rcvbyteafterwin += todrop;
1863 }
1864 tp->snd_wl1 = th->th_seq - 1;
1865 tp->rcv_up = th->th_seq;
1866 /*
1867 * Client side of transaction: already sent SYN and data.
1868 * If the remote host used T/TCP to validate the SYN,
1869 * our data will be ACK'd; if so, enter normal data segment
1870 * processing in the middle of step 5, ack processing.
1871 * Otherwise, goto step 6.
1872 */
1873 if (thflags & TH_ACK)
1874 goto process_ACK;
1875 goto step6;
1876 /*
1877 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1878 * do normal processing.
1879 *
1880 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
1881 */
1882 case TCPS_LAST_ACK:
1883 case TCPS_CLOSING:
1884 case TCPS_TIME_WAIT:
1885 break; /* continue normal processing */
1886
1887 /* Received a SYN while connection is already established.
1888 * This is a "half open connection and other anomalies" described
1889 * in RFC793 page 34, send an ACK so the remote reset the connection
1890 * or recovers by adjusting its sequence numberering
1891 */
1892 case TCPS_ESTABLISHED:
1893 if (thflags & TH_SYN)
1894 goto dropafterack;
1895 break;
1896 }
1897
1898 /*
1899 * States other than LISTEN or SYN_SENT.
1900 * First check the RST flag and sequence number since reset segments
1901 * are exempt from the timestamp and connection count tests. This
1902 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1903 * below which allowed reset segments in half the sequence space
1904 * to fall though and be processed (which gives forged reset
1905 * segments with a random sequence number a 50 percent chance of
1906 * killing a connection).
1907 * Then check timestamp, if present.
1908 * Then check the connection count, if present.
1909 * Then check that at least some bytes of segment are within
1910 * receive window. If segment begins before rcv_nxt,
1911 * drop leading data (and SYN); if nothing left, just ack.
1912 *
1913 *
1914 * If the RST bit is set, check the sequence number to see
1915 * if this is a valid reset segment.
1916 * RFC 793 page 37:
1917 * In all states except SYN-SENT, all reset (RST) segments
1918 * are validated by checking their SEQ-fields. A reset is
1919 * valid if its sequence number is in the window.
1920 * Note: this does not take into account delayed ACKs, so
1921 * we should test against last_ack_sent instead of rcv_nxt.
1922 * The sequence number in the reset segment is normally an
1923 * echo of our outgoing acknowlegement numbers, but some hosts
1924 * send a reset with the sequence number at the rightmost edge
1925 * of our receive window, and we have to handle this case.
1926 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1927 * that brute force RST attacks are possible. To combat this,
1928 * we use a much stricter check while in the ESTABLISHED state,
1929 * only accepting RSTs where the sequence number is equal to
1930 * last_ack_sent. In all other states (the states in which a
1931 * RST is more likely), the more permissive check is used.
1932 * If we have multiple segments in flight, the intial reset
1933 * segment sequence numbers will be to the left of last_ack_sent,
1934 * but they will eventually catch up.
1935 * In any case, it never made sense to trim reset segments to
1936 * fit the receive window since RFC 1122 says:
1937 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1938 *
1939 * A TCP SHOULD allow a received RST segment to include data.
1940 *
1941 * DISCUSSION
1942 * It has been suggested that a RST segment could contain
1943 * ASCII text that encoded and explained the cause of the
1944 * RST. No standard has yet been established for such
1945 * data.
1946 *
1947 * If the reset segment passes the sequence number test examine
1948 * the state:
1949 * SYN_RECEIVED STATE:
1950 * If passive open, return to LISTEN state.
1951 * If active open, inform user that connection was refused.
1952 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1953 * Inform user that connection was reset, and close tcb.
1954 * CLOSING, LAST_ACK STATES:
1955 * Close the tcb.
1956 * TIME_WAIT STATE:
1957 * Drop the segment - see Stevens, vol. 2, p. 964 and
1958 * RFC 1337.
1959 *
1960 * Radar 4803931: Allows for the case where we ACKed the FIN but
1961 * there is already a RST in flight from the peer.
1962 * In that case, accept the RST for non-established
1963 * state if it's one off from last_ack_sent.
1964
1965 */
1966 if (thflags & TH_RST) {
1967 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1968 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1969 (tp->rcv_wnd == 0 &&
1970 ((tp->last_ack_sent == th->th_seq) || ((tp->last_ack_sent -1) == th->th_seq)))) {
1971 switch (tp->t_state) {
1972
1973 case TCPS_SYN_RECEIVED:
1974 so->so_error = ECONNREFUSED;
1975 goto close;
1976
1977 case TCPS_ESTABLISHED:
1978 if (tp->last_ack_sent != th->th_seq) {
1979 tcpstat.tcps_badrst++;
1980 goto drop;
1981 }
1982 case TCPS_FIN_WAIT_1:
1983 case TCPS_CLOSE_WAIT:
1984 /*
1985 Drop through ...
1986 */
1987 case TCPS_FIN_WAIT_2:
1988 so->so_error = ECONNRESET;
1989 close:
1990 postevent(so, 0, EV_RESET);
1991 tp->t_state = TCPS_CLOSED;
1992 tcpstat.tcps_drops++;
1993 tp = tcp_close(tp);
1994 break;
1995
1996 case TCPS_CLOSING:
1997 case TCPS_LAST_ACK:
1998 tp = tcp_close(tp);
1999 break;
2000
2001 case TCPS_TIME_WAIT:
2002 break;
2003 }
2004 }
2005 goto drop;
2006 }
2007
2008 #if 0
2009 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2010 #endif
2011
2012 /*
2013 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2014 * and it's less than ts_recent, drop it.
2015 */
2016 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2017 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2018
2019 /* Check to see if ts_recent is over 24 days old. */
2020 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
2021 /*
2022 * Invalidate ts_recent. If this segment updates
2023 * ts_recent, the age will be reset later and ts_recent
2024 * will get a valid value. If it does not, setting
2025 * ts_recent to zero will at least satisfy the
2026 * requirement that zero be placed in the timestamp
2027 * echo reply when ts_recent isn't valid. The
2028 * age isn't reset until we get a valid ts_recent
2029 * because we don't want out-of-order segments to be
2030 * dropped when ts_recent is old.
2031 */
2032 tp->ts_recent = 0;
2033 } else {
2034 tcpstat.tcps_rcvduppack++;
2035 tcpstat.tcps_rcvdupbyte += tlen;
2036 tcpstat.tcps_pawsdrop++;
2037 if (tlen)
2038 goto dropafterack;
2039 goto drop;
2040 }
2041 }
2042
2043 /*
2044 * In the SYN-RECEIVED state, validate that the packet belongs to
2045 * this connection before trimming the data to fit the receive
2046 * window. Check the sequence number versus IRS since we know
2047 * the sequence numbers haven't wrapped. This is a partial fix
2048 * for the "LAND" DoS attack.
2049 */
2050 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2051 rstreason = BANDLIM_RST_OPENPORT;
2052 goto dropwithreset;
2053 }
2054
2055 todrop = tp->rcv_nxt - th->th_seq;
2056 if (todrop > 0) {
2057 if (thflags & TH_SYN) {
2058 thflags &= ~TH_SYN;
2059 th->th_seq++;
2060 if (th->th_urp > 1)
2061 th->th_urp--;
2062 else
2063 thflags &= ~TH_URG;
2064 todrop--;
2065 }
2066 /*
2067 * Following if statement from Stevens, vol. 2, p. 960.
2068 */
2069 if (todrop > tlen
2070 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2071 /*
2072 * Any valid FIN must be to the left of the window.
2073 * At this point the FIN must be a duplicate or out
2074 * of sequence; drop it.
2075 */
2076 thflags &= ~TH_FIN;
2077
2078 /*
2079 * Send an ACK to resynchronize and drop any data.
2080 * But keep on processing for RST or ACK.
2081 */
2082 tp->t_flags |= TF_ACKNOW;
2083 tp->t_unacksegs = 0;
2084 todrop = tlen;
2085 tcpstat.tcps_rcvduppack++;
2086 tcpstat.tcps_rcvdupbyte += todrop;
2087 } else {
2088 tcpstat.tcps_rcvpartduppack++;
2089 tcpstat.tcps_rcvpartdupbyte += todrop;
2090 }
2091 drop_hdrlen += todrop; /* drop from the top afterwards */
2092 th->th_seq += todrop;
2093 tlen -= todrop;
2094 if (th->th_urp > todrop)
2095 th->th_urp -= todrop;
2096 else {
2097 thflags &= ~TH_URG;
2098 th->th_urp = 0;
2099 }
2100 }
2101
2102 /*
2103 * If new data are received on a connection after the
2104 * user processes are gone, then RST the other end.
2105 */
2106 if ((so->so_state & SS_NOFDREF) &&
2107 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2108 tp = tcp_close(tp);
2109 tcpstat.tcps_rcvafterclose++;
2110 rstreason = BANDLIM_UNLIMITED;
2111 goto dropwithreset;
2112 }
2113
2114 /*
2115 * If segment ends after window, drop trailing data
2116 * (and PUSH and FIN); if nothing left, just ACK.
2117 */
2118 todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2119 if (todrop > 0) {
2120 tcpstat.tcps_rcvpackafterwin++;
2121 if (todrop >= tlen) {
2122 tcpstat.tcps_rcvbyteafterwin += tlen;
2123 /*
2124 * If a new connection request is received
2125 * while in TIME_WAIT, drop the old connection
2126 * and start over if the sequence numbers
2127 * are above the previous ones.
2128 */
2129 if (thflags & TH_SYN &&
2130 tp->t_state == TCPS_TIME_WAIT &&
2131 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2132 iss = tcp_new_isn(tp);
2133 tp = tcp_close(tp);
2134 tcp_unlock(so, 1, 0);
2135 goto findpcb;
2136 }
2137 /*
2138 * If window is closed can only take segments at
2139 * window edge, and have to drop data and PUSH from
2140 * incoming segments. Continue processing, but
2141 * remember to ack. Otherwise, drop segment
2142 * and ack.
2143 */
2144 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2145 tp->t_flags |= TF_ACKNOW;
2146 tp->t_unacksegs = 0;
2147 tcpstat.tcps_rcvwinprobe++;
2148 } else
2149 goto dropafterack;
2150 } else
2151 tcpstat.tcps_rcvbyteafterwin += todrop;
2152 m_adj(m, -todrop);
2153 tlen -= todrop;
2154 thflags &= ~(TH_PUSH|TH_FIN);
2155 }
2156
2157 /*
2158 * If last ACK falls within this segment's sequence numbers,
2159 * record its timestamp.
2160 * NOTE:
2161 * 1) That the test incorporates suggestions from the latest
2162 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2163 * 2) That updating only on newer timestamps interferes with
2164 * our earlier PAWS tests, so this check should be solely
2165 * predicated on the sequence space of this segment.
2166 * 3) That we modify the segment boundary check to be
2167 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2168 * instead of RFC1323's
2169 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2170 * This modified check allows us to overcome RFC1323's
2171 * limitations as described in Stevens TCP/IP Illustrated
2172 * Vol. 2 p.869. In such cases, we can still calculate the
2173 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2174 */
2175 if ((to.to_flags & TOF_TS) != 0 &&
2176 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2177 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2178 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2179 tp->ts_recent_age = tcp_now;
2180 tp->ts_recent = to.to_tsval;
2181 }
2182
2183 /*
2184 * If a SYN is in the window, then this is an
2185 * error and we send an RST and drop the connection.
2186 */
2187 if (thflags & TH_SYN) {
2188 tp = tcp_drop(tp, ECONNRESET);
2189 rstreason = BANDLIM_UNLIMITED;
2190 postevent(so, 0, EV_RESET);
2191 goto dropwithreset;
2192 }
2193
2194 /*
2195 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2196 * flag is on (half-synchronized state), then queue data for
2197 * later processing; else drop segment and return.
2198 */
2199 if ((thflags & TH_ACK) == 0) {
2200 if (tp->t_state == TCPS_SYN_RECEIVED ||
2201 (tp->t_flags & TF_NEEDSYN))
2202 goto step6;
2203 else if (tp->t_flags & TF_ACKNOW)
2204 goto dropafterack;
2205 else
2206 goto drop;
2207 }
2208
2209 /*
2210 * Ack processing.
2211 */
2212 switch (tp->t_state) {
2213
2214 /*
2215 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2216 * ESTABLISHED state and continue processing.
2217 * The ACK was checked above.
2218 */
2219 case TCPS_SYN_RECEIVED:
2220
2221 tcpstat.tcps_connects++;
2222
2223 /* Do window scaling? */
2224 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2225 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2226 tp->snd_scale = tp->requested_s_scale;
2227 tp->rcv_scale = tp->request_r_scale;
2228 }
2229 /*
2230 * Make transitions:
2231 * SYN-RECEIVED -> ESTABLISHED
2232 * SYN-RECEIVED* -> FIN-WAIT-1
2233 */
2234 tp->t_starttime = 0;
2235 if (tp->t_flags & TF_NEEDFIN) {
2236 tp->t_state = TCPS_FIN_WAIT_1;
2237 tp->t_flags &= ~TF_NEEDFIN;
2238 } else {
2239 tp->t_state = TCPS_ESTABLISHED;
2240 tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp);
2241 }
2242 /*
2243 * If segment contains data or ACK, will call tcp_reass()
2244 * later; if not, do so now to pass queued data to user.
2245 */
2246 if (tlen == 0 && (thflags & TH_FIN) == 0)
2247 (void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
2248 (struct mbuf *)0);
2249 tp->snd_wl1 = th->th_seq - 1;
2250
2251 /* FALLTHROUGH */
2252
2253 /* soisconnected may lead to socket_unlock in case of upcalls,
2254 * make sure this is done when everything is setup.
2255 */
2256 soisconnected(so);
2257
2258 /*
2259 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2260 * ACKs. If the ack is in the range
2261 * tp->snd_una < th->th_ack <= tp->snd_max
2262 * then advance tp->snd_una to th->th_ack and drop
2263 * data from the retransmission queue. If this ACK reflects
2264 * more up to date window information we update our window information.
2265 */
2266 case TCPS_ESTABLISHED:
2267 case TCPS_FIN_WAIT_1:
2268 case TCPS_FIN_WAIT_2:
2269 case TCPS_CLOSE_WAIT:
2270 case TCPS_CLOSING:
2271 case TCPS_LAST_ACK:
2272 case TCPS_TIME_WAIT:
2273 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2274 tcpstat.tcps_rcvacktoomuch++;
2275 goto dropafterack;
2276 }
2277 if (tp->sack_enable &&
2278 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
2279 tcp_sack_doack(tp, &to, th->th_ack);
2280 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2281 if (tlen == 0 && tiwin == tp->snd_wnd) {
2282 tcpstat.tcps_rcvdupack++;
2283 /*
2284 * If we have outstanding data (other than
2285 * a window probe), this is a completely
2286 * duplicate ack (ie, window info didn't
2287 * change), the ack is the biggest we've
2288 * seen and we've seen exactly our rexmt
2289 * threshhold of them, assume a packet
2290 * has been dropped and retransmit it.
2291 * Kludge snd_nxt & the congestion
2292 * window so we send only this one
2293 * packet.
2294 *
2295 * We know we're losing at the current
2296 * window size so do congestion avoidance
2297 * (set ssthresh to half the current window
2298 * and pull our congestion window back to
2299 * the new ssthresh).
2300 *
2301 * Dup acks mean that packets have left the
2302 * network (they're now cached at the receiver)
2303 * so bump cwnd by the amount in the receiver
2304 * to keep a constant cwnd packets in the
2305 * network.
2306 */
2307 if (tp->t_timer[TCPT_REXMT] == 0 ||
2308 th->th_ack != tp->snd_una)
2309 tp->t_dupacks = 0;
2310 else if (++tp->t_dupacks > tcprexmtthresh ||
2311 ((tcp_do_newreno || tp->sack_enable) &&
2312 IN_FASTRECOVERY(tp))) {
2313 if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
2314 int awnd;
2315
2316 /*
2317 * Compute the amount of data in flight first.
2318 * We can inject new data into the pipe iff
2319 * we have less than 1/2 the original window's
2320 * worth of data in flight.
2321 */
2322 awnd = (tp->snd_nxt - tp->snd_fack) +
2323 tp->sackhint.sack_bytes_rexmit;
2324 if (awnd < tp->snd_ssthresh) {
2325 tp->snd_cwnd += tp->t_maxseg;
2326 if (tp->snd_cwnd > tp->snd_ssthresh)
2327 tp->snd_cwnd = tp->snd_ssthresh;
2328 }
2329 } else
2330 tp->snd_cwnd += tp->t_maxseg;
2331 tp->t_unacksegs = 0;
2332 (void) tcp_output(tp);
2333 goto drop;
2334 } else if (tp->t_dupacks == tcprexmtthresh) {
2335 tcp_seq onxt = tp->snd_nxt;
2336 u_int win;
2337
2338 /*
2339 * If we're doing sack, check to
2340 * see if we're already in sack
2341 * recovery. If we're not doing sack,
2342 * check to see if we're in newreno
2343 * recovery.
2344 */
2345 if (tp->sack_enable) {
2346 if (IN_FASTRECOVERY(tp)) {
2347 tp->t_dupacks = 0;
2348 break;
2349 }
2350 } else if (tcp_do_newreno) {
2351 if (SEQ_LEQ(th->th_ack,
2352 tp->snd_recover)) {
2353 tp->t_dupacks = 0;
2354 break;
2355 }
2356 }
2357 win = min(tp->snd_wnd, tp->snd_cwnd) /
2358 2 / tp->t_maxseg;
2359 if (win < 2)
2360 win = 2;
2361 tp->snd_ssthresh = win * tp->t_maxseg;
2362 ENTER_FASTRECOVERY(tp);
2363 tp->snd_recover = tp->snd_max;
2364 tp->t_timer[TCPT_REXMT] = 0;
2365 tp->t_rtttime = 0;
2366 tp->ecn_flags |= TE_SENDCWR;
2367 if (tp->sack_enable) {
2368 tcpstat.tcps_sack_recovery_episode++;
2369 tp->sack_newdata = tp->snd_nxt;
2370 tp->snd_cwnd = tp->t_maxseg;
2371 tp->t_unacksegs = 0;
2372 (void) tcp_output(tp);
2373 goto drop;
2374 }
2375 tp->snd_nxt = th->th_ack;
2376 tp->snd_cwnd = tp->t_maxseg;
2377 tp->t_unacksegs = 0;
2378 (void) tcp_output(tp);
2379 tp->snd_cwnd = tp->snd_ssthresh +
2380 tp->t_maxseg * tp->t_dupacks;
2381 if (SEQ_GT(onxt, tp->snd_nxt))
2382 tp->snd_nxt = onxt;
2383 goto drop;
2384 }
2385 } else
2386 tp->t_dupacks = 0;
2387 break;
2388 }
2389 /*
2390 * If the congestion window was inflated to account
2391 * for the other side's cached packets, retract it.
2392 */
2393 if (tcp_do_newreno || tp->sack_enable) {
2394 if (IN_FASTRECOVERY(tp)) {
2395 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2396 if (tp->sack_enable)
2397 tcp_sack_partialack(tp, th);
2398 else
2399 tcp_newreno_partial_ack(tp, th);
2400 } else {
2401 /*
2402 * Out of fast recovery.
2403 * Window inflation should have left us
2404 * with approximately snd_ssthresh
2405 * outstanding data.
2406 * But in case we would be inclined to
2407 * send a burst, better to do it via
2408 * the slow start mechanism.
2409 */
2410 if (SEQ_GT(th->th_ack +
2411 tp->snd_ssthresh,
2412 tp->snd_max))
2413 tp->snd_cwnd = tp->snd_max -
2414 th->th_ack +
2415 tp->t_maxseg;
2416 else
2417 tp->snd_cwnd = tp->snd_ssthresh;
2418 }
2419 }
2420 } else {
2421 if (tp->t_dupacks >= tcprexmtthresh &&
2422 tp->snd_cwnd > tp->snd_ssthresh)
2423 tp->snd_cwnd = tp->snd_ssthresh;
2424 }
2425 tp->t_dupacks = 0;
2426 tp->t_bytes_acked = 0;
2427 /*
2428 * If we reach this point, ACK is not a duplicate,
2429 * i.e., it ACKs something we sent.
2430 */
2431 if (tp->t_flags & TF_NEEDSYN) {
2432 /*
2433 * T/TCP: Connection was half-synchronized, and our
2434 * SYN has been ACK'd (so connection is now fully
2435 * synchronized). Go to non-starred state,
2436 * increment snd_una for ACK of SYN, and check if
2437 * we can do window scaling.
2438 */
2439 tp->t_flags &= ~TF_NEEDSYN;
2440 tp->snd_una++;
2441 /* Do window scaling? */
2442 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2443 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2444 tp->snd_scale = tp->requested_s_scale;
2445 tp->rcv_scale = tp->request_r_scale;
2446 }
2447 }
2448
2449 process_ACK:
2450 acked = th->th_ack - tp->snd_una;
2451 tcpstat.tcps_rcvackpack++;
2452 tcpstat.tcps_rcvackbyte += acked;
2453
2454 /*
2455 * If we just performed our first retransmit, and the ACK
2456 * arrives within our recovery window, then it was a mistake
2457 * to do the retransmit in the first place. Recover our
2458 * original cwnd and ssthresh, and proceed to transmit where
2459 * we left off.
2460 */
2461 if (tp->t_rxtshift == 1 && tcp_now < tp->t_badrxtwin) {
2462 ++tcpstat.tcps_sndrexmitbad;
2463 tp->snd_cwnd = tp->snd_cwnd_prev;
2464 tp->snd_ssthresh = tp->snd_ssthresh_prev;
2465 tp->snd_recover = tp->snd_recover_prev;
2466 if (tp->t_flags & TF_WASFRECOVERY)
2467 ENTER_FASTRECOVERY(tp);
2468 tp->snd_nxt = tp->snd_max;
2469 tp->t_badrxtwin = 0; /* XXX probably not required */
2470 }
2471
2472 /*
2473 * If we have a timestamp reply, update smoothed
2474 * round trip time. If no timestamp is present but
2475 * transmit timer is running and timed sequence
2476 * number was acked, update smoothed round trip time.
2477 * Since we now have an rtt measurement, cancel the
2478 * timer backoff (cf., Phil Karn's retransmit alg.).
2479 * Recompute the initial retransmit timer.
2480 * Also makes sure we have a valid time stamp in hand
2481 *
2482 * Some boxes send broken timestamp replies
2483 * during the SYN+ACK phase, ignore
2484 * timestamps of 0 or we could calculate a
2485 * huge RTT and blow up the retransmit timer.
2486 */
2487 if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0)) {
2488 if (!tp->t_rttlow || tp->t_rttlow > tcp_now - to.to_tsecr)
2489 tp->t_rttlow = tcp_now - to.to_tsecr;
2490 tcp_xmit_timer(tp, tcp_now - to.to_tsecr);
2491 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2492 if (!tp->t_rttlow || tp->t_rttlow > tcp_now - tp->t_rtttime)
2493 tp->t_rttlow = tcp_now - tp->t_rtttime;
2494 tcp_xmit_timer(tp, tp->t_rtttime);
2495 }
2496
2497 /*
2498 * If all outstanding data is acked, stop retransmit
2499 * timer and remember to restart (more output or persist).
2500 * If there is more data to be acked, restart retransmit
2501 * timer, using current (possibly backed-off) value.
2502 */
2503 if (th->th_ack == tp->snd_max) {
2504 tp->t_timer[TCPT_REXMT] = 0;
2505 needoutput = 1;
2506 } else if (tp->t_timer[TCPT_PERSIST] == 0)
2507 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
2508
2509 /*
2510 * If no data (only SYN) was ACK'd,
2511 * skip rest of ACK processing.
2512 */
2513 if (acked == 0)
2514 goto step6;
2515
2516 /*
2517 * When new data is acked, open the congestion window.
2518 */
2519 if ((thflags & TH_ECE) != 0 &&
2520 (tp->ecn_flags & TE_SETUPSENT) != 0) {
2521 /*
2522 * Reduce the congestion window if we haven't done so.
2523 */
2524 if (!(tp->sack_enable && IN_FASTRECOVERY(tp)) &&
2525 !(tcp_do_newreno && SEQ_LEQ(th->th_ack, tp->snd_recover))) {
2526 tcp_reduce_congestion_window(tp);
2527 }
2528 } else if ((!tcp_do_newreno && !tp->sack_enable) ||
2529 !IN_FASTRECOVERY(tp)) {
2530 /*
2531 * RFC 3465 - Appropriate Byte Counting.
2532 *
2533 * If the window is currently less than ssthresh,
2534 * open the window by the number of bytes ACKed by
2535 * the last ACK, however clamp the window increase
2536 * to an upper limit "L".
2537 *
2538 * In congestion avoidance phase, open the window by
2539 * one segment each time "bytes_acked" grows to be
2540 * greater than or equal to the congestion window.
2541 */
2542
2543 register u_int cw = tp->snd_cwnd;
2544 register u_int incr = tp->t_maxseg;
2545
2546 if ((acked > incr) && tcp_do_rfc3465) {
2547 if (cw >= tp->snd_ssthresh) {
2548 tp->t_bytes_acked += acked;
2549 if (tp->t_bytes_acked >= cw) {
2550 /* Time to increase the window. */
2551 tp->t_bytes_acked -= cw;
2552 } else {
2553 /* No need to increase yet. */
2554 incr = 0;
2555 }
2556 } else {
2557 /*
2558 * If the user explicitly enables RFC3465
2559 * use 2*SMSS for the "L" param. Otherwise
2560 * use the more conservative 1*SMSS.
2561 *
2562 * (See RFC 3465 2.3 Choosing the Limit)
2563 */
2564 u_int abc_lim;
2565
2566 abc_lim = (tcp_do_rfc3465 == 0) ?
2567 incr : incr * 2;
2568 incr = lmin(acked, abc_lim);
2569 }
2570 }
2571 else {
2572 /*
2573 * If the window gives us less than ssthresh packets
2574 * in flight, open exponentially (segsz per packet).
2575 * Otherwise open linearly: segsz per window
2576 * (segsz^2 / cwnd per packet).
2577 */
2578
2579 if (cw >= tp->snd_ssthresh) {
2580 incr = incr * incr / cw;
2581 }
2582 }
2583
2584
2585 tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2586 }
2587 if (acked > so->so_snd.sb_cc) {
2588 tp->snd_wnd -= so->so_snd.sb_cc;
2589 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2590 ourfinisacked = 1;
2591 } else {
2592 sbdrop(&so->so_snd, acked);
2593 tp->snd_wnd -= acked;
2594 ourfinisacked = 0;
2595 }
2596 /* detect una wraparound */
2597 if ((tcp_do_newreno || tp->sack_enable) &&
2598 !IN_FASTRECOVERY(tp) &&
2599 SEQ_GT(tp->snd_una, tp->snd_recover) &&
2600 SEQ_LEQ(th->th_ack, tp->snd_recover))
2601 tp->snd_recover = th->th_ack - 1;
2602 if ((tcp_do_newreno || tp->sack_enable) &&
2603 IN_FASTRECOVERY(tp) &&
2604 SEQ_GEQ(th->th_ack, tp->snd_recover))
2605 EXIT_FASTRECOVERY(tp);
2606 tp->snd_una = th->th_ack;
2607 if (tp->sack_enable) {
2608 if (SEQ_GT(tp->snd_una, tp->snd_recover))
2609 tp->snd_recover = tp->snd_una;
2610 }
2611 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2612 tp->snd_nxt = tp->snd_una;
2613
2614 /*
2615 * sowwakeup must happen after snd_una, et al. are updated so that
2616 * the sequence numbers are in sync with so_snd
2617 */
2618 sowwakeup(so);
2619
2620 switch (tp->t_state) {
2621
2622 /*
2623 * In FIN_WAIT_1 STATE in addition to the processing
2624 * for the ESTABLISHED state if our FIN is now acknowledged
2625 * then enter FIN_WAIT_2.
2626 */
2627 case TCPS_FIN_WAIT_1:
2628 if (ourfinisacked) {
2629 /*
2630 * If we can't receive any more
2631 * data, then closing user can proceed.
2632 * Starting the timer is contrary to the
2633 * specification, but if we don't get a FIN
2634 * we'll hang forever.
2635 */
2636 if (so->so_state & SS_CANTRCVMORE) {
2637 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
2638 add_to_time_wait(tp);
2639 soisdisconnected(so);
2640 }
2641 tp->t_state = TCPS_FIN_WAIT_2;
2642 goto drop;
2643 }
2644 break;
2645
2646 /*
2647 * In CLOSING STATE in addition to the processing for
2648 * the ESTABLISHED state if the ACK acknowledges our FIN
2649 * then enter the TIME-WAIT state, otherwise ignore
2650 * the segment.
2651 */
2652 case TCPS_CLOSING:
2653 if (ourfinisacked) {
2654 tp->t_state = TCPS_TIME_WAIT;
2655 tcp_canceltimers(tp);
2656 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2657 if (tp->cc_recv != 0 &&
2658 tp->t_starttime < (u_long)tcp_msl)
2659 tp->t_timer[TCPT_2MSL] =
2660 tp->t_rxtcur * TCPTV_TWTRUNC;
2661 else
2662 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2663 add_to_time_wait(tp);
2664 soisdisconnected(so);
2665 }
2666 break;
2667
2668 /*
2669 * In LAST_ACK, we may still be waiting for data to drain
2670 * and/or to be acked, as well as for the ack of our FIN.
2671 * If our FIN is now acknowledged, delete the TCB,
2672 * enter the closed state and return.
2673 */
2674 case TCPS_LAST_ACK:
2675 if (ourfinisacked) {
2676 tp = tcp_close(tp);
2677 goto drop;
2678 }
2679 break;
2680
2681 /*
2682 * In TIME_WAIT state the only thing that should arrive
2683 * is a retransmission of the remote FIN. Acknowledge
2684 * it and restart the finack timer.
2685 */
2686 case TCPS_TIME_WAIT:
2687 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2688 add_to_time_wait(tp);
2689 goto dropafterack;
2690 }
2691 }
2692
2693 step6:
2694 /*
2695 * Update window information.
2696 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2697 */
2698 if ((thflags & TH_ACK) &&
2699 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2700 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2701 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2702 /* keep track of pure window updates */
2703 if (tlen == 0 &&
2704 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2705 tcpstat.tcps_rcvwinupd++;
2706 tp->snd_wnd = tiwin;
2707 tp->snd_wl1 = th->th_seq;
2708 tp->snd_wl2 = th->th_ack;
2709 if (tp->snd_wnd > tp->max_sndwnd)
2710 tp->max_sndwnd = tp->snd_wnd;
2711 needoutput = 1;
2712 }
2713
2714 /*
2715 * Process segments with URG.
2716 */
2717 if ((thflags & TH_URG) && th->th_urp &&
2718 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2719 /*
2720 * This is a kludge, but if we receive and accept
2721 * random urgent pointers, we'll crash in
2722 * soreceive. It's hard to imagine someone
2723 * actually wanting to send this much urgent data.
2724 */
2725 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2726 th->th_urp = 0; /* XXX */
2727 thflags &= ~TH_URG; /* XXX */
2728 goto dodata; /* XXX */
2729 }
2730 /*
2731 * If this segment advances the known urgent pointer,
2732 * then mark the data stream. This should not happen
2733 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2734 * a FIN has been received from the remote side.
2735 * In these states we ignore the URG.
2736 *
2737 * According to RFC961 (Assigned Protocols),
2738 * the urgent pointer points to the last octet
2739 * of urgent data. We continue, however,
2740 * to consider it to indicate the first octet
2741 * of data past the urgent section as the original
2742 * spec states (in one of two places).
2743 */
2744 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2745 tp->rcv_up = th->th_seq + th->th_urp;
2746 so->so_oobmark = so->so_rcv.sb_cc +
2747 (tp->rcv_up - tp->rcv_nxt) - 1;
2748 if (so->so_oobmark == 0) {
2749 so->so_state |= SS_RCVATMARK;
2750 postevent(so, 0, EV_OOB);
2751 }
2752 sohasoutofband(so);
2753 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2754 }
2755 /*
2756 * Remove out of band data so doesn't get presented to user.
2757 * This can happen independent of advancing the URG pointer,
2758 * but if two URG's are pending at once, some out-of-band
2759 * data may creep in... ick.
2760 */
2761 if (th->th_urp <= (u_long)tlen
2762 #if SO_OOBINLINE
2763 && (so->so_options & SO_OOBINLINE) == 0
2764 #endif
2765 )
2766 tcp_pulloutofband(so, th, m,
2767 drop_hdrlen); /* hdr drop is delayed */
2768 } else
2769 /*
2770 * If no out of band data is expected,
2771 * pull receive urgent pointer along
2772 * with the receive window.
2773 */
2774 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2775 tp->rcv_up = tp->rcv_nxt;
2776 dodata: /* XXX */
2777
2778 /*
2779 * Process the segment text, merging it into the TCP sequencing queue,
2780 * and arranging for acknowledgment of receipt if necessary.
2781 * This process logically involves adjusting tp->rcv_wnd as data
2782 * is presented to the user (this happens in tcp_usrreq.c,
2783 * case PRU_RCVD). If a FIN has already been received on this
2784 * connection then we just ignore the text.
2785 */
2786 if ((tlen || (thflags&TH_FIN)) &&
2787 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2788 tcp_seq save_start = th->th_seq;
2789 tcp_seq save_end = th->th_seq + tlen;
2790 m_adj(m, drop_hdrlen); /* delayed header drop */
2791 /*
2792 * Insert segment which includes th into TCP reassembly queue
2793 * with control block tp. Set thflags to whether reassembly now
2794 * includes a segment with FIN. This handles the common case
2795 * inline (segment is the next to be received on an established
2796 * connection, and the queue is empty), avoiding linkage into
2797 * and removal from the queue and repetition of various
2798 * conversions.
2799 * Set DELACK for segments received in order, but ack
2800 * immediately when segments are out of order (so
2801 * fast retransmit can work).
2802 */
2803 if (th->th_seq == tp->rcv_nxt &&
2804 LIST_EMPTY(&tp->t_segq) &&
2805 TCPS_HAVEESTABLISHED(tp->t_state)) {
2806 if (DELAY_ACK(tp) && ((tp->t_flags & TF_ACKNOW) == 0)) {
2807 tp->t_flags |= TF_DELACK;
2808 tp->t_unacksegs++;
2809 }
2810 else {
2811 tp->t_unacksegs = 0;
2812 tp->t_flags |= TF_ACKNOW;
2813 }
2814 tp->rcv_nxt += tlen;
2815 thflags = th->th_flags & TH_FIN;
2816 tcpstat.tcps_rcvpack++;
2817 tcpstat.tcps_rcvbyte += tlen;
2818 ND6_HINT(tp);
2819 if (sbappendstream(&so->so_rcv, m))
2820 sorwakeup(so);
2821 } else {
2822 thflags = tcp_reass(tp, th, &tlen, m);
2823 tp->t_flags |= TF_ACKNOW;
2824 tp->t_unacksegs = 0;
2825 }
2826
2827 if (tlen > 0 && tp->sack_enable)
2828 tcp_update_sack_list(tp, save_start, save_end);
2829
2830 if (tp->t_flags & TF_DELACK)
2831 {
2832 #if INET6
2833 if (isipv6) {
2834 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2835 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
2836 th->th_seq, th->th_ack, th->th_win);
2837 }
2838 else
2839 #endif
2840 {
2841 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2842 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
2843 th->th_seq, th->th_ack, th->th_win);
2844 }
2845
2846 }
2847 /*
2848 * Note the amount of data that peer has sent into
2849 * our window, in order to estimate the sender's
2850 * buffer size.
2851 */
2852 len = (u_int)(so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt));
2853 if (len > so->so_rcv.sb_maxused)
2854 so->so_rcv.sb_maxused = len;
2855 } else {
2856 m_freem(m);
2857 thflags &= ~TH_FIN;
2858 }
2859
2860 /*
2861 * If FIN is received ACK the FIN and let the user know
2862 * that the connection is closing.
2863 */
2864 if (thflags & TH_FIN) {
2865 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2866 socantrcvmore(so);
2867 postevent(so, 0, EV_FIN);
2868 /*
2869 * If connection is half-synchronized
2870 * (ie NEEDSYN flag on) then delay ACK,
2871 * If connection is half-synchronized
2872 * (ie NEEDSYN flag on) then delay ACK,
2873 * so it may be piggybacked when SYN is sent.
2874 * Otherwise, since we received a FIN then no
2875 * more input can be expected, send ACK now.
2876 */
2877 if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2878 tp->t_flags |= TF_DELACK;
2879 tp->t_unacksegs++;
2880 }
2881 else {
2882 tp->t_flags |= TF_ACKNOW;
2883 tp->t_unacksegs = 0;
2884 }
2885 tp->rcv_nxt++;
2886 }
2887 switch (tp->t_state) {
2888
2889 /*
2890 * In SYN_RECEIVED and ESTABLISHED STATES
2891 * enter the CLOSE_WAIT state.
2892 */
2893 case TCPS_SYN_RECEIVED:
2894 tp->t_starttime = 0;
2895 case TCPS_ESTABLISHED:
2896 tp->t_state = TCPS_CLOSE_WAIT;
2897 break;
2898
2899 /*
2900 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2901 * enter the CLOSING state.
2902 */
2903 case TCPS_FIN_WAIT_1:
2904 tp->t_state = TCPS_CLOSING;
2905 break;
2906
2907 /*
2908 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2909 * starting the time-wait timer, turning off the other
2910 * standard timers.
2911 */
2912 case TCPS_FIN_WAIT_2:
2913 tp->t_state = TCPS_TIME_WAIT;
2914 tcp_canceltimers(tp);
2915 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2916 if (tp->cc_recv != 0 &&
2917 tp->t_starttime < (u_long)tcp_msl) {
2918 tp->t_timer[TCPT_2MSL] =
2919 tp->t_rxtcur * TCPTV_TWTRUNC;
2920 /* For transaction client, force ACK now. */
2921 tp->t_flags |= TF_ACKNOW;
2922 tp->t_unacksegs = 0;
2923 }
2924 else
2925 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2926
2927 add_to_time_wait(tp);
2928 soisdisconnected(so);
2929 break;
2930
2931 /*
2932 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2933 */
2934 case TCPS_TIME_WAIT:
2935 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2936 add_to_time_wait(tp);
2937 break;
2938 }
2939 }
2940 #if TCPDEBUG
2941 if (so->so_options & SO_DEBUG)
2942 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2943 &tcp_savetcp, 0);
2944 #endif
2945
2946 /*
2947 * Return any desired output.
2948 */
2949 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2950 tp->t_unacksegs = 0;
2951 (void) tcp_output(tp);
2952 }
2953 tcp_unlock(so, 1, 0);
2954 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2955 return;
2956
2957 dropafterack:
2958 /*
2959 * Generate an ACK dropping incoming segment if it occupies
2960 * sequence space, where the ACK reflects our state.
2961 *
2962 * We can now skip the test for the RST flag since all
2963 * paths to this code happen after packets containing
2964 * RST have been dropped.
2965 *
2966 * In the SYN-RECEIVED state, don't send an ACK unless the
2967 * segment we received passes the SYN-RECEIVED ACK test.
2968 * If it fails send a RST. This breaks the loop in the
2969 * "LAND" DoS attack, and also prevents an ACK storm
2970 * between two listening ports that have been sent forged
2971 * SYN segments, each with the source address of the other.
2972 */
2973 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2974 (SEQ_GT(tp->snd_una, th->th_ack) ||
2975 SEQ_GT(th->th_ack, tp->snd_max)) ) {
2976 rstreason = BANDLIM_RST_OPENPORT;
2977 goto dropwithreset;
2978 }
2979 #if TCPDEBUG
2980 if (so->so_options & SO_DEBUG)
2981 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2982 &tcp_savetcp, 0);
2983 #endif
2984 m_freem(m);
2985 tp->t_flags |= TF_ACKNOW;
2986 tp->t_unacksegs = 0;
2987 (void) tcp_output(tp);
2988 tcp_unlock(so, 1, 0);
2989 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2990 return;
2991 dropwithresetnosock:
2992 nosock = 1;
2993 dropwithreset:
2994 /*
2995 * Generate a RST, dropping incoming segment.
2996 * Make ACK acceptable to originator of segment.
2997 * Don't bother to respond if destination was broadcast/multicast.
2998 */
2999 if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3000 goto drop;
3001 #if INET6
3002 if (isipv6) {
3003 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3004 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3005 goto drop;
3006 } else
3007 #endif /* INET6 */
3008 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3009 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3010 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3011 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3012 goto drop;
3013 /* IPv6 anycast check is done at tcp6_input() */
3014
3015 /*
3016 * Perform bandwidth limiting.
3017 */
3018 #if ICMP_BANDLIM
3019 if (badport_bandlim(rstreason) < 0)
3020 goto drop;
3021 #endif
3022
3023 #if TCPDEBUG
3024 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3025 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3026 &tcp_savetcp, 0);
3027 #endif
3028 if (thflags & TH_ACK)
3029 /* mtod() below is safe as long as hdr dropping is delayed */
3030 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
3031 TH_RST, m->m_pkthdr.rcvif);
3032 else {
3033 if (thflags & TH_SYN)
3034 tlen++;
3035 /* mtod() below is safe as long as hdr dropping is delayed */
3036 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3037 (tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.rcvif);
3038 }
3039 /* destroy temporarily created socket */
3040 if (dropsocket) {
3041 (void) soabort(so);
3042 tcp_unlock(so, 1, 0);
3043 }
3044 else
3045 if ((inp != NULL) && (nosock == 0))
3046 tcp_unlock(so, 1, 0);
3047 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3048 return;
3049 dropnosock:
3050 nosock = 1;
3051 drop:
3052 /*
3053 * Drop space held by incoming segment and return.
3054 */
3055 #if TCPDEBUG
3056 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3057 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3058 &tcp_savetcp, 0);
3059 #endif
3060 m_freem(m);
3061 /* destroy temporarily created socket */
3062 if (dropsocket) {
3063 (void) soabort(so);
3064 tcp_unlock(so, 1, 0);
3065 }
3066 else
3067 if (nosock == 0)
3068 tcp_unlock(so, 1, 0);
3069 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3070 return;
3071 }
3072
3073 static void
3074 tcp_dooptions(tp, cp, cnt, th, to)
3075 /*
3076 * Parse TCP options and place in tcpopt.
3077 */
3078 struct tcpcb *tp;
3079 u_char *cp;
3080 int cnt;
3081 struct tcphdr *th;
3082 struct tcpopt *to;
3083 {
3084 u_short mss = 0;
3085 int opt, optlen;
3086
3087 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3088 opt = cp[0];
3089 if (opt == TCPOPT_EOL)
3090 break;
3091 if (opt == TCPOPT_NOP)
3092 optlen = 1;
3093 else {
3094 if (cnt < 2)
3095 break;
3096 optlen = cp[1];
3097 if (optlen < 2 || optlen > cnt)
3098 break;
3099 }
3100 switch (opt) {
3101
3102 default:
3103 continue;
3104
3105 case TCPOPT_MAXSEG:
3106 if (optlen != TCPOLEN_MAXSEG)
3107 continue;
3108 if (!(th->th_flags & TH_SYN))
3109 continue;
3110 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
3111 NTOHS(mss);
3112 break;
3113
3114 case TCPOPT_WINDOW:
3115 if (optlen != TCPOLEN_WINDOW)
3116 continue;
3117 if (!(th->th_flags & TH_SYN))
3118 continue;
3119 tp->t_flags |= TF_RCVD_SCALE;
3120 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
3121 break;
3122
3123 case TCPOPT_TIMESTAMP:
3124 if (optlen != TCPOLEN_TIMESTAMP)
3125 continue;
3126 to->to_flags |= TOF_TS;
3127 bcopy((char *)cp + 2,
3128 (char *)&to->to_tsval, sizeof(to->to_tsval));
3129 NTOHL(to->to_tsval);
3130 bcopy((char *)cp + 6,
3131 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3132 NTOHL(to->to_tsecr);
3133
3134 /*
3135 * A timestamp received in a SYN makes
3136 * it ok to send timestamp requests and replies.
3137 */
3138 if (th->th_flags & TH_SYN) {
3139 tp->t_flags |= TF_RCVD_TSTMP;
3140 tp->ts_recent = to->to_tsval;
3141 tp->ts_recent_age = tcp_now;
3142 }
3143 break;
3144 case TCPOPT_SACK_PERMITTED:
3145 if (!tcp_do_sack ||
3146 optlen != TCPOLEN_SACK_PERMITTED)
3147 continue;
3148 if (th->th_flags & TH_SYN)
3149 to->to_flags |= TOF_SACK;
3150 break;
3151 case TCPOPT_SACK:
3152 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3153 continue;
3154 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3155 to->to_sacks = cp + 2;
3156 tcpstat.tcps_sack_rcv_blocks++;
3157
3158 break;
3159 }
3160 }
3161 if (th->th_flags & TH_SYN)
3162 tcp_mss(tp, mss); /* sets t_maxseg */
3163 }
3164
3165 /*
3166 * Pull out of band byte out of a segment so
3167 * it doesn't appear in the user's data queue.
3168 * It is still reflected in the segment length for
3169 * sequencing purposes.
3170 */
3171 static void
3172 tcp_pulloutofband(so, th, m, off)
3173 struct socket *so;
3174 struct tcphdr *th;
3175 register struct mbuf *m;
3176 int off; /* delayed to be droped hdrlen */
3177 {
3178 int cnt = off + th->th_urp - 1;
3179
3180 while (cnt >= 0) {
3181 if (m->m_len > cnt) {
3182 char *cp = mtod(m, caddr_t) + cnt;
3183 struct tcpcb *tp = sototcpcb(so);
3184
3185 tp->t_iobc = *cp;
3186 tp->t_oobflags |= TCPOOB_HAVEDATA;
3187 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3188 m->m_len--;
3189 if (m->m_flags & M_PKTHDR)
3190 m->m_pkthdr.len--;
3191 return;
3192 }
3193 cnt -= m->m_len;
3194 m = m->m_next;
3195 if (m == 0)
3196 break;
3197 }
3198 panic("tcp_pulloutofband");
3199 }
3200
3201 /*
3202 * Collect new round-trip time estimate
3203 * and update averages and current timeout.
3204 */
3205 static void
3206 tcp_xmit_timer(tp, rtt)
3207 register struct tcpcb *tp;
3208 int rtt;
3209 {
3210 register int delta;
3211
3212 tcpstat.tcps_rttupdated++;
3213 tp->t_rttupdated++;
3214 if (tp->t_srtt != 0) {
3215 /*
3216 * srtt is stored as fixed point with 5 bits after the
3217 * binary point (i.e., scaled by 8). The following magic
3218 * is equivalent to the smoothing algorithm in rfc793 with
3219 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3220 * point). Adjust rtt to origin 0.
3221 */
3222 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3223 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3224
3225 if ((tp->t_srtt += delta) <= 0)
3226 tp->t_srtt = 1;
3227
3228 /*
3229 * We accumulate a smoothed rtt variance (actually, a
3230 * smoothed mean difference), then set the retransmit
3231 * timer to smoothed rtt + 4 times the smoothed variance.
3232 * rttvar is stored as fixed point with 4 bits after the
3233 * binary point (scaled by 16). The following is
3234 * equivalent to rfc793 smoothing with an alpha of .75
3235 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3236 * rfc793's wired-in beta.
3237 */
3238 if (delta < 0)
3239 delta = -delta;
3240 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3241 if ((tp->t_rttvar += delta) <= 0)
3242 tp->t_rttvar = 1;
3243 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3244 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3245 } else {
3246 /*
3247 * No rtt measurement yet - use the unsmoothed rtt.
3248 * Set the variance to half the rtt (so our first
3249 * retransmit happens at 3*rtt).
3250 */
3251 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3252 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3253 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3254 }
3255 tp->t_rtttime = 0;
3256 tp->t_rxtshift = 0;
3257
3258 /*
3259 * the retransmit should happen at rtt + 4 * rttvar.
3260 * Because of the way we do the smoothing, srtt and rttvar
3261 * will each average +1/2 tick of bias. When we compute
3262 * the retransmit timer, we want 1/2 tick of rounding and
3263 * 1 extra tick because of +-1/2 tick uncertainty in the
3264 * firing of the timer. The bias will give us exactly the
3265 * 1.5 tick we need. But, because the bias is
3266 * statistical, we have to test that we don't drop below
3267 * the minimum feasible timer (which is 2 ticks).
3268 */
3269 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3270 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3271
3272 /*
3273 * We received an ack for a packet that wasn't retransmitted;
3274 * it is probably safe to discard any error indications we've
3275 * received recently. This isn't quite right, but close enough
3276 * for now (a route might have failed after we sent a segment,
3277 * and the return path might not be symmetrical).
3278 */
3279 tp->t_softerror = 0;
3280 }
3281
3282 static inline unsigned int
3283 tcp_maxmtu(struct rtentry *rt)
3284 {
3285 unsigned int maxmtu;
3286
3287 if (rt->rt_rmx.rmx_mtu == 0)
3288 maxmtu = rt->rt_ifp->if_mtu;
3289 else
3290 maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu);
3291
3292 return (maxmtu);
3293 }
3294
3295 #if INET6
3296 static inline unsigned int
3297 tcp_maxmtu6(struct rtentry *rt)
3298 {
3299 unsigned int maxmtu;
3300
3301 if (rt->rt_rmx.rmx_mtu == 0)
3302 maxmtu = IN6_LINKMTU(rt->rt_ifp);
3303 else
3304 maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
3305
3306 return (maxmtu);
3307 }
3308 #endif
3309
3310 /*
3311 * Determine a reasonable value for maxseg size.
3312 * If the route is known, check route for mtu.
3313 * If none, use an mss that can be handled on the outgoing
3314 * interface without forcing IP to fragment; if bigger than
3315 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3316 * to utilize large mbufs. If no route is found, route has no mtu,
3317 * or the destination isn't local, use a default, hopefully conservative
3318 * size (usually 512 or the default IP max size, but no more than the mtu
3319 * of the interface), as we can't discover anything about intervening
3320 * gateways or networks. We also initialize the congestion/slow start
3321 * window to be a single segment if the destination isn't local.
3322 * While looking at the routing entry, we also initialize other path-dependent
3323 * parameters from pre-set or cached values in the routing entry.
3324 *
3325 * Also take into account the space needed for options that we
3326 * send regularly. Make maxseg shorter by that amount to assure
3327 * that we can send maxseg amount of data even when the options
3328 * are present. Store the upper limit of the length of options plus
3329 * data in maxopd.
3330 *
3331 * NOTE that this routine is only called when we process an incoming
3332 * segment, for outgoing segments only tcp_mssopt is called.
3333 *
3334 */
3335 void
3336 tcp_mss(tp, offer)
3337 struct tcpcb *tp;
3338 int offer;
3339 {
3340 register struct rtentry *rt;
3341 struct ifnet *ifp;
3342 register int rtt, mss;
3343 u_long bufsize;
3344 struct inpcb *inp;
3345 struct socket *so;
3346 struct rmxp_tao *taop;
3347 int origoffer = offer;
3348 u_long sb_max_corrected;
3349 int isnetlocal = 0;
3350 #if INET6
3351 int isipv6;
3352 int min_protoh;
3353 #endif
3354
3355 inp = tp->t_inpcb;
3356 #if INET6
3357 isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3358 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
3359 : sizeof (struct tcpiphdr);
3360 #else
3361 #define min_protoh (sizeof (struct tcpiphdr))
3362 #endif
3363 lck_mtx_lock(rt_mtx);
3364 #if INET6
3365 if (isipv6) {
3366 rt = tcp_rtlookup6(inp);
3367 if (rt && (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) || IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) || rt->rt_gateway->sa_family == AF_LINK))
3368 isnetlocal = TRUE;
3369 }
3370 else
3371 #endif /* INET6 */
3372 {
3373 rt = tcp_rtlookup(inp);
3374 if (rt && (rt->rt_gateway->sa_family == AF_LINK ||
3375 rt->rt_ifp->if_flags & IFF_LOOPBACK))
3376 isnetlocal = TRUE;
3377 }
3378 if (rt == NULL) {
3379 tp->t_maxopd = tp->t_maxseg =
3380 #if INET6
3381 isipv6 ? tcp_v6mssdflt :
3382 #endif /* INET6 */
3383 tcp_mssdflt;
3384 lck_mtx_unlock(rt_mtx);
3385 return;
3386 }
3387 ifp = rt->rt_ifp;
3388 /*
3389 * Slower link window correction:
3390 * If a value is specificied for slowlink_wsize use it for PPP links
3391 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
3392 * it is the default value adversized by pseudo-devices over ppp.
3393 */
3394 if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
3395 ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
3396 tp->t_flags |= TF_SLOWLINK;
3397 }
3398 so = inp->inp_socket;
3399
3400 taop = rmx_taop(rt->rt_rmx);
3401 /*
3402 * Offer == -1 means that we didn't receive SYN yet,
3403 * use cached value in that case;
3404 */
3405 if (offer == -1)
3406 offer = taop->tao_mssopt;
3407 /*
3408 * Offer == 0 means that there was no MSS on the SYN segment,
3409 * in this case we use tcp_mssdflt.
3410 */
3411 if (offer == 0)
3412 offer =
3413 #if INET6
3414 isipv6 ? tcp_v6mssdflt :
3415 #endif /* INET6 */
3416 tcp_mssdflt;
3417 else {
3418 /*
3419 * Prevent DoS attack with too small MSS. Round up
3420 * to at least minmss.
3421 */
3422 offer = max(offer, tcp_minmss);
3423 /*
3424 * Sanity check: make sure that maxopd will be large
3425 * enough to allow some data on segments even is the
3426 * all the option space is used (40bytes). Otherwise
3427 * funny things may happen in tcp_output.
3428 */
3429 offer = max(offer, 64);
3430 }
3431 taop->tao_mssopt = offer;
3432
3433 /*
3434 * While we're here, check if there's an initial rtt
3435 * or rttvar. Convert from the route-table units
3436 * to scaled multiples of the slow timeout timer.
3437 */
3438 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3439 /*
3440 * XXX the lock bit for RTT indicates that the value
3441 * is also a minimum value; this is subject to time.
3442 */
3443 if (rt->rt_rmx.rmx_locks & RTV_RTT)
3444 tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
3445 else
3446 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCP_RETRANSHZ;
3447 tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
3448 tcpstat.tcps_usedrtt++;
3449 if (rt->rt_rmx.rmx_rttvar) {
3450 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3451 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
3452 tcpstat.tcps_usedrttvar++;
3453 } else {
3454 /* default variation is +- 1 rtt */
3455 tp->t_rttvar =
3456 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3457 }
3458 TCPT_RANGESET(tp->t_rxtcur,
3459 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3460 tp->t_rttmin, TCPTV_REXMTMAX);
3461 }
3462 else
3463 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCP_RETRANSHZ;
3464
3465 #if INET6
3466 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
3467 #else
3468 mss = tcp_maxmtu(rt);
3469 #endif
3470 mss -= min_protoh;
3471
3472 if (rt->rt_rmx.rmx_mtu == 0) {
3473 #if INET6
3474 if (isipv6) {
3475 if (!isnetlocal)
3476 mss = min(mss, tcp_v6mssdflt);
3477 } else
3478 #endif /* INET6 */
3479 if (!isnetlocal)
3480 mss = min(mss, tcp_mssdflt);
3481 }
3482
3483 mss = min(mss, offer);
3484 /*
3485 * maxopd stores the maximum length of data AND options
3486 * in a segment; maxseg is the amount of data in a normal
3487 * segment. We need to store this value (maxopd) apart
3488 * from maxseg, because now every segment carries options
3489 * and thus we normally have somewhat less data in segments.
3490 */
3491 tp->t_maxopd = mss;
3492
3493 /*
3494 * origoffer==-1 indicates, that no segments were received yet.
3495 * In this case we just guess.
3496 */
3497 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3498 (origoffer == -1 ||
3499 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3500 mss -= TCPOLEN_TSTAMP_APPA;
3501 tp->t_maxseg = mss;
3502
3503 /*
3504 * Calculate corrected value for sb_max; ensure to upgrade the
3505 * numerator for large sb_max values else it will overflow.
3506 */
3507 sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
3508
3509 /*
3510 * If there's a pipesize (ie loopback), change the socket
3511 * buffer to that size only if it's bigger than the current
3512 * sockbuf size. Make the socket buffers an integral
3513 * number of mss units; if the mss is larger than
3514 * the socket buffer, decrease the mss.
3515 */
3516 #if RTV_SPIPE
3517 bufsize = rt->rt_rmx.rmx_sendpipe;
3518 if (bufsize < so->so_snd.sb_hiwat)
3519 #endif
3520 bufsize = so->so_snd.sb_hiwat;
3521 if (bufsize < mss)
3522 mss = bufsize;
3523 else {
3524 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
3525 if (bufsize > sb_max_corrected)
3526 bufsize = sb_max_corrected;
3527 (void)sbreserve(&so->so_snd, bufsize);
3528 }
3529 tp->t_maxseg = mss;
3530
3531 #if RTV_RPIPE
3532 bufsize = rt->rt_rmx.rmx_recvpipe;
3533 if (bufsize < so->so_rcv.sb_hiwat)
3534 #endif
3535 bufsize = so->so_rcv.sb_hiwat;
3536 if (bufsize > mss) {
3537 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
3538 if (bufsize > sb_max_corrected)
3539 bufsize = sb_max_corrected;
3540 (void)sbreserve(&so->so_rcv, bufsize);
3541 }
3542
3543 /*
3544 * Set the slow-start flight size depending on whether this
3545 * is a local network or not.
3546 */
3547 if (isnetlocal)
3548 tp->snd_cwnd = mss * ss_fltsz_local;
3549 else
3550 tp->snd_cwnd = mss * ss_fltsz;
3551
3552 if (rt->rt_rmx.rmx_ssthresh) {
3553 /*
3554 * There's some sort of gateway or interface
3555 * buffer limit on the path. Use this to set
3556 * the slow start threshhold, but set the
3557 * threshold to no less than 2*mss.
3558 */
3559 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3560 tcpstat.tcps_usedssthresh++;
3561 }
3562 lck_mtx_unlock(rt_mtx);
3563 }
3564
3565 /*
3566 * Determine the MSS option to send on an outgoing SYN.
3567 */
3568 int
3569 tcp_mssopt(tp)
3570 struct tcpcb *tp;
3571 {
3572 struct rtentry *rt;
3573 int mss;
3574 #if INET6
3575 int isipv6;
3576 int min_protoh;
3577 #endif
3578
3579 #if INET6
3580 isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3581 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
3582 : sizeof (struct tcpiphdr);
3583 #else
3584 #define min_protoh (sizeof (struct tcpiphdr))
3585 #endif
3586 lck_mtx_lock(rt_mtx);
3587 #if INET6
3588 if (isipv6)
3589 rt = tcp_rtlookup6(tp->t_inpcb);
3590 else
3591 #endif /* INET6 */
3592 rt = tcp_rtlookup(tp->t_inpcb);
3593 if (rt == NULL) {
3594 lck_mtx_unlock(rt_mtx);
3595 return (
3596 #if INET6
3597 isipv6 ? tcp_v6mssdflt :
3598 #endif /* INET6 */
3599 tcp_mssdflt);
3600 }
3601 /*
3602 * Slower link window correction:
3603 * If a value is specificied for slowlink_wsize use it for PPP links
3604 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
3605 * it is the default value adversized by pseudo-devices over ppp.
3606 */
3607 if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
3608 rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
3609 tp->t_flags |= TF_SLOWLINK;
3610 }
3611
3612 #if INET6
3613 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
3614 #else
3615 mss = tcp_maxmtu(rt);
3616 #endif
3617 lck_mtx_unlock(rt_mtx);
3618 return (mss - min_protoh);
3619 }
3620
3621 /*
3622 * On a partial ack arrives, force the retransmission of the
3623 * next unacknowledged segment. Do not clear tp->t_dupacks.
3624 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3625 * be started again.
3626 */
3627 static void
3628 tcp_newreno_partial_ack(tp, th)
3629 struct tcpcb *tp;
3630 struct tcphdr *th;
3631 {
3632 tcp_seq onxt = tp->snd_nxt;
3633 u_long ocwnd = tp->snd_cwnd;
3634 tp->t_timer[TCPT_REXMT] = 0;
3635 tp->t_rtttime = 0;
3636 tp->snd_nxt = th->th_ack;
3637 /*
3638 * Set snd_cwnd to one segment beyond acknowledged offset
3639 * (tp->snd_una has not yet been updated when this function
3640 * is called)
3641 */
3642 tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3643 tp->t_flags |= TF_ACKNOW;
3644 tp->t_unacksegs = 0;
3645 (void) tcp_output(tp);
3646 tp->snd_cwnd = ocwnd;
3647 if (SEQ_GT(onxt, tp->snd_nxt))
3648 tp->snd_nxt = onxt;
3649 /*
3650 * Partial window deflation. Relies on fact that tp->snd_una
3651 * not updated yet.
3652 */
3653 if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3654 tp->snd_cwnd -= th->th_ack - tp->snd_una;
3655 else
3656 tp->snd_cwnd = 0;
3657 tp->snd_cwnd += tp->t_maxseg;
3658
3659 }
3660
3661 /*
3662 * Drop a random TCP connection that hasn't been serviced yet and
3663 * is eligible for discard. There is a one in qlen chance that
3664 * we will return a null, saying that there are no dropable
3665 * requests. In this case, the protocol specific code should drop
3666 * the new request. This insures fairness.
3667 *
3668 * The listening TCP socket "head" must be locked
3669 */
3670 static int
3671 tcp_dropdropablreq(struct socket *head)
3672 {
3673 struct socket *so, *sonext;
3674 unsigned int i, j, qlen;
3675 static int rnd;
3676 static struct timeval old_runtime;
3677 static unsigned int cur_cnt, old_cnt;
3678 struct timeval tv;
3679 struct inpcb *inp = NULL;
3680 struct tcpcb *tp;
3681
3682 if ((head->so_options & SO_ACCEPTCONN) == 0)
3683 return 0;
3684
3685 so = TAILQ_FIRST(&head->so_incomp);
3686 if (!so)
3687 return 0;
3688
3689 microtime(&tv);
3690 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
3691 old_runtime = tv;
3692 old_cnt = cur_cnt / i;
3693 cur_cnt = 0;
3694 }
3695
3696
3697 qlen = head->so_incqlen;
3698 if (++cur_cnt > qlen || old_cnt > qlen) {
3699 rnd = (314159 * rnd + 66329) & 0xffff;
3700 j = ((qlen + 1) * rnd) >> 16;
3701
3702 while (j-- && so)
3703 so = TAILQ_NEXT(so, so_list);
3704 }
3705 /* Find a connection that is not already closing (or being served) */
3706 while (so) {
3707 inp = (struct inpcb *)so->so_pcb;
3708
3709 sonext = TAILQ_NEXT(so, so_list);
3710
3711 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
3712 /* Avoid the issue of a socket being accepted by one input thread
3713 * and being dropped by another input thread.
3714 * If we can't get a hold on this mutex, then grab the next socket in line.
3715 */
3716 if (lck_mtx_try_lock(inp->inpcb_mtx)) {
3717 so->so_usecount++;
3718 if ((so->so_usecount == 2) && so->so_state & SS_INCOMP)
3719 break;
3720 else {/* don't use if beeing accepted or used in any other way */
3721 in_pcb_checkstate(inp, WNT_RELEASE, 1);
3722 tcp_unlock(so, 1, 0);
3723 }
3724 }
3725 }
3726 so = sonext;
3727
3728 }
3729 if (!so)
3730 return 0;
3731
3732 TAILQ_REMOVE(&head->so_incomp, so, so_list);
3733 tcp_unlock(head, 0, 0);
3734
3735 /* Makes sure socket is still in the right state to be discarded */
3736
3737 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
3738 tcp_unlock(so, 1, 0);
3739 tcp_lock(head, 0, 0);
3740 return 0;
3741 }
3742
3743 if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
3744 /* do not discard: that socket is beeing accepted */
3745 tcp_unlock(so, 1, 0);
3746 tcp_lock(head, 0, 0);
3747 return 0;
3748 }
3749
3750 so->so_head = NULL;
3751
3752 /*
3753 * We do not want to lose track of the PCB right away in case we receive
3754 * more segments from the peer
3755 */
3756 tp = sototcpcb(so);
3757 so->so_flags |= SOF_OVERFLOW;
3758 tp->t_state = TCPS_TIME_WAIT;
3759 (void) tcp_close(tp);
3760 tp->t_unacksegs = 0;
3761 tcpstat.tcps_drops++;
3762 tcp_canceltimers(tp);
3763 add_to_time_wait(tp);
3764
3765 tcp_unlock(so, 1, 0);
3766 tcp_lock(head, 0, 0);
3767 head->so_incqlen--;
3768 head->so_qlen--;
3769 return 1;
3770 }
3771
3772 static int
3773 tcp_getstat SYSCTL_HANDLER_ARGS
3774 {
3775 #pragma unused(oidp, arg1, arg2)
3776
3777 int error;
3778
3779 if (req->oldptr == 0) {
3780 req->oldlen= (size_t)sizeof(struct tcpstat);
3781 }
3782
3783 error = SYSCTL_OUT(req, &tcpstat, MIN(sizeof (tcpstat), req->oldlen));
3784
3785 return (error);
3786
3787 }
3788
3789 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD, 0, 0,
3790 tcp_getstat, "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
3791
3792 static int
3793 sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
3794 {
3795 #pragma unused(arg1, arg2)
3796
3797 int error, val = tcprexmtthresh;
3798
3799 error = sysctl_handle_int(oidp, &val, 0, req);
3800 if (error || !req->newptr)
3801 return (error);
3802
3803 /*
3804 * Constrain the number of duplicate ACKs
3805 * to consider for TCP fast retransmit
3806 * to either 2 or 3
3807 */
3808
3809 if (val < 2 || val > 3)
3810 return (EINVAL);
3811
3812 tcprexmtthresh = val;
3813
3814 return (0);
3815 }
3816
3817 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT|CTLFLAG_RW,
3818 &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I", "Duplicate ACK Threshold for Fast Retransmit");