]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cluster.c
xnu-2422.1.72.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/buf_internal.h>
67 #include <sys/mount_internal.h>
68 #include <sys/vnode_internal.h>
69 #include <sys/trace.h>
70 #include <sys/malloc.h>
71 #include <sys/time.h>
72 #include <sys/kernel.h>
73 #include <sys/resourcevar.h>
74 #include <miscfs/specfs/specdev.h>
75 #include <sys/uio_internal.h>
76 #include <libkern/libkern.h>
77 #include <machine/machine_routines.h>
78
79 #include <sys/ubc_internal.h>
80 #include <vm/vnode_pager.h>
81
82 #include <mach/mach_types.h>
83 #include <mach/memory_object_types.h>
84 #include <mach/vm_map.h>
85 #include <mach/upl.h>
86 #include <kern/task.h>
87
88 #include <vm/vm_kern.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_pageout.h>
91
92 #include <sys/kdebug.h>
93 #include <libkern/OSAtomic.h>
94
95 #include <sys/sdt.h>
96
97 #if 0
98 #undef KERNEL_DEBUG
99 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
100 #endif
101
102
103 #define CL_READ 0x01
104 #define CL_WRITE 0x02
105 #define CL_ASYNC 0x04
106 #define CL_COMMIT 0x08
107 #define CL_PAGEOUT 0x10
108 #define CL_AGE 0x20
109 #define CL_NOZERO 0x40
110 #define CL_PAGEIN 0x80
111 #define CL_DEV_MEMORY 0x100
112 #define CL_PRESERVE 0x200
113 #define CL_THROTTLE 0x400
114 #define CL_KEEPCACHED 0x800
115 #define CL_DIRECT_IO 0x1000
116 #define CL_PASSIVE 0x2000
117 #define CL_IOSTREAMING 0x4000
118 #define CL_CLOSE 0x8000
119 #define CL_ENCRYPTED 0x10000
120 #define CL_RAW_ENCRYPTED 0x20000
121 #define CL_NOCACHE 0x40000
122
123 #define MAX_VECTOR_UPL_ELEMENTS 8
124 #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE
125
126 extern upl_t vector_upl_create(vm_offset_t);
127 extern boolean_t vector_upl_is_valid(upl_t);
128 extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
129 extern void vector_upl_set_pagelist(upl_t);
130 extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
131
132 struct clios {
133 lck_mtx_t io_mtxp;
134 u_int io_completed; /* amount of io that has currently completed */
135 u_int io_issued; /* amount of io that was successfully issued */
136 int io_error; /* error code of first error encountered */
137 int io_wanted; /* someone is sleeping waiting for a change in state */
138 };
139
140 static lck_grp_t *cl_mtx_grp;
141 static lck_attr_t *cl_mtx_attr;
142 static lck_grp_attr_t *cl_mtx_grp_attr;
143 static lck_mtx_t *cl_transaction_mtxp;
144
145
146 #define IO_UNKNOWN 0
147 #define IO_DIRECT 1
148 #define IO_CONTIG 2
149 #define IO_COPY 3
150
151 #define PUSH_DELAY 0x01
152 #define PUSH_ALL 0x02
153 #define PUSH_SYNC 0x04
154
155
156 static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
157 static void cluster_wait_IO(buf_t cbp_head, int async);
158 static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
159
160 static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
161
162 static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
163 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
164 static int cluster_iodone(buf_t bp, void *callback_arg);
165 static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
166 static int cluster_is_throttled(vnode_t vp);
167
168 static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
169
170 static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg);
171
172 static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
173 static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
174
175 static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
176 int (*)(buf_t, void *), void *callback_arg);
177 static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
178 int flags, int (*)(buf_t, void *), void *callback_arg);
179 static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
180 int (*)(buf_t, void *), void *callback_arg, int flags);
181
182 static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
183 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
184 static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
185 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
186 static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
187 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
188
189 static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
190
191 static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
192 static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
193
194 static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
195
196 static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg);
197
198 static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
199 static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
200 static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
201
202 static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
203 static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
204 static kern_return_t vfs_drt_control(void **cmapp, int op_type);
205
206
207 /*
208 * For throttled IO to check whether
209 * a block is cached by the boot cache
210 * and thus it can avoid delaying the IO.
211 *
212 * bootcache_contains_block is initially
213 * NULL. The BootCache will set it while
214 * the cache is active and clear it when
215 * the cache is jettisoned.
216 *
217 * Returns 0 if the block is not
218 * contained in the cache, 1 if it is
219 * contained.
220 *
221 * The function pointer remains valid
222 * after the cache has been evicted even
223 * if bootcache_contains_block has been
224 * cleared.
225 *
226 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
227 */
228 int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
229
230
231 /*
232 * limit the internal I/O size so that we
233 * can represent it in a 32 bit int
234 */
235 #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
236 #define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE)
237 #define MAX_VECTS 16
238 #define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
239
240 #define WRITE_THROTTLE 6
241 #define WRITE_THROTTLE_SSD 2
242 #define WRITE_BEHIND 1
243 #define WRITE_BEHIND_SSD 1
244
245 #define PREFETCH 3
246 #define PREFETCH_SSD 1
247 uint32_t speculative_prefetch_max = (MAX_UPL_SIZE * 3);
248 uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use for a specluative read-ahead on SSDs*/
249
250
251 #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
252 #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
253 #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
254
255 int ignore_is_ssd = 0;
256 int speculative_reads_disabled = 0;
257
258 /*
259 * throttle the number of async writes that
260 * can be outstanding on a single vnode
261 * before we issue a synchronous write
262 */
263 #define THROTTLE_MAXCNT 0
264
265 uint32_t throttle_max_iosize = (128 * 1024);
266
267 #define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
268
269 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
270
271
272 void
273 cluster_init(void) {
274 /*
275 * allocate lock group attribute and group
276 */
277 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
278 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
279
280 /*
281 * allocate the lock attribute
282 */
283 cl_mtx_attr = lck_attr_alloc_init();
284
285 cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
286
287 if (cl_transaction_mtxp == NULL)
288 panic("cluster_init: failed to allocate cl_transaction_mtxp");
289 }
290
291
292 uint32_t
293 cluster_max_io_size(mount_t mp, int type)
294 {
295 uint32_t max_io_size;
296 uint32_t segcnt;
297 uint32_t maxcnt;
298
299 switch(type) {
300
301 case CL_READ:
302 segcnt = mp->mnt_segreadcnt;
303 maxcnt = mp->mnt_maxreadcnt;
304 break;
305 case CL_WRITE:
306 segcnt = mp->mnt_segwritecnt;
307 maxcnt = mp->mnt_maxwritecnt;
308 break;
309 default:
310 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
311 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
312 break;
313 }
314 if (segcnt > MAX_UPL_SIZE) {
315 /*
316 * don't allow a size beyond the max UPL size we can create
317 */
318 segcnt = MAX_UPL_SIZE;
319 }
320 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
321
322 if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) {
323 /*
324 * don't allow a size smaller than the old fixed limit
325 */
326 max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE);
327 } else {
328 /*
329 * make sure the size specified is a multiple of PAGE_SIZE
330 */
331 max_io_size &= ~PAGE_MASK;
332 }
333 return (max_io_size);
334 }
335
336
337
338
339 #define CLW_ALLOCATE 0x01
340 #define CLW_RETURNLOCKED 0x02
341 #define CLW_IONOCACHE 0x04
342 #define CLW_IOPASSIVE 0x08
343
344 /*
345 * if the read ahead context doesn't yet exist,
346 * allocate and initialize it...
347 * the vnode lock serializes multiple callers
348 * during the actual assignment... first one
349 * to grab the lock wins... the other callers
350 * will release the now unnecessary storage
351 *
352 * once the context is present, try to grab (but don't block on)
353 * the lock associated with it... if someone
354 * else currently owns it, than the read
355 * will run without read-ahead. this allows
356 * multiple readers to run in parallel and
357 * since there's only 1 read ahead context,
358 * there's no real loss in only allowing 1
359 * reader to have read-ahead enabled.
360 */
361 static struct cl_readahead *
362 cluster_get_rap(vnode_t vp)
363 {
364 struct ubc_info *ubc;
365 struct cl_readahead *rap;
366
367 ubc = vp->v_ubcinfo;
368
369 if ((rap = ubc->cl_rahead) == NULL) {
370 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
371
372 bzero(rap, sizeof *rap);
373 rap->cl_lastr = -1;
374 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
375
376 vnode_lock(vp);
377
378 if (ubc->cl_rahead == NULL)
379 ubc->cl_rahead = rap;
380 else {
381 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
382 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
383 rap = ubc->cl_rahead;
384 }
385 vnode_unlock(vp);
386 }
387 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
388 return(rap);
389
390 return ((struct cl_readahead *)NULL);
391 }
392
393
394 /*
395 * if the write behind context doesn't yet exist,
396 * and CLW_ALLOCATE is specified, allocate and initialize it...
397 * the vnode lock serializes multiple callers
398 * during the actual assignment... first one
399 * to grab the lock wins... the other callers
400 * will release the now unnecessary storage
401 *
402 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
403 * the lock associated with the write behind context before
404 * returning
405 */
406
407 static struct cl_writebehind *
408 cluster_get_wbp(vnode_t vp, int flags)
409 {
410 struct ubc_info *ubc;
411 struct cl_writebehind *wbp;
412
413 ubc = vp->v_ubcinfo;
414
415 if ((wbp = ubc->cl_wbehind) == NULL) {
416
417 if ( !(flags & CLW_ALLOCATE))
418 return ((struct cl_writebehind *)NULL);
419
420 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
421
422 bzero(wbp, sizeof *wbp);
423 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
424
425 vnode_lock(vp);
426
427 if (ubc->cl_wbehind == NULL)
428 ubc->cl_wbehind = wbp;
429 else {
430 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
431 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
432 wbp = ubc->cl_wbehind;
433 }
434 vnode_unlock(vp);
435 }
436 if (flags & CLW_RETURNLOCKED)
437 lck_mtx_lock(&wbp->cl_lockw);
438
439 return (wbp);
440 }
441
442
443 static void
444 cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg)
445 {
446 struct cl_writebehind *wbp;
447
448 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
449
450 if (wbp->cl_number) {
451 lck_mtx_lock(&wbp->cl_lockw);
452
453 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, 0, callback, callback_arg);
454
455 lck_mtx_unlock(&wbp->cl_lockw);
456 }
457 }
458 }
459
460
461 static int
462 cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
463 {
464 daddr64_t blkno;
465 size_t io_size;
466 int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
467
468 if (bootcache_check_fn) {
469 if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
470 return(0);
471
472 if (io_size == 0)
473 return (0);
474
475 if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
476 return(1);
477 }
478 return(0);
479 }
480
481
482 static int
483 cluster_is_throttled(vnode_t vp)
484 {
485 return (throttle_io_will_be_throttled(-1, vp->v_mount));
486 }
487
488
489 static void
490 cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
491 {
492
493 lck_mtx_lock(&iostate->io_mtxp);
494
495 while ((iostate->io_issued - iostate->io_completed) > target) {
496
497 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
498 iostate->io_issued, iostate->io_completed, target, 0, 0);
499
500 iostate->io_wanted = 1;
501 msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
502
503 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
504 iostate->io_issued, iostate->io_completed, target, 0, 0);
505 }
506 lck_mtx_unlock(&iostate->io_mtxp);
507 }
508
509
510 static int
511 cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
512 {
513 int upl_abort_code = 0;
514 int page_in = 0;
515 int page_out = 0;
516
517 if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
518 /*
519 * direct write of any flavor, or a direct read that wasn't aligned
520 */
521 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
522 else {
523 if (io_flags & B_PAGEIO) {
524 if (io_flags & B_READ)
525 page_in = 1;
526 else
527 page_out = 1;
528 }
529 if (io_flags & B_CACHE)
530 /*
531 * leave pages in the cache unchanged on error
532 */
533 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
534 else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
535 /*
536 * transient error... leave pages unchanged
537 */
538 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
539 else if (page_in)
540 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
541 else
542 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
543
544 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
545 }
546 return (upl_abort_code);
547 }
548
549
550 static int
551 cluster_iodone(buf_t bp, void *callback_arg)
552 {
553 int b_flags;
554 int error;
555 int total_size;
556 int total_resid;
557 int upl_offset;
558 int zero_offset;
559 int pg_offset = 0;
560 int commit_size = 0;
561 int upl_flags = 0;
562 int transaction_size = 0;
563 upl_t upl;
564 buf_t cbp;
565 buf_t cbp_head;
566 buf_t cbp_next;
567 buf_t real_bp;
568 vnode_t vp;
569 struct clios *iostate;
570 boolean_t transaction_complete = FALSE;
571
572 cbp_head = (buf_t)(bp->b_trans_head);
573
574 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
575 cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
576
577 if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
578 boolean_t need_wakeup = FALSE;
579
580 lck_mtx_lock_spin(cl_transaction_mtxp);
581
582 bp->b_flags |= B_TDONE;
583
584 if (bp->b_flags & B_TWANTED) {
585 CLR(bp->b_flags, B_TWANTED);
586 need_wakeup = TRUE;
587 }
588 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
589 /*
590 * all I/O requests that are part of this transaction
591 * have to complete before we can process it
592 */
593 if ( !(cbp->b_flags & B_TDONE)) {
594
595 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
596 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
597
598 lck_mtx_unlock(cl_transaction_mtxp);
599
600 if (need_wakeup == TRUE)
601 wakeup(bp);
602
603 return 0;
604 }
605 if (cbp->b_flags & B_EOT)
606 transaction_complete = TRUE;
607 }
608 lck_mtx_unlock(cl_transaction_mtxp);
609
610 if (need_wakeup == TRUE)
611 wakeup(bp);
612
613 if (transaction_complete == FALSE) {
614 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
615 cbp_head, 0, 0, 0, 0);
616 return 0;
617 }
618 }
619 error = 0;
620 total_size = 0;
621 total_resid = 0;
622
623 cbp = cbp_head;
624 vp = cbp->b_vp;
625 upl_offset = cbp->b_uploffset;
626 upl = cbp->b_upl;
627 b_flags = cbp->b_flags;
628 real_bp = cbp->b_real_bp;
629 zero_offset= cbp->b_validend;
630 iostate = (struct clios *)cbp->b_iostate;
631
632 if (real_bp)
633 real_bp->b_dev = cbp->b_dev;
634
635 while (cbp) {
636 if ((cbp->b_flags & B_ERROR) && error == 0)
637 error = cbp->b_error;
638
639 total_resid += cbp->b_resid;
640 total_size += cbp->b_bcount;
641
642 cbp_next = cbp->b_trans_next;
643
644 if (cbp_next == NULL)
645 /*
646 * compute the overall size of the transaction
647 * in case we created one that has 'holes' in it
648 * 'total_size' represents the amount of I/O we
649 * did, not the span of the transaction w/r to the UPL
650 */
651 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
652
653 if (cbp != cbp_head)
654 free_io_buf(cbp);
655
656 cbp = cbp_next;
657 }
658 if (error == 0 && total_resid)
659 error = EIO;
660
661 if (error == 0) {
662 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
663
664 if (cliodone_func != NULL) {
665 cbp_head->b_bcount = transaction_size;
666
667 error = (*cliodone_func)(cbp_head, callback_arg);
668 }
669 }
670 if (zero_offset)
671 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
672
673 free_io_buf(cbp_head);
674
675 if (iostate) {
676 int need_wakeup = 0;
677
678 /*
679 * someone has issued multiple I/Os asynchrounsly
680 * and is waiting for them to complete (streaming)
681 */
682 lck_mtx_lock_spin(&iostate->io_mtxp);
683
684 if (error && iostate->io_error == 0)
685 iostate->io_error = error;
686
687 iostate->io_completed += total_size;
688
689 if (iostate->io_wanted) {
690 /*
691 * someone is waiting for the state of
692 * this io stream to change
693 */
694 iostate->io_wanted = 0;
695 need_wakeup = 1;
696 }
697 lck_mtx_unlock(&iostate->io_mtxp);
698
699 if (need_wakeup)
700 wakeup((caddr_t)&iostate->io_wanted);
701 }
702
703 if (b_flags & B_COMMIT_UPL) {
704
705 pg_offset = upl_offset & PAGE_MASK;
706 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
707
708 if (error)
709 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
710 else {
711 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
712
713 if ((b_flags & B_PHYS) && (b_flags & B_READ))
714 upl_flags |= UPL_COMMIT_SET_DIRTY;
715
716 if (b_flags & B_AGE)
717 upl_flags |= UPL_COMMIT_INACTIVATE;
718
719 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
720 }
721 }
722 if (real_bp) {
723 if (error) {
724 real_bp->b_flags |= B_ERROR;
725 real_bp->b_error = error;
726 }
727 real_bp->b_resid = total_resid;
728
729 buf_biodone(real_bp);
730 }
731 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
732 upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
733
734 return (error);
735 }
736
737
738 uint32_t
739 cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
740 {
741 if (cluster_is_throttled(vp)) {
742 *limit = THROTTLE_MAX_IOSIZE;
743 return 1;
744 }
745 return 0;
746 }
747
748
749 void
750 cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
751 {
752
753 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
754 upl_offset, size, bp, 0, 0);
755
756 if (bp == NULL || bp->b_datap == 0) {
757 upl_page_info_t *pl;
758 addr64_t zero_addr;
759
760 pl = ubc_upl_pageinfo(upl);
761
762 if (upl_device_page(pl) == TRUE) {
763 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset;
764
765 bzero_phys_nc(zero_addr, size);
766 } else {
767 while (size) {
768 int page_offset;
769 int page_index;
770 int zero_cnt;
771
772 page_index = upl_offset / PAGE_SIZE;
773 page_offset = upl_offset & PAGE_MASK;
774
775 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset;
776 zero_cnt = min(PAGE_SIZE - page_offset, size);
777
778 bzero_phys(zero_addr, zero_cnt);
779
780 size -= zero_cnt;
781 upl_offset += zero_cnt;
782 }
783 }
784 } else
785 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
786
787 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
788 upl_offset, size, 0, 0, 0);
789 }
790
791
792 static void
793 cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
794 {
795 cbp_head->b_validend = zero_offset;
796 cbp_tail->b_flags |= B_EOT;
797 }
798
799 static void
800 cluster_wait_IO(buf_t cbp_head, int async)
801 {
802 buf_t cbp;
803
804 if (async) {
805 /*
806 * async callback completion will not normally
807 * generate a wakeup upon I/O completion...
808 * by setting B_TWANTED, we will force a wakeup
809 * to occur as any outstanding I/Os complete...
810 * I/Os already completed will have B_TDONE already
811 * set and we won't cause us to block
812 * note that we're actually waiting for the bp to have
813 * completed the callback function... only then
814 * can we safely take back ownership of the bp
815 */
816 lck_mtx_lock_spin(cl_transaction_mtxp);
817
818 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
819 cbp->b_flags |= B_TWANTED;
820
821 lck_mtx_unlock(cl_transaction_mtxp);
822 }
823 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
824
825 if (async) {
826 while (!ISSET(cbp->b_flags, B_TDONE)) {
827
828 lck_mtx_lock_spin(cl_transaction_mtxp);
829
830 if (!ISSET(cbp->b_flags, B_TDONE)) {
831 DTRACE_IO1(wait__start, buf_t, cbp);
832 (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL);
833 DTRACE_IO1(wait__done, buf_t, cbp);
834 } else
835 lck_mtx_unlock(cl_transaction_mtxp);
836 }
837 } else
838 buf_biowait(cbp);
839 }
840 }
841
842 static void
843 cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
844 {
845 buf_t cbp;
846 int error;
847 boolean_t isswapout = FALSE;
848
849 /*
850 * cluster_complete_transaction will
851 * only be called if we've issued a complete chain in synchronous mode
852 * or, we've already done a cluster_wait_IO on an incomplete chain
853 */
854 if (needwait) {
855 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
856 buf_biowait(cbp);
857 }
858 /*
859 * we've already waited on all of the I/Os in this transaction,
860 * so mark all of the buf_t's in this transaction as B_TDONE
861 * so that cluster_iodone sees the transaction as completed
862 */
863 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
864 cbp->b_flags |= B_TDONE;
865 cbp = *cbp_head;
866
867 if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
868 isswapout = TRUE;
869
870 error = cluster_iodone(cbp, callback_arg);
871
872 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
873 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
874 *retval = error;
875 else if (isswapout == TRUE)
876 *retval = error;
877 }
878 *cbp_head = (buf_t)NULL;
879 }
880
881
882 static int
883 cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
884 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
885 {
886 buf_t cbp;
887 u_int size;
888 u_int io_size;
889 int io_flags;
890 int bmap_flags;
891 int error = 0;
892 int retval = 0;
893 buf_t cbp_head = NULL;
894 buf_t cbp_tail = NULL;
895 int trans_count = 0;
896 int max_trans_count;
897 u_int pg_count;
898 int pg_offset;
899 u_int max_iosize;
900 u_int max_vectors;
901 int priv;
902 int zero_offset = 0;
903 int async_throttle = 0;
904 mount_t mp;
905 vm_offset_t upl_end_offset;
906 boolean_t need_EOT = FALSE;
907
908 /*
909 * we currently don't support buffers larger than a page
910 */
911 if (real_bp && non_rounded_size > PAGE_SIZE)
912 panic("%s(): Called with real buffer of size %d bytes which "
913 "is greater than the maximum allowed size of "
914 "%d bytes (the system PAGE_SIZE).\n",
915 __FUNCTION__, non_rounded_size, PAGE_SIZE);
916
917 mp = vp->v_mount;
918
919 /*
920 * we don't want to do any funny rounding of the size for IO requests
921 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
922 * belong to us... we can't extend (nor do we need to) the I/O to fill
923 * out a page
924 */
925 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
926 /*
927 * round the requested size up so that this I/O ends on a
928 * page boundary in case this is a 'write'... if the filesystem
929 * has blocks allocated to back the page beyond the EOF, we want to
930 * make sure to write out the zero's that are sitting beyond the EOF
931 * so that in case the filesystem doesn't explicitly zero this area
932 * if a hole is created via a lseek/write beyond the current EOF,
933 * it will return zeros when it's read back from the disk. If the
934 * physical allocation doesn't extend for the whole page, we'll
935 * only write/read from the disk up to the end of this allocation
936 * via the extent info returned from the VNOP_BLOCKMAP call.
937 */
938 pg_offset = upl_offset & PAGE_MASK;
939
940 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
941 } else {
942 /*
943 * anyone advertising a blocksize of 1 byte probably
944 * can't deal with us rounding up the request size
945 * AFP is one such filesystem/device
946 */
947 size = non_rounded_size;
948 }
949 upl_end_offset = upl_offset + size;
950
951 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
952
953 /*
954 * Set the maximum transaction size to the maximum desired number of
955 * buffers.
956 */
957 max_trans_count = 8;
958 if (flags & CL_DEV_MEMORY)
959 max_trans_count = 16;
960
961 if (flags & CL_READ) {
962 io_flags = B_READ;
963 bmap_flags = VNODE_READ;
964
965 max_iosize = mp->mnt_maxreadcnt;
966 max_vectors = mp->mnt_segreadcnt;
967 } else {
968 io_flags = B_WRITE;
969 bmap_flags = VNODE_WRITE;
970
971 max_iosize = mp->mnt_maxwritecnt;
972 max_vectors = mp->mnt_segwritecnt;
973 }
974 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
975
976 /*
977 * make sure the maximum iosize is a
978 * multiple of the page size
979 */
980 max_iosize &= ~PAGE_MASK;
981
982 /*
983 * Ensure the maximum iosize is sensible.
984 */
985 if (!max_iosize)
986 max_iosize = PAGE_SIZE;
987
988 if (flags & CL_THROTTLE) {
989 if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
990 if (max_iosize > THROTTLE_MAX_IOSIZE)
991 max_iosize = THROTTLE_MAX_IOSIZE;
992 async_throttle = THROTTLE_MAXCNT;
993 } else {
994 if ( (flags & CL_DEV_MEMORY) )
995 async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
996 else {
997 u_int max_cluster;
998 u_int max_cluster_size;
999 u_int scale;
1000
1001 max_cluster_size = MAX_CLUSTER_SIZE(vp);
1002
1003 if (max_iosize > max_cluster_size)
1004 max_cluster = max_cluster_size;
1005 else
1006 max_cluster = max_iosize;
1007
1008 if (size < max_cluster)
1009 max_cluster = size;
1010
1011 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1012 scale = WRITE_THROTTLE_SSD;
1013 else
1014 scale = WRITE_THROTTLE;
1015
1016 if (flags & CL_CLOSE)
1017 scale += MAX_CLUSTERS;
1018
1019 async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
1020 }
1021 }
1022 }
1023 if (flags & CL_AGE)
1024 io_flags |= B_AGE;
1025 if (flags & (CL_PAGEIN | CL_PAGEOUT))
1026 io_flags |= B_PAGEIO;
1027 if (flags & (CL_IOSTREAMING))
1028 io_flags |= B_IOSTREAMING;
1029 if (flags & CL_COMMIT)
1030 io_flags |= B_COMMIT_UPL;
1031 if (flags & CL_DIRECT_IO)
1032 io_flags |= B_PHYS;
1033 if (flags & (CL_PRESERVE | CL_KEEPCACHED))
1034 io_flags |= B_CACHE;
1035 if (flags & CL_PASSIVE)
1036 io_flags |= B_PASSIVE;
1037 if (flags & CL_ENCRYPTED)
1038 io_flags |= B_ENCRYPTED_IO;
1039 if (vp->v_flag & VSYSTEM)
1040 io_flags |= B_META;
1041
1042 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
1043 /*
1044 * then we are going to end up
1045 * with a page that we can't complete (the file size wasn't a multiple
1046 * of PAGE_SIZE and we're trying to read to the end of the file
1047 * so we'll go ahead and zero out the portion of the page we can't
1048 * read in from the file
1049 */
1050 zero_offset = upl_offset + non_rounded_size;
1051 }
1052 while (size) {
1053 daddr64_t blkno;
1054 daddr64_t lblkno;
1055 u_int io_size_wanted;
1056 size_t io_size_tmp;
1057
1058 if (size > max_iosize)
1059 io_size = max_iosize;
1060 else
1061 io_size = size;
1062
1063 io_size_wanted = io_size;
1064 io_size_tmp = (size_t)io_size;
1065
1066 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
1067 break;
1068
1069 if (io_size_tmp > io_size_wanted)
1070 io_size = io_size_wanted;
1071 else
1072 io_size = (u_int)io_size_tmp;
1073
1074 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
1075 real_bp->b_blkno = blkno;
1076
1077 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
1078 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
1079
1080 if (io_size == 0) {
1081 /*
1082 * vnop_blockmap didn't return an error... however, it did
1083 * return an extent size of 0 which means we can't
1084 * make forward progress on this I/O... a hole in the
1085 * file would be returned as a blkno of -1 with a non-zero io_size
1086 * a real extent is returned with a blkno != -1 and a non-zero io_size
1087 */
1088 error = EINVAL;
1089 break;
1090 }
1091 if ( !(flags & CL_READ) && blkno == -1) {
1092 off_t e_offset;
1093 int pageout_flags;
1094
1095 if (upl_get_internal_vectorupl(upl))
1096 panic("Vector UPLs should not take this code-path\n");
1097 /*
1098 * we're writing into a 'hole'
1099 */
1100 if (flags & CL_PAGEOUT) {
1101 /*
1102 * if we got here via cluster_pageout
1103 * then just error the request and return
1104 * the 'hole' should already have been covered
1105 */
1106 error = EINVAL;
1107 break;
1108 }
1109 /*
1110 * we can get here if the cluster code happens to
1111 * pick up a page that was dirtied via mmap vs
1112 * a 'write' and the page targets a 'hole'...
1113 * i.e. the writes to the cluster were sparse
1114 * and the file was being written for the first time
1115 *
1116 * we can also get here if the filesystem supports
1117 * 'holes' that are less than PAGE_SIZE.... because
1118 * we can't know if the range in the page that covers
1119 * the 'hole' has been dirtied via an mmap or not,
1120 * we have to assume the worst and try to push the
1121 * entire page to storage.
1122 *
1123 * Try paging out the page individually before
1124 * giving up entirely and dumping it (the pageout
1125 * path will insure that the zero extent accounting
1126 * has been taken care of before we get back into cluster_io)
1127 *
1128 * go direct to vnode_pageout so that we don't have to
1129 * unbusy the page from the UPL... we used to do this
1130 * so that we could call ubc_sync_range, but that results
1131 * in a potential deadlock if someone else races us to acquire
1132 * that page and wins and in addition needs one of the pages
1133 * we're continuing to hold in the UPL
1134 */
1135 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
1136
1137 if ( !(flags & CL_ASYNC))
1138 pageout_flags |= UPL_IOSYNC;
1139 if ( !(flags & CL_COMMIT))
1140 pageout_flags |= UPL_NOCOMMIT;
1141
1142 if (cbp_head) {
1143 buf_t last_cbp;
1144
1145 /*
1146 * first we have to wait for the the current outstanding I/Os
1147 * to complete... EOT hasn't been set yet on this transaction
1148 * so the pages won't be released just because all of the current
1149 * I/O linked to this transaction has completed...
1150 */
1151 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1152
1153 /*
1154 * we've got a transcation that
1155 * includes the page we're about to push out through vnode_pageout...
1156 * find the last bp in the list which will be the one that
1157 * includes the head of this page and round it's iosize down
1158 * to a page boundary...
1159 */
1160 for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1161 last_cbp = cbp;
1162
1163 cbp->b_bcount &= ~PAGE_MASK;
1164
1165 if (cbp->b_bcount == 0) {
1166 /*
1167 * this buf no longer has any I/O associated with it
1168 */
1169 free_io_buf(cbp);
1170
1171 if (cbp == cbp_head) {
1172 /*
1173 * the buf we just freed was the only buf in
1174 * this transaction... so there's no I/O to do
1175 */
1176 cbp_head = NULL;
1177 } else {
1178 /*
1179 * remove the buf we just freed from
1180 * the transaction list
1181 */
1182 last_cbp->b_trans_next = NULL;
1183 cbp_tail = last_cbp;
1184 }
1185 }
1186 if (cbp_head) {
1187 /*
1188 * there was more to the current transaction
1189 * than just the page we are pushing out via vnode_pageout...
1190 * mark it as finished and complete it... we've already
1191 * waited for the I/Os to complete above in the call to cluster_wait_IO
1192 */
1193 cluster_EOT(cbp_head, cbp_tail, 0);
1194
1195 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1196
1197 trans_count = 0;
1198 }
1199 }
1200 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
1201 error = EINVAL;
1202 }
1203 e_offset = round_page_64(f_offset + 1);
1204 io_size = e_offset - f_offset;
1205
1206 f_offset += io_size;
1207 upl_offset += io_size;
1208
1209 if (size >= io_size)
1210 size -= io_size;
1211 else
1212 size = 0;
1213 /*
1214 * keep track of how much of the original request
1215 * that we've actually completed... non_rounded_size
1216 * may go negative due to us rounding the request
1217 * to a page size multiple (i.e. size > non_rounded_size)
1218 */
1219 non_rounded_size -= io_size;
1220
1221 if (non_rounded_size <= 0) {
1222 /*
1223 * we've transferred all of the data in the original
1224 * request, but we were unable to complete the tail
1225 * of the last page because the file didn't have
1226 * an allocation to back that portion... this is ok.
1227 */
1228 size = 0;
1229 }
1230 if (error) {
1231 if (size == 0)
1232 flags &= ~CL_COMMIT;
1233 break;
1234 }
1235 continue;
1236 }
1237 lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64);
1238 /*
1239 * we have now figured out how much I/O we can do - this is in 'io_size'
1240 * pg_offset is the starting point in the first page for the I/O
1241 * pg_count is the number of full and partial pages that 'io_size' encompasses
1242 */
1243 pg_offset = upl_offset & PAGE_MASK;
1244
1245 if (flags & CL_DEV_MEMORY) {
1246 /*
1247 * treat physical requests as one 'giant' page
1248 */
1249 pg_count = 1;
1250 } else
1251 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1252
1253 if ((flags & CL_READ) && blkno == -1) {
1254 vm_offset_t commit_offset;
1255 int bytes_to_zero;
1256 int complete_transaction_now = 0;
1257
1258 /*
1259 * if we're reading and blkno == -1, then we've got a
1260 * 'hole' in the file that we need to deal with by zeroing
1261 * out the affected area in the upl
1262 */
1263 if (io_size >= (u_int)non_rounded_size) {
1264 /*
1265 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1266 * than 'zero_offset' will be non-zero
1267 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1268 * (indicated by the io_size finishing off the I/O request for this UPL)
1269 * than we're not going to issue an I/O for the
1270 * last page in this upl... we need to zero both the hole and the tail
1271 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1272 */
1273 bytes_to_zero = non_rounded_size;
1274 if (!(flags & CL_NOZERO))
1275 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1276
1277 zero_offset = 0;
1278 } else
1279 bytes_to_zero = io_size;
1280
1281 pg_count = 0;
1282
1283 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
1284
1285 if (cbp_head) {
1286 int pg_resid;
1287
1288 /*
1289 * if there is a current I/O chain pending
1290 * then the first page of the group we just zero'd
1291 * will be handled by the I/O completion if the zero
1292 * fill started in the middle of the page
1293 */
1294 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1295
1296 pg_resid = commit_offset - upl_offset;
1297
1298 if (bytes_to_zero >= pg_resid) {
1299 /*
1300 * the last page of the current I/O
1301 * has been completed...
1302 * compute the number of fully zero'd
1303 * pages that are beyond it
1304 * plus the last page if its partial
1305 * and we have no more I/O to issue...
1306 * otherwise a partial page is left
1307 * to begin the next I/O
1308 */
1309 if ((int)io_size >= non_rounded_size)
1310 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1311 else
1312 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1313
1314 complete_transaction_now = 1;
1315 }
1316 } else {
1317 /*
1318 * no pending I/O to deal with
1319 * so, commit all of the fully zero'd pages
1320 * plus the last page if its partial
1321 * and we have no more I/O to issue...
1322 * otherwise a partial page is left
1323 * to begin the next I/O
1324 */
1325 if ((int)io_size >= non_rounded_size)
1326 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1327 else
1328 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
1329
1330 commit_offset = upl_offset & ~PAGE_MASK;
1331 }
1332 if ( (flags & CL_COMMIT) && pg_count) {
1333 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1334 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1335 }
1336 upl_offset += io_size;
1337 f_offset += io_size;
1338 size -= io_size;
1339
1340 /*
1341 * keep track of how much of the original request
1342 * that we've actually completed... non_rounded_size
1343 * may go negative due to us rounding the request
1344 * to a page size multiple (i.e. size > non_rounded_size)
1345 */
1346 non_rounded_size -= io_size;
1347
1348 if (non_rounded_size <= 0) {
1349 /*
1350 * we've transferred all of the data in the original
1351 * request, but we were unable to complete the tail
1352 * of the last page because the file didn't have
1353 * an allocation to back that portion... this is ok.
1354 */
1355 size = 0;
1356 }
1357 if (cbp_head && (complete_transaction_now || size == 0)) {
1358 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1359
1360 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1361
1362 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1363
1364 trans_count = 0;
1365 }
1366 continue;
1367 }
1368 if (pg_count > max_vectors) {
1369 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
1370 io_size = PAGE_SIZE - pg_offset;
1371 pg_count = 1;
1372 } else {
1373 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
1374 pg_count = max_vectors;
1375 }
1376 }
1377 /*
1378 * If the transaction is going to reach the maximum number of
1379 * desired elements, truncate the i/o to the nearest page so
1380 * that the actual i/o is initiated after this buffer is
1381 * created and added to the i/o chain.
1382 *
1383 * I/O directed to physically contiguous memory
1384 * doesn't have a requirement to make sure we 'fill' a page
1385 */
1386 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1387 ((upl_offset + io_size) & PAGE_MASK)) {
1388 vm_offset_t aligned_ofs;
1389
1390 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1391 /*
1392 * If the io_size does not actually finish off even a
1393 * single page we have to keep adding buffers to the
1394 * transaction despite having reached the desired limit.
1395 *
1396 * Eventually we get here with the page being finished
1397 * off (and exceeded) and then we truncate the size of
1398 * this i/o request so that it is page aligned so that
1399 * we can finally issue the i/o on the transaction.
1400 */
1401 if (aligned_ofs > upl_offset) {
1402 io_size = aligned_ofs - upl_offset;
1403 pg_count--;
1404 }
1405 }
1406
1407 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
1408 /*
1409 * if we're not targeting a virtual device i.e. a disk image
1410 * it's safe to dip into the reserve pool since real devices
1411 * can complete this I/O request without requiring additional
1412 * bufs from the alloc_io_buf pool
1413 */
1414 priv = 1;
1415 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1416 /*
1417 * Throttle the speculative IO
1418 */
1419 priv = 0;
1420 else
1421 priv = 1;
1422
1423 cbp = alloc_io_buf(vp, priv);
1424
1425 if (flags & CL_PAGEOUT) {
1426 u_int i;
1427
1428 for (i = 0; i < pg_count; i++) {
1429 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1430 panic("BUSY bp found in cluster_io");
1431 }
1432 }
1433 if (flags & CL_ASYNC) {
1434 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
1435 panic("buf_setcallback failed\n");
1436 }
1437 cbp->b_cliodone = (void *)callback;
1438 cbp->b_flags |= io_flags;
1439 if (flags & CL_NOCACHE)
1440 cbp->b_attr.ba_flags |= BA_NOCACHE;
1441
1442 cbp->b_lblkno = lblkno;
1443 cbp->b_blkno = blkno;
1444 cbp->b_bcount = io_size;
1445
1446 if (buf_setupl(cbp, upl, upl_offset))
1447 panic("buf_setupl failed\n");
1448
1449 cbp->b_trans_next = (buf_t)NULL;
1450
1451 if ((cbp->b_iostate = (void *)iostate))
1452 /*
1453 * caller wants to track the state of this
1454 * io... bump the amount issued against this stream
1455 */
1456 iostate->io_issued += io_size;
1457
1458 if (flags & CL_READ) {
1459 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
1460 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1461 }
1462 else {
1463 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
1464 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1465 }
1466
1467 if (cbp_head) {
1468 cbp_tail->b_trans_next = cbp;
1469 cbp_tail = cbp;
1470 } else {
1471 cbp_head = cbp;
1472 cbp_tail = cbp;
1473
1474 if ( (cbp_head->b_real_bp = real_bp) )
1475 real_bp = (buf_t)NULL;
1476 }
1477 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1478
1479 trans_count++;
1480
1481 upl_offset += io_size;
1482 f_offset += io_size;
1483 size -= io_size;
1484 /*
1485 * keep track of how much of the original request
1486 * that we've actually completed... non_rounded_size
1487 * may go negative due to us rounding the request
1488 * to a page size multiple (i.e. size > non_rounded_size)
1489 */
1490 non_rounded_size -= io_size;
1491
1492 if (non_rounded_size <= 0) {
1493 /*
1494 * we've transferred all of the data in the original
1495 * request, but we were unable to complete the tail
1496 * of the last page because the file didn't have
1497 * an allocation to back that portion... this is ok.
1498 */
1499 size = 0;
1500 }
1501 if (size == 0) {
1502 /*
1503 * we have no more I/O to issue, so go
1504 * finish the final transaction
1505 */
1506 need_EOT = TRUE;
1507 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1508 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1509 /*
1510 * I/O directed to physically contiguous memory...
1511 * which doesn't have a requirement to make sure we 'fill' a page
1512 * or...
1513 * the current I/O we've prepared fully
1514 * completes the last page in this request
1515 * and ...
1516 * it's either an ASYNC request or
1517 * we've already accumulated more than 8 I/O's into
1518 * this transaction so mark it as complete so that
1519 * it can finish asynchronously or via the cluster_complete_transaction
1520 * below if the request is synchronous
1521 */
1522 need_EOT = TRUE;
1523 }
1524 if (need_EOT == TRUE)
1525 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1526
1527 if (flags & CL_THROTTLE)
1528 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1529
1530 if ( !(io_flags & B_READ))
1531 vnode_startwrite(vp);
1532
1533 if (flags & CL_RAW_ENCRYPTED) {
1534 /*
1535 * User requested raw encrypted bytes.
1536 * Twiddle the bit in the ba_flags for the buffer
1537 */
1538 cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
1539 }
1540
1541 (void) VNOP_STRATEGY(cbp);
1542
1543 if (need_EOT == TRUE) {
1544 if ( !(flags & CL_ASYNC))
1545 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
1546
1547 need_EOT = FALSE;
1548 trans_count = 0;
1549 cbp_head = NULL;
1550 }
1551 }
1552 if (error) {
1553 int abort_size;
1554
1555 io_size = 0;
1556
1557 if (cbp_head) {
1558 /*
1559 * first wait until all of the outstanding I/O
1560 * for this partial transaction has completed
1561 */
1562 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1563
1564 /*
1565 * Rewind the upl offset to the beginning of the
1566 * transaction.
1567 */
1568 upl_offset = cbp_head->b_uploffset;
1569
1570 for (cbp = cbp_head; cbp;) {
1571 buf_t cbp_next;
1572
1573 size += cbp->b_bcount;
1574 io_size += cbp->b_bcount;
1575
1576 cbp_next = cbp->b_trans_next;
1577 free_io_buf(cbp);
1578 cbp = cbp_next;
1579 }
1580 }
1581 if (iostate) {
1582 int need_wakeup = 0;
1583
1584 /*
1585 * update the error condition for this stream
1586 * since we never really issued the io
1587 * just go ahead and adjust it back
1588 */
1589 lck_mtx_lock_spin(&iostate->io_mtxp);
1590
1591 if (iostate->io_error == 0)
1592 iostate->io_error = error;
1593 iostate->io_issued -= io_size;
1594
1595 if (iostate->io_wanted) {
1596 /*
1597 * someone is waiting for the state of
1598 * this io stream to change
1599 */
1600 iostate->io_wanted = 0;
1601 need_wakeup = 1;
1602 }
1603 lck_mtx_unlock(&iostate->io_mtxp);
1604
1605 if (need_wakeup)
1606 wakeup((caddr_t)&iostate->io_wanted);
1607 }
1608 if (flags & CL_COMMIT) {
1609 int upl_flags;
1610
1611 pg_offset = upl_offset & PAGE_MASK;
1612 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1613
1614 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
1615
1616 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
1617 upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1618 }
1619 if (retval == 0)
1620 retval = error;
1621 } else if (cbp_head)
1622 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1623
1624 if (real_bp) {
1625 /*
1626 * can get here if we either encountered an error
1627 * or we completely zero-filled the request and
1628 * no I/O was issued
1629 */
1630 if (error) {
1631 real_bp->b_flags |= B_ERROR;
1632 real_bp->b_error = error;
1633 }
1634 buf_biodone(real_bp);
1635 }
1636 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1637
1638 return (retval);
1639 }
1640
1641 #define reset_vector_run_state() \
1642 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1643
1644 static int
1645 vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
1646 int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1647 {
1648 vector_upl_set_pagelist(vector_upl);
1649
1650 if(io_flag & CL_READ) {
1651 if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
1652 io_flag &= ~CL_PRESERVE; /*don't zero fill*/
1653 else
1654 io_flag |= CL_PRESERVE; /*zero fill*/
1655 }
1656 return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
1657
1658 }
1659
1660 static int
1661 cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1662 {
1663 int pages_in_prefetch;
1664
1665 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1666 (int)f_offset, size, (int)filesize, 0, 0);
1667
1668 if (f_offset >= filesize) {
1669 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1670 (int)f_offset, 0, 0, 0, 0);
1671 return(0);
1672 }
1673 if ((off_t)size > (filesize - f_offset))
1674 size = filesize - f_offset;
1675 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1676
1677 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1678
1679 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1680 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1681
1682 return (pages_in_prefetch);
1683 }
1684
1685
1686
1687 static void
1688 cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1689 int bflag)
1690 {
1691 daddr64_t r_addr;
1692 off_t f_offset;
1693 int size_of_prefetch;
1694 u_int max_prefetch;
1695
1696
1697 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
1698 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1699
1700 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1701 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1702 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1703 return;
1704 }
1705 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
1706 rap->cl_ralen = 0;
1707 rap->cl_maxra = 0;
1708
1709 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1710 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1711
1712 return;
1713 }
1714 max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
1715
1716 if ((max_prefetch / PAGE_SIZE) > speculative_prefetch_max)
1717 max_prefetch = (speculative_prefetch_max * PAGE_SIZE);
1718
1719 if (max_prefetch <= PAGE_SIZE) {
1720 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1721 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
1722 return;
1723 }
1724 if (extent->e_addr < rap->cl_maxra) {
1725 if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) {
1726
1727 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1728 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1729 return;
1730 }
1731 }
1732 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
1733 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
1734
1735 size_of_prefetch = 0;
1736
1737 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
1738
1739 if (size_of_prefetch) {
1740 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1741 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
1742 return;
1743 }
1744 if (f_offset < filesize) {
1745 daddr64_t read_size;
1746
1747 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
1748
1749 read_size = (extent->e_addr + 1) - extent->b_addr;
1750
1751 if (read_size > rap->cl_ralen) {
1752 if (read_size > max_prefetch / PAGE_SIZE)
1753 rap->cl_ralen = max_prefetch / PAGE_SIZE;
1754 else
1755 rap->cl_ralen = read_size;
1756 }
1757 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
1758
1759 if (size_of_prefetch)
1760 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
1761 }
1762 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1763 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
1764 }
1765
1766
1767 int
1768 cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1769 int size, off_t filesize, int flags)
1770 {
1771 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1772
1773 }
1774
1775
1776 int
1777 cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1778 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1779 {
1780 int io_size;
1781 int rounded_size;
1782 off_t max_size;
1783 int local_flags;
1784
1785 local_flags = CL_PAGEOUT | CL_THROTTLE;
1786
1787 if ((flags & UPL_IOSYNC) == 0)
1788 local_flags |= CL_ASYNC;
1789 if ((flags & UPL_NOCOMMIT) == 0)
1790 local_flags |= CL_COMMIT;
1791 if ((flags & UPL_KEEPCACHED))
1792 local_flags |= CL_KEEPCACHED;
1793 if (flags & UPL_PAGING_ENCRYPTED)
1794 local_flags |= CL_ENCRYPTED;
1795
1796
1797 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
1798 (int)f_offset, size, (int)filesize, local_flags, 0);
1799
1800 /*
1801 * If they didn't specify any I/O, then we are done...
1802 * we can't issue an abort because we don't know how
1803 * big the upl really is
1804 */
1805 if (size <= 0)
1806 return (EINVAL);
1807
1808 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
1809 if (local_flags & CL_COMMIT)
1810 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1811 return (EROFS);
1812 }
1813 /*
1814 * can't page-in from a negative offset
1815 * or if we're starting beyond the EOF
1816 * or if the file offset isn't page aligned
1817 * or the size requested isn't a multiple of PAGE_SIZE
1818 */
1819 if (f_offset < 0 || f_offset >= filesize ||
1820 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
1821 if (local_flags & CL_COMMIT)
1822 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1823 return (EINVAL);
1824 }
1825 max_size = filesize - f_offset;
1826
1827 if (size < max_size)
1828 io_size = size;
1829 else
1830 io_size = max_size;
1831
1832 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1833
1834 if (size > rounded_size) {
1835 if (local_flags & CL_COMMIT)
1836 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
1837 UPL_ABORT_FREE_ON_EMPTY);
1838 }
1839 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
1840 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
1841 }
1842
1843
1844 int
1845 cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1846 int size, off_t filesize, int flags)
1847 {
1848 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1849 }
1850
1851
1852 int
1853 cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1854 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1855 {
1856 u_int io_size;
1857 int rounded_size;
1858 off_t max_size;
1859 int retval;
1860 int local_flags = 0;
1861
1862 if (upl == NULL || size < 0)
1863 panic("cluster_pagein: NULL upl passed in");
1864
1865 if ((flags & UPL_IOSYNC) == 0)
1866 local_flags |= CL_ASYNC;
1867 if ((flags & UPL_NOCOMMIT) == 0)
1868 local_flags |= CL_COMMIT;
1869 if (flags & UPL_IOSTREAMING)
1870 local_flags |= CL_IOSTREAMING;
1871 if (flags & UPL_PAGING_ENCRYPTED)
1872 local_flags |= CL_ENCRYPTED;
1873
1874
1875 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
1876 (int)f_offset, size, (int)filesize, local_flags, 0);
1877
1878 /*
1879 * can't page-in from a negative offset
1880 * or if we're starting beyond the EOF
1881 * or if the file offset isn't page aligned
1882 * or the size requested isn't a multiple of PAGE_SIZE
1883 */
1884 if (f_offset < 0 || f_offset >= filesize ||
1885 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
1886 if (local_flags & CL_COMMIT)
1887 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1888 return (EINVAL);
1889 }
1890 max_size = filesize - f_offset;
1891
1892 if (size < max_size)
1893 io_size = size;
1894 else
1895 io_size = max_size;
1896
1897 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1898
1899 if (size > rounded_size && (local_flags & CL_COMMIT))
1900 ubc_upl_abort_range(upl, upl_offset + rounded_size,
1901 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1902
1903 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
1904 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1905
1906 return (retval);
1907 }
1908
1909
1910 int
1911 cluster_bp(buf_t bp)
1912 {
1913 return cluster_bp_ext(bp, NULL, NULL);
1914 }
1915
1916
1917 int
1918 cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
1919 {
1920 off_t f_offset;
1921 int flags;
1922
1923 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
1924 bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
1925
1926 if (bp->b_flags & B_READ)
1927 flags = CL_ASYNC | CL_READ;
1928 else
1929 flags = CL_ASYNC;
1930 if (bp->b_flags & B_PASSIVE)
1931 flags |= CL_PASSIVE;
1932
1933 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
1934
1935 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
1936 }
1937
1938
1939
1940 int
1941 cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
1942 {
1943 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
1944 }
1945
1946
1947 int
1948 cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
1949 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
1950 {
1951 user_ssize_t cur_resid;
1952 int retval = 0;
1953 int flags;
1954 int zflags;
1955 int bflag;
1956 int write_type = IO_COPY;
1957 u_int32_t write_length;
1958
1959 flags = xflags;
1960
1961 if (flags & IO_PASSIVE)
1962 bflag = CL_PASSIVE;
1963 else
1964 bflag = 0;
1965
1966 if (vp->v_flag & VNOCACHE_DATA){
1967 flags |= IO_NOCACHE;
1968 bflag |= CL_NOCACHE;
1969 }
1970 if (uio == NULL) {
1971 /*
1972 * no user data...
1973 * this call is being made to zero-fill some range in the file
1974 */
1975 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
1976
1977 return(retval);
1978 }
1979 /*
1980 * do a write through the cache if one of the following is true....
1981 * NOCACHE is not true or NODIRECT is true
1982 * the uio request doesn't target USERSPACE
1983 * otherwise, find out if we want the direct or contig variant for
1984 * the first vector in the uio request
1985 */
1986 if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
1987 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
1988
1989 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
1990 /*
1991 * must go through the cached variant in this case
1992 */
1993 write_type = IO_COPY;
1994
1995 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
1996
1997 switch (write_type) {
1998
1999 case IO_COPY:
2000 /*
2001 * make sure the uio_resid isn't too big...
2002 * internally, we want to handle all of the I/O in
2003 * chunk sizes that fit in a 32 bit int
2004 */
2005 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
2006 /*
2007 * we're going to have to call cluster_write_copy
2008 * more than once...
2009 *
2010 * only want the last call to cluster_write_copy to
2011 * have the IO_TAILZEROFILL flag set and only the
2012 * first call should have IO_HEADZEROFILL
2013 */
2014 zflags = flags & ~IO_TAILZEROFILL;
2015 flags &= ~IO_HEADZEROFILL;
2016
2017 write_length = MAX_IO_REQUEST_SIZE;
2018 } else {
2019 /*
2020 * last call to cluster_write_copy
2021 */
2022 zflags = flags;
2023
2024 write_length = (u_int32_t)cur_resid;
2025 }
2026 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
2027 break;
2028
2029 case IO_CONTIG:
2030 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
2031
2032 if (flags & IO_HEADZEROFILL) {
2033 /*
2034 * only do this once per request
2035 */
2036 flags &= ~IO_HEADZEROFILL;
2037
2038 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
2039 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2040 if (retval)
2041 break;
2042 }
2043 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
2044
2045 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
2046 /*
2047 * we're done with the data from the user specified buffer(s)
2048 * and we've been requested to zero fill at the tail
2049 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2050 * by rearranging the args and passing in IO_HEADZEROFILL
2051 */
2052 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
2053 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2054 }
2055 break;
2056
2057 case IO_DIRECT:
2058 /*
2059 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2060 */
2061 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
2062 break;
2063
2064 case IO_UNKNOWN:
2065 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2066 break;
2067 }
2068 /*
2069 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2070 * multiple times to service a multi-vector request that is not aligned properly
2071 * we need to update the oldEOF so that we
2072 * don't zero-fill the head of a page if we've successfully written
2073 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2074 * page that is beyond the oldEOF if the write is unaligned... we only
2075 * want that to happen for the very first page of the cluster_write,
2076 * NOT the first page of each vector making up a multi-vector write.
2077 */
2078 if (uio->uio_offset > oldEOF)
2079 oldEOF = uio->uio_offset;
2080 }
2081 return (retval);
2082 }
2083
2084
2085 static int
2086 cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
2087 int flags, int (*callback)(buf_t, void *), void *callback_arg)
2088 {
2089 upl_t upl;
2090 upl_page_info_t *pl;
2091 vm_offset_t upl_offset;
2092 vm_offset_t vector_upl_offset = 0;
2093 u_int32_t io_req_size;
2094 u_int32_t offset_in_file;
2095 u_int32_t offset_in_iovbase;
2096 u_int32_t io_size;
2097 int io_flag = 0;
2098 upl_size_t upl_size, vector_upl_size = 0;
2099 vm_size_t upl_needed_size;
2100 mach_msg_type_number_t pages_in_pl;
2101 int upl_flags;
2102 kern_return_t kret;
2103 mach_msg_type_number_t i;
2104 int force_data_sync;
2105 int retval = 0;
2106 int first_IO = 1;
2107 struct clios iostate;
2108 user_addr_t iov_base;
2109 u_int32_t mem_alignment_mask;
2110 u_int32_t devblocksize;
2111 u_int32_t max_io_size;
2112 u_int32_t max_upl_size;
2113 u_int32_t max_vector_size;
2114 boolean_t io_throttled = FALSE;
2115
2116 u_int32_t vector_upl_iosize = 0;
2117 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
2118 off_t v_upl_uio_offset = 0;
2119 int vector_upl_index=0;
2120 upl_t vector_upl = NULL;
2121
2122
2123 /*
2124 * When we enter this routine, we know
2125 * -- the resid will not exceed iov_len
2126 */
2127 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
2128 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2129
2130 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2131
2132 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
2133
2134 if (flags & IO_PASSIVE)
2135 io_flag |= CL_PASSIVE;
2136
2137 if (flags & IO_NOCACHE)
2138 io_flag |= CL_NOCACHE;
2139
2140 iostate.io_completed = 0;
2141 iostate.io_issued = 0;
2142 iostate.io_error = 0;
2143 iostate.io_wanted = 0;
2144
2145 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2146
2147 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2148 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2149
2150 if (devblocksize == 1) {
2151 /*
2152 * the AFP client advertises a devblocksize of 1
2153 * however, its BLOCKMAP routine maps to physical
2154 * blocks that are PAGE_SIZE in size...
2155 * therefore we can't ask for I/Os that aren't page aligned
2156 * or aren't multiples of PAGE_SIZE in size
2157 * by setting devblocksize to PAGE_SIZE, we re-instate
2158 * the old behavior we had before the mem_alignment_mask
2159 * changes went in...
2160 */
2161 devblocksize = PAGE_SIZE;
2162 }
2163
2164 next_dwrite:
2165 io_req_size = *write_length;
2166 iov_base = uio_curriovbase(uio);
2167
2168 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
2169 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
2170
2171 if (offset_in_file || offset_in_iovbase) {
2172 /*
2173 * one of the 2 important offsets is misaligned
2174 * so fire an I/O through the cache for this entire vector
2175 */
2176 goto wait_for_dwrites;
2177 }
2178 if (iov_base & (devblocksize - 1)) {
2179 /*
2180 * the offset in memory must be on a device block boundary
2181 * so that we can guarantee that we can generate an
2182 * I/O that ends on a page boundary in cluster_io
2183 */
2184 goto wait_for_dwrites;
2185 }
2186
2187 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
2188 int throttle_type;
2189
2190 if ( (throttle_type = cluster_is_throttled(vp)) ) {
2191 /*
2192 * we're in the throttle window, at the very least
2193 * we want to limit the size of the I/O we're about
2194 * to issue
2195 */
2196 if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
2197 /*
2198 * we're in the throttle window and at least 1 I/O
2199 * has already been issued by a throttleable thread
2200 * in this window, so return with EAGAIN to indicate
2201 * to the FS issuing the cluster_write call that it
2202 * should now throttle after dropping any locks
2203 */
2204 throttle_info_update_by_mount(vp->v_mount);
2205
2206 io_throttled = TRUE;
2207 goto wait_for_dwrites;
2208 }
2209 max_vector_size = THROTTLE_MAX_IOSIZE;
2210 max_io_size = THROTTLE_MAX_IOSIZE;
2211 } else {
2212 max_vector_size = MAX_VECTOR_UPL_SIZE;
2213 max_io_size = max_upl_size;
2214 }
2215
2216 if (first_IO) {
2217 cluster_syncup(vp, newEOF, callback, callback_arg);
2218 first_IO = 0;
2219 }
2220 io_size = io_req_size & ~PAGE_MASK;
2221 iov_base = uio_curriovbase(uio);
2222
2223 if (io_size > max_io_size)
2224 io_size = max_io_size;
2225
2226 if(useVectorUPL && (iov_base & PAGE_MASK)) {
2227 /*
2228 * We have an iov_base that's not page-aligned.
2229 * Issue all I/O's that have been collected within
2230 * this Vectored UPL.
2231 */
2232 if(vector_upl_index) {
2233 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2234 reset_vector_run_state();
2235 }
2236
2237 /*
2238 * After this point, if we are using the Vector UPL path and the base is
2239 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2240 */
2241 }
2242
2243 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2244 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
2245
2246 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
2247 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
2248
2249 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
2250 pages_in_pl = 0;
2251 upl_size = upl_needed_size;
2252 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2253 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2254
2255 kret = vm_map_get_upl(current_map(),
2256 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2257 &upl_size,
2258 &upl,
2259 NULL,
2260 &pages_in_pl,
2261 &upl_flags,
2262 force_data_sync);
2263
2264 if (kret != KERN_SUCCESS) {
2265 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2266 0, 0, 0, kret, 0);
2267 /*
2268 * failed to get pagelist
2269 *
2270 * we may have already spun some portion of this request
2271 * off as async requests... we need to wait for the I/O
2272 * to complete before returning
2273 */
2274 goto wait_for_dwrites;
2275 }
2276 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2277 pages_in_pl = upl_size / PAGE_SIZE;
2278
2279 for (i = 0; i < pages_in_pl; i++) {
2280 if (!upl_valid_page(pl, i))
2281 break;
2282 }
2283 if (i == pages_in_pl)
2284 break;
2285
2286 /*
2287 * didn't get all the pages back that we
2288 * needed... release this upl and try again
2289 */
2290 ubc_upl_abort(upl, 0);
2291 }
2292 if (force_data_sync >= 3) {
2293 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2294 i, pages_in_pl, upl_size, kret, 0);
2295 /*
2296 * for some reason, we couldn't acquire a hold on all
2297 * the pages needed in the user's address space
2298 *
2299 * we may have already spun some portion of this request
2300 * off as async requests... we need to wait for the I/O
2301 * to complete before returning
2302 */
2303 goto wait_for_dwrites;
2304 }
2305
2306 /*
2307 * Consider the possibility that upl_size wasn't satisfied.
2308 */
2309 if (upl_size < upl_needed_size) {
2310 if (upl_size && upl_offset == 0)
2311 io_size = upl_size;
2312 else
2313 io_size = 0;
2314 }
2315 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2316 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
2317
2318 if (io_size == 0) {
2319 ubc_upl_abort(upl, 0);
2320 /*
2321 * we may have already spun some portion of this request
2322 * off as async requests... we need to wait for the I/O
2323 * to complete before returning
2324 */
2325 goto wait_for_dwrites;
2326 }
2327
2328 if(useVectorUPL) {
2329 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
2330 if(end_off)
2331 issueVectorUPL = 1;
2332 /*
2333 * After this point, if we are using a vector UPL, then
2334 * either all the UPL elements end on a page boundary OR
2335 * this UPL is the last element because it does not end
2336 * on a page boundary.
2337 */
2338 }
2339
2340 /*
2341 * Now look for pages already in the cache
2342 * and throw them away.
2343 * uio->uio_offset is page aligned within the file
2344 * io_size is a multiple of PAGE_SIZE
2345 */
2346 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
2347
2348 /*
2349 * we want push out these writes asynchronously so that we can overlap
2350 * the preparation of the next I/O
2351 * if there are already too many outstanding writes
2352 * wait until some complete before issuing the next
2353 */
2354 if (iostate.io_issued > iostate.io_completed)
2355 cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct");
2356
2357 if (iostate.io_error) {
2358 /*
2359 * one of the earlier writes we issued ran into a hard error
2360 * don't issue any more writes, cleanup the UPL
2361 * that was just created but not used, then
2362 * go wait for all writes that are part of this stream
2363 * to complete before returning the error to the caller
2364 */
2365 ubc_upl_abort(upl, 0);
2366
2367 goto wait_for_dwrites;
2368 }
2369
2370 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2371 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
2372
2373 if(!useVectorUPL)
2374 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2375 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2376
2377 else {
2378 if(!vector_upl_index) {
2379 vector_upl = vector_upl_create(upl_offset);
2380 v_upl_uio_offset = uio->uio_offset;
2381 vector_upl_offset = upl_offset;
2382 }
2383
2384 vector_upl_set_subupl(vector_upl,upl,upl_size);
2385 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
2386 vector_upl_index++;
2387 vector_upl_iosize += io_size;
2388 vector_upl_size += upl_size;
2389
2390 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
2391 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2392 reset_vector_run_state();
2393 }
2394 }
2395
2396 /*
2397 * update the uio structure to
2398 * reflect the I/O that we just issued
2399 */
2400 uio_update(uio, (user_size_t)io_size);
2401
2402 /*
2403 * in case we end up calling through to cluster_write_copy to finish
2404 * the tail of this request, we need to update the oldEOF so that we
2405 * don't zero-fill the head of a page if we've successfully written
2406 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2407 * page that is beyond the oldEOF if the write is unaligned... we only
2408 * want that to happen for the very first page of the cluster_write,
2409 * NOT the first page of each vector making up a multi-vector write.
2410 */
2411 if (uio->uio_offset > oldEOF)
2412 oldEOF = uio->uio_offset;
2413
2414 io_req_size -= io_size;
2415
2416 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2417 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
2418
2419 } /* end while */
2420
2421 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
2422
2423 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2424
2425 if (retval == 0 && *write_type == IO_DIRECT) {
2426
2427 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2428 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2429
2430 goto next_dwrite;
2431 }
2432 }
2433
2434 wait_for_dwrites:
2435
2436 if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
2437 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2438 reset_vector_run_state();
2439 }
2440
2441 if (iostate.io_issued > iostate.io_completed) {
2442 /*
2443 * make sure all async writes issued as part of this stream
2444 * have completed before we return
2445 */
2446 cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
2447 }
2448 if (iostate.io_error)
2449 retval = iostate.io_error;
2450
2451 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2452
2453 if (io_throttled == TRUE && retval == 0)
2454 retval = EAGAIN;
2455
2456 if (io_req_size && retval == 0) {
2457 /*
2458 * we couldn't handle the tail of this request in DIRECT mode
2459 * so fire it through the copy path
2460 *
2461 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2462 * so we can just pass 0 in for the headOff and tailOff
2463 */
2464 if (uio->uio_offset > oldEOF)
2465 oldEOF = uio->uio_offset;
2466
2467 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
2468
2469 *write_type = IO_UNKNOWN;
2470 }
2471 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2472 (int)uio->uio_offset, io_req_size, retval, 4, 0);
2473
2474 return (retval);
2475 }
2476
2477
2478 static int
2479 cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2480 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
2481 {
2482 upl_page_info_t *pl;
2483 addr64_t src_paddr = 0;
2484 upl_t upl[MAX_VECTS];
2485 vm_offset_t upl_offset;
2486 u_int32_t tail_size = 0;
2487 u_int32_t io_size;
2488 u_int32_t xsize;
2489 upl_size_t upl_size;
2490 vm_size_t upl_needed_size;
2491 mach_msg_type_number_t pages_in_pl;
2492 int upl_flags;
2493 kern_return_t kret;
2494 struct clios iostate;
2495 int error = 0;
2496 int cur_upl = 0;
2497 int num_upl = 0;
2498 int n;
2499 user_addr_t iov_base;
2500 u_int32_t devblocksize;
2501 u_int32_t mem_alignment_mask;
2502
2503 /*
2504 * When we enter this routine, we know
2505 * -- the io_req_size will not exceed iov_len
2506 * -- the target address is physically contiguous
2507 */
2508 cluster_syncup(vp, newEOF, callback, callback_arg);
2509
2510 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2511 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2512
2513 iostate.io_completed = 0;
2514 iostate.io_issued = 0;
2515 iostate.io_error = 0;
2516 iostate.io_wanted = 0;
2517
2518 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2519
2520 next_cwrite:
2521 io_size = *write_length;
2522
2523 iov_base = uio_curriovbase(uio);
2524
2525 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2526 upl_needed_size = upl_offset + io_size;
2527
2528 pages_in_pl = 0;
2529 upl_size = upl_needed_size;
2530 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2531 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2532
2533 kret = vm_map_get_upl(current_map(),
2534 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2535 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
2536
2537 if (kret != KERN_SUCCESS) {
2538 /*
2539 * failed to get pagelist
2540 */
2541 error = EINVAL;
2542 goto wait_for_cwrites;
2543 }
2544 num_upl++;
2545
2546 /*
2547 * Consider the possibility that upl_size wasn't satisfied.
2548 */
2549 if (upl_size < upl_needed_size) {
2550 /*
2551 * This is a failure in the physical memory case.
2552 */
2553 error = EINVAL;
2554 goto wait_for_cwrites;
2555 }
2556 pl = ubc_upl_pageinfo(upl[cur_upl]);
2557
2558 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
2559
2560 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2561 u_int32_t head_size;
2562
2563 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
2564
2565 if (head_size > io_size)
2566 head_size = io_size;
2567
2568 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
2569
2570 if (error)
2571 goto wait_for_cwrites;
2572
2573 upl_offset += head_size;
2574 src_paddr += head_size;
2575 io_size -= head_size;
2576
2577 iov_base += head_size;
2578 }
2579 if ((u_int32_t)iov_base & mem_alignment_mask) {
2580 /*
2581 * request doesn't set up on a memory boundary
2582 * the underlying DMA engine can handle...
2583 * return an error instead of going through
2584 * the slow copy path since the intent of this
2585 * path is direct I/O from device memory
2586 */
2587 error = EINVAL;
2588 goto wait_for_cwrites;
2589 }
2590
2591 tail_size = io_size & (devblocksize - 1);
2592 io_size -= tail_size;
2593
2594 while (io_size && error == 0) {
2595
2596 if (io_size > MAX_IO_CONTIG_SIZE)
2597 xsize = MAX_IO_CONTIG_SIZE;
2598 else
2599 xsize = io_size;
2600 /*
2601 * request asynchronously so that we can overlap
2602 * the preparation of the next I/O... we'll do
2603 * the commit after all the I/O has completed
2604 * since its all issued against the same UPL
2605 * if there are already too many outstanding writes
2606 * wait until some have completed before issuing the next
2607 */
2608 if (iostate.io_issued > iostate.io_completed)
2609 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
2610
2611 if (iostate.io_error) {
2612 /*
2613 * one of the earlier writes we issued ran into a hard error
2614 * don't issue any more writes...
2615 * go wait for all writes that are part of this stream
2616 * to complete before returning the error to the caller
2617 */
2618 goto wait_for_cwrites;
2619 }
2620 /*
2621 * issue an asynchronous write to cluster_io
2622 */
2623 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2624 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
2625
2626 if (error == 0) {
2627 /*
2628 * The cluster_io write completed successfully,
2629 * update the uio structure
2630 */
2631 uio_update(uio, (user_size_t)xsize);
2632
2633 upl_offset += xsize;
2634 src_paddr += xsize;
2635 io_size -= xsize;
2636 }
2637 }
2638 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2639
2640 error = cluster_io_type(uio, write_type, write_length, 0);
2641
2642 if (error == 0 && *write_type == IO_CONTIG) {
2643 cur_upl++;
2644 goto next_cwrite;
2645 }
2646 } else
2647 *write_type = IO_UNKNOWN;
2648
2649 wait_for_cwrites:
2650 /*
2651 * make sure all async writes that are part of this stream
2652 * have completed before we proceed
2653 */
2654 if (iostate.io_issued > iostate.io_completed)
2655 cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
2656
2657 if (iostate.io_error)
2658 error = iostate.io_error;
2659
2660 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2661
2662 if (error == 0 && tail_size)
2663 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2664
2665 for (n = 0; n < num_upl; n++)
2666 /*
2667 * just release our hold on each physically contiguous
2668 * region without changing any state
2669 */
2670 ubc_upl_abort(upl[n], 0);
2671
2672 return (error);
2673 }
2674
2675
2676 /*
2677 * need to avoid a race between an msync of a range of pages dirtied via mmap
2678 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2679 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2680 *
2681 * we should never force-zero-fill pages that are already valid in the cache...
2682 * the entire page contains valid data (either from disk, zero-filled or dirtied
2683 * via an mmap) so we can only do damage by trying to zero-fill
2684 *
2685 */
2686 static int
2687 cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
2688 {
2689 int zero_pg_index;
2690 boolean_t need_cluster_zero = TRUE;
2691
2692 if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2693
2694 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2695 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2696
2697 if (upl_valid_page(pl, zero_pg_index)) {
2698 /*
2699 * never force zero valid pages - dirty or clean
2700 * we'll leave these in the UPL for cluster_write_copy to deal with
2701 */
2702 need_cluster_zero = FALSE;
2703 }
2704 }
2705 if (need_cluster_zero == TRUE)
2706 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2707
2708 return (bytes_to_zero);
2709 }
2710
2711
2712 static int
2713 cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2714 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2715 {
2716 upl_page_info_t *pl;
2717 upl_t upl;
2718 vm_offset_t upl_offset = 0;
2719 vm_size_t upl_size;
2720 off_t upl_f_offset;
2721 int pages_in_upl;
2722 int start_offset;
2723 int xfer_resid;
2724 int io_size;
2725 int io_offset;
2726 int bytes_to_zero;
2727 int bytes_to_move;
2728 kern_return_t kret;
2729 int retval = 0;
2730 int io_resid;
2731 long long total_size;
2732 long long zero_cnt;
2733 off_t zero_off;
2734 long long zero_cnt1;
2735 off_t zero_off1;
2736 off_t write_off = 0;
2737 int write_cnt = 0;
2738 boolean_t first_pass = FALSE;
2739 struct cl_extent cl;
2740 struct cl_writebehind *wbp;
2741 int bflag;
2742 u_int max_cluster_pgcount;
2743 u_int max_io_size;
2744
2745 if (uio) {
2746 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2747 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
2748
2749 io_resid = io_req_size;
2750 } else {
2751 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2752 0, 0, (int)oldEOF, (int)newEOF, 0);
2753
2754 io_resid = 0;
2755 }
2756 if (flags & IO_PASSIVE)
2757 bflag = CL_PASSIVE;
2758 else
2759 bflag = 0;
2760 if (flags & IO_NOCACHE)
2761 bflag |= CL_NOCACHE;
2762
2763 zero_cnt = 0;
2764 zero_cnt1 = 0;
2765 zero_off = 0;
2766 zero_off1 = 0;
2767
2768 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
2769 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2770
2771 if (flags & IO_HEADZEROFILL) {
2772 /*
2773 * some filesystems (HFS is one) don't support unallocated holes within a file...
2774 * so we zero fill the intervening space between the old EOF and the offset
2775 * where the next chunk of real data begins.... ftruncate will also use this
2776 * routine to zero fill to the new EOF when growing a file... in this case, the
2777 * uio structure will not be provided
2778 */
2779 if (uio) {
2780 if (headOff < uio->uio_offset) {
2781 zero_cnt = uio->uio_offset - headOff;
2782 zero_off = headOff;
2783 }
2784 } else if (headOff < newEOF) {
2785 zero_cnt = newEOF - headOff;
2786 zero_off = headOff;
2787 }
2788 } else {
2789 if (uio && uio->uio_offset > oldEOF) {
2790 zero_off = uio->uio_offset & ~PAGE_MASK_64;
2791
2792 if (zero_off >= oldEOF) {
2793 zero_cnt = uio->uio_offset - zero_off;
2794
2795 flags |= IO_HEADZEROFILL;
2796 }
2797 }
2798 }
2799 if (flags & IO_TAILZEROFILL) {
2800 if (uio) {
2801 zero_off1 = uio->uio_offset + io_req_size;
2802
2803 if (zero_off1 < tailOff)
2804 zero_cnt1 = tailOff - zero_off1;
2805 }
2806 } else {
2807 if (uio && newEOF > oldEOF) {
2808 zero_off1 = uio->uio_offset + io_req_size;
2809
2810 if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
2811 zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
2812
2813 flags |= IO_TAILZEROFILL;
2814 }
2815 }
2816 }
2817 if (zero_cnt == 0 && uio == (struct uio *) 0) {
2818 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
2819 retval, 0, 0, 0, 0);
2820 return (0);
2821 }
2822 if (uio) {
2823 write_off = uio->uio_offset;
2824 write_cnt = uio_resid(uio);
2825 /*
2826 * delay updating the sequential write info
2827 * in the control block until we've obtained
2828 * the lock for it
2829 */
2830 first_pass = TRUE;
2831 }
2832 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
2833 /*
2834 * for this iteration of the loop, figure out where our starting point is
2835 */
2836 if (zero_cnt) {
2837 start_offset = (int)(zero_off & PAGE_MASK_64);
2838 upl_f_offset = zero_off - start_offset;
2839 } else if (io_resid) {
2840 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2841 upl_f_offset = uio->uio_offset - start_offset;
2842 } else {
2843 start_offset = (int)(zero_off1 & PAGE_MASK_64);
2844 upl_f_offset = zero_off1 - start_offset;
2845 }
2846 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
2847 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
2848
2849 if (total_size > max_io_size)
2850 total_size = max_io_size;
2851
2852 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
2853
2854 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
2855 /*
2856 * assumption... total_size <= io_resid
2857 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
2858 */
2859 if ((start_offset + total_size) > max_io_size)
2860 total_size = max_io_size - start_offset;
2861 xfer_resid = total_size;
2862
2863 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
2864
2865 if (retval)
2866 break;
2867
2868 io_resid -= (total_size - xfer_resid);
2869 total_size = xfer_resid;
2870 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2871 upl_f_offset = uio->uio_offset - start_offset;
2872
2873 if (total_size == 0) {
2874 if (start_offset) {
2875 /*
2876 * the write did not finish on a page boundary
2877 * which will leave upl_f_offset pointing to the
2878 * beginning of the last page written instead of
2879 * the page beyond it... bump it in this case
2880 * so that the cluster code records the last page
2881 * written as dirty
2882 */
2883 upl_f_offset += PAGE_SIZE_64;
2884 }
2885 upl_size = 0;
2886
2887 goto check_cluster;
2888 }
2889 }
2890 /*
2891 * compute the size of the upl needed to encompass
2892 * the requested write... limit each call to cluster_io
2893 * to the maximum UPL size... cluster_io will clip if
2894 * this exceeds the maximum io_size for the device,
2895 * make sure to account for
2896 * a starting offset that's not page aligned
2897 */
2898 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2899
2900 if (upl_size > max_io_size)
2901 upl_size = max_io_size;
2902
2903 pages_in_upl = upl_size / PAGE_SIZE;
2904 io_size = upl_size - start_offset;
2905
2906 if ((long long)io_size > total_size)
2907 io_size = total_size;
2908
2909 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
2910
2911
2912 /*
2913 * Gather the pages from the buffer cache.
2914 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
2915 * that we intend to modify these pages.
2916 */
2917 kret = ubc_create_upl(vp,
2918 upl_f_offset,
2919 upl_size,
2920 &upl,
2921 &pl,
2922 UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
2923 if (kret != KERN_SUCCESS)
2924 panic("cluster_write_copy: failed to get pagelist");
2925
2926 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
2927 upl, (int)upl_f_offset, start_offset, 0, 0);
2928
2929 if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
2930 int read_size;
2931
2932 /*
2933 * we're starting in the middle of the first page of the upl
2934 * and the page isn't currently valid, so we're going to have
2935 * to read it in first... this is a synchronous operation
2936 */
2937 read_size = PAGE_SIZE;
2938
2939 if ((upl_f_offset + read_size) > oldEOF)
2940 read_size = oldEOF - upl_f_offset;
2941
2942 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
2943 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2944 if (retval) {
2945 /*
2946 * we had an error during the read which causes us to abort
2947 * the current cluster_write request... before we do, we need
2948 * to release the rest of the pages in the upl without modifying
2949 * there state and mark the failed page in error
2950 */
2951 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
2952
2953 if (upl_size > PAGE_SIZE)
2954 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
2955
2956 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2957 upl, 0, 0, retval, 0);
2958 break;
2959 }
2960 }
2961 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
2962 /*
2963 * the last offset we're writing to in this upl does not end on a page
2964 * boundary... if it's not beyond the old EOF, then we'll also need to
2965 * pre-read this page in if it isn't already valid
2966 */
2967 upl_offset = upl_size - PAGE_SIZE;
2968
2969 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
2970 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
2971 int read_size;
2972
2973 read_size = PAGE_SIZE;
2974
2975 if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
2976 read_size = oldEOF - (upl_f_offset + upl_offset);
2977
2978 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
2979 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2980 if (retval) {
2981 /*
2982 * we had an error during the read which causes us to abort
2983 * the current cluster_write request... before we do, we
2984 * need to release the rest of the pages in the upl without
2985 * modifying there state and mark the failed page in error
2986 */
2987 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
2988
2989 if (upl_size > PAGE_SIZE)
2990 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
2991
2992 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2993 upl, 0, 0, retval, 0);
2994 break;
2995 }
2996 }
2997 }
2998 xfer_resid = io_size;
2999 io_offset = start_offset;
3000
3001 while (zero_cnt && xfer_resid) {
3002
3003 if (zero_cnt < (long long)xfer_resid)
3004 bytes_to_zero = zero_cnt;
3005 else
3006 bytes_to_zero = xfer_resid;
3007
3008 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
3009
3010 xfer_resid -= bytes_to_zero;
3011 zero_cnt -= bytes_to_zero;
3012 zero_off += bytes_to_zero;
3013 io_offset += bytes_to_zero;
3014 }
3015 if (xfer_resid && io_resid) {
3016 u_int32_t io_requested;
3017
3018 bytes_to_move = min(io_resid, xfer_resid);
3019 io_requested = bytes_to_move;
3020
3021 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
3022
3023 if (retval) {
3024 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3025
3026 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3027 upl, 0, 0, retval, 0);
3028 } else {
3029 io_resid -= bytes_to_move;
3030 xfer_resid -= bytes_to_move;
3031 io_offset += bytes_to_move;
3032 }
3033 }
3034 while (xfer_resid && zero_cnt1 && retval == 0) {
3035
3036 if (zero_cnt1 < (long long)xfer_resid)
3037 bytes_to_zero = zero_cnt1;
3038 else
3039 bytes_to_zero = xfer_resid;
3040
3041 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
3042
3043 xfer_resid -= bytes_to_zero;
3044 zero_cnt1 -= bytes_to_zero;
3045 zero_off1 += bytes_to_zero;
3046 io_offset += bytes_to_zero;
3047 }
3048 if (retval == 0) {
3049 int cl_index;
3050 int ret_cluster_try_push;
3051
3052 io_size += start_offset;
3053
3054 if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
3055 /*
3056 * if we're extending the file with this write
3057 * we'll zero fill the rest of the page so that
3058 * if the file gets extended again in such a way as to leave a
3059 * hole starting at this EOF, we'll have zero's in the correct spot
3060 */
3061 cluster_zero(upl, io_size, upl_size - io_size, NULL);
3062 }
3063 /*
3064 * release the upl now if we hold one since...
3065 * 1) pages in it may be present in the sparse cluster map
3066 * and may span 2 separate buckets there... if they do and
3067 * we happen to have to flush a bucket to make room and it intersects
3068 * this upl, a deadlock may result on page BUSY
3069 * 2) we're delaying the I/O... from this point forward we're just updating
3070 * the cluster state... no need to hold the pages, so commit them
3071 * 3) IO_SYNC is set...
3072 * because we had to ask for a UPL that provides currenty non-present pages, the
3073 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3074 * upon committing it... this is not the behavior we want since it's possible for
3075 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3076 * we'll pick these pages back up later with the correct behavior specified.
3077 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3078 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3079 * we hold since the flushing context is holding the cluster lock.
3080 */
3081 ubc_upl_commit_range(upl, 0, upl_size,
3082 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
3083 check_cluster:
3084 /*
3085 * calculate the last logical block number
3086 * that this delayed I/O encompassed
3087 */
3088 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
3089
3090 if (flags & IO_SYNC) {
3091 /*
3092 * if the IO_SYNC flag is set than we need to
3093 * bypass any clusters and immediately issue
3094 * the I/O
3095 */
3096 goto issue_io;
3097 }
3098 /*
3099 * take the lock to protect our accesses
3100 * of the writebehind and sparse cluster state
3101 */
3102 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
3103
3104 if (wbp->cl_scmap) {
3105
3106 if ( !(flags & IO_NOCACHE)) {
3107 /*
3108 * we've fallen into the sparse
3109 * cluster method of delaying dirty pages
3110 */
3111 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3112
3113 lck_mtx_unlock(&wbp->cl_lockw);
3114
3115 continue;
3116 }
3117 /*
3118 * must have done cached writes that fell into
3119 * the sparse cluster mechanism... we've switched
3120 * to uncached writes on the file, so go ahead
3121 * and push whatever's in the sparse map
3122 * and switch back to normal clustering
3123 */
3124 wbp->cl_number = 0;
3125
3126 sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
3127 /*
3128 * no clusters of either type present at this point
3129 * so just go directly to start_new_cluster since
3130 * we know we need to delay this I/O since we've
3131 * already released the pages back into the cache
3132 * to avoid the deadlock with sparse_cluster_push
3133 */
3134 goto start_new_cluster;
3135 }
3136 if (first_pass) {
3137 if (write_off == wbp->cl_last_write)
3138 wbp->cl_seq_written += write_cnt;
3139 else
3140 wbp->cl_seq_written = write_cnt;
3141
3142 wbp->cl_last_write = write_off + write_cnt;
3143
3144 first_pass = FALSE;
3145 }
3146 if (wbp->cl_number == 0)
3147 /*
3148 * no clusters currently present
3149 */
3150 goto start_new_cluster;
3151
3152 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
3153 /*
3154 * check each cluster that we currently hold
3155 * try to merge some or all of this write into
3156 * one or more of the existing clusters... if
3157 * any portion of the write remains, start a
3158 * new cluster
3159 */
3160 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
3161 /*
3162 * the current write starts at or after the current cluster
3163 */
3164 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3165 /*
3166 * we have a write that fits entirely
3167 * within the existing cluster limits
3168 */
3169 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
3170 /*
3171 * update our idea of where the cluster ends
3172 */
3173 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3174 break;
3175 }
3176 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3177 /*
3178 * we have a write that starts in the middle of the current cluster
3179 * but extends beyond the cluster's limit... we know this because
3180 * of the previous checks
3181 * we'll extend the current cluster to the max
3182 * and update the b_addr for the current write to reflect that
3183 * the head of it was absorbed into this cluster...
3184 * note that we'll always have a leftover tail in this case since
3185 * full absorbtion would have occurred in the clause above
3186 */
3187 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
3188
3189 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
3190 }
3191 /*
3192 * we come here for the case where the current write starts
3193 * beyond the limit of the existing cluster or we have a leftover
3194 * tail after a partial absorbtion
3195 *
3196 * in either case, we'll check the remaining clusters before
3197 * starting a new one
3198 */
3199 } else {
3200 /*
3201 * the current write starts in front of the cluster we're currently considering
3202 */
3203 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
3204 /*
3205 * we can just merge the new request into
3206 * this cluster and leave it in the cache
3207 * since the resulting cluster is still
3208 * less than the maximum allowable size
3209 */
3210 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
3211
3212 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
3213 /*
3214 * the current write completely
3215 * envelops the existing cluster and since
3216 * each write is limited to at most max_cluster_pgcount pages
3217 * we can just use the start and last blocknos of the write
3218 * to generate the cluster limits
3219 */
3220 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3221 }
3222 break;
3223 }
3224
3225 /*
3226 * if we were to combine this write with the current cluster
3227 * we would exceed the cluster size limit.... so,
3228 * let's see if there's any overlap of the new I/O with
3229 * the cluster we're currently considering... in fact, we'll
3230 * stretch the cluster out to it's full limit and see if we
3231 * get an intersection with the current write
3232 *
3233 */
3234 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
3235 /*
3236 * the current write extends into the proposed cluster
3237 * clip the length of the current write after first combining it's
3238 * tail with the newly shaped cluster
3239 */
3240 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
3241
3242 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
3243 }
3244 /*
3245 * if we get here, there was no way to merge
3246 * any portion of this write with this cluster
3247 * or we could only merge part of it which
3248 * will leave a tail...
3249 * we'll check the remaining clusters before starting a new one
3250 */
3251 }
3252 }
3253 if (cl_index < wbp->cl_number)
3254 /*
3255 * we found an existing cluster(s) that we
3256 * could entirely merge this I/O into
3257 */
3258 goto delay_io;
3259
3260 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
3261 wbp->cl_number == MAX_CLUSTERS &&
3262 wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
3263 uint32_t n;
3264
3265 if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
3266 n = WRITE_BEHIND_SSD;
3267 else
3268 n = WRITE_BEHIND;
3269
3270 while (n--)
3271 cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg);
3272 }
3273 if (wbp->cl_number < MAX_CLUSTERS) {
3274 /*
3275 * we didn't find an existing cluster to
3276 * merge into, but there's room to start
3277 * a new one
3278 */
3279 goto start_new_cluster;
3280 }
3281 /*
3282 * no exisitng cluster to merge with and no
3283 * room to start a new one... we'll try
3284 * pushing one of the existing ones... if none of
3285 * them are able to be pushed, we'll switch
3286 * to the sparse cluster mechanism
3287 * cluster_try_push updates cl_number to the
3288 * number of remaining clusters... and
3289 * returns the number of currently unused clusters
3290 */
3291 ret_cluster_try_push = 0;
3292
3293 /*
3294 * if writes are not deferred, call cluster push immediately
3295 */
3296 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
3297
3298 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg);
3299 }
3300
3301 /*
3302 * execute following regardless of writes being deferred or not
3303 */
3304 if (ret_cluster_try_push == 0) {
3305 /*
3306 * no more room in the normal cluster mechanism
3307 * so let's switch to the more expansive but expensive
3308 * sparse mechanism....
3309 */
3310 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
3311 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3312
3313 lck_mtx_unlock(&wbp->cl_lockw);
3314
3315 continue;
3316 }
3317 start_new_cluster:
3318 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3319 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
3320
3321 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3322
3323 if (flags & IO_NOCACHE)
3324 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3325
3326 if (bflag & CL_PASSIVE)
3327 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3328
3329 wbp->cl_number++;
3330 delay_io:
3331 lck_mtx_unlock(&wbp->cl_lockw);
3332
3333 continue;
3334 issue_io:
3335 /*
3336 * we don't hold the lock at this point
3337 *
3338 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3339 * so that we correctly deal with a change in state of the hardware modify bit...
3340 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3341 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3342 * responsible for generating the correct sized I/O(s)
3343 */
3344 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
3345 }
3346 }
3347 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
3348
3349 return (retval);
3350 }
3351
3352
3353
3354 int
3355 cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
3356 {
3357 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3358 }
3359
3360
3361 int
3362 cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3363 {
3364 int retval = 0;
3365 int flags;
3366 user_ssize_t cur_resid;
3367 u_int32_t io_size;
3368 u_int32_t read_length = 0;
3369 int read_type = IO_COPY;
3370
3371 flags = xflags;
3372
3373 if (vp->v_flag & VNOCACHE_DATA)
3374 flags |= IO_NOCACHE;
3375 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
3376 flags |= IO_RAOFF;
3377
3378 /*
3379 * If we're doing an encrypted IO, then first check to see
3380 * if the IO requested was page aligned. If not, then bail
3381 * out immediately.
3382 */
3383 if (flags & IO_ENCRYPTED) {
3384 if (read_length & PAGE_MASK) {
3385 retval = EINVAL;
3386 return retval;
3387 }
3388 }
3389
3390 /*
3391 * do a read through the cache if one of the following is true....
3392 * NOCACHE is not true
3393 * the uio request doesn't target USERSPACE
3394 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3395 * Reading encrypted data from a CP filesystem should never result in the data touching
3396 * the UBC.
3397 *
3398 * otherwise, find out if we want the direct or contig variant for
3399 * the first vector in the uio request
3400 */
3401 if (((flags & IO_NOCACHE) || (flags & IO_ENCRYPTED)) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
3402
3403 boolean_t check_io_type = TRUE;
3404
3405
3406 if (check_io_type) {
3407 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3408 }
3409 }
3410
3411 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
3412
3413 switch (read_type) {
3414
3415 case IO_COPY:
3416 /*
3417 * make sure the uio_resid isn't too big...
3418 * internally, we want to handle all of the I/O in
3419 * chunk sizes that fit in a 32 bit int
3420 */
3421 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3422 io_size = MAX_IO_REQUEST_SIZE;
3423 else
3424 io_size = (u_int32_t)cur_resid;
3425
3426 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3427 break;
3428
3429 case IO_DIRECT:
3430 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3431 break;
3432
3433 case IO_CONTIG:
3434 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3435 break;
3436
3437 case IO_UNKNOWN:
3438 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3439 break;
3440 }
3441 }
3442 return (retval);
3443 }
3444
3445
3446
3447 static void
3448 cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
3449 {
3450 int range;
3451 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
3452
3453 if ((range = last_pg - start_pg)) {
3454 if (take_reference)
3455 abort_flags |= UPL_ABORT_REFERENCE;
3456
3457 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3458 }
3459 }
3460
3461
3462 static int
3463 cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
3464 {
3465 upl_page_info_t *pl;
3466 upl_t upl;
3467 vm_offset_t upl_offset;
3468 u_int32_t upl_size;
3469 off_t upl_f_offset;
3470 int start_offset;
3471 int start_pg;
3472 int last_pg;
3473 int uio_last = 0;
3474 int pages_in_upl;
3475 off_t max_size;
3476 off_t last_ioread_offset;
3477 off_t last_request_offset;
3478 kern_return_t kret;
3479 int error = 0;
3480 int retval = 0;
3481 u_int32_t size_of_prefetch;
3482 u_int32_t xsize;
3483 u_int32_t io_size;
3484 u_int32_t max_rd_size;
3485 u_int32_t max_io_size;
3486 u_int32_t max_prefetch;
3487 u_int rd_ahead_enabled = 1;
3488 u_int prefetch_enabled = 1;
3489 struct cl_readahead * rap;
3490 struct clios iostate;
3491 struct cl_extent extent;
3492 int bflag;
3493 int take_reference = 1;
3494 int policy = IOPOL_DEFAULT;
3495 boolean_t iolock_inited = FALSE;
3496
3497 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3498 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
3499
3500 if (flags & IO_ENCRYPTED) {
3501 panic ("encrypted blocks will hit UBC!");
3502 }
3503
3504 policy = throttle_get_io_policy(NULL);
3505
3506 if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
3507 take_reference = 0;
3508
3509 if (flags & IO_PASSIVE)
3510 bflag = CL_PASSIVE;
3511 else
3512 bflag = 0;
3513
3514 if (flags & IO_NOCACHE)
3515 bflag |= CL_NOCACHE;
3516
3517 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
3518 max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
3519 max_rd_size = max_prefetch;
3520
3521 last_request_offset = uio->uio_offset + io_req_size;
3522
3523 if (last_request_offset > filesize)
3524 last_request_offset = filesize;
3525
3526 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
3527 rd_ahead_enabled = 0;
3528 rap = NULL;
3529 } else {
3530 if (cluster_is_throttled(vp)) {
3531 /*
3532 * we're in the throttle window, at the very least
3533 * we want to limit the size of the I/O we're about
3534 * to issue
3535 */
3536 rd_ahead_enabled = 0;
3537 prefetch_enabled = 0;
3538
3539 max_rd_size = THROTTLE_MAX_IOSIZE;
3540 }
3541 if ((rap = cluster_get_rap(vp)) == NULL)
3542 rd_ahead_enabled = 0;
3543 else {
3544 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3545 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3546 }
3547 }
3548 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
3549 /*
3550 * determine if we already have a read-ahead in the pipe courtesy of the
3551 * last read systemcall that was issued...
3552 * if so, pick up it's extent to determine where we should start
3553 * with respect to any read-ahead that might be necessary to
3554 * garner all the data needed to complete this read systemcall
3555 */
3556 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
3557
3558 if (last_ioread_offset < uio->uio_offset)
3559 last_ioread_offset = (off_t)0;
3560 else if (last_ioread_offset > last_request_offset)
3561 last_ioread_offset = last_request_offset;
3562 } else
3563 last_ioread_offset = (off_t)0;
3564
3565 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
3566
3567 max_size = filesize - uio->uio_offset;
3568
3569 if ((off_t)(io_req_size) < max_size)
3570 io_size = io_req_size;
3571 else
3572 io_size = max_size;
3573
3574 if (!(flags & IO_NOCACHE)) {
3575
3576 while (io_size) {
3577 u_int32_t io_resid;
3578 u_int32_t io_requested;
3579
3580 /*
3581 * if we keep finding the pages we need already in the cache, then
3582 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3583 * to determine that we have all the pages we need... once we miss in
3584 * the cache and have issued an I/O, than we'll assume that we're likely
3585 * to continue to miss in the cache and it's to our advantage to try and prefetch
3586 */
3587 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3588 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3589 /*
3590 * we've already issued I/O for this request and
3591 * there's still work to do and
3592 * our prefetch stream is running dry, so issue a
3593 * pre-fetch I/O... the I/O latency will overlap
3594 * with the copying of the data
3595 */
3596 if (size_of_prefetch > max_rd_size)
3597 size_of_prefetch = max_rd_size;
3598
3599 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3600
3601 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3602
3603 if (last_ioread_offset > last_request_offset)
3604 last_ioread_offset = last_request_offset;
3605 }
3606 }
3607 /*
3608 * limit the size of the copy we're about to do so that
3609 * we can notice that our I/O pipe is running dry and
3610 * get the next I/O issued before it does go dry
3611 */
3612 if (last_ioread_offset && io_size > (max_io_size / 4))
3613 io_resid = (max_io_size / 4);
3614 else
3615 io_resid = io_size;
3616
3617 io_requested = io_resid;
3618
3619 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
3620
3621 xsize = io_requested - io_resid;
3622
3623 io_size -= xsize;
3624 io_req_size -= xsize;
3625
3626 if (retval || io_resid)
3627 /*
3628 * if we run into a real error or
3629 * a page that is not in the cache
3630 * we need to leave streaming mode
3631 */
3632 break;
3633
3634 if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
3635 /*
3636 * we're already finished the I/O for this read request
3637 * let's see if we should do a read-ahead
3638 */
3639 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3640 }
3641 }
3642 if (retval)
3643 break;
3644 if (io_size == 0) {
3645 if (rap != NULL) {
3646 if (extent.e_addr < rap->cl_lastr)
3647 rap->cl_maxra = 0;
3648 rap->cl_lastr = extent.e_addr;
3649 }
3650 break;
3651 }
3652 /*
3653 * recompute max_size since cluster_copy_ubc_data_internal
3654 * may have advanced uio->uio_offset
3655 */
3656 max_size = filesize - uio->uio_offset;
3657 }
3658
3659 iostate.io_completed = 0;
3660 iostate.io_issued = 0;
3661 iostate.io_error = 0;
3662 iostate.io_wanted = 0;
3663
3664 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
3665 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
3666 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
3667 /*
3668 * we're in the throttle window and at least 1 I/O
3669 * has already been issued by a throttleable thread
3670 * in this window, so return with EAGAIN to indicate
3671 * to the FS issuing the cluster_read call that it
3672 * should now throttle after dropping any locks
3673 */
3674 throttle_info_update_by_mount(vp->v_mount);
3675
3676 retval = EAGAIN;
3677 break;
3678 }
3679 }
3680 }
3681
3682 /*
3683 * compute the size of the upl needed to encompass
3684 * the requested read... limit each call to cluster_io
3685 * to the maximum UPL size... cluster_io will clip if
3686 * this exceeds the maximum io_size for the device,
3687 * make sure to account for
3688 * a starting offset that's not page aligned
3689 */
3690 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3691 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3692
3693 if (io_size > max_rd_size)
3694 io_size = max_rd_size;
3695
3696 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3697
3698 if (flags & IO_NOCACHE) {
3699 if (upl_size > max_io_size)
3700 upl_size = max_io_size;
3701 } else {
3702 if (upl_size > max_io_size / 4)
3703 upl_size = max_io_size / 4;
3704 }
3705 pages_in_upl = upl_size / PAGE_SIZE;
3706
3707 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
3708 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3709
3710 kret = ubc_create_upl(vp,
3711 upl_f_offset,
3712 upl_size,
3713 &upl,
3714 &pl,
3715 UPL_FILE_IO | UPL_SET_LITE);
3716 if (kret != KERN_SUCCESS)
3717 panic("cluster_read_copy: failed to get pagelist");
3718
3719 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
3720 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3721
3722 /*
3723 * scan from the beginning of the upl looking for the first
3724 * non-valid page.... this will become the first page in
3725 * the request we're going to make to 'cluster_io'... if all
3726 * of the pages are valid, we won't call through to 'cluster_io'
3727 */
3728 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
3729 if (!upl_valid_page(pl, start_pg))
3730 break;
3731 }
3732
3733 /*
3734 * scan from the starting invalid page looking for a valid
3735 * page before the end of the upl is reached, if we
3736 * find one, then it will be the last page of the request to
3737 * 'cluster_io'
3738 */
3739 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
3740 if (upl_valid_page(pl, last_pg))
3741 break;
3742 }
3743
3744 if (start_pg < last_pg) {
3745 /*
3746 * we found a range of 'invalid' pages that must be filled
3747 * if the last page in this range is the last page of the file
3748 * we may have to clip the size of it to keep from reading past
3749 * the end of the last physical block associated with the file
3750 */
3751 if (iolock_inited == FALSE) {
3752 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
3753
3754 iolock_inited = TRUE;
3755 }
3756 upl_offset = start_pg * PAGE_SIZE;
3757 io_size = (last_pg - start_pg) * PAGE_SIZE;
3758
3759 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
3760 io_size = filesize - (upl_f_offset + upl_offset);
3761
3762 /*
3763 * issue an asynchronous read to cluster_io
3764 */
3765
3766 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
3767 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
3768
3769 if (rap) {
3770 if (extent.e_addr < rap->cl_maxra) {
3771 /*
3772 * we've just issued a read for a block that should have been
3773 * in the cache courtesy of the read-ahead engine... something
3774 * has gone wrong with the pipeline, so reset the read-ahead
3775 * logic which will cause us to restart from scratch
3776 */
3777 rap->cl_maxra = 0;
3778 }
3779 }
3780 }
3781 if (error == 0) {
3782 /*
3783 * if the read completed successfully, or there was no I/O request
3784 * issued, than copy the data into user land via 'cluster_upl_copy_data'
3785 * we'll first add on any 'valid'
3786 * pages that were present in the upl when we acquired it.
3787 */
3788 u_int val_size;
3789
3790 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
3791 if (!upl_valid_page(pl, uio_last))
3792 break;
3793 }
3794 if (uio_last < pages_in_upl) {
3795 /*
3796 * there were some invalid pages beyond the valid pages
3797 * that we didn't issue an I/O for, just release them
3798 * unchanged now, so that any prefetch/readahed can
3799 * include them
3800 */
3801 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
3802 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
3803 }
3804
3805 /*
3806 * compute size to transfer this round, if io_req_size is
3807 * still non-zero after this attempt, we'll loop around and
3808 * set up for another I/O.
3809 */
3810 val_size = (uio_last * PAGE_SIZE) - start_offset;
3811
3812 if (val_size > max_size)
3813 val_size = max_size;
3814
3815 if (val_size > io_req_size)
3816 val_size = io_req_size;
3817
3818 if ((uio->uio_offset + val_size) > last_ioread_offset)
3819 last_ioread_offset = uio->uio_offset + val_size;
3820
3821 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
3822
3823 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
3824 /*
3825 * if there's still I/O left to do for this request, and...
3826 * we're not in hard throttle mode, and...
3827 * we're close to using up the previous prefetch, then issue a
3828 * new pre-fetch I/O... the I/O latency will overlap
3829 * with the copying of the data
3830 */
3831 if (size_of_prefetch > max_rd_size)
3832 size_of_prefetch = max_rd_size;
3833
3834 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3835
3836 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3837
3838 if (last_ioread_offset > last_request_offset)
3839 last_ioread_offset = last_request_offset;
3840 }
3841
3842 } else if ((uio->uio_offset + val_size) == last_request_offset) {
3843 /*
3844 * this transfer will finish this request, so...
3845 * let's try to read ahead if we're in
3846 * a sequential access pattern and we haven't
3847 * explicitly disabled it
3848 */
3849 if (rd_ahead_enabled)
3850 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3851
3852 if (rap != NULL) {
3853 if (extent.e_addr < rap->cl_lastr)
3854 rap->cl_maxra = 0;
3855 rap->cl_lastr = extent.e_addr;
3856 }
3857 }
3858 if (iostate.io_issued > iostate.io_completed)
3859 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3860
3861 if (iostate.io_error)
3862 error = iostate.io_error;
3863 else {
3864 u_int32_t io_requested;
3865
3866 io_requested = val_size;
3867
3868 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
3869
3870 io_req_size -= (val_size - io_requested);
3871 }
3872 } else {
3873 if (iostate.io_issued > iostate.io_completed)
3874 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3875 }
3876 if (start_pg < last_pg) {
3877 /*
3878 * compute the range of pages that we actually issued an I/O for
3879 * and either commit them as valid if the I/O succeeded
3880 * or abort them if the I/O failed or we're not supposed to
3881 * keep them in the cache
3882 */
3883 io_size = (last_pg - start_pg) * PAGE_SIZE;
3884
3885 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
3886
3887 if (error || (flags & IO_NOCACHE))
3888 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
3889 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3890 else {
3891 int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
3892
3893 if (take_reference)
3894 commit_flags |= UPL_COMMIT_INACTIVATE;
3895 else
3896 commit_flags |= UPL_COMMIT_SPECULATE;
3897
3898 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
3899 }
3900 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
3901 }
3902 if ((last_pg - start_pg) < pages_in_upl) {
3903 /*
3904 * the set of pages that we issued an I/O for did not encompass
3905 * the entire upl... so just release these without modifying
3906 * their state
3907 */
3908 if (error)
3909 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3910 else {
3911
3912 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
3913 upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
3914
3915 /*
3916 * handle any valid pages at the beginning of
3917 * the upl... release these appropriately
3918 */
3919 cluster_read_upl_release(upl, 0, start_pg, take_reference);
3920
3921 /*
3922 * handle any valid pages immediately after the
3923 * pages we issued I/O for... ... release these appropriately
3924 */
3925 cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
3926
3927 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
3928 }
3929 }
3930 if (retval == 0)
3931 retval = error;
3932
3933 if (io_req_size) {
3934 if (cluster_is_throttled(vp)) {
3935 /*
3936 * we're in the throttle window, at the very least
3937 * we want to limit the size of the I/O we're about
3938 * to issue
3939 */
3940 rd_ahead_enabled = 0;
3941 prefetch_enabled = 0;
3942 max_rd_size = THROTTLE_MAX_IOSIZE;
3943 } else {
3944 if (max_rd_size == THROTTLE_MAX_IOSIZE) {
3945 /*
3946 * coming out of throttled state
3947 */
3948 if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
3949 if (rap != NULL)
3950 rd_ahead_enabled = 1;
3951 prefetch_enabled = 1;
3952 }
3953 max_rd_size = max_prefetch;
3954 last_ioread_offset = 0;
3955 }
3956 }
3957 }
3958 }
3959 if (iolock_inited == TRUE) {
3960 if (iostate.io_issued > iostate.io_completed) {
3961 /*
3962 * cluster_io returned an error after it
3963 * had already issued some I/O. we need
3964 * to wait for that I/O to complete before
3965 * we can destroy the iostate mutex...
3966 * 'retval' already contains the early error
3967 * so no need to pick it up from iostate.io_error
3968 */
3969 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3970 }
3971 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
3972 }
3973 if (rap != NULL) {
3974 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
3975 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
3976
3977 lck_mtx_unlock(&rap->cl_lockr);
3978 } else {
3979 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
3980 (int)uio->uio_offset, io_req_size, 0, retval, 0);
3981 }
3982
3983 return (retval);
3984 }
3985
3986
3987 static int
3988 cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
3989 int flags, int (*callback)(buf_t, void *), void *callback_arg)
3990 {
3991 upl_t upl;
3992 upl_page_info_t *pl;
3993 off_t max_io_size;
3994 vm_offset_t upl_offset, vector_upl_offset = 0;
3995 upl_size_t upl_size, vector_upl_size = 0;
3996 vm_size_t upl_needed_size;
3997 unsigned int pages_in_pl;
3998 int upl_flags;
3999 kern_return_t kret;
4000 unsigned int i;
4001 int force_data_sync;
4002 int retval = 0;
4003 int no_zero_fill = 0;
4004 int io_flag = 0;
4005 int misaligned = 0;
4006 struct clios iostate;
4007 user_addr_t iov_base;
4008 u_int32_t io_req_size;
4009 u_int32_t offset_in_file;
4010 u_int32_t offset_in_iovbase;
4011 u_int32_t io_size;
4012 u_int32_t io_min;
4013 u_int32_t xsize;
4014 u_int32_t devblocksize;
4015 u_int32_t mem_alignment_mask;
4016 u_int32_t max_upl_size;
4017 u_int32_t max_rd_size;
4018 u_int32_t max_rd_ahead;
4019 u_int32_t max_vector_size;
4020 boolean_t strict_uncached_IO = FALSE;
4021 boolean_t io_throttled = FALSE;
4022
4023 u_int32_t vector_upl_iosize = 0;
4024 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
4025 off_t v_upl_uio_offset = 0;
4026 int vector_upl_index=0;
4027 upl_t vector_upl = NULL;
4028
4029 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
4030 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4031
4032 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
4033
4034 max_rd_size = max_upl_size;
4035 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4036
4037 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
4038
4039 if (flags & IO_PASSIVE)
4040 io_flag |= CL_PASSIVE;
4041
4042 if (flags & IO_ENCRYPTED) {
4043 io_flag |= CL_RAW_ENCRYPTED;
4044 }
4045
4046 if (flags & IO_NOCACHE) {
4047 io_flag |= CL_NOCACHE;
4048 }
4049
4050 iostate.io_completed = 0;
4051 iostate.io_issued = 0;
4052 iostate.io_error = 0;
4053 iostate.io_wanted = 0;
4054
4055 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4056
4057 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4058 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4059
4060 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4061 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
4062
4063 if (devblocksize == 1) {
4064 /*
4065 * the AFP client advertises a devblocksize of 1
4066 * however, its BLOCKMAP routine maps to physical
4067 * blocks that are PAGE_SIZE in size...
4068 * therefore we can't ask for I/Os that aren't page aligned
4069 * or aren't multiples of PAGE_SIZE in size
4070 * by setting devblocksize to PAGE_SIZE, we re-instate
4071 * the old behavior we had before the mem_alignment_mask
4072 * changes went in...
4073 */
4074 devblocksize = PAGE_SIZE;
4075 }
4076
4077 strict_uncached_IO = ubc_strict_uncached_IO(vp);
4078
4079 next_dread:
4080 io_req_size = *read_length;
4081 iov_base = uio_curriovbase(uio);
4082
4083 max_io_size = filesize - uio->uio_offset;
4084
4085 if ((off_t)io_req_size > max_io_size)
4086 io_req_size = max_io_size;
4087
4088 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
4089 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
4090
4091 if (offset_in_file || offset_in_iovbase) {
4092 /*
4093 * one of the 2 important offsets is misaligned
4094 * so fire an I/O through the cache for this entire vector
4095 */
4096 misaligned = 1;
4097 }
4098 if (iov_base & (devblocksize - 1)) {
4099 /*
4100 * the offset in memory must be on a device block boundary
4101 * so that we can guarantee that we can generate an
4102 * I/O that ends on a page boundary in cluster_io
4103 */
4104 misaligned = 1;
4105 }
4106
4107 /*
4108 * The user must request IO in aligned chunks. If the
4109 * offset into the file is bad, or the userland pointer
4110 * is non-aligned, then we cannot service the encrypted IO request.
4111 */
4112 if ((flags & IO_ENCRYPTED) && (misaligned)) {
4113 retval = EINVAL;
4114 }
4115
4116 /*
4117 * When we get to this point, we know...
4118 * -- the offset into the file is on a devblocksize boundary
4119 */
4120
4121 while (io_req_size && retval == 0) {
4122 u_int32_t io_start;
4123
4124 if (cluster_is_throttled(vp)) {
4125 /*
4126 * we're in the throttle window, at the very least
4127 * we want to limit the size of the I/O we're about
4128 * to issue
4129 */
4130 max_rd_size = THROTTLE_MAX_IOSIZE;
4131 max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
4132 max_vector_size = THROTTLE_MAX_IOSIZE;
4133 } else {
4134 max_rd_size = max_upl_size;
4135 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4136 max_vector_size = MAX_VECTOR_UPL_SIZE;
4137 }
4138 io_start = io_size = io_req_size;
4139
4140 /*
4141 * First look for pages already in the cache
4142 * and move them to user space. But only do this
4143 * check if we are not retrieving encrypted data directly
4144 * from the filesystem; those blocks should never
4145 * be in the UBC.
4146 *
4147 * cluster_copy_ubc_data returns the resid
4148 * in io_size
4149 */
4150 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4151 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
4152 }
4153 /*
4154 * calculate the number of bytes actually copied
4155 * starting size - residual
4156 */
4157 xsize = io_start - io_size;
4158
4159 io_req_size -= xsize;
4160
4161 if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
4162 /*
4163 * We found something in the cache or we have an iov_base that's not
4164 * page-aligned.
4165 *
4166 * Issue all I/O's that have been collected within this Vectored UPL.
4167 */
4168 if(vector_upl_index) {
4169 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4170 reset_vector_run_state();
4171 }
4172
4173 if(xsize)
4174 useVectorUPL = 0;
4175
4176 /*
4177 * After this point, if we are using the Vector UPL path and the base is
4178 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4179 */
4180 }
4181
4182 /*
4183 * check to see if we are finished with this request.
4184 *
4185 * If we satisfied this IO already, then io_req_size will be 0.
4186 * Otherwise, see if the IO was mis-aligned and needs to go through
4187 * the UBC to deal with the 'tail'.
4188 *
4189 */
4190 if (io_req_size == 0 || (misaligned)) {
4191 /*
4192 * see if there's another uio vector to
4193 * process that's of type IO_DIRECT
4194 *
4195 * break out of while loop to get there
4196 */
4197 break;
4198 }
4199 /*
4200 * assume the request ends on a device block boundary
4201 */
4202 io_min = devblocksize;
4203
4204 /*
4205 * we can handle I/O's in multiples of the device block size
4206 * however, if io_size isn't a multiple of devblocksize we
4207 * want to clip it back to the nearest page boundary since
4208 * we are going to have to go through cluster_read_copy to
4209 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4210 * multiple, we avoid asking the drive for the same physical
4211 * blocks twice.. once for the partial page at the end of the
4212 * request and a 2nd time for the page we read into the cache
4213 * (which overlaps the end of the direct read) in order to
4214 * get at the overhang bytes
4215 */
4216 if (io_size & (devblocksize - 1)) {
4217 if (flags & IO_ENCRYPTED) {
4218 /*
4219 * Normally, we'd round down to the previous page boundary to
4220 * let the UBC manage the zero-filling of the file past the EOF.
4221 * But if we're doing encrypted IO, we can't let any of
4222 * the data hit the UBC. This means we have to do the full
4223 * IO to the upper block boundary of the device block that
4224 * contains the EOF. The user will be responsible for not
4225 * interpreting data PAST the EOF in its buffer.
4226 *
4227 * So just bump the IO back up to a multiple of devblocksize
4228 */
4229 io_size = ((io_size + devblocksize) & ~(devblocksize - 1));
4230 io_min = io_size;
4231 }
4232 else {
4233 /*
4234 * Clip the request to the previous page size boundary
4235 * since request does NOT end on a device block boundary
4236 */
4237 io_size &= ~PAGE_MASK;
4238 io_min = PAGE_SIZE;
4239 }
4240
4241 }
4242 if (retval || io_size < io_min) {
4243 /*
4244 * either an error or we only have the tail left to
4245 * complete via the copy path...
4246 * we may have already spun some portion of this request
4247 * off as async requests... we need to wait for the I/O
4248 * to complete before returning
4249 */
4250 goto wait_for_dreads;
4251 }
4252
4253 /*
4254 * Don't re-check the UBC data if we are looking for uncached IO
4255 * or asking for encrypted blocks.
4256 */
4257 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4258
4259 if ((xsize = io_size) > max_rd_size)
4260 xsize = max_rd_size;
4261
4262 io_size = 0;
4263
4264 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
4265
4266 if (io_size == 0) {
4267 /*
4268 * a page must have just come into the cache
4269 * since the first page in this range is no
4270 * longer absent, go back and re-evaluate
4271 */
4272 continue;
4273 }
4274 }
4275 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
4276 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
4277 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
4278 /*
4279 * we're in the throttle window and at least 1 I/O
4280 * has already been issued by a throttleable thread
4281 * in this window, so return with EAGAIN to indicate
4282 * to the FS issuing the cluster_read call that it
4283 * should now throttle after dropping any locks
4284 */
4285 throttle_info_update_by_mount(vp->v_mount);
4286
4287 io_throttled = TRUE;
4288 goto wait_for_dreads;
4289 }
4290 }
4291 }
4292 if (io_size > max_rd_size)
4293 io_size = max_rd_size;
4294
4295 iov_base = uio_curriovbase(uio);
4296
4297 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4298 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
4299
4300 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
4301 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
4302
4303 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
4304 no_zero_fill = 1;
4305 else
4306 no_zero_fill = 0;
4307
4308 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
4309 pages_in_pl = 0;
4310 upl_size = upl_needed_size;
4311 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4312
4313 if (no_zero_fill)
4314 upl_flags |= UPL_NOZEROFILL;
4315 if (force_data_sync)
4316 upl_flags |= UPL_FORCE_DATA_SYNC;
4317
4318 kret = vm_map_create_upl(current_map(),
4319 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4320 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
4321
4322 if (kret != KERN_SUCCESS) {
4323 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4324 (int)upl_offset, upl_size, io_size, kret, 0);
4325 /*
4326 * failed to get pagelist
4327 *
4328 * we may have already spun some portion of this request
4329 * off as async requests... we need to wait for the I/O
4330 * to complete before returning
4331 */
4332 goto wait_for_dreads;
4333 }
4334 pages_in_pl = upl_size / PAGE_SIZE;
4335 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
4336
4337 for (i = 0; i < pages_in_pl; i++) {
4338 if (!upl_page_present(pl, i))
4339 break;
4340 }
4341 if (i == pages_in_pl)
4342 break;
4343
4344 ubc_upl_abort(upl, 0);
4345 }
4346 if (force_data_sync >= 3) {
4347 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4348 (int)upl_offset, upl_size, io_size, kret, 0);
4349
4350 goto wait_for_dreads;
4351 }
4352 /*
4353 * Consider the possibility that upl_size wasn't satisfied.
4354 */
4355 if (upl_size < upl_needed_size) {
4356 if (upl_size && upl_offset == 0)
4357 io_size = upl_size;
4358 else
4359 io_size = 0;
4360 }
4361 if (io_size == 0) {
4362 ubc_upl_abort(upl, 0);
4363 goto wait_for_dreads;
4364 }
4365 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4366 (int)upl_offset, upl_size, io_size, kret, 0);
4367
4368 if(useVectorUPL) {
4369 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
4370 if(end_off)
4371 issueVectorUPL = 1;
4372 /*
4373 * After this point, if we are using a vector UPL, then
4374 * either all the UPL elements end on a page boundary OR
4375 * this UPL is the last element because it does not end
4376 * on a page boundary.
4377 */
4378 }
4379
4380 /*
4381 * request asynchronously so that we can overlap
4382 * the preparation of the next I/O
4383 * if there are already too many outstanding reads
4384 * wait until some have completed before issuing the next read
4385 */
4386 if (iostate.io_issued > iostate.io_completed)
4387 cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
4388
4389 if (iostate.io_error) {
4390 /*
4391 * one of the earlier reads we issued ran into a hard error
4392 * don't issue any more reads, cleanup the UPL
4393 * that was just created but not used, then
4394 * go wait for any other reads to complete before
4395 * returning the error to the caller
4396 */
4397 ubc_upl_abort(upl, 0);
4398
4399 goto wait_for_dreads;
4400 }
4401 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
4402 upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
4403
4404
4405 if(!useVectorUPL) {
4406 if (no_zero_fill)
4407 io_flag &= ~CL_PRESERVE;
4408 else
4409 io_flag |= CL_PRESERVE;
4410
4411 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4412
4413 } else {
4414
4415 if(!vector_upl_index) {
4416 vector_upl = vector_upl_create(upl_offset);
4417 v_upl_uio_offset = uio->uio_offset;
4418 vector_upl_offset = upl_offset;
4419 }
4420
4421 vector_upl_set_subupl(vector_upl,upl, upl_size);
4422 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
4423 vector_upl_index++;
4424 vector_upl_size += upl_size;
4425 vector_upl_iosize += io_size;
4426
4427 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
4428 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4429 reset_vector_run_state();
4430 }
4431 }
4432 /*
4433 * update the uio structure
4434 */
4435 if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
4436 uio_update(uio, (user_size_t)max_io_size);
4437 }
4438 else {
4439 uio_update(uio, (user_size_t)io_size);
4440 }
4441 /*
4442 * Under normal circumstances, the io_size should not be
4443 * bigger than the io_req_size, but we may have had to round up
4444 * to the end of the page in the encrypted IO case. In that case only,
4445 * ensure that we only decrement io_req_size to 0.
4446 */
4447 if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) {
4448 io_req_size = 0;
4449 }
4450 else {
4451 io_req_size -= io_size;
4452 }
4453
4454 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
4455 upl, (int)uio->uio_offset, io_req_size, retval, 0);
4456
4457 } /* end while */
4458
4459 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
4460
4461 retval = cluster_io_type(uio, read_type, read_length, 0);
4462
4463 if (retval == 0 && *read_type == IO_DIRECT) {
4464
4465 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4466 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4467
4468 goto next_dread;
4469 }
4470 }
4471
4472 wait_for_dreads:
4473
4474 if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
4475 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4476 reset_vector_run_state();
4477 }
4478 /*
4479 * make sure all async reads that are part of this stream
4480 * have completed before we return
4481 */
4482 if (iostate.io_issued > iostate.io_completed)
4483 cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
4484
4485 if (iostate.io_error)
4486 retval = iostate.io_error;
4487
4488 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4489
4490 if (io_throttled == TRUE && retval == 0)
4491 retval = EAGAIN;
4492
4493 if (io_req_size && retval == 0) {
4494 /*
4495 * we couldn't handle the tail of this request in DIRECT mode
4496 * so fire it through the copy path
4497 */
4498 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
4499
4500 *read_type = IO_UNKNOWN;
4501 }
4502 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
4503 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
4504
4505 return (retval);
4506 }
4507
4508
4509 static int
4510 cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4511 int (*callback)(buf_t, void *), void *callback_arg, int flags)
4512 {
4513 upl_page_info_t *pl;
4514 upl_t upl[MAX_VECTS];
4515 vm_offset_t upl_offset;
4516 addr64_t dst_paddr = 0;
4517 user_addr_t iov_base;
4518 off_t max_size;
4519 upl_size_t upl_size;
4520 vm_size_t upl_needed_size;
4521 mach_msg_type_number_t pages_in_pl;
4522 int upl_flags;
4523 kern_return_t kret;
4524 struct clios iostate;
4525 int error= 0;
4526 int cur_upl = 0;
4527 int num_upl = 0;
4528 int n;
4529 u_int32_t xsize;
4530 u_int32_t io_size;
4531 u_int32_t devblocksize;
4532 u_int32_t mem_alignment_mask;
4533 u_int32_t tail_size = 0;
4534 int bflag;
4535
4536 if (flags & IO_PASSIVE)
4537 bflag = CL_PASSIVE;
4538 else
4539 bflag = 0;
4540
4541 if (flags & IO_NOCACHE)
4542 bflag |= CL_NOCACHE;
4543
4544 /*
4545 * When we enter this routine, we know
4546 * -- the read_length will not exceed the current iov_len
4547 * -- the target address is physically contiguous for read_length
4548 */
4549 cluster_syncup(vp, filesize, callback, callback_arg);
4550
4551 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4552 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4553
4554 iostate.io_completed = 0;
4555 iostate.io_issued = 0;
4556 iostate.io_error = 0;
4557 iostate.io_wanted = 0;
4558
4559 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4560
4561 next_cread:
4562 io_size = *read_length;
4563
4564 max_size = filesize - uio->uio_offset;
4565
4566 if (io_size > max_size)
4567 io_size = max_size;
4568
4569 iov_base = uio_curriovbase(uio);
4570
4571 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4572 upl_needed_size = upl_offset + io_size;
4573
4574 pages_in_pl = 0;
4575 upl_size = upl_needed_size;
4576 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4577
4578
4579 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4580 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4581
4582 kret = vm_map_get_upl(current_map(),
4583 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4584 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
4585
4586 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4587 (int)upl_offset, upl_size, io_size, kret, 0);
4588
4589 if (kret != KERN_SUCCESS) {
4590 /*
4591 * failed to get pagelist
4592 */
4593 error = EINVAL;
4594 goto wait_for_creads;
4595 }
4596 num_upl++;
4597
4598 if (upl_size < upl_needed_size) {
4599 /*
4600 * The upl_size wasn't satisfied.
4601 */
4602 error = EINVAL;
4603 goto wait_for_creads;
4604 }
4605 pl = ubc_upl_pageinfo(upl[cur_upl]);
4606
4607 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
4608
4609 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
4610 u_int32_t head_size;
4611
4612 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
4613
4614 if (head_size > io_size)
4615 head_size = io_size;
4616
4617 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
4618
4619 if (error)
4620 goto wait_for_creads;
4621
4622 upl_offset += head_size;
4623 dst_paddr += head_size;
4624 io_size -= head_size;
4625
4626 iov_base += head_size;
4627 }
4628 if ((u_int32_t)iov_base & mem_alignment_mask) {
4629 /*
4630 * request doesn't set up on a memory boundary
4631 * the underlying DMA engine can handle...
4632 * return an error instead of going through
4633 * the slow copy path since the intent of this
4634 * path is direct I/O to device memory
4635 */
4636 error = EINVAL;
4637 goto wait_for_creads;
4638 }
4639
4640 tail_size = io_size & (devblocksize - 1);
4641
4642 io_size -= tail_size;
4643
4644 while (io_size && error == 0) {
4645
4646 if (io_size > MAX_IO_CONTIG_SIZE)
4647 xsize = MAX_IO_CONTIG_SIZE;
4648 else
4649 xsize = io_size;
4650 /*
4651 * request asynchronously so that we can overlap
4652 * the preparation of the next I/O... we'll do
4653 * the commit after all the I/O has completed
4654 * since its all issued against the same UPL
4655 * if there are already too many outstanding reads
4656 * wait until some have completed before issuing the next
4657 */
4658 if (iostate.io_issued > iostate.io_completed)
4659 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
4660
4661 if (iostate.io_error) {
4662 /*
4663 * one of the earlier reads we issued ran into a hard error
4664 * don't issue any more reads...
4665 * go wait for any other reads to complete before
4666 * returning the error to the caller
4667 */
4668 goto wait_for_creads;
4669 }
4670 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
4671 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
4672 (buf_t)NULL, &iostate, callback, callback_arg);
4673 /*
4674 * The cluster_io read was issued successfully,
4675 * update the uio structure
4676 */
4677 if (error == 0) {
4678 uio_update(uio, (user_size_t)xsize);
4679
4680 dst_paddr += xsize;
4681 upl_offset += xsize;
4682 io_size -= xsize;
4683 }
4684 }
4685 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
4686
4687 error = cluster_io_type(uio, read_type, read_length, 0);
4688
4689 if (error == 0 && *read_type == IO_CONTIG) {
4690 cur_upl++;
4691 goto next_cread;
4692 }
4693 } else
4694 *read_type = IO_UNKNOWN;
4695
4696 wait_for_creads:
4697 /*
4698 * make sure all async reads that are part of this stream
4699 * have completed before we proceed
4700 */
4701 if (iostate.io_issued > iostate.io_completed)
4702 cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
4703
4704 if (iostate.io_error)
4705 error = iostate.io_error;
4706
4707 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4708
4709 if (error == 0 && tail_size)
4710 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
4711
4712 for (n = 0; n < num_upl; n++)
4713 /*
4714 * just release our hold on each physically contiguous
4715 * region without changing any state
4716 */
4717 ubc_upl_abort(upl[n], 0);
4718
4719 return (error);
4720 }
4721
4722
4723 static int
4724 cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
4725 {
4726 user_size_t iov_len;
4727 user_addr_t iov_base = 0;
4728 upl_t upl;
4729 upl_size_t upl_size;
4730 int upl_flags;
4731 int retval = 0;
4732
4733 /*
4734 * skip over any emtpy vectors
4735 */
4736 uio_update(uio, (user_size_t)0);
4737
4738 iov_len = uio_curriovlen(uio);
4739
4740 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
4741
4742 if (iov_len) {
4743 iov_base = uio_curriovbase(uio);
4744 /*
4745 * make sure the size of the vector isn't too big...
4746 * internally, we want to handle all of the I/O in
4747 * chunk sizes that fit in a 32 bit int
4748 */
4749 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
4750 upl_size = MAX_IO_REQUEST_SIZE;
4751 else
4752 upl_size = (u_int32_t)iov_len;
4753
4754 upl_flags = UPL_QUERY_OBJECT_TYPE;
4755
4756 if ((vm_map_get_upl(current_map(),
4757 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4758 &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
4759 /*
4760 * the user app must have passed in an invalid address
4761 */
4762 retval = EFAULT;
4763 }
4764 if (upl_size == 0)
4765 retval = EFAULT;
4766
4767 *io_length = upl_size;
4768
4769 if (upl_flags & UPL_PHYS_CONTIG)
4770 *io_type = IO_CONTIG;
4771 else if (iov_len >= min_length)
4772 *io_type = IO_DIRECT;
4773 else
4774 *io_type = IO_COPY;
4775 } else {
4776 /*
4777 * nothing left to do for this uio
4778 */
4779 *io_length = 0;
4780 *io_type = IO_UNKNOWN;
4781 }
4782 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
4783
4784 return (retval);
4785 }
4786
4787
4788 /*
4789 * generate advisory I/O's in the largest chunks possible
4790 * the completed pages will be released into the VM cache
4791 */
4792 int
4793 advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
4794 {
4795 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
4796 }
4797
4798 int
4799 advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
4800 {
4801 upl_page_info_t *pl;
4802 upl_t upl;
4803 vm_offset_t upl_offset;
4804 int upl_size;
4805 off_t upl_f_offset;
4806 int start_offset;
4807 int start_pg;
4808 int last_pg;
4809 int pages_in_upl;
4810 off_t max_size;
4811 int io_size;
4812 kern_return_t kret;
4813 int retval = 0;
4814 int issued_io;
4815 int skip_range;
4816 uint32_t max_io_size;
4817
4818
4819 if ( !UBCINFOEXISTS(vp))
4820 return(EINVAL);
4821
4822 if (resid < 0)
4823 return(EINVAL);
4824
4825 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
4826
4827 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
4828 if (max_io_size > speculative_prefetch_max_iosize)
4829 max_io_size = speculative_prefetch_max_iosize;
4830 }
4831
4832 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
4833 (int)f_offset, resid, (int)filesize, 0, 0);
4834
4835 while (resid && f_offset < filesize && retval == 0) {
4836 /*
4837 * compute the size of the upl needed to encompass
4838 * the requested read... limit each call to cluster_io
4839 * to the maximum UPL size... cluster_io will clip if
4840 * this exceeds the maximum io_size for the device,
4841 * make sure to account for
4842 * a starting offset that's not page aligned
4843 */
4844 start_offset = (int)(f_offset & PAGE_MASK_64);
4845 upl_f_offset = f_offset - (off_t)start_offset;
4846 max_size = filesize - f_offset;
4847
4848 if (resid < max_size)
4849 io_size = resid;
4850 else
4851 io_size = max_size;
4852
4853 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
4854 if ((uint32_t)upl_size > max_io_size)
4855 upl_size = max_io_size;
4856
4857 skip_range = 0;
4858 /*
4859 * return the number of contiguously present pages in the cache
4860 * starting at upl_f_offset within the file
4861 */
4862 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
4863
4864 if (skip_range) {
4865 /*
4866 * skip over pages already present in the cache
4867 */
4868 io_size = skip_range - start_offset;
4869
4870 f_offset += io_size;
4871 resid -= io_size;
4872
4873 if (skip_range == upl_size)
4874 continue;
4875 /*
4876 * have to issue some real I/O
4877 * at this point, we know it's starting on a page boundary
4878 * because we've skipped over at least the first page in the request
4879 */
4880 start_offset = 0;
4881 upl_f_offset += skip_range;
4882 upl_size -= skip_range;
4883 }
4884 pages_in_upl = upl_size / PAGE_SIZE;
4885
4886 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
4887 upl, (int)upl_f_offset, upl_size, start_offset, 0);
4888
4889 kret = ubc_create_upl(vp,
4890 upl_f_offset,
4891 upl_size,
4892 &upl,
4893 &pl,
4894 UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
4895 if (kret != KERN_SUCCESS)
4896 return(retval);
4897 issued_io = 0;
4898
4899 /*
4900 * before we start marching forward, we must make sure we end on
4901 * a present page, otherwise we will be working with a freed
4902 * upl
4903 */
4904 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
4905 if (upl_page_present(pl, last_pg))
4906 break;
4907 }
4908 pages_in_upl = last_pg + 1;
4909
4910
4911 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
4912 upl, (int)upl_f_offset, upl_size, start_offset, 0);
4913
4914
4915 for (last_pg = 0; last_pg < pages_in_upl; ) {
4916 /*
4917 * scan from the beginning of the upl looking for the first
4918 * page that is present.... this will become the first page in
4919 * the request we're going to make to 'cluster_io'... if all
4920 * of the pages are absent, we won't call through to 'cluster_io'
4921 */
4922 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
4923 if (upl_page_present(pl, start_pg))
4924 break;
4925 }
4926
4927 /*
4928 * scan from the starting present page looking for an absent
4929 * page before the end of the upl is reached, if we
4930 * find one, then it will terminate the range of pages being
4931 * presented to 'cluster_io'
4932 */
4933 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4934 if (!upl_page_present(pl, last_pg))
4935 break;
4936 }
4937
4938 if (last_pg > start_pg) {
4939 /*
4940 * we found a range of pages that must be filled
4941 * if the last page in this range is the last page of the file
4942 * we may have to clip the size of it to keep from reading past
4943 * the end of the last physical block associated with the file
4944 */
4945 upl_offset = start_pg * PAGE_SIZE;
4946 io_size = (last_pg - start_pg) * PAGE_SIZE;
4947
4948 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
4949 io_size = filesize - (upl_f_offset + upl_offset);
4950
4951 /*
4952 * issue an asynchronous read to cluster_io
4953 */
4954 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
4955 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
4956
4957 issued_io = 1;
4958 }
4959 }
4960 if (issued_io == 0)
4961 ubc_upl_abort(upl, 0);
4962
4963 io_size = upl_size - start_offset;
4964
4965 if (io_size > resid)
4966 io_size = resid;
4967 f_offset += io_size;
4968 resid -= io_size;
4969 }
4970
4971 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
4972 (int)f_offset, resid, retval, 0, 0);
4973
4974 return(retval);
4975 }
4976
4977
4978 int
4979 cluster_push(vnode_t vp, int flags)
4980 {
4981 return cluster_push_ext(vp, flags, NULL, NULL);
4982 }
4983
4984
4985 int
4986 cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
4987 {
4988 int retval;
4989 int my_sparse_wait = 0;
4990 struct cl_writebehind *wbp;
4991
4992 if ( !UBCINFOEXISTS(vp)) {
4993 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0);
4994 return (0);
4995 }
4996 /* return if deferred write is set */
4997 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
4998 return (0);
4999 }
5000 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
5001 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0);
5002 return (0);
5003 }
5004 if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
5005 lck_mtx_unlock(&wbp->cl_lockw);
5006
5007 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0);
5008 return(0);
5009 }
5010 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
5011 wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
5012
5013 /*
5014 * if we have an fsync in progress, we don't want to allow any additional
5015 * sync/fsync/close(s) to occur until it finishes.
5016 * note that its possible for writes to continue to occur to this file
5017 * while we're waiting and also once the fsync starts to clean if we're
5018 * in the sparse map case
5019 */
5020 while (wbp->cl_sparse_wait) {
5021 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5022
5023 msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5024
5025 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5026 }
5027 if (flags & IO_SYNC) {
5028 my_sparse_wait = 1;
5029 wbp->cl_sparse_wait = 1;
5030
5031 /*
5032 * this is an fsync (or equivalent)... we must wait for any existing async
5033 * cleaning operations to complete before we evaulate the current state
5034 * and finish cleaning... this insures that all writes issued before this
5035 * fsync actually get cleaned to the disk before this fsync returns
5036 */
5037 while (wbp->cl_sparse_pushes) {
5038 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5039
5040 msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5041
5042 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5043 }
5044 }
5045 if (wbp->cl_scmap) {
5046 void *scmap;
5047
5048 if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
5049
5050 scmap = wbp->cl_scmap;
5051 wbp->cl_scmap = NULL;
5052
5053 wbp->cl_sparse_pushes++;
5054
5055 lck_mtx_unlock(&wbp->cl_lockw);
5056
5057 sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5058
5059 lck_mtx_lock(&wbp->cl_lockw);
5060
5061 wbp->cl_sparse_pushes--;
5062
5063 if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
5064 wakeup((caddr_t)&wbp->cl_sparse_pushes);
5065 } else {
5066 sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5067 }
5068 retval = 1;
5069 } else {
5070 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5071 }
5072 lck_mtx_unlock(&wbp->cl_lockw);
5073
5074 if (flags & IO_SYNC)
5075 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
5076
5077 if (my_sparse_wait) {
5078 /*
5079 * I'm the owner of the serialization token
5080 * clear it and wakeup anyone that is waiting
5081 * for me to finish
5082 */
5083 lck_mtx_lock(&wbp->cl_lockw);
5084
5085 wbp->cl_sparse_wait = 0;
5086 wakeup((caddr_t)&wbp->cl_sparse_wait);
5087
5088 lck_mtx_unlock(&wbp->cl_lockw);
5089 }
5090 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
5091 wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
5092
5093 return (retval);
5094 }
5095
5096
5097 __private_extern__ void
5098 cluster_release(struct ubc_info *ubc)
5099 {
5100 struct cl_writebehind *wbp;
5101 struct cl_readahead *rap;
5102
5103 if ((wbp = ubc->cl_wbehind)) {
5104
5105 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
5106
5107 if (wbp->cl_scmap)
5108 vfs_drt_control(&(wbp->cl_scmap), 0);
5109 } else {
5110 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
5111 }
5112
5113 rap = ubc->cl_rahead;
5114
5115 if (wbp != NULL) {
5116 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
5117 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
5118 }
5119 if ((rap = ubc->cl_rahead)) {
5120 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
5121 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
5122 }
5123 ubc->cl_rahead = NULL;
5124 ubc->cl_wbehind = NULL;
5125
5126 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
5127 }
5128
5129
5130 static int
5131 cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5132 {
5133 int cl_index;
5134 int cl_index1;
5135 int min_index;
5136 int cl_len;
5137 int cl_pushed = 0;
5138 struct cl_wextent l_clusters[MAX_CLUSTERS];
5139 u_int max_cluster_pgcount;
5140
5141
5142 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
5143 /*
5144 * the write behind context exists and has
5145 * already been locked...
5146 */
5147 if (wbp->cl_number == 0)
5148 /*
5149 * no clusters to push
5150 * return number of empty slots
5151 */
5152 return (MAX_CLUSTERS);
5153
5154 /*
5155 * make a local 'sorted' copy of the clusters
5156 * and clear wbp->cl_number so that new clusters can
5157 * be developed
5158 */
5159 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5160 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
5161 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
5162 continue;
5163 if (min_index == -1)
5164 min_index = cl_index1;
5165 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
5166 min_index = cl_index1;
5167 }
5168 if (min_index == -1)
5169 break;
5170
5171 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
5172 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
5173 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
5174
5175 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
5176 }
5177 wbp->cl_number = 0;
5178
5179 cl_len = cl_index;
5180
5181 if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
5182 int i;
5183
5184 /*
5185 * determine if we appear to be writing the file sequentially
5186 * if not, by returning without having pushed any clusters
5187 * we will cause this vnode to be pushed into the sparse cluster mechanism
5188 * used for managing more random I/O patterns
5189 *
5190 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5191 * that's why we're in try_push with PUSH_DELAY...
5192 *
5193 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5194 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5195 * so we can just make a simple pass through, up to, but not including the last one...
5196 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5197 * are sequential
5198 *
5199 * we let the last one be partial as long as it was adjacent to the previous one...
5200 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5201 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5202 */
5203 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
5204 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
5205 goto dont_try;
5206 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
5207 goto dont_try;
5208 }
5209 }
5210 for (cl_index = 0; cl_index < cl_len; cl_index++) {
5211 int flags;
5212 struct cl_extent cl;
5213
5214 flags = io_flags & (IO_PASSIVE|IO_CLOSE);
5215
5216 /*
5217 * try to push each cluster in turn...
5218 */
5219 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
5220 flags |= IO_NOCACHE;
5221
5222 if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
5223 flags |= IO_PASSIVE;
5224
5225 if (push_flag & PUSH_SYNC)
5226 flags |= IO_SYNC;
5227
5228 cl.b_addr = l_clusters[cl_index].b_addr;
5229 cl.e_addr = l_clusters[cl_index].e_addr;
5230
5231 cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
5232
5233 l_clusters[cl_index].b_addr = 0;
5234 l_clusters[cl_index].e_addr = 0;
5235
5236 cl_pushed++;
5237
5238 if ( !(push_flag & PUSH_ALL) )
5239 break;
5240 }
5241 dont_try:
5242 if (cl_len > cl_pushed) {
5243 /*
5244 * we didn't push all of the clusters, so
5245 * lets try to merge them back in to the vnode
5246 */
5247 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
5248 /*
5249 * we picked up some new clusters while we were trying to
5250 * push the old ones... this can happen because I've dropped
5251 * the vnode lock... the sum of the
5252 * leftovers plus the new cluster count exceeds our ability
5253 * to represent them, so switch to the sparse cluster mechanism
5254 *
5255 * collect the active public clusters...
5256 */
5257 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5258
5259 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
5260 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5261 continue;
5262 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5263 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5264 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5265
5266 cl_index1++;
5267 }
5268 /*
5269 * update the cluster count
5270 */
5271 wbp->cl_number = cl_index1;
5272
5273 /*
5274 * and collect the original clusters that were moved into the
5275 * local storage for sorting purposes
5276 */
5277 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5278
5279 } else {
5280 /*
5281 * we've got room to merge the leftovers back in
5282 * just append them starting at the next 'hole'
5283 * represented by wbp->cl_number
5284 */
5285 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
5286 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5287 continue;
5288
5289 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5290 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5291 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5292
5293 cl_index1++;
5294 }
5295 /*
5296 * update the cluster count
5297 */
5298 wbp->cl_number = cl_index1;
5299 }
5300 }
5301 return (MAX_CLUSTERS - wbp->cl_number);
5302 }
5303
5304
5305
5306 static int
5307 cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5308 {
5309 upl_page_info_t *pl;
5310 upl_t upl;
5311 vm_offset_t upl_offset;
5312 int upl_size;
5313 off_t upl_f_offset;
5314 int pages_in_upl;
5315 int start_pg;
5316 int last_pg;
5317 int io_size;
5318 int io_flags;
5319 int upl_flags;
5320 int bflag;
5321 int size;
5322 int error = 0;
5323 int retval;
5324 kern_return_t kret;
5325
5326 if (flags & IO_PASSIVE)
5327 bflag = CL_PASSIVE;
5328 else
5329 bflag = 0;
5330
5331 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
5332 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
5333
5334 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
5335 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
5336
5337 return (0);
5338 }
5339 upl_size = pages_in_upl * PAGE_SIZE;
5340 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5341
5342 if (upl_f_offset + upl_size >= EOF) {
5343
5344 if (upl_f_offset >= EOF) {
5345 /*
5346 * must have truncated the file and missed
5347 * clearing a dangling cluster (i.e. it's completely
5348 * beyond the new EOF
5349 */
5350 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
5351
5352 return(0);
5353 }
5354 size = EOF - upl_f_offset;
5355
5356 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5357 pages_in_upl = upl_size / PAGE_SIZE;
5358 } else
5359 size = upl_size;
5360
5361 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
5362
5363 /*
5364 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5365 *
5366 * - only pages that are currently dirty are returned... these are the ones we need to clean
5367 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5368 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5369 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5370 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5371 *
5372 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5373 */
5374
5375 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
5376 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
5377 else
5378 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
5379
5380 kret = ubc_create_upl(vp,
5381 upl_f_offset,
5382 upl_size,
5383 &upl,
5384 &pl,
5385 upl_flags);
5386 if (kret != KERN_SUCCESS)
5387 panic("cluster_push: failed to get pagelist");
5388
5389 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
5390
5391 /*
5392 * since we only asked for the dirty pages back
5393 * it's possible that we may only get a few or even none, so...
5394 * before we start marching forward, we must make sure we know
5395 * where the last present page is in the UPL, otherwise we could
5396 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5397 * employed by commit_range and abort_range.
5398 */
5399 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5400 if (upl_page_present(pl, last_pg))
5401 break;
5402 }
5403 pages_in_upl = last_pg + 1;
5404
5405 if (pages_in_upl == 0) {
5406 ubc_upl_abort(upl, 0);
5407
5408 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
5409 return(0);
5410 }
5411
5412 for (last_pg = 0; last_pg < pages_in_upl; ) {
5413 /*
5414 * find the next dirty page in the UPL
5415 * this will become the first page in the
5416 * next I/O to generate
5417 */
5418 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5419 if (upl_dirty_page(pl, start_pg))
5420 break;
5421 if (upl_page_present(pl, start_pg))
5422 /*
5423 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5424 * just release these unchanged since we're not going
5425 * to steal them or change their state
5426 */
5427 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
5428 }
5429 if (start_pg >= pages_in_upl)
5430 /*
5431 * done... no more dirty pages to push
5432 */
5433 break;
5434 if (start_pg > last_pg)
5435 /*
5436 * skipped over some non-dirty pages
5437 */
5438 size -= ((start_pg - last_pg) * PAGE_SIZE);
5439
5440 /*
5441 * find a range of dirty pages to write
5442 */
5443 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5444 if (!upl_dirty_page(pl, last_pg))
5445 break;
5446 }
5447 upl_offset = start_pg * PAGE_SIZE;
5448
5449 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
5450
5451 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
5452
5453 if ( !(flags & IO_SYNC))
5454 io_flags |= CL_ASYNC;
5455
5456 if (flags & IO_CLOSE)
5457 io_flags |= CL_CLOSE;
5458
5459 if (flags & IO_NOCACHE)
5460 io_flags |= CL_NOCACHE;
5461
5462 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5463 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5464
5465 if (error == 0 && retval)
5466 error = retval;
5467
5468 size -= io_size;
5469 }
5470 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
5471
5472 return(error);
5473 }
5474
5475
5476 /*
5477 * sparse_cluster_switch is called with the write behind lock held
5478 */
5479 static void
5480 sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5481 {
5482 int cl_index;
5483
5484 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0);
5485
5486 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5487 int flags;
5488 struct cl_extent cl;
5489
5490 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
5491
5492 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
5493 if (flags & UPL_POP_DIRTY) {
5494 cl.e_addr = cl.b_addr + 1;
5495
5496 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
5497 }
5498 }
5499 }
5500 }
5501 wbp->cl_number = 0;
5502
5503 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0);
5504 }
5505
5506
5507 /*
5508 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5509 * still associated with the write-behind context... however, if the scmap has been disassociated
5510 * from the write-behind context (the cluster_push case), the wb lock is not held
5511 */
5512 static void
5513 sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5514 {
5515 struct cl_extent cl;
5516 off_t offset;
5517 u_int length;
5518
5519 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0);
5520
5521 if (push_flag & PUSH_ALL)
5522 vfs_drt_control(scmap, 1);
5523
5524 for (;;) {
5525 if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
5526 break;
5527
5528 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
5529 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
5530
5531 cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
5532
5533 if ( !(push_flag & PUSH_ALL) )
5534 break;
5535 }
5536 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
5537 }
5538
5539
5540 /*
5541 * sparse_cluster_add is called with the write behind lock held
5542 */
5543 static void
5544 sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5545 {
5546 u_int new_dirty;
5547 u_int length;
5548 off_t offset;
5549
5550 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
5551
5552 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5553 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
5554
5555 while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
5556 /*
5557 * no room left in the map
5558 * only a partial update was done
5559 * push out some pages and try again
5560 */
5561 sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
5562
5563 offset += (new_dirty * PAGE_SIZE_64);
5564 length -= (new_dirty * PAGE_SIZE);
5565 }
5566 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
5567 }
5568
5569
5570 static int
5571 cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5572 {
5573 upl_page_info_t *pl;
5574 upl_t upl;
5575 addr64_t ubc_paddr;
5576 kern_return_t kret;
5577 int error = 0;
5578 int did_read = 0;
5579 int abort_flags;
5580 int upl_flags;
5581 int bflag;
5582
5583 if (flags & IO_PASSIVE)
5584 bflag = CL_PASSIVE;
5585 else
5586 bflag = 0;
5587
5588 if (flags & IO_NOCACHE)
5589 bflag |= CL_NOCACHE;
5590
5591 upl_flags = UPL_SET_LITE;
5592
5593 if ( !(flags & CL_READ) ) {
5594 /*
5595 * "write" operation: let the UPL subsystem know
5596 * that we intend to modify the buffer cache pages
5597 * we're gathering.
5598 */
5599 upl_flags |= UPL_WILL_MODIFY;
5600 } else {
5601 /*
5602 * indicate that there is no need to pull the
5603 * mapping for this page... we're only going
5604 * to read from it, not modify it.
5605 */
5606 upl_flags |= UPL_FILE_IO;
5607 }
5608 kret = ubc_create_upl(vp,
5609 uio->uio_offset & ~PAGE_MASK_64,
5610 PAGE_SIZE,
5611 &upl,
5612 &pl,
5613 upl_flags);
5614
5615 if (kret != KERN_SUCCESS)
5616 return(EINVAL);
5617
5618 if (!upl_valid_page(pl, 0)) {
5619 /*
5620 * issue a synchronous read to cluster_io
5621 */
5622 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5623 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5624 if (error) {
5625 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
5626
5627 return(error);
5628 }
5629 did_read = 1;
5630 }
5631 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
5632
5633 /*
5634 * NOTE: There is no prototype for the following in BSD. It, and the definitions
5635 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
5636 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
5637 * way to do so without exporting them to kexts as well.
5638 */
5639 if (flags & CL_READ)
5640 // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
5641 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
5642 else
5643 // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
5644 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
5645
5646 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
5647 /*
5648 * issue a synchronous write to cluster_io
5649 */
5650 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5651 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5652 }
5653 if (error == 0)
5654 uio_update(uio, (user_size_t)xsize);
5655
5656 if (did_read)
5657 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
5658 else
5659 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
5660
5661 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
5662
5663 return (error);
5664 }
5665
5666
5667
5668 int
5669 cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
5670 {
5671 int pg_offset;
5672 int pg_index;
5673 int csize;
5674 int segflg;
5675 int retval = 0;
5676 int xsize;
5677 upl_page_info_t *pl;
5678
5679 xsize = *io_resid;
5680
5681 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
5682 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
5683
5684 segflg = uio->uio_segflg;
5685
5686 switch(segflg) {
5687
5688 case UIO_USERSPACE32:
5689 case UIO_USERISPACE32:
5690 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5691 break;
5692
5693 case UIO_USERSPACE:
5694 case UIO_USERISPACE:
5695 uio->uio_segflg = UIO_PHYS_USERSPACE;
5696 break;
5697
5698 case UIO_USERSPACE64:
5699 case UIO_USERISPACE64:
5700 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5701 break;
5702
5703 case UIO_SYSSPACE:
5704 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5705 break;
5706
5707 }
5708 pl = ubc_upl_pageinfo(upl);
5709
5710 pg_index = upl_offset / PAGE_SIZE;
5711 pg_offset = upl_offset & PAGE_MASK;
5712 csize = min(PAGE_SIZE - pg_offset, xsize);
5713
5714 while (xsize && retval == 0) {
5715 addr64_t paddr;
5716
5717 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset;
5718
5719 retval = uiomove64(paddr, csize, uio);
5720
5721 pg_index += 1;
5722 pg_offset = 0;
5723 xsize -= csize;
5724 csize = min(PAGE_SIZE, xsize);
5725 }
5726 *io_resid = xsize;
5727
5728 uio->uio_segflg = segflg;
5729
5730 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5731 (int)uio->uio_offset, xsize, retval, segflg, 0);
5732
5733 return (retval);
5734 }
5735
5736
5737 int
5738 cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
5739 {
5740
5741 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
5742 }
5743
5744
5745 static int
5746 cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
5747 {
5748 int segflg;
5749 int io_size;
5750 int xsize;
5751 int start_offset;
5752 int retval = 0;
5753 memory_object_control_t control;
5754
5755 io_size = *io_resid;
5756
5757 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
5758 (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
5759
5760 control = ubc_getobject(vp, UBC_FLAGS_NONE);
5761
5762 if (control == MEMORY_OBJECT_CONTROL_NULL) {
5763 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5764 (int)uio->uio_offset, io_size, retval, 3, 0);
5765
5766 return(0);
5767 }
5768 segflg = uio->uio_segflg;
5769
5770 switch(segflg) {
5771
5772 case UIO_USERSPACE32:
5773 case UIO_USERISPACE32:
5774 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5775 break;
5776
5777 case UIO_USERSPACE64:
5778 case UIO_USERISPACE64:
5779 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5780 break;
5781
5782 case UIO_USERSPACE:
5783 case UIO_USERISPACE:
5784 uio->uio_segflg = UIO_PHYS_USERSPACE;
5785 break;
5786
5787 case UIO_SYSSPACE:
5788 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5789 break;
5790 }
5791
5792 if ( (io_size = *io_resid) ) {
5793 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
5794 xsize = uio_resid(uio);
5795
5796 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
5797 start_offset, io_size, mark_dirty, take_reference);
5798 xsize -= uio_resid(uio);
5799 io_size -= xsize;
5800 }
5801 uio->uio_segflg = segflg;
5802 *io_resid = io_size;
5803
5804 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5805 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
5806
5807 return(retval);
5808 }
5809
5810
5811 int
5812 is_file_clean(vnode_t vp, off_t filesize)
5813 {
5814 off_t f_offset;
5815 int flags;
5816 int total_dirty = 0;
5817
5818 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
5819 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
5820 if (flags & UPL_POP_DIRTY) {
5821 total_dirty++;
5822 }
5823 }
5824 }
5825 if (total_dirty)
5826 return(EINVAL);
5827
5828 return (0);
5829 }
5830
5831
5832
5833 /*
5834 * Dirty region tracking/clustering mechanism.
5835 *
5836 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
5837 * dirty regions within a larger space (file). It is primarily intended to
5838 * support clustering in large files with many dirty areas.
5839 *
5840 * The implementation assumes that the dirty regions are pages.
5841 *
5842 * To represent dirty pages within the file, we store bit vectors in a
5843 * variable-size circular hash.
5844 */
5845
5846 /*
5847 * Bitvector size. This determines the number of pages we group in a
5848 * single hashtable entry. Each hashtable entry is aligned to this
5849 * size within the file.
5850 */
5851 #define DRT_BITVECTOR_PAGES 256
5852
5853 /*
5854 * File offset handling.
5855 *
5856 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
5857 * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
5858 */
5859 #define DRT_ADDRESS_MASK (~((1 << 20) - 1))
5860 #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
5861
5862 /*
5863 * Hashtable address field handling.
5864 *
5865 * The low-order bits of the hashtable address are used to conserve
5866 * space.
5867 *
5868 * DRT_HASH_COUNT_MASK must be large enough to store the range
5869 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
5870 * to indicate that the bucket is actually unoccupied.
5871 */
5872 #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
5873 #define DRT_HASH_SET_ADDRESS(scm, i, a) \
5874 do { \
5875 (scm)->scm_hashtable[(i)].dhe_control = \
5876 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
5877 } while (0)
5878 #define DRT_HASH_COUNT_MASK 0x1ff
5879 #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
5880 #define DRT_HASH_SET_COUNT(scm, i, c) \
5881 do { \
5882 (scm)->scm_hashtable[(i)].dhe_control = \
5883 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
5884 } while (0)
5885 #define DRT_HASH_CLEAR(scm, i) \
5886 do { \
5887 (scm)->scm_hashtable[(i)].dhe_control = 0; \
5888 } while (0)
5889 #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
5890 #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
5891 #define DRT_HASH_COPY(oscm, oi, scm, i) \
5892 do { \
5893 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
5894 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
5895 } while(0);
5896
5897
5898 /*
5899 * Hash table moduli.
5900 *
5901 * Since the hashtable entry's size is dependent on the size of
5902 * the bitvector, and since the hashtable size is constrained to
5903 * both being prime and fitting within the desired allocation
5904 * size, these values need to be manually determined.
5905 *
5906 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
5907 *
5908 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
5909 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
5910 */
5911 #define DRT_HASH_SMALL_MODULUS 23
5912 #define DRT_HASH_LARGE_MODULUS 401
5913
5914 /*
5915 * Physical memory required before the large hash modulus is permitted.
5916 *
5917 * On small memory systems, the large hash modulus can lead to phsyical
5918 * memory starvation, so we avoid using it there.
5919 */
5920 #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
5921
5922 #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
5923 #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
5924
5925 /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
5926
5927 /*
5928 * Hashtable bitvector handling.
5929 *
5930 * Bitvector fields are 32 bits long.
5931 */
5932
5933 #define DRT_HASH_SET_BIT(scm, i, bit) \
5934 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
5935
5936 #define DRT_HASH_CLEAR_BIT(scm, i, bit) \
5937 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
5938
5939 #define DRT_HASH_TEST_BIT(scm, i, bit) \
5940 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
5941
5942 #define DRT_BITVECTOR_CLEAR(scm, i) \
5943 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5944
5945 #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
5946 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
5947 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
5948 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5949
5950
5951
5952 /*
5953 * Hashtable entry.
5954 */
5955 struct vfs_drt_hashentry {
5956 u_int64_t dhe_control;
5957 u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
5958 };
5959
5960 /*
5961 * Dirty Region Tracking structure.
5962 *
5963 * The hashtable is allocated entirely inside the DRT structure.
5964 *
5965 * The hash is a simple circular prime modulus arrangement, the structure
5966 * is resized from small to large if it overflows.
5967 */
5968
5969 struct vfs_drt_clustermap {
5970 u_int32_t scm_magic; /* sanity/detection */
5971 #define DRT_SCM_MAGIC 0x12020003
5972 u_int32_t scm_modulus; /* current ring size */
5973 u_int32_t scm_buckets; /* number of occupied buckets */
5974 u_int32_t scm_lastclean; /* last entry we cleaned */
5975 u_int32_t scm_iskips; /* number of slot skips */
5976
5977 struct vfs_drt_hashentry scm_hashtable[0];
5978 };
5979
5980
5981 #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
5982 #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
5983
5984 /*
5985 * Debugging codes and arguments.
5986 */
5987 #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
5988 #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
5989 #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
5990 #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
5991 #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
5992 * dirty */
5993 /* 0, setcount */
5994 /* 1 (clean, no map) */
5995 /* 2 (map alloc fail) */
5996 /* 3, resid (partial) */
5997 #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
5998 #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
5999 * lastclean, iskips */
6000
6001
6002 static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
6003 static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
6004 static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
6005 u_int64_t offset, int *indexp);
6006 static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
6007 u_int64_t offset,
6008 int *indexp,
6009 int recursed);
6010 static kern_return_t vfs_drt_do_mark_pages(
6011 void **cmapp,
6012 u_int64_t offset,
6013 u_int length,
6014 u_int *setcountp,
6015 int dirty);
6016 static void vfs_drt_trace(
6017 struct vfs_drt_clustermap *cmap,
6018 int code,
6019 int arg1,
6020 int arg2,
6021 int arg3,
6022 int arg4);
6023
6024
6025 /*
6026 * Allocate and initialise a sparse cluster map.
6027 *
6028 * Will allocate a new map, resize or compact an existing map.
6029 *
6030 * XXX we should probably have at least one intermediate map size,
6031 * as the 1:16 ratio seems a bit drastic.
6032 */
6033 static kern_return_t
6034 vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
6035 {
6036 struct vfs_drt_clustermap *cmap, *ocmap;
6037 kern_return_t kret;
6038 u_int64_t offset;
6039 u_int32_t i;
6040 int nsize, active_buckets, index, copycount;
6041
6042 ocmap = NULL;
6043 if (cmapp != NULL)
6044 ocmap = *cmapp;
6045
6046 /*
6047 * Decide on the size of the new map.
6048 */
6049 if (ocmap == NULL) {
6050 nsize = DRT_HASH_SMALL_MODULUS;
6051 } else {
6052 /* count the number of active buckets in the old map */
6053 active_buckets = 0;
6054 for (i = 0; i < ocmap->scm_modulus; i++) {
6055 if (!DRT_HASH_VACANT(ocmap, i) &&
6056 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
6057 active_buckets++;
6058 }
6059 /*
6060 * If we're currently using the small allocation, check to
6061 * see whether we should grow to the large one.
6062 */
6063 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
6064 /*
6065 * If the ring is nearly full and we are allowed to
6066 * use the large modulus, upgrade.
6067 */
6068 if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
6069 (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
6070 nsize = DRT_HASH_LARGE_MODULUS;
6071 } else {
6072 nsize = DRT_HASH_SMALL_MODULUS;
6073 }
6074 } else {
6075 /* already using the large modulus */
6076 nsize = DRT_HASH_LARGE_MODULUS;
6077 /*
6078 * If the ring is completely full, there's
6079 * nothing useful for us to do. Behave as
6080 * though we had compacted into the new
6081 * array and return.
6082 */
6083 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
6084 return(KERN_SUCCESS);
6085 }
6086 }
6087
6088 /*
6089 * Allocate and initialise the new map.
6090 */
6091
6092 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
6093 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6094 if (kret != KERN_SUCCESS)
6095 return(kret);
6096 cmap->scm_magic = DRT_SCM_MAGIC;
6097 cmap->scm_modulus = nsize;
6098 cmap->scm_buckets = 0;
6099 cmap->scm_lastclean = 0;
6100 cmap->scm_iskips = 0;
6101 for (i = 0; i < cmap->scm_modulus; i++) {
6102 DRT_HASH_CLEAR(cmap, i);
6103 DRT_HASH_VACATE(cmap, i);
6104 DRT_BITVECTOR_CLEAR(cmap, i);
6105 }
6106
6107 /*
6108 * If there's an old map, re-hash entries from it into the new map.
6109 */
6110 copycount = 0;
6111 if (ocmap != NULL) {
6112 for (i = 0; i < ocmap->scm_modulus; i++) {
6113 /* skip empty buckets */
6114 if (DRT_HASH_VACANT(ocmap, i) ||
6115 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
6116 continue;
6117 /* get new index */
6118 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
6119 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
6120 if (kret != KERN_SUCCESS) {
6121 /* XXX need to bail out gracefully here */
6122 panic("vfs_drt: new cluster map mysteriously too small");
6123 index = 0;
6124 }
6125 /* copy */
6126 DRT_HASH_COPY(ocmap, i, cmap, index);
6127 copycount++;
6128 }
6129 }
6130
6131 /* log what we've done */
6132 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
6133
6134 /*
6135 * It's important to ensure that *cmapp always points to
6136 * a valid map, so we must overwrite it before freeing
6137 * the old map.
6138 */
6139 *cmapp = cmap;
6140 if (ocmap != NULL) {
6141 /* emit stats into trace buffer */
6142 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
6143 ocmap->scm_modulus,
6144 ocmap->scm_buckets,
6145 ocmap->scm_lastclean,
6146 ocmap->scm_iskips);
6147
6148 vfs_drt_free_map(ocmap);
6149 }
6150 return(KERN_SUCCESS);
6151 }
6152
6153
6154 /*
6155 * Free a sparse cluster map.
6156 */
6157 static kern_return_t
6158 vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
6159 {
6160 kmem_free(kernel_map, (vm_offset_t)cmap,
6161 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6162 return(KERN_SUCCESS);
6163 }
6164
6165
6166 /*
6167 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6168 */
6169 static kern_return_t
6170 vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
6171 {
6172 int index;
6173 u_int32_t i;
6174
6175 offset = DRT_ALIGN_ADDRESS(offset);
6176 index = DRT_HASH(cmap, offset);
6177
6178 /* traverse the hashtable */
6179 for (i = 0; i < cmap->scm_modulus; i++) {
6180
6181 /*
6182 * If the slot is vacant, we can stop.
6183 */
6184 if (DRT_HASH_VACANT(cmap, index))
6185 break;
6186
6187 /*
6188 * If the address matches our offset, we have success.
6189 */
6190 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
6191 *indexp = index;
6192 return(KERN_SUCCESS);
6193 }
6194
6195 /*
6196 * Move to the next slot, try again.
6197 */
6198 index = DRT_HASH_NEXT(cmap, index);
6199 }
6200 /*
6201 * It's not there.
6202 */
6203 return(KERN_FAILURE);
6204 }
6205
6206 /*
6207 * Find the hashtable slot for the supplied offset. If we haven't allocated
6208 * one yet, allocate one and populate the address field. Note that it will
6209 * not have a nonzero page count and thus will still technically be free, so
6210 * in the case where we are called to clean pages, the slot will remain free.
6211 */
6212 static kern_return_t
6213 vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
6214 {
6215 struct vfs_drt_clustermap *cmap;
6216 kern_return_t kret;
6217 u_int32_t index;
6218 u_int32_t i;
6219
6220 cmap = *cmapp;
6221
6222 /* look for an existing entry */
6223 kret = vfs_drt_search_index(cmap, offset, indexp);
6224 if (kret == KERN_SUCCESS)
6225 return(kret);
6226
6227 /* need to allocate an entry */
6228 offset = DRT_ALIGN_ADDRESS(offset);
6229 index = DRT_HASH(cmap, offset);
6230
6231 /* scan from the index forwards looking for a vacant slot */
6232 for (i = 0; i < cmap->scm_modulus; i++) {
6233 /* slot vacant? */
6234 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
6235 cmap->scm_buckets++;
6236 if (index < cmap->scm_lastclean)
6237 cmap->scm_lastclean = index;
6238 DRT_HASH_SET_ADDRESS(cmap, index, offset);
6239 DRT_HASH_SET_COUNT(cmap, index, 0);
6240 DRT_BITVECTOR_CLEAR(cmap, index);
6241 *indexp = index;
6242 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
6243 return(KERN_SUCCESS);
6244 }
6245 cmap->scm_iskips += i;
6246 index = DRT_HASH_NEXT(cmap, index);
6247 }
6248
6249 /*
6250 * We haven't found a vacant slot, so the map is full. If we're not
6251 * already recursed, try reallocating/compacting it.
6252 */
6253 if (recursed)
6254 return(KERN_FAILURE);
6255 kret = vfs_drt_alloc_map(cmapp);
6256 if (kret == KERN_SUCCESS) {
6257 /* now try to insert again */
6258 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
6259 }
6260 return(kret);
6261 }
6262
6263 /*
6264 * Implementation of set dirty/clean.
6265 *
6266 * In the 'clean' case, not finding a map is OK.
6267 */
6268 static kern_return_t
6269 vfs_drt_do_mark_pages(
6270 void **private,
6271 u_int64_t offset,
6272 u_int length,
6273 u_int *setcountp,
6274 int dirty)
6275 {
6276 struct vfs_drt_clustermap *cmap, **cmapp;
6277 kern_return_t kret;
6278 int i, index, pgoff, pgcount, setcount, ecount;
6279
6280 cmapp = (struct vfs_drt_clustermap **)private;
6281 cmap = *cmapp;
6282
6283 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
6284
6285 if (setcountp != NULL)
6286 *setcountp = 0;
6287
6288 /* allocate a cluster map if we don't already have one */
6289 if (cmap == NULL) {
6290 /* no cluster map, nothing to clean */
6291 if (!dirty) {
6292 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
6293 return(KERN_SUCCESS);
6294 }
6295 kret = vfs_drt_alloc_map(cmapp);
6296 if (kret != KERN_SUCCESS) {
6297 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
6298 return(kret);
6299 }
6300 }
6301 setcount = 0;
6302
6303 /*
6304 * Iterate over the length of the region.
6305 */
6306 while (length > 0) {
6307 /*
6308 * Get the hashtable index for this offset.
6309 *
6310 * XXX this will add blank entries if we are clearing a range
6311 * that hasn't been dirtied.
6312 */
6313 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
6314 cmap = *cmapp; /* may have changed! */
6315 /* this may be a partial-success return */
6316 if (kret != KERN_SUCCESS) {
6317 if (setcountp != NULL)
6318 *setcountp = setcount;
6319 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
6320
6321 return(kret);
6322 }
6323
6324 /*
6325 * Work out how many pages we're modifying in this
6326 * hashtable entry.
6327 */
6328 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
6329 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
6330
6331 /*
6332 * Iterate over pages, dirty/clearing as we go.
6333 */
6334 ecount = DRT_HASH_GET_COUNT(cmap, index);
6335 for (i = 0; i < pgcount; i++) {
6336 if (dirty) {
6337 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6338 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
6339 ecount++;
6340 setcount++;
6341 }
6342 } else {
6343 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6344 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
6345 ecount--;
6346 setcount++;
6347 }
6348 }
6349 }
6350 DRT_HASH_SET_COUNT(cmap, index, ecount);
6351
6352 offset += pgcount * PAGE_SIZE;
6353 length -= pgcount * PAGE_SIZE;
6354 }
6355 if (setcountp != NULL)
6356 *setcountp = setcount;
6357
6358 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
6359
6360 return(KERN_SUCCESS);
6361 }
6362
6363 /*
6364 * Mark a set of pages as dirty/clean.
6365 *
6366 * This is a public interface.
6367 *
6368 * cmapp
6369 * Pointer to storage suitable for holding a pointer. Note that
6370 * this must either be NULL or a value set by this function.
6371 *
6372 * size
6373 * Current file size in bytes.
6374 *
6375 * offset
6376 * Offset of the first page to be marked as dirty, in bytes. Must be
6377 * page-aligned.
6378 *
6379 * length
6380 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6381 *
6382 * setcountp
6383 * Number of pages newly marked dirty by this call (optional).
6384 *
6385 * Returns KERN_SUCCESS if all the pages were successfully marked.
6386 */
6387 static kern_return_t
6388 vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
6389 {
6390 /* XXX size unused, drop from interface */
6391 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
6392 }
6393
6394 #if 0
6395 static kern_return_t
6396 vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
6397 {
6398 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
6399 }
6400 #endif
6401
6402 /*
6403 * Get a cluster of dirty pages.
6404 *
6405 * This is a public interface.
6406 *
6407 * cmapp
6408 * Pointer to storage managed by drt_mark_pages. Note that this must
6409 * be NULL or a value set by drt_mark_pages.
6410 *
6411 * offsetp
6412 * Returns the byte offset into the file of the first page in the cluster.
6413 *
6414 * lengthp
6415 * Returns the length in bytes of the cluster of dirty pages.
6416 *
6417 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6418 * are no dirty pages meeting the minmum size criteria. Private storage will
6419 * be released if there are no more dirty pages left in the map
6420 *
6421 */
6422 static kern_return_t
6423 vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
6424 {
6425 struct vfs_drt_clustermap *cmap;
6426 u_int64_t offset;
6427 u_int length;
6428 u_int32_t j;
6429 int index, i, fs, ls;
6430
6431 /* sanity */
6432 if ((cmapp == NULL) || (*cmapp == NULL))
6433 return(KERN_FAILURE);
6434 cmap = *cmapp;
6435
6436 /* walk the hashtable */
6437 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
6438 index = DRT_HASH(cmap, offset);
6439
6440 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
6441 continue;
6442
6443 /* scan the bitfield for a string of bits */
6444 fs = -1;
6445
6446 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6447 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
6448 fs = i;
6449 break;
6450 }
6451 }
6452 if (fs == -1) {
6453 /* didn't find any bits set */
6454 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6455 }
6456 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
6457 if (!DRT_HASH_TEST_BIT(cmap, index, i))
6458 break;
6459 }
6460
6461 /* compute offset and length, mark pages clean */
6462 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
6463 length = ls * PAGE_SIZE;
6464 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
6465 cmap->scm_lastclean = index;
6466
6467 /* return successful */
6468 *offsetp = (off_t)offset;
6469 *lengthp = length;
6470
6471 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
6472 return(KERN_SUCCESS);
6473 }
6474 /*
6475 * We didn't find anything... hashtable is empty
6476 * emit stats into trace buffer and
6477 * then free it
6478 */
6479 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6480 cmap->scm_modulus,
6481 cmap->scm_buckets,
6482 cmap->scm_lastclean,
6483 cmap->scm_iskips);
6484
6485 vfs_drt_free_map(cmap);
6486 *cmapp = NULL;
6487
6488 return(KERN_FAILURE);
6489 }
6490
6491
6492 static kern_return_t
6493 vfs_drt_control(void **cmapp, int op_type)
6494 {
6495 struct vfs_drt_clustermap *cmap;
6496
6497 /* sanity */
6498 if ((cmapp == NULL) || (*cmapp == NULL))
6499 return(KERN_FAILURE);
6500 cmap = *cmapp;
6501
6502 switch (op_type) {
6503 case 0:
6504 /* emit stats into trace buffer */
6505 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6506 cmap->scm_modulus,
6507 cmap->scm_buckets,
6508 cmap->scm_lastclean,
6509 cmap->scm_iskips);
6510
6511 vfs_drt_free_map(cmap);
6512 *cmapp = NULL;
6513 break;
6514
6515 case 1:
6516 cmap->scm_lastclean = 0;
6517 break;
6518 }
6519 return(KERN_SUCCESS);
6520 }
6521
6522
6523
6524 /*
6525 * Emit a summary of the state of the clustermap into the trace buffer
6526 * along with some caller-provided data.
6527 */
6528 #if KDEBUG
6529 static void
6530 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
6531 {
6532 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
6533 }
6534 #else
6535 static void
6536 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
6537 __unused int arg1, __unused int arg2, __unused int arg3,
6538 __unused int arg4)
6539 {
6540 }
6541 #endif
6542
6543 #if 0
6544 /*
6545 * Perform basic sanity check on the hash entry summary count
6546 * vs. the actual bits set in the entry.
6547 */
6548 static void
6549 vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
6550 {
6551 int index, i;
6552 int bits_on;
6553
6554 for (index = 0; index < cmap->scm_modulus; index++) {
6555 if (DRT_HASH_VACANT(cmap, index))
6556 continue;
6557
6558 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6559 if (DRT_HASH_TEST_BIT(cmap, index, i))
6560 bits_on++;
6561 }
6562 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
6563 panic("bits_on = %d, index = %d\n", bits_on, index);
6564 }
6565 }
6566 #endif