]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
91447636 A |
65 | #include <sys/proc_internal.h> |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
1c79356b A |
69 | #include <sys/trace.h> |
70 | #include <sys/malloc.h> | |
55e303ae A |
71 | #include <sys/time.h> |
72 | #include <sys/kernel.h> | |
1c79356b | 73 | #include <sys/resourcevar.h> |
316670eb | 74 | #include <miscfs/specfs/specdev.h> |
91447636 | 75 | #include <sys/uio_internal.h> |
1c79356b | 76 | #include <libkern/libkern.h> |
55e303ae | 77 | #include <machine/machine_routines.h> |
1c79356b | 78 | |
91447636 | 79 | #include <sys/ubc_internal.h> |
2d21ac55 | 80 | #include <vm/vnode_pager.h> |
1c79356b | 81 | |
55e303ae A |
82 | #include <mach/mach_types.h> |
83 | #include <mach/memory_object_types.h> | |
91447636 A |
84 | #include <mach/vm_map.h> |
85 | #include <mach/upl.h> | |
6d2010ae | 86 | #include <kern/task.h> |
91447636 A |
87 | |
88 | #include <vm/vm_kern.h> | |
89 | #include <vm/vm_map.h> | |
90 | #include <vm/vm_pageout.h> | |
55e303ae | 91 | |
1c79356b | 92 | #include <sys/kdebug.h> |
b0d623f7 A |
93 | #include <libkern/OSAtomic.h> |
94 | ||
6d2010ae A |
95 | #include <sys/sdt.h> |
96 | ||
b0d623f7 A |
97 | #if 0 |
98 | #undef KERNEL_DEBUG | |
99 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
100 | #endif | |
101 | ||
1c79356b | 102 | |
2d21ac55 | 103 | #define CL_READ 0x01 |
b0d623f7 | 104 | #define CL_WRITE 0x02 |
cf7d32b8 A |
105 | #define CL_ASYNC 0x04 |
106 | #define CL_COMMIT 0x08 | |
2d21ac55 A |
107 | #define CL_PAGEOUT 0x10 |
108 | #define CL_AGE 0x20 | |
109 | #define CL_NOZERO 0x40 | |
110 | #define CL_PAGEIN 0x80 | |
111 | #define CL_DEV_MEMORY 0x100 | |
112 | #define CL_PRESERVE 0x200 | |
113 | #define CL_THROTTLE 0x400 | |
114 | #define CL_KEEPCACHED 0x800 | |
115 | #define CL_DIRECT_IO 0x1000 | |
116 | #define CL_PASSIVE 0x2000 | |
b0d623f7 | 117 | #define CL_IOSTREAMING 0x4000 |
6d2010ae A |
118 | #define CL_CLOSE 0x8000 |
119 | #define CL_ENCRYPTED 0x10000 | |
316670eb A |
120 | #define CL_RAW_ENCRYPTED 0x20000 |
121 | #define CL_NOCACHE 0x40000 | |
b0d623f7 A |
122 | |
123 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
124 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE | |
b4c24cb9 | 125 | |
b0d623f7 A |
126 | extern upl_t vector_upl_create(vm_offset_t); |
127 | extern boolean_t vector_upl_is_valid(upl_t); | |
128 | extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t); | |
129 | extern void vector_upl_set_pagelist(upl_t); | |
130 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
d7e50217 | 131 | |
b4c24cb9 | 132 | struct clios { |
6d2010ae | 133 | lck_mtx_t io_mtxp; |
d7e50217 A |
134 | u_int io_completed; /* amount of io that has currently completed */ |
135 | u_int io_issued; /* amount of io that was successfully issued */ | |
136 | int io_error; /* error code of first error encountered */ | |
137 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
b4c24cb9 A |
138 | }; |
139 | ||
91447636 A |
140 | static lck_grp_t *cl_mtx_grp; |
141 | static lck_attr_t *cl_mtx_attr; | |
142 | static lck_grp_attr_t *cl_mtx_grp_attr; | |
060df5ea | 143 | static lck_mtx_t *cl_transaction_mtxp; |
91447636 A |
144 | |
145 | ||
2d21ac55 A |
146 | #define IO_UNKNOWN 0 |
147 | #define IO_DIRECT 1 | |
148 | #define IO_CONTIG 2 | |
149 | #define IO_COPY 3 | |
150 | ||
151 | #define PUSH_DELAY 0x01 | |
152 | #define PUSH_ALL 0x02 | |
153 | #define PUSH_SYNC 0x04 | |
154 | ||
155 | ||
156 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
157 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
158 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
159 | ||
160 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
161 | ||
91447636 | 162 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 A |
163 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); |
164 | static int cluster_iodone(buf_t bp, void *callback_arg); | |
39236c6e A |
165 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); |
166 | static int cluster_is_throttled(vnode_t vp); | |
91447636 | 167 | |
6d2010ae A |
168 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); |
169 | ||
2d21ac55 A |
170 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg); |
171 | ||
b0d623f7 | 172 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); |
2d21ac55 A |
173 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); |
174 | ||
175 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, | |
176 | int (*)(buf_t, void *), void *callback_arg); | |
177 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
178 | int flags, int (*)(buf_t, void *), void *callback_arg); | |
179 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
180 | int (*)(buf_t, void *), void *callback_arg, int flags); | |
1c79356b | 181 | |
2d21ac55 A |
182 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, |
183 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); | |
184 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
185 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); | |
186 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, | |
187 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 188 | |
2d21ac55 | 189 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); |
91447636 | 190 | |
2d21ac55 A |
191 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
192 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 193 | |
2d21ac55 | 194 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg); |
55e303ae | 195 | |
6d2010ae | 196 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
197 | |
198 | static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg); | |
6d2010ae | 199 | static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg); |
b0d623f7 | 200 | static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
201 | |
202 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
55e303ae A |
203 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); |
204 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
205 | ||
9bccf70c | 206 | |
316670eb A |
207 | /* |
208 | * For throttled IO to check whether | |
209 | * a block is cached by the boot cache | |
210 | * and thus it can avoid delaying the IO. | |
211 | * | |
212 | * bootcache_contains_block is initially | |
213 | * NULL. The BootCache will set it while | |
214 | * the cache is active and clear it when | |
215 | * the cache is jettisoned. | |
216 | * | |
217 | * Returns 0 if the block is not | |
218 | * contained in the cache, 1 if it is | |
219 | * contained. | |
220 | * | |
221 | * The function pointer remains valid | |
222 | * after the cache has been evicted even | |
223 | * if bootcache_contains_block has been | |
224 | * cleared. | |
225 | * | |
226 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs | |
227 | */ | |
228 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; | |
229 | ||
230 | ||
2d21ac55 A |
231 | /* |
232 | * limit the internal I/O size so that we | |
233 | * can represent it in a 32 bit int | |
234 | */ | |
b0d623f7 A |
235 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) |
236 | #define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE) | |
237 | #define MAX_VECTS 16 | |
2d21ac55 A |
238 | #define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE) |
239 | ||
6d2010ae A |
240 | #define WRITE_THROTTLE 6 |
241 | #define WRITE_THROTTLE_SSD 2 | |
242 | #define WRITE_BEHIND 1 | |
243 | #define WRITE_BEHIND_SSD 1 | |
316670eb | 244 | |
6d2010ae | 245 | #define PREFETCH 3 |
316670eb A |
246 | #define PREFETCH_SSD 1 |
247 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE * 3); | |
248 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use for a specluative read-ahead on SSDs*/ | |
316670eb | 249 | |
6d2010ae | 250 | |
316670eb | 251 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) |
b0d623f7 | 252 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) |
316670eb | 253 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH))) |
cf7d32b8 | 254 | |
6d2010ae A |
255 | int ignore_is_ssd = 0; |
256 | int speculative_reads_disabled = 0; | |
2d21ac55 | 257 | |
1c79356b A |
258 | /* |
259 | * throttle the number of async writes that | |
260 | * can be outstanding on a single vnode | |
261 | * before we issue a synchronous write | |
262 | */ | |
39236c6e | 263 | #define THROTTLE_MAXCNT 0 |
316670eb | 264 | |
39236c6e | 265 | uint32_t throttle_max_iosize = (128 * 1024); |
316670eb | 266 | |
39236c6e A |
267 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) |
268 | ||
269 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); | |
316670eb | 270 | |
55e303ae | 271 | |
91447636 A |
272 | void |
273 | cluster_init(void) { | |
2d21ac55 | 274 | /* |
91447636 A |
275 | * allocate lock group attribute and group |
276 | */ | |
2d21ac55 | 277 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); |
91447636 A |
278 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); |
279 | ||
280 | /* | |
281 | * allocate the lock attribute | |
282 | */ | |
283 | cl_mtx_attr = lck_attr_alloc_init(); | |
91447636 | 284 | |
060df5ea A |
285 | cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); |
286 | ||
287 | if (cl_transaction_mtxp == NULL) | |
288 | panic("cluster_init: failed to allocate cl_transaction_mtxp"); | |
91447636 A |
289 | } |
290 | ||
291 | ||
cf7d32b8 A |
292 | uint32_t |
293 | cluster_max_io_size(mount_t mp, int type) | |
294 | { | |
b0d623f7 A |
295 | uint32_t max_io_size; |
296 | uint32_t segcnt; | |
297 | uint32_t maxcnt; | |
298 | ||
299 | switch(type) { | |
300 | ||
301 | case CL_READ: | |
302 | segcnt = mp->mnt_segreadcnt; | |
303 | maxcnt = mp->mnt_maxreadcnt; | |
304 | break; | |
305 | case CL_WRITE: | |
306 | segcnt = mp->mnt_segwritecnt; | |
307 | maxcnt = mp->mnt_maxwritecnt; | |
308 | break; | |
309 | default: | |
310 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
311 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
312 | break; | |
313 | } | |
cf7d32b8 A |
314 | if (segcnt > MAX_UPL_SIZE) { |
315 | /* | |
316 | * don't allow a size beyond the max UPL size we can create | |
317 | */ | |
318 | segcnt = MAX_UPL_SIZE; | |
319 | } | |
320 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
321 | ||
322 | if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) { | |
323 | /* | |
324 | * don't allow a size smaller than the old fixed limit | |
325 | */ | |
326 | max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE); | |
327 | } else { | |
328 | /* | |
329 | * make sure the size specified is a multiple of PAGE_SIZE | |
330 | */ | |
331 | max_io_size &= ~PAGE_MASK; | |
332 | } | |
333 | return (max_io_size); | |
334 | } | |
335 | ||
336 | ||
337 | ||
91447636 A |
338 | |
339 | #define CLW_ALLOCATE 0x01 | |
340 | #define CLW_RETURNLOCKED 0x02 | |
2d21ac55 A |
341 | #define CLW_IONOCACHE 0x04 |
342 | #define CLW_IOPASSIVE 0x08 | |
343 | ||
91447636 A |
344 | /* |
345 | * if the read ahead context doesn't yet exist, | |
346 | * allocate and initialize it... | |
347 | * the vnode lock serializes multiple callers | |
348 | * during the actual assignment... first one | |
349 | * to grab the lock wins... the other callers | |
350 | * will release the now unnecessary storage | |
351 | * | |
352 | * once the context is present, try to grab (but don't block on) | |
353 | * the lock associated with it... if someone | |
354 | * else currently owns it, than the read | |
355 | * will run without read-ahead. this allows | |
356 | * multiple readers to run in parallel and | |
357 | * since there's only 1 read ahead context, | |
358 | * there's no real loss in only allowing 1 | |
359 | * reader to have read-ahead enabled. | |
360 | */ | |
361 | static struct cl_readahead * | |
362 | cluster_get_rap(vnode_t vp) | |
363 | { | |
364 | struct ubc_info *ubc; | |
365 | struct cl_readahead *rap; | |
366 | ||
367 | ubc = vp->v_ubcinfo; | |
368 | ||
369 | if ((rap = ubc->cl_rahead) == NULL) { | |
370 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
371 | ||
372 | bzero(rap, sizeof *rap); | |
373 | rap->cl_lastr = -1; | |
374 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
375 | ||
376 | vnode_lock(vp); | |
377 | ||
378 | if (ubc->cl_rahead == NULL) | |
379 | ubc->cl_rahead = rap; | |
380 | else { | |
381 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
382 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
2d21ac55 | 383 | rap = ubc->cl_rahead; |
91447636 A |
384 | } |
385 | vnode_unlock(vp); | |
386 | } | |
387 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) | |
388 | return(rap); | |
389 | ||
390 | return ((struct cl_readahead *)NULL); | |
391 | } | |
392 | ||
393 | ||
394 | /* | |
395 | * if the write behind context doesn't yet exist, | |
396 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
397 | * the vnode lock serializes multiple callers | |
398 | * during the actual assignment... first one | |
399 | * to grab the lock wins... the other callers | |
400 | * will release the now unnecessary storage | |
401 | * | |
402 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
403 | * the lock associated with the write behind context before | |
404 | * returning | |
405 | */ | |
406 | ||
407 | static struct cl_writebehind * | |
408 | cluster_get_wbp(vnode_t vp, int flags) | |
409 | { | |
410 | struct ubc_info *ubc; | |
411 | struct cl_writebehind *wbp; | |
412 | ||
413 | ubc = vp->v_ubcinfo; | |
414 | ||
415 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
416 | ||
417 | if ( !(flags & CLW_ALLOCATE)) | |
418 | return ((struct cl_writebehind *)NULL); | |
419 | ||
420 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); | |
421 | ||
422 | bzero(wbp, sizeof *wbp); | |
423 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
424 | ||
425 | vnode_lock(vp); | |
426 | ||
427 | if (ubc->cl_wbehind == NULL) | |
428 | ubc->cl_wbehind = wbp; | |
429 | else { | |
430 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
431 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
2d21ac55 | 432 | wbp = ubc->cl_wbehind; |
91447636 A |
433 | } |
434 | vnode_unlock(vp); | |
435 | } | |
436 | if (flags & CLW_RETURNLOCKED) | |
437 | lck_mtx_lock(&wbp->cl_lockw); | |
438 | ||
439 | return (wbp); | |
440 | } | |
441 | ||
442 | ||
2d21ac55 A |
443 | static void |
444 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg) | |
445 | { | |
446 | struct cl_writebehind *wbp; | |
447 | ||
448 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
449 | ||
450 | if (wbp->cl_number) { | |
451 | lck_mtx_lock(&wbp->cl_lockw); | |
452 | ||
6d2010ae | 453 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, 0, callback, callback_arg); |
2d21ac55 A |
454 | |
455 | lck_mtx_unlock(&wbp->cl_lockw); | |
456 | } | |
457 | } | |
458 | } | |
459 | ||
460 | ||
316670eb A |
461 | static int |
462 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) | |
463 | { | |
464 | daddr64_t blkno; | |
465 | size_t io_size; | |
466 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; | |
467 | ||
468 | if (bootcache_check_fn) { | |
469 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL)) | |
470 | return(0); | |
471 | ||
472 | if (io_size == 0) | |
473 | return (0); | |
474 | ||
475 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) | |
476 | return(1); | |
477 | } | |
478 | return(0); | |
479 | } | |
480 | ||
481 | ||
55e303ae | 482 | static int |
39236c6e | 483 | cluster_is_throttled(vnode_t vp) |
55e303ae | 484 | { |
39236c6e | 485 | return (throttle_io_will_be_throttled(-1, vp->v_mount)); |
55e303ae A |
486 | } |
487 | ||
1c79356b | 488 | |
6d2010ae A |
489 | static void |
490 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
491 | { | |
492 | ||
493 | lck_mtx_lock(&iostate->io_mtxp); | |
494 | ||
495 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
496 | ||
497 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, | |
498 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
499 | ||
500 | iostate->io_wanted = 1; | |
501 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
502 | ||
503 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
504 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
505 | } | |
506 | lck_mtx_unlock(&iostate->io_mtxp); | |
507 | } | |
508 | ||
509 | ||
1c79356b | 510 | static int |
39236c6e | 511 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) |
2d21ac55 A |
512 | { |
513 | int upl_abort_code = 0; | |
514 | int page_in = 0; | |
515 | int page_out = 0; | |
516 | ||
6d2010ae | 517 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) |
2d21ac55 A |
518 | /* |
519 | * direct write of any flavor, or a direct read that wasn't aligned | |
520 | */ | |
521 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); | |
522 | else { | |
523 | if (io_flags & B_PAGEIO) { | |
524 | if (io_flags & B_READ) | |
525 | page_in = 1; | |
526 | else | |
527 | page_out = 1; | |
528 | } | |
529 | if (io_flags & B_CACHE) | |
530 | /* | |
531 | * leave pages in the cache unchanged on error | |
532 | */ | |
533 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
39236c6e | 534 | else if (page_out && ((error != ENXIO) || vnode_isswap(vp))) |
2d21ac55 A |
535 | /* |
536 | * transient error... leave pages unchanged | |
537 | */ | |
538 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
539 | else if (page_in) | |
540 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
541 | else | |
542 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
543 | ||
544 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
545 | } | |
546 | return (upl_abort_code); | |
547 | } | |
548 | ||
549 | ||
550 | static int | |
551 | cluster_iodone(buf_t bp, void *callback_arg) | |
1c79356b | 552 | { |
91447636 A |
553 | int b_flags; |
554 | int error; | |
555 | int total_size; | |
556 | int total_resid; | |
557 | int upl_offset; | |
558 | int zero_offset; | |
2d21ac55 A |
559 | int pg_offset = 0; |
560 | int commit_size = 0; | |
561 | int upl_flags = 0; | |
562 | int transaction_size = 0; | |
91447636 A |
563 | upl_t upl; |
564 | buf_t cbp; | |
565 | buf_t cbp_head; | |
566 | buf_t cbp_next; | |
567 | buf_t real_bp; | |
39236c6e | 568 | vnode_t vp; |
91447636 | 569 | struct clios *iostate; |
2d21ac55 | 570 | boolean_t transaction_complete = FALSE; |
91447636 A |
571 | |
572 | cbp_head = (buf_t)(bp->b_trans_head); | |
1c79356b A |
573 | |
574 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
b0d623f7 | 575 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
1c79356b | 576 | |
060df5ea | 577 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { |
6d2010ae | 578 | boolean_t need_wakeup = FALSE; |
060df5ea A |
579 | |
580 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
581 | ||
582 | bp->b_flags |= B_TDONE; | |
583 | ||
6d2010ae A |
584 | if (bp->b_flags & B_TWANTED) { |
585 | CLR(bp->b_flags, B_TWANTED); | |
586 | need_wakeup = TRUE; | |
587 | } | |
060df5ea | 588 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
6d2010ae | 589 | /* |
060df5ea A |
590 | * all I/O requests that are part of this transaction |
591 | * have to complete before we can process it | |
592 | */ | |
6d2010ae | 593 | if ( !(cbp->b_flags & B_TDONE)) { |
1c79356b | 594 | |
6d2010ae | 595 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea A |
596 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
597 | ||
598 | lck_mtx_unlock(cl_transaction_mtxp); | |
6d2010ae A |
599 | |
600 | if (need_wakeup == TRUE) | |
601 | wakeup(bp); | |
602 | ||
060df5ea A |
603 | return 0; |
604 | } | |
605 | if (cbp->b_flags & B_EOT) | |
6d2010ae | 606 | transaction_complete = TRUE; |
060df5ea A |
607 | } |
608 | lck_mtx_unlock(cl_transaction_mtxp); | |
609 | ||
6d2010ae A |
610 | if (need_wakeup == TRUE) |
611 | wakeup(bp); | |
612 | ||
060df5ea | 613 | if (transaction_complete == FALSE) { |
6d2010ae | 614 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea | 615 | cbp_head, 0, 0, 0, 0); |
2d21ac55 | 616 | return 0; |
1c79356b A |
617 | } |
618 | } | |
619 | error = 0; | |
620 | total_size = 0; | |
621 | total_resid = 0; | |
622 | ||
623 | cbp = cbp_head; | |
39236c6e | 624 | vp = cbp->b_vp; |
1c79356b | 625 | upl_offset = cbp->b_uploffset; |
91447636 | 626 | upl = cbp->b_upl; |
1c79356b A |
627 | b_flags = cbp->b_flags; |
628 | real_bp = cbp->b_real_bp; | |
9bccf70c | 629 | zero_offset= cbp->b_validend; |
b4c24cb9 | 630 | iostate = (struct clios *)cbp->b_iostate; |
1c79356b | 631 | |
91447636 A |
632 | if (real_bp) |
633 | real_bp->b_dev = cbp->b_dev; | |
634 | ||
1c79356b | 635 | while (cbp) { |
1c79356b A |
636 | if ((cbp->b_flags & B_ERROR) && error == 0) |
637 | error = cbp->b_error; | |
638 | ||
639 | total_resid += cbp->b_resid; | |
640 | total_size += cbp->b_bcount; | |
641 | ||
642 | cbp_next = cbp->b_trans_next; | |
643 | ||
2d21ac55 A |
644 | if (cbp_next == NULL) |
645 | /* | |
646 | * compute the overall size of the transaction | |
647 | * in case we created one that has 'holes' in it | |
648 | * 'total_size' represents the amount of I/O we | |
649 | * did, not the span of the transaction w/r to the UPL | |
650 | */ | |
651 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
652 | ||
653 | if (cbp != cbp_head) | |
654 | free_io_buf(cbp); | |
1c79356b A |
655 | |
656 | cbp = cbp_next; | |
657 | } | |
2d21ac55 A |
658 | if (error == 0 && total_resid) |
659 | error = EIO; | |
660 | ||
661 | if (error == 0) { | |
662 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); | |
663 | ||
664 | if (cliodone_func != NULL) { | |
665 | cbp_head->b_bcount = transaction_size; | |
666 | ||
667 | error = (*cliodone_func)(cbp_head, callback_arg); | |
668 | } | |
669 | } | |
b4c24cb9 A |
670 | if (zero_offset) |
671 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
672 | ||
2d21ac55 A |
673 | free_io_buf(cbp_head); |
674 | ||
b4c24cb9 | 675 | if (iostate) { |
91447636 A |
676 | int need_wakeup = 0; |
677 | ||
d7e50217 A |
678 | /* |
679 | * someone has issued multiple I/Os asynchrounsly | |
680 | * and is waiting for them to complete (streaming) | |
681 | */ | |
6d2010ae | 682 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 683 | |
d7e50217 A |
684 | if (error && iostate->io_error == 0) |
685 | iostate->io_error = error; | |
9bccf70c | 686 | |
b4c24cb9 A |
687 | iostate->io_completed += total_size; |
688 | ||
689 | if (iostate->io_wanted) { | |
d7e50217 A |
690 | /* |
691 | * someone is waiting for the state of | |
692 | * this io stream to change | |
693 | */ | |
b4c24cb9 | 694 | iostate->io_wanted = 0; |
91447636 | 695 | need_wakeup = 1; |
b4c24cb9 | 696 | } |
6d2010ae | 697 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
698 | |
699 | if (need_wakeup) | |
700 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 701 | } |
1c79356b A |
702 | |
703 | if (b_flags & B_COMMIT_UPL) { | |
91447636 | 704 | |
2d21ac55 A |
705 | pg_offset = upl_offset & PAGE_MASK; |
706 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1c79356b | 707 | |
2d21ac55 | 708 | if (error) |
39236c6e | 709 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); |
2d21ac55 A |
710 | else { |
711 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; | |
1c79356b | 712 | |
91447636 | 713 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) |
2d21ac55 | 714 | upl_flags |= UPL_COMMIT_SET_DIRTY; |
55e303ae | 715 | |
1c79356b | 716 | if (b_flags & B_AGE) |
2d21ac55 | 717 | upl_flags |= UPL_COMMIT_INACTIVATE; |
1c79356b | 718 | |
2d21ac55 | 719 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); |
1c79356b | 720 | } |
91447636 | 721 | } |
6d2010ae | 722 | if (real_bp) { |
2d21ac55 A |
723 | if (error) { |
724 | real_bp->b_flags |= B_ERROR; | |
725 | real_bp->b_error = error; | |
726 | } | |
727 | real_bp->b_resid = total_resid; | |
728 | ||
729 | buf_biodone(real_bp); | |
730 | } | |
731 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
b0d623f7 | 732 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); |
1c79356b A |
733 | |
734 | return (error); | |
735 | } | |
736 | ||
737 | ||
b0d623f7 | 738 | uint32_t |
39236c6e | 739 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) |
b0d623f7 | 740 | { |
39236c6e | 741 | if (cluster_is_throttled(vp)) { |
316670eb | 742 | *limit = THROTTLE_MAX_IOSIZE; |
b0d623f7 A |
743 | return 1; |
744 | } | |
745 | return 0; | |
746 | } | |
747 | ||
748 | ||
91447636 | 749 | void |
b0d623f7 | 750 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) |
1c79356b | 751 | { |
1c79356b | 752 | |
55e303ae | 753 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, |
b0d623f7 | 754 | upl_offset, size, bp, 0, 0); |
9bccf70c | 755 | |
91447636 | 756 | if (bp == NULL || bp->b_datap == 0) { |
2d21ac55 A |
757 | upl_page_info_t *pl; |
758 | addr64_t zero_addr; | |
9bccf70c | 759 | |
55e303ae A |
760 | pl = ubc_upl_pageinfo(upl); |
761 | ||
2d21ac55 A |
762 | if (upl_device_page(pl) == TRUE) { |
763 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset; | |
764 | ||
765 | bzero_phys_nc(zero_addr, size); | |
766 | } else { | |
767 | while (size) { | |
768 | int page_offset; | |
769 | int page_index; | |
770 | int zero_cnt; | |
55e303ae | 771 | |
2d21ac55 A |
772 | page_index = upl_offset / PAGE_SIZE; |
773 | page_offset = upl_offset & PAGE_MASK; | |
55e303ae | 774 | |
2d21ac55 A |
775 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset; |
776 | zero_cnt = min(PAGE_SIZE - page_offset, size); | |
55e303ae | 777 | |
2d21ac55 | 778 | bzero_phys(zero_addr, zero_cnt); |
55e303ae | 779 | |
2d21ac55 A |
780 | size -= zero_cnt; |
781 | upl_offset += zero_cnt; | |
782 | } | |
55e303ae | 783 | } |
1c79356b | 784 | } else |
91447636 | 785 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); |
1c79356b | 786 | |
55e303ae A |
787 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, |
788 | upl_offset, size, 0, 0, 0); | |
1c79356b A |
789 | } |
790 | ||
91447636 | 791 | |
2d21ac55 A |
792 | static void |
793 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
794 | { | |
795 | cbp_head->b_validend = zero_offset; | |
796 | cbp_tail->b_flags |= B_EOT; | |
797 | } | |
798 | ||
799 | static void | |
800 | cluster_wait_IO(buf_t cbp_head, int async) | |
801 | { | |
802 | buf_t cbp; | |
803 | ||
804 | if (async) { | |
805 | /* | |
806 | * async callback completion will not normally | |
807 | * generate a wakeup upon I/O completion... | |
6d2010ae | 808 | * by setting B_TWANTED, we will force a wakeup |
2d21ac55 | 809 | * to occur as any outstanding I/Os complete... |
6d2010ae A |
810 | * I/Os already completed will have B_TDONE already |
811 | * set and we won't cause us to block | |
2d21ac55 A |
812 | * note that we're actually waiting for the bp to have |
813 | * completed the callback function... only then | |
814 | * can we safely take back ownership of the bp | |
2d21ac55 | 815 | */ |
6d2010ae | 816 | lck_mtx_lock_spin(cl_transaction_mtxp); |
2d21ac55 A |
817 | |
818 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
6d2010ae | 819 | cbp->b_flags |= B_TWANTED; |
2d21ac55 | 820 | |
6d2010ae | 821 | lck_mtx_unlock(cl_transaction_mtxp); |
2d21ac55 A |
822 | } |
823 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
6d2010ae A |
824 | |
825 | if (async) { | |
826 | while (!ISSET(cbp->b_flags, B_TDONE)) { | |
827 | ||
828 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
829 | ||
830 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
831 | DTRACE_IO1(wait__start, buf_t, cbp); | |
832 | (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL); | |
833 | DTRACE_IO1(wait__done, buf_t, cbp); | |
834 | } else | |
835 | lck_mtx_unlock(cl_transaction_mtxp); | |
836 | } | |
837 | } else | |
2d21ac55 A |
838 | buf_biowait(cbp); |
839 | } | |
840 | } | |
841 | ||
842 | static void | |
843 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
844 | { | |
845 | buf_t cbp; | |
846 | int error; | |
39236c6e | 847 | boolean_t isswapout = FALSE; |
2d21ac55 A |
848 | |
849 | /* | |
850 | * cluster_complete_transaction will | |
851 | * only be called if we've issued a complete chain in synchronous mode | |
852 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
853 | */ | |
854 | if (needwait) { | |
855 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
856 | buf_biowait(cbp); | |
857 | } | |
060df5ea A |
858 | /* |
859 | * we've already waited on all of the I/Os in this transaction, | |
860 | * so mark all of the buf_t's in this transaction as B_TDONE | |
861 | * so that cluster_iodone sees the transaction as completed | |
862 | */ | |
863 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
6d2010ae | 864 | cbp->b_flags |= B_TDONE; |
39236c6e | 865 | cbp = *cbp_head; |
060df5ea | 866 | |
39236c6e A |
867 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) |
868 | isswapout = TRUE; | |
869 | ||
870 | error = cluster_iodone(cbp, callback_arg); | |
2d21ac55 A |
871 | |
872 | if ( !(flags & CL_ASYNC) && error && *retval == 0) { | |
39236c6e A |
873 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) |
874 | *retval = error; | |
875 | else if (isswapout == TRUE) | |
876 | *retval = error; | |
2d21ac55 A |
877 | } |
878 | *cbp_head = (buf_t)NULL; | |
879 | } | |
880 | ||
881 | ||
1c79356b | 882 | static int |
91447636 | 883 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 | 884 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 885 | { |
91447636 A |
886 | buf_t cbp; |
887 | u_int size; | |
888 | u_int io_size; | |
889 | int io_flags; | |
890 | int bmap_flags; | |
891 | int error = 0; | |
892 | int retval = 0; | |
893 | buf_t cbp_head = NULL; | |
894 | buf_t cbp_tail = NULL; | |
895 | int trans_count = 0; | |
2d21ac55 | 896 | int max_trans_count; |
91447636 A |
897 | u_int pg_count; |
898 | int pg_offset; | |
899 | u_int max_iosize; | |
900 | u_int max_vectors; | |
901 | int priv; | |
902 | int zero_offset = 0; | |
903 | int async_throttle = 0; | |
904 | mount_t mp; | |
2d21ac55 A |
905 | vm_offset_t upl_end_offset; |
906 | boolean_t need_EOT = FALSE; | |
907 | ||
908 | /* | |
909 | * we currently don't support buffers larger than a page | |
910 | */ | |
911 | if (real_bp && non_rounded_size > PAGE_SIZE) | |
912 | panic("%s(): Called with real buffer of size %d bytes which " | |
913 | "is greater than the maximum allowed size of " | |
914 | "%d bytes (the system PAGE_SIZE).\n", | |
915 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
91447636 A |
916 | |
917 | mp = vp->v_mount; | |
918 | ||
2d21ac55 A |
919 | /* |
920 | * we don't want to do any funny rounding of the size for IO requests | |
921 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
922 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
923 | * out a page | |
924 | */ | |
925 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
91447636 A |
926 | /* |
927 | * round the requested size up so that this I/O ends on a | |
928 | * page boundary in case this is a 'write'... if the filesystem | |
929 | * has blocks allocated to back the page beyond the EOF, we want to | |
930 | * make sure to write out the zero's that are sitting beyond the EOF | |
931 | * so that in case the filesystem doesn't explicitly zero this area | |
932 | * if a hole is created via a lseek/write beyond the current EOF, | |
933 | * it will return zeros when it's read back from the disk. If the | |
934 | * physical allocation doesn't extend for the whole page, we'll | |
935 | * only write/read from the disk up to the end of this allocation | |
936 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
937 | */ | |
938 | pg_offset = upl_offset & PAGE_MASK; | |
55e303ae | 939 | |
91447636 A |
940 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; |
941 | } else { | |
942 | /* | |
943 | * anyone advertising a blocksize of 1 byte probably | |
944 | * can't deal with us rounding up the request size | |
945 | * AFP is one such filesystem/device | |
946 | */ | |
947 | size = non_rounded_size; | |
948 | } | |
2d21ac55 A |
949 | upl_end_offset = upl_offset + size; |
950 | ||
951 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
952 | ||
953 | /* | |
954 | * Set the maximum transaction size to the maximum desired number of | |
955 | * buffers. | |
956 | */ | |
957 | max_trans_count = 8; | |
958 | if (flags & CL_DEV_MEMORY) | |
959 | max_trans_count = 16; | |
55e303ae | 960 | |
0b4e3aa0 | 961 | if (flags & CL_READ) { |
2d21ac55 | 962 | io_flags = B_READ; |
91447636 | 963 | bmap_flags = VNODE_READ; |
0b4e3aa0 | 964 | |
91447636 A |
965 | max_iosize = mp->mnt_maxreadcnt; |
966 | max_vectors = mp->mnt_segreadcnt; | |
0b4e3aa0 | 967 | } else { |
2d21ac55 | 968 | io_flags = B_WRITE; |
91447636 | 969 | bmap_flags = VNODE_WRITE; |
1c79356b | 970 | |
91447636 A |
971 | max_iosize = mp->mnt_maxwritecnt; |
972 | max_vectors = mp->mnt_segwritecnt; | |
0b4e3aa0 | 973 | } |
91447636 A |
974 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); |
975 | ||
55e303ae | 976 | /* |
91447636 A |
977 | * make sure the maximum iosize is a |
978 | * multiple of the page size | |
55e303ae A |
979 | */ |
980 | max_iosize &= ~PAGE_MASK; | |
981 | ||
2d21ac55 A |
982 | /* |
983 | * Ensure the maximum iosize is sensible. | |
984 | */ | |
985 | if (!max_iosize) | |
986 | max_iosize = PAGE_SIZE; | |
987 | ||
55e303ae | 988 | if (flags & CL_THROTTLE) { |
39236c6e | 989 | if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { |
316670eb A |
990 | if (max_iosize > THROTTLE_MAX_IOSIZE) |
991 | max_iosize = THROTTLE_MAX_IOSIZE; | |
39236c6e | 992 | async_throttle = THROTTLE_MAXCNT; |
2d21ac55 A |
993 | } else { |
994 | if ( (flags & CL_DEV_MEMORY) ) | |
b0d623f7 | 995 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); |
2d21ac55 A |
996 | else { |
997 | u_int max_cluster; | |
cf7d32b8 | 998 | u_int max_cluster_size; |
6d2010ae A |
999 | u_int scale; |
1000 | ||
b0d623f7 | 1001 | max_cluster_size = MAX_CLUSTER_SIZE(vp); |
b0d623f7 | 1002 | |
cf7d32b8 | 1003 | if (max_iosize > max_cluster_size) |
b0d623f7 | 1004 | max_cluster = max_cluster_size; |
2d21ac55 A |
1005 | else |
1006 | max_cluster = max_iosize; | |
1007 | ||
1008 | if (size < max_cluster) | |
1009 | max_cluster = size; | |
6d2010ae A |
1010 | |
1011 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
1012 | scale = WRITE_THROTTLE_SSD; | |
1013 | else | |
1014 | scale = WRITE_THROTTLE; | |
2d21ac55 | 1015 | |
6d2010ae A |
1016 | if (flags & CL_CLOSE) |
1017 | scale += MAX_CLUSTERS; | |
1018 | ||
1019 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); | |
2d21ac55 A |
1020 | } |
1021 | } | |
55e303ae | 1022 | } |
1c79356b A |
1023 | if (flags & CL_AGE) |
1024 | io_flags |= B_AGE; | |
91447636 A |
1025 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) |
1026 | io_flags |= B_PAGEIO; | |
b0d623f7 A |
1027 | if (flags & (CL_IOSTREAMING)) |
1028 | io_flags |= B_IOSTREAMING; | |
b4c24cb9 A |
1029 | if (flags & CL_COMMIT) |
1030 | io_flags |= B_COMMIT_UPL; | |
6d2010ae | 1031 | if (flags & CL_DIRECT_IO) |
b4c24cb9 | 1032 | io_flags |= B_PHYS; |
6d2010ae A |
1033 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) |
1034 | io_flags |= B_CACHE; | |
2d21ac55 A |
1035 | if (flags & CL_PASSIVE) |
1036 | io_flags |= B_PASSIVE; | |
6d2010ae A |
1037 | if (flags & CL_ENCRYPTED) |
1038 | io_flags |= B_ENCRYPTED_IO; | |
2d21ac55 A |
1039 | if (vp->v_flag & VSYSTEM) |
1040 | io_flags |= B_META; | |
1c79356b | 1041 | |
9bccf70c | 1042 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { |
1c79356b A |
1043 | /* |
1044 | * then we are going to end up | |
1045 | * with a page that we can't complete (the file size wasn't a multiple | |
1046 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1047 | * so we'll go ahead and zero out the portion of the page we can't | |
1048 | * read in from the file | |
1049 | */ | |
9bccf70c | 1050 | zero_offset = upl_offset + non_rounded_size; |
1c79356b A |
1051 | } |
1052 | while (size) { | |
91447636 A |
1053 | daddr64_t blkno; |
1054 | daddr64_t lblkno; | |
2d21ac55 | 1055 | u_int io_size_wanted; |
b0d623f7 | 1056 | size_t io_size_tmp; |
1c79356b | 1057 | |
0b4e3aa0 A |
1058 | if (size > max_iosize) |
1059 | io_size = max_iosize; | |
1c79356b A |
1060 | else |
1061 | io_size = size; | |
2d21ac55 A |
1062 | |
1063 | io_size_wanted = io_size; | |
b0d623f7 | 1064 | io_size_tmp = (size_t)io_size; |
91447636 | 1065 | |
b0d623f7 | 1066 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) |
1c79356b | 1067 | break; |
2d21ac55 | 1068 | |
b0d623f7 | 1069 | if (io_size_tmp > io_size_wanted) |
2d21ac55 | 1070 | io_size = io_size_wanted; |
b0d623f7 A |
1071 | else |
1072 | io_size = (u_int)io_size_tmp; | |
2d21ac55 | 1073 | |
91447636 A |
1074 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) |
1075 | real_bp->b_blkno = blkno; | |
1c79356b A |
1076 | |
1077 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
2d21ac55 | 1078 | (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0); |
1c79356b | 1079 | |
91447636 A |
1080 | if (io_size == 0) { |
1081 | /* | |
1082 | * vnop_blockmap didn't return an error... however, it did | |
1083 | * return an extent size of 0 which means we can't | |
1084 | * make forward progress on this I/O... a hole in the | |
1085 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1086 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1087 | */ | |
1088 | error = EINVAL; | |
1089 | break; | |
1090 | } | |
1091 | if ( !(flags & CL_READ) && blkno == -1) { | |
2d21ac55 A |
1092 | off_t e_offset; |
1093 | int pageout_flags; | |
91447636 | 1094 | |
6d2010ae | 1095 | if (upl_get_internal_vectorupl(upl)) |
b0d623f7 | 1096 | panic("Vector UPLs should not take this code-path\n"); |
91447636 A |
1097 | /* |
1098 | * we're writing into a 'hole' | |
1099 | */ | |
0b4e3aa0 | 1100 | if (flags & CL_PAGEOUT) { |
91447636 A |
1101 | /* |
1102 | * if we got here via cluster_pageout | |
1103 | * then just error the request and return | |
1104 | * the 'hole' should already have been covered | |
1105 | */ | |
0b4e3aa0 A |
1106 | error = EINVAL; |
1107 | break; | |
91447636 | 1108 | } |
91447636 A |
1109 | /* |
1110 | * we can get here if the cluster code happens to | |
1111 | * pick up a page that was dirtied via mmap vs | |
1112 | * a 'write' and the page targets a 'hole'... | |
1113 | * i.e. the writes to the cluster were sparse | |
1114 | * and the file was being written for the first time | |
1115 | * | |
1116 | * we can also get here if the filesystem supports | |
1117 | * 'holes' that are less than PAGE_SIZE.... because | |
1118 | * we can't know if the range in the page that covers | |
1119 | * the 'hole' has been dirtied via an mmap or not, | |
1120 | * we have to assume the worst and try to push the | |
1121 | * entire page to storage. | |
1122 | * | |
1123 | * Try paging out the page individually before | |
1124 | * giving up entirely and dumping it (the pageout | |
1125 | * path will insure that the zero extent accounting | |
1126 | * has been taken care of before we get back into cluster_io) | |
2d21ac55 A |
1127 | * |
1128 | * go direct to vnode_pageout so that we don't have to | |
1129 | * unbusy the page from the UPL... we used to do this | |
1130 | * so that we could call ubc_sync_range, but that results | |
1131 | * in a potential deadlock if someone else races us to acquire | |
1132 | * that page and wins and in addition needs one of the pages | |
1133 | * we're continuing to hold in the UPL | |
0b4e3aa0 | 1134 | */ |
2d21ac55 | 1135 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; |
91447636 | 1136 | |
2d21ac55 A |
1137 | if ( !(flags & CL_ASYNC)) |
1138 | pageout_flags |= UPL_IOSYNC; | |
1139 | if ( !(flags & CL_COMMIT)) | |
1140 | pageout_flags |= UPL_NOCOMMIT; | |
1141 | ||
1142 | if (cbp_head) { | |
1143 | buf_t last_cbp; | |
1144 | ||
1145 | /* | |
1146 | * first we have to wait for the the current outstanding I/Os | |
1147 | * to complete... EOT hasn't been set yet on this transaction | |
1148 | * so the pages won't be released just because all of the current | |
1149 | * I/O linked to this transaction has completed... | |
1150 | */ | |
1151 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1152 | ||
1153 | /* | |
1154 | * we've got a transcation that | |
1155 | * includes the page we're about to push out through vnode_pageout... | |
1156 | * find the last bp in the list which will be the one that | |
1157 | * includes the head of this page and round it's iosize down | |
1158 | * to a page boundary... | |
1159 | */ | |
1160 | for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) | |
1161 | last_cbp = cbp; | |
1162 | ||
1163 | cbp->b_bcount &= ~PAGE_MASK; | |
1164 | ||
1165 | if (cbp->b_bcount == 0) { | |
1166 | /* | |
1167 | * this buf no longer has any I/O associated with it | |
1168 | */ | |
1169 | free_io_buf(cbp); | |
1170 | ||
1171 | if (cbp == cbp_head) { | |
1172 | /* | |
1173 | * the buf we just freed was the only buf in | |
1174 | * this transaction... so there's no I/O to do | |
1175 | */ | |
1176 | cbp_head = NULL; | |
1177 | } else { | |
1178 | /* | |
1179 | * remove the buf we just freed from | |
1180 | * the transaction list | |
1181 | */ | |
1182 | last_cbp->b_trans_next = NULL; | |
1183 | cbp_tail = last_cbp; | |
1184 | } | |
1185 | } | |
1186 | if (cbp_head) { | |
1187 | /* | |
1188 | * there was more to the current transaction | |
1189 | * than just the page we are pushing out via vnode_pageout... | |
1190 | * mark it as finished and complete it... we've already | |
1191 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1192 | */ | |
1193 | cluster_EOT(cbp_head, cbp_tail, 0); | |
91447636 | 1194 | |
2d21ac55 A |
1195 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); |
1196 | ||
1197 | trans_count = 0; | |
1198 | } | |
1199 | } | |
1200 | if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
91447636 | 1201 | error = EINVAL; |
91447636 | 1202 | } |
2d21ac55 | 1203 | e_offset = round_page_64(f_offset + 1); |
91447636 A |
1204 | io_size = e_offset - f_offset; |
1205 | ||
1206 | f_offset += io_size; | |
1207 | upl_offset += io_size; | |
1208 | ||
1209 | if (size >= io_size) | |
1210 | size -= io_size; | |
1211 | else | |
1212 | size = 0; | |
1213 | /* | |
1214 | * keep track of how much of the original request | |
1215 | * that we've actually completed... non_rounded_size | |
1216 | * may go negative due to us rounding the request | |
1217 | * to a page size multiple (i.e. size > non_rounded_size) | |
1218 | */ | |
1219 | non_rounded_size -= io_size; | |
1220 | ||
1221 | if (non_rounded_size <= 0) { | |
1222 | /* | |
1223 | * we've transferred all of the data in the original | |
1224 | * request, but we were unable to complete the tail | |
1225 | * of the last page because the file didn't have | |
1226 | * an allocation to back that portion... this is ok. | |
1227 | */ | |
1228 | size = 0; | |
1229 | } | |
6d2010ae A |
1230 | if (error) { |
1231 | if (size == 0) | |
1232 | flags &= ~CL_COMMIT; | |
1233 | break; | |
1234 | } | |
0b4e3aa0 | 1235 | continue; |
1c79356b | 1236 | } |
91447636 | 1237 | lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64); |
1c79356b A |
1238 | /* |
1239 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1c79356b A |
1240 | * pg_offset is the starting point in the first page for the I/O |
1241 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1242 | */ | |
1c79356b | 1243 | pg_offset = upl_offset & PAGE_MASK; |
1c79356b | 1244 | |
0b4e3aa0 | 1245 | if (flags & CL_DEV_MEMORY) { |
0b4e3aa0 A |
1246 | /* |
1247 | * treat physical requests as one 'giant' page | |
1248 | */ | |
1249 | pg_count = 1; | |
55e303ae A |
1250 | } else |
1251 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1252 | ||
91447636 | 1253 | if ((flags & CL_READ) && blkno == -1) { |
2d21ac55 | 1254 | vm_offset_t commit_offset; |
9bccf70c | 1255 | int bytes_to_zero; |
2d21ac55 | 1256 | int complete_transaction_now = 0; |
9bccf70c | 1257 | |
1c79356b A |
1258 | /* |
1259 | * if we're reading and blkno == -1, then we've got a | |
1260 | * 'hole' in the file that we need to deal with by zeroing | |
1261 | * out the affected area in the upl | |
1262 | */ | |
2d21ac55 | 1263 | if (io_size >= (u_int)non_rounded_size) { |
9bccf70c A |
1264 | /* |
1265 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
1266 | * than 'zero_offset' will be non-zero | |
91447636 | 1267 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof |
9bccf70c A |
1268 | * (indicated by the io_size finishing off the I/O request for this UPL) |
1269 | * than we're not going to issue an I/O for the | |
1270 | * last page in this upl... we need to zero both the hole and the tail | |
1271 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
1272 | */ | |
2d21ac55 A |
1273 | bytes_to_zero = non_rounded_size; |
1274 | if (!(flags & CL_NOZERO)) | |
1275 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; | |
1c79356b | 1276 | |
9bccf70c A |
1277 | zero_offset = 0; |
1278 | } else | |
1279 | bytes_to_zero = io_size; | |
1c79356b | 1280 | |
2d21ac55 A |
1281 | pg_count = 0; |
1282 | ||
1283 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
9bccf70c | 1284 | |
2d21ac55 A |
1285 | if (cbp_head) { |
1286 | int pg_resid; | |
1287 | ||
9bccf70c A |
1288 | /* |
1289 | * if there is a current I/O chain pending | |
1290 | * then the first page of the group we just zero'd | |
1291 | * will be handled by the I/O completion if the zero | |
1292 | * fill started in the middle of the page | |
1293 | */ | |
2d21ac55 A |
1294 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1295 | ||
1296 | pg_resid = commit_offset - upl_offset; | |
1297 | ||
1298 | if (bytes_to_zero >= pg_resid) { | |
1299 | /* | |
1300 | * the last page of the current I/O | |
1301 | * has been completed... | |
1302 | * compute the number of fully zero'd | |
1303 | * pages that are beyond it | |
1304 | * plus the last page if its partial | |
1305 | * and we have no more I/O to issue... | |
1306 | * otherwise a partial page is left | |
1307 | * to begin the next I/O | |
1308 | */ | |
1309 | if ((int)io_size >= non_rounded_size) | |
1310 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1311 | else | |
1312 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1313 | ||
1314 | complete_transaction_now = 1; | |
1315 | } | |
1316 | } else { | |
9bccf70c | 1317 | /* |
2d21ac55 A |
1318 | * no pending I/O to deal with |
1319 | * so, commit all of the fully zero'd pages | |
1320 | * plus the last page if its partial | |
1321 | * and we have no more I/O to issue... | |
1322 | * otherwise a partial page is left | |
1323 | * to begin the next I/O | |
9bccf70c | 1324 | */ |
2d21ac55 A |
1325 | if ((int)io_size >= non_rounded_size) |
1326 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1c79356b | 1327 | else |
2d21ac55 | 1328 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; |
9bccf70c | 1329 | |
2d21ac55 A |
1330 | commit_offset = upl_offset & ~PAGE_MASK; |
1331 | } | |
1332 | if ( (flags & CL_COMMIT) && pg_count) { | |
1333 | ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, | |
1334 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1c79356b A |
1335 | } |
1336 | upl_offset += io_size; | |
1337 | f_offset += io_size; | |
1338 | size -= io_size; | |
2d21ac55 | 1339 | |
91447636 A |
1340 | /* |
1341 | * keep track of how much of the original request | |
1342 | * that we've actually completed... non_rounded_size | |
1343 | * may go negative due to us rounding the request | |
1344 | * to a page size multiple (i.e. size > non_rounded_size) | |
1345 | */ | |
1346 | non_rounded_size -= io_size; | |
1c79356b | 1347 | |
91447636 A |
1348 | if (non_rounded_size <= 0) { |
1349 | /* | |
1350 | * we've transferred all of the data in the original | |
1351 | * request, but we were unable to complete the tail | |
1352 | * of the last page because the file didn't have | |
1353 | * an allocation to back that portion... this is ok. | |
1354 | */ | |
1355 | size = 0; | |
1356 | } | |
2d21ac55 A |
1357 | if (cbp_head && (complete_transaction_now || size == 0)) { |
1358 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
9bccf70c | 1359 | |
2d21ac55 A |
1360 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); |
1361 | ||
1362 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1363 | ||
1364 | trans_count = 0; | |
1365 | } | |
1366 | continue; | |
1c79356b | 1367 | } |
55e303ae | 1368 | if (pg_count > max_vectors) { |
91447636 | 1369 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { |
55e303ae A |
1370 | io_size = PAGE_SIZE - pg_offset; |
1371 | pg_count = 1; | |
91447636 A |
1372 | } else { |
1373 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
55e303ae | 1374 | pg_count = max_vectors; |
91447636 | 1375 | } |
1c79356b | 1376 | } |
2d21ac55 A |
1377 | /* |
1378 | * If the transaction is going to reach the maximum number of | |
1379 | * desired elements, truncate the i/o to the nearest page so | |
1380 | * that the actual i/o is initiated after this buffer is | |
1381 | * created and added to the i/o chain. | |
1382 | * | |
1383 | * I/O directed to physically contiguous memory | |
1384 | * doesn't have a requirement to make sure we 'fill' a page | |
1385 | */ | |
1386 | if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && | |
1387 | ((upl_offset + io_size) & PAGE_MASK)) { | |
1388 | vm_offset_t aligned_ofs; | |
1389 | ||
1390 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1391 | /* | |
1392 | * If the io_size does not actually finish off even a | |
1393 | * single page we have to keep adding buffers to the | |
1394 | * transaction despite having reached the desired limit. | |
1395 | * | |
1396 | * Eventually we get here with the page being finished | |
1397 | * off (and exceeded) and then we truncate the size of | |
1398 | * this i/o request so that it is page aligned so that | |
1399 | * we can finally issue the i/o on the transaction. | |
1400 | */ | |
1401 | if (aligned_ofs > upl_offset) { | |
1402 | io_size = aligned_ofs - upl_offset; | |
1403 | pg_count--; | |
1404 | } | |
1405 | } | |
1c79356b | 1406 | |
91447636 | 1407 | if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) |
55e303ae A |
1408 | /* |
1409 | * if we're not targeting a virtual device i.e. a disk image | |
1410 | * it's safe to dip into the reserve pool since real devices | |
1411 | * can complete this I/O request without requiring additional | |
1412 | * bufs from the alloc_io_buf pool | |
1413 | */ | |
1414 | priv = 1; | |
1415 | else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) | |
1416 | /* | |
1417 | * Throttle the speculative IO | |
1418 | */ | |
0b4e3aa0 A |
1419 | priv = 0; |
1420 | else | |
1421 | priv = 1; | |
1422 | ||
1423 | cbp = alloc_io_buf(vp, priv); | |
1c79356b | 1424 | |
55e303ae | 1425 | if (flags & CL_PAGEOUT) { |
91447636 A |
1426 | u_int i; |
1427 | ||
55e303ae | 1428 | for (i = 0; i < pg_count; i++) { |
91447636 A |
1429 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) |
1430 | panic("BUSY bp found in cluster_io"); | |
1c79356b | 1431 | } |
1c79356b | 1432 | } |
b4c24cb9 | 1433 | if (flags & CL_ASYNC) { |
2d21ac55 | 1434 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) |
91447636 | 1435 | panic("buf_setcallback failed\n"); |
b4c24cb9 | 1436 | } |
2d21ac55 | 1437 | cbp->b_cliodone = (void *)callback; |
1c79356b | 1438 | cbp->b_flags |= io_flags; |
316670eb A |
1439 | if (flags & CL_NOCACHE) |
1440 | cbp->b_attr.ba_flags |= BA_NOCACHE; | |
1c79356b A |
1441 | |
1442 | cbp->b_lblkno = lblkno; | |
1443 | cbp->b_blkno = blkno; | |
1444 | cbp->b_bcount = io_size; | |
1c79356b | 1445 | |
91447636 A |
1446 | if (buf_setupl(cbp, upl, upl_offset)) |
1447 | panic("buf_setupl failed\n"); | |
1448 | ||
1449 | cbp->b_trans_next = (buf_t)NULL; | |
1450 | ||
1451 | if ((cbp->b_iostate = (void *)iostate)) | |
d7e50217 A |
1452 | /* |
1453 | * caller wants to track the state of this | |
1454 | * io... bump the amount issued against this stream | |
1455 | */ | |
b4c24cb9 A |
1456 | iostate->io_issued += io_size; |
1457 | ||
91447636 | 1458 | if (flags & CL_READ) { |
1c79356b | 1459 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, |
91447636 A |
1460 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1461 | } | |
1462 | else { | |
1c79356b | 1463 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, |
91447636 A |
1464 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1465 | } | |
1c79356b A |
1466 | |
1467 | if (cbp_head) { | |
1468 | cbp_tail->b_trans_next = cbp; | |
1469 | cbp_tail = cbp; | |
1470 | } else { | |
1471 | cbp_head = cbp; | |
1472 | cbp_tail = cbp; | |
2d21ac55 | 1473 | |
6d2010ae | 1474 | if ( (cbp_head->b_real_bp = real_bp) ) |
2d21ac55 | 1475 | real_bp = (buf_t)NULL; |
1c79356b | 1476 | } |
2d21ac55 A |
1477 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; |
1478 | ||
91447636 | 1479 | trans_count++; |
1c79356b A |
1480 | |
1481 | upl_offset += io_size; | |
1482 | f_offset += io_size; | |
1483 | size -= io_size; | |
91447636 A |
1484 | /* |
1485 | * keep track of how much of the original request | |
1486 | * that we've actually completed... non_rounded_size | |
1487 | * may go negative due to us rounding the request | |
1488 | * to a page size multiple (i.e. size > non_rounded_size) | |
1489 | */ | |
1490 | non_rounded_size -= io_size; | |
1c79356b | 1491 | |
91447636 A |
1492 | if (non_rounded_size <= 0) { |
1493 | /* | |
1494 | * we've transferred all of the data in the original | |
1495 | * request, but we were unable to complete the tail | |
1496 | * of the last page because the file didn't have | |
1497 | * an allocation to back that portion... this is ok. | |
1498 | */ | |
1499 | size = 0; | |
1500 | } | |
2d21ac55 A |
1501 | if (size == 0) { |
1502 | /* | |
1503 | * we have no more I/O to issue, so go | |
1504 | * finish the final transaction | |
1505 | */ | |
1506 | need_EOT = TRUE; | |
1507 | } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1508 | ((flags & CL_ASYNC) || trans_count > max_trans_count) ) { | |
1c79356b | 1509 | /* |
2d21ac55 A |
1510 | * I/O directed to physically contiguous memory... |
1511 | * which doesn't have a requirement to make sure we 'fill' a page | |
1512 | * or... | |
1c79356b A |
1513 | * the current I/O we've prepared fully |
1514 | * completes the last page in this request | |
2d21ac55 A |
1515 | * and ... |
1516 | * it's either an ASYNC request or | |
9bccf70c | 1517 | * we've already accumulated more than 8 I/O's into |
2d21ac55 A |
1518 | * this transaction so mark it as complete so that |
1519 | * it can finish asynchronously or via the cluster_complete_transaction | |
1520 | * below if the request is synchronous | |
1c79356b | 1521 | */ |
2d21ac55 A |
1522 | need_EOT = TRUE; |
1523 | } | |
1524 | if (need_EOT == TRUE) | |
1525 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1c79356b | 1526 | |
2d21ac55 A |
1527 | if (flags & CL_THROTTLE) |
1528 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
1c79356b | 1529 | |
2d21ac55 A |
1530 | if ( !(io_flags & B_READ)) |
1531 | vnode_startwrite(vp); | |
9bccf70c | 1532 | |
316670eb A |
1533 | if (flags & CL_RAW_ENCRYPTED) { |
1534 | /* | |
1535 | * User requested raw encrypted bytes. | |
1536 | * Twiddle the bit in the ba_flags for the buffer | |
1537 | */ | |
1538 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; | |
1539 | } | |
1540 | ||
2d21ac55 A |
1541 | (void) VNOP_STRATEGY(cbp); |
1542 | ||
1543 | if (need_EOT == TRUE) { | |
1544 | if ( !(flags & CL_ASYNC)) | |
1545 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
9bccf70c | 1546 | |
2d21ac55 | 1547 | need_EOT = FALSE; |
91447636 | 1548 | trans_count = 0; |
2d21ac55 | 1549 | cbp_head = NULL; |
1c79356b | 1550 | } |
2d21ac55 | 1551 | } |
1c79356b | 1552 | if (error) { |
0b4e3aa0 A |
1553 | int abort_size; |
1554 | ||
b4c24cb9 A |
1555 | io_size = 0; |
1556 | ||
2d21ac55 A |
1557 | if (cbp_head) { |
1558 | /* | |
1559 | * first wait until all of the outstanding I/O | |
1560 | * for this partial transaction has completed | |
1561 | */ | |
1562 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
0b4e3aa0 | 1563 | |
2d21ac55 A |
1564 | /* |
1565 | * Rewind the upl offset to the beginning of the | |
1566 | * transaction. | |
1567 | */ | |
1568 | upl_offset = cbp_head->b_uploffset; | |
1569 | ||
1570 | for (cbp = cbp_head; cbp;) { | |
1571 | buf_t cbp_next; | |
1572 | ||
1573 | size += cbp->b_bcount; | |
1574 | io_size += cbp->b_bcount; | |
1575 | ||
1576 | cbp_next = cbp->b_trans_next; | |
1577 | free_io_buf(cbp); | |
1578 | cbp = cbp_next; | |
1579 | } | |
1c79356b | 1580 | } |
b4c24cb9 | 1581 | if (iostate) { |
91447636 A |
1582 | int need_wakeup = 0; |
1583 | ||
d7e50217 A |
1584 | /* |
1585 | * update the error condition for this stream | |
1586 | * since we never really issued the io | |
1587 | * just go ahead and adjust it back | |
1588 | */ | |
6d2010ae | 1589 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 1590 | |
d7e50217 | 1591 | if (iostate->io_error == 0) |
b4c24cb9 | 1592 | iostate->io_error = error; |
b4c24cb9 A |
1593 | iostate->io_issued -= io_size; |
1594 | ||
1595 | if (iostate->io_wanted) { | |
d7e50217 A |
1596 | /* |
1597 | * someone is waiting for the state of | |
1598 | * this io stream to change | |
1599 | */ | |
b4c24cb9 | 1600 | iostate->io_wanted = 0; |
2d21ac55 | 1601 | need_wakeup = 1; |
b4c24cb9 | 1602 | } |
6d2010ae | 1603 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
1604 | |
1605 | if (need_wakeup) | |
1606 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 1607 | } |
1c79356b | 1608 | if (flags & CL_COMMIT) { |
2d21ac55 | 1609 | int upl_flags; |
1c79356b | 1610 | |
2d21ac55 A |
1611 | pg_offset = upl_offset & PAGE_MASK; |
1612 | abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; | |
1613 | ||
39236c6e | 1614 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp); |
2d21ac55 | 1615 | |
1c79356b | 1616 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, |
b0d623f7 | 1617 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); |
1c79356b A |
1618 | } |
1619 | if (retval == 0) | |
1620 | retval = error; | |
2d21ac55 A |
1621 | } else if (cbp_head) |
1622 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1623 | ||
1624 | if (real_bp) { | |
1625 | /* | |
1626 | * can get here if we either encountered an error | |
1627 | * or we completely zero-filled the request and | |
1628 | * no I/O was issued | |
1629 | */ | |
1630 | if (error) { | |
1631 | real_bp->b_flags |= B_ERROR; | |
1632 | real_bp->b_error = error; | |
1633 | } | |
1634 | buf_biodone(real_bp); | |
1c79356b | 1635 | } |
2d21ac55 | 1636 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); |
1c79356b A |
1637 | |
1638 | return (retval); | |
1639 | } | |
1640 | ||
b0d623f7 A |
1641 | #define reset_vector_run_state() \ |
1642 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
1643 | ||
1644 | static int | |
1645 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
1646 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1647 | { | |
1648 | vector_upl_set_pagelist(vector_upl); | |
1649 | ||
1650 | if(io_flag & CL_READ) { | |
1651 | if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0)) | |
1652 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
1653 | else | |
1654 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
1655 | } | |
1656 | return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg)); | |
1657 | ||
1658 | } | |
1c79356b A |
1659 | |
1660 | static int | |
2d21ac55 | 1661 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
1c79356b | 1662 | { |
55e303ae | 1663 | int pages_in_prefetch; |
1c79356b A |
1664 | |
1665 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
1666 | (int)f_offset, size, (int)filesize, 0, 0); | |
1667 | ||
1668 | if (f_offset >= filesize) { | |
1669 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1670 | (int)f_offset, 0, 0, 0, 0); | |
1671 | return(0); | |
1672 | } | |
9bccf70c A |
1673 | if ((off_t)size > (filesize - f_offset)) |
1674 | size = filesize - f_offset; | |
55e303ae | 1675 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; |
1c79356b | 1676 | |
2d21ac55 | 1677 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); |
1c79356b A |
1678 | |
1679 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
55e303ae | 1680 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); |
1c79356b | 1681 | |
55e303ae | 1682 | return (pages_in_prefetch); |
1c79356b A |
1683 | } |
1684 | ||
1685 | ||
1686 | ||
1687 | static void | |
2d21ac55 A |
1688 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, |
1689 | int bflag) | |
1c79356b | 1690 | { |
91447636 A |
1691 | daddr64_t r_addr; |
1692 | off_t f_offset; | |
1693 | int size_of_prefetch; | |
b0d623f7 | 1694 | u_int max_prefetch; |
91447636 | 1695 | |
1c79356b A |
1696 | |
1697 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
91447636 | 1698 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); |
1c79356b | 1699 | |
91447636 | 1700 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { |
1c79356b | 1701 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 1702 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); |
1c79356b A |
1703 | return; |
1704 | } | |
2d21ac55 | 1705 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { |
91447636 A |
1706 | rap->cl_ralen = 0; |
1707 | rap->cl_maxra = 0; | |
1c79356b A |
1708 | |
1709 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1710 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); |
1c79356b A |
1711 | |
1712 | return; | |
1713 | } | |
6d2010ae | 1714 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD)); |
cf7d32b8 | 1715 | |
6d2010ae A |
1716 | if ((max_prefetch / PAGE_SIZE) > speculative_prefetch_max) |
1717 | max_prefetch = (speculative_prefetch_max * PAGE_SIZE); | |
1718 | ||
1719 | if (max_prefetch <= PAGE_SIZE) { | |
1720 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1721 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); | |
1722 | return; | |
1723 | } | |
91447636 | 1724 | if (extent->e_addr < rap->cl_maxra) { |
cf7d32b8 | 1725 | if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) { |
1c79356b A |
1726 | |
1727 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1728 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); |
1c79356b A |
1729 | return; |
1730 | } | |
1731 | } | |
91447636 A |
1732 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; |
1733 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1c79356b | 1734 | |
55e303ae A |
1735 | size_of_prefetch = 0; |
1736 | ||
1737 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
1738 | ||
1739 | if (size_of_prefetch) { | |
1740 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1741 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); |
55e303ae A |
1742 | return; |
1743 | } | |
9bccf70c | 1744 | if (f_offset < filesize) { |
91447636 | 1745 | daddr64_t read_size; |
55e303ae | 1746 | |
cf7d32b8 | 1747 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; |
55e303ae | 1748 | |
91447636 A |
1749 | read_size = (extent->e_addr + 1) - extent->b_addr; |
1750 | ||
1751 | if (read_size > rap->cl_ralen) { | |
cf7d32b8 A |
1752 | if (read_size > max_prefetch / PAGE_SIZE) |
1753 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
91447636 A |
1754 | else |
1755 | rap->cl_ralen = read_size; | |
1756 | } | |
2d21ac55 | 1757 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); |
1c79356b | 1758 | |
9bccf70c | 1759 | if (size_of_prefetch) |
91447636 | 1760 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; |
9bccf70c | 1761 | } |
1c79356b | 1762 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 1763 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); |
1c79356b A |
1764 | } |
1765 | ||
2d21ac55 | 1766 | |
9bccf70c | 1767 | int |
b0d623f7 | 1768 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 1769 | int size, off_t filesize, int flags) |
2d21ac55 A |
1770 | { |
1771 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
1772 | ||
1773 | } | |
1774 | ||
1775 | ||
1776 | int | |
b0d623f7 | 1777 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 1778 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
1779 | { |
1780 | int io_size; | |
55e303ae | 1781 | int rounded_size; |
1c79356b | 1782 | off_t max_size; |
55e303ae A |
1783 | int local_flags; |
1784 | ||
6d2010ae | 1785 | local_flags = CL_PAGEOUT | CL_THROTTLE; |
1c79356b A |
1786 | |
1787 | if ((flags & UPL_IOSYNC) == 0) | |
1788 | local_flags |= CL_ASYNC; | |
1789 | if ((flags & UPL_NOCOMMIT) == 0) | |
1790 | local_flags |= CL_COMMIT; | |
91447636 A |
1791 | if ((flags & UPL_KEEPCACHED)) |
1792 | local_flags |= CL_KEEPCACHED; | |
6d2010ae A |
1793 | if (flags & UPL_PAGING_ENCRYPTED) |
1794 | local_flags |= CL_ENCRYPTED; | |
1c79356b | 1795 | |
1c79356b A |
1796 | |
1797 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
1798 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1799 | ||
1800 | /* | |
1801 | * If they didn't specify any I/O, then we are done... | |
1802 | * we can't issue an abort because we don't know how | |
1803 | * big the upl really is | |
1804 | */ | |
1805 | if (size <= 0) | |
1806 | return (EINVAL); | |
1807 | ||
1808 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
1809 | if (local_flags & CL_COMMIT) | |
9bccf70c | 1810 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
1811 | return (EROFS); |
1812 | } | |
1813 | /* | |
1814 | * can't page-in from a negative offset | |
1815 | * or if we're starting beyond the EOF | |
1816 | * or if the file offset isn't page aligned | |
1817 | * or the size requested isn't a multiple of PAGE_SIZE | |
1818 | */ | |
1819 | if (f_offset < 0 || f_offset >= filesize || | |
1820 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
0b4e3aa0 A |
1821 | if (local_flags & CL_COMMIT) |
1822 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
1823 | return (EINVAL); |
1824 | } | |
1825 | max_size = filesize - f_offset; | |
1826 | ||
1827 | if (size < max_size) | |
1828 | io_size = size; | |
1829 | else | |
9bccf70c | 1830 | io_size = max_size; |
1c79356b | 1831 | |
55e303ae | 1832 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 1833 | |
55e303ae | 1834 | if (size > rounded_size) { |
0b4e3aa0 | 1835 | if (local_flags & CL_COMMIT) |
55e303ae | 1836 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, |
1c79356b A |
1837 | UPL_ABORT_FREE_ON_EMPTY); |
1838 | } | |
91447636 | 1839 | return (cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 1840 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
1841 | } |
1842 | ||
2d21ac55 | 1843 | |
9bccf70c | 1844 | int |
b0d623f7 | 1845 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 1846 | int size, off_t filesize, int flags) |
2d21ac55 A |
1847 | { |
1848 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
1849 | } | |
1850 | ||
1851 | ||
1852 | int | |
b0d623f7 | 1853 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 1854 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
1855 | { |
1856 | u_int io_size; | |
9bccf70c | 1857 | int rounded_size; |
1c79356b A |
1858 | off_t max_size; |
1859 | int retval; | |
1860 | int local_flags = 0; | |
1c79356b | 1861 | |
9bccf70c A |
1862 | if (upl == NULL || size < 0) |
1863 | panic("cluster_pagein: NULL upl passed in"); | |
1c79356b | 1864 | |
9bccf70c A |
1865 | if ((flags & UPL_IOSYNC) == 0) |
1866 | local_flags |= CL_ASYNC; | |
1c79356b | 1867 | if ((flags & UPL_NOCOMMIT) == 0) |
9bccf70c | 1868 | local_flags |= CL_COMMIT; |
b0d623f7 A |
1869 | if (flags & UPL_IOSTREAMING) |
1870 | local_flags |= CL_IOSTREAMING; | |
6d2010ae A |
1871 | if (flags & UPL_PAGING_ENCRYPTED) |
1872 | local_flags |= CL_ENCRYPTED; | |
9bccf70c | 1873 | |
1c79356b A |
1874 | |
1875 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
1876 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1877 | ||
1878 | /* | |
1879 | * can't page-in from a negative offset | |
1880 | * or if we're starting beyond the EOF | |
1881 | * or if the file offset isn't page aligned | |
1882 | * or the size requested isn't a multiple of PAGE_SIZE | |
1883 | */ | |
1884 | if (f_offset < 0 || f_offset >= filesize || | |
9bccf70c A |
1885 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { |
1886 | if (local_flags & CL_COMMIT) | |
1887 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1c79356b A |
1888 | return (EINVAL); |
1889 | } | |
1890 | max_size = filesize - f_offset; | |
1891 | ||
1892 | if (size < max_size) | |
1893 | io_size = size; | |
1894 | else | |
9bccf70c | 1895 | io_size = max_size; |
1c79356b | 1896 | |
9bccf70c | 1897 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 1898 | |
9bccf70c A |
1899 | if (size > rounded_size && (local_flags & CL_COMMIT)) |
1900 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
55e303ae | 1901 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
9bccf70c | 1902 | |
91447636 | 1903 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 1904 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 1905 | |
1c79356b A |
1906 | return (retval); |
1907 | } | |
1908 | ||
2d21ac55 | 1909 | |
9bccf70c | 1910 | int |
91447636 | 1911 | cluster_bp(buf_t bp) |
2d21ac55 A |
1912 | { |
1913 | return cluster_bp_ext(bp, NULL, NULL); | |
1914 | } | |
1915 | ||
1916 | ||
1917 | int | |
1918 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
1919 | { |
1920 | off_t f_offset; | |
1921 | int flags; | |
1922 | ||
9bccf70c | 1923 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, |
b0d623f7 | 1924 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
9bccf70c | 1925 | |
1c79356b | 1926 | if (bp->b_flags & B_READ) |
9bccf70c | 1927 | flags = CL_ASYNC | CL_READ; |
1c79356b | 1928 | else |
9bccf70c | 1929 | flags = CL_ASYNC; |
2d21ac55 A |
1930 | if (bp->b_flags & B_PASSIVE) |
1931 | flags |= CL_PASSIVE; | |
1c79356b A |
1932 | |
1933 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
1934 | ||
2d21ac55 | 1935 | return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
1936 | } |
1937 | ||
2d21ac55 A |
1938 | |
1939 | ||
9bccf70c | 1940 | int |
91447636 | 1941 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) |
1c79356b | 1942 | { |
2d21ac55 A |
1943 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); |
1944 | } | |
1945 | ||
1946 | ||
1947 | int | |
1948 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
1949 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
1950 | { | |
1951 | user_ssize_t cur_resid; | |
1952 | int retval = 0; | |
1953 | int flags; | |
1954 | int zflags; | |
1955 | int bflag; | |
1956 | int write_type = IO_COPY; | |
1957 | u_int32_t write_length; | |
1c79356b | 1958 | |
91447636 A |
1959 | flags = xflags; |
1960 | ||
2d21ac55 | 1961 | if (flags & IO_PASSIVE) |
b0d623f7 | 1962 | bflag = CL_PASSIVE; |
2d21ac55 | 1963 | else |
b0d623f7 | 1964 | bflag = 0; |
2d21ac55 | 1965 | |
316670eb | 1966 | if (vp->v_flag & VNOCACHE_DATA){ |
91447636 | 1967 | flags |= IO_NOCACHE; |
316670eb A |
1968 | bflag |= CL_NOCACHE; |
1969 | } | |
2d21ac55 | 1970 | if (uio == NULL) { |
91447636 | 1971 | /* |
2d21ac55 A |
1972 | * no user data... |
1973 | * this call is being made to zero-fill some range in the file | |
91447636 | 1974 | */ |
2d21ac55 | 1975 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); |
91447636 | 1976 | |
2d21ac55 | 1977 | return(retval); |
91447636 | 1978 | } |
2d21ac55 A |
1979 | /* |
1980 | * do a write through the cache if one of the following is true.... | |
6d2010ae | 1981 | * NOCACHE is not true or NODIRECT is true |
2d21ac55 A |
1982 | * the uio request doesn't target USERSPACE |
1983 | * otherwise, find out if we want the direct or contig variant for | |
1984 | * the first vector in the uio request | |
1985 | */ | |
6d2010ae | 1986 | if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) |
2d21ac55 A |
1987 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); |
1988 | ||
1989 | if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) | |
1990 | /* | |
1991 | * must go through the cached variant in this case | |
0b4e3aa0 | 1992 | */ |
2d21ac55 | 1993 | write_type = IO_COPY; |
0b4e3aa0 | 1994 | |
2d21ac55 A |
1995 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { |
1996 | ||
1997 | switch (write_type) { | |
91447636 | 1998 | |
2d21ac55 | 1999 | case IO_COPY: |
91447636 | 2000 | /* |
2d21ac55 A |
2001 | * make sure the uio_resid isn't too big... |
2002 | * internally, we want to handle all of the I/O in | |
2003 | * chunk sizes that fit in a 32 bit int | |
91447636 | 2004 | */ |
2d21ac55 | 2005 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
91447636 | 2006 | /* |
2d21ac55 A |
2007 | * we're going to have to call cluster_write_copy |
2008 | * more than once... | |
2009 | * | |
2010 | * only want the last call to cluster_write_copy to | |
2011 | * have the IO_TAILZEROFILL flag set and only the | |
2012 | * first call should have IO_HEADZEROFILL | |
91447636 | 2013 | */ |
2d21ac55 A |
2014 | zflags = flags & ~IO_TAILZEROFILL; |
2015 | flags &= ~IO_HEADZEROFILL; | |
91447636 | 2016 | |
2d21ac55 A |
2017 | write_length = MAX_IO_REQUEST_SIZE; |
2018 | } else { | |
2019 | /* | |
2020 | * last call to cluster_write_copy | |
91447636 | 2021 | */ |
2d21ac55 A |
2022 | zflags = flags; |
2023 | ||
2024 | write_length = (u_int32_t)cur_resid; | |
2025 | } | |
2026 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
2027 | break; | |
91447636 | 2028 | |
2d21ac55 A |
2029 | case IO_CONTIG: |
2030 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); | |
91447636 | 2031 | |
2d21ac55 A |
2032 | if (flags & IO_HEADZEROFILL) { |
2033 | /* | |
2034 | * only do this once per request | |
91447636 | 2035 | */ |
2d21ac55 | 2036 | flags &= ~IO_HEADZEROFILL; |
91447636 | 2037 | |
2d21ac55 A |
2038 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, |
2039 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2040 | if (retval) | |
2041 | break; | |
91447636 | 2042 | } |
2d21ac55 A |
2043 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); |
2044 | ||
2045 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
2046 | /* | |
2047 | * we're done with the data from the user specified buffer(s) | |
2048 | * and we've been requested to zero fill at the tail | |
2049 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2050 | * by rearranging the args and passing in IO_HEADZEROFILL | |
91447636 | 2051 | */ |
2d21ac55 A |
2052 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, |
2053 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2054 | } | |
2055 | break; | |
91447636 | 2056 | |
2d21ac55 A |
2057 | case IO_DIRECT: |
2058 | /* | |
2059 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2060 | */ | |
2061 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2062 | break; | |
91447636 | 2063 | |
2d21ac55 A |
2064 | case IO_UNKNOWN: |
2065 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2066 | break; | |
2067 | } | |
b0d623f7 A |
2068 | /* |
2069 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2070 | * multiple times to service a multi-vector request that is not aligned properly | |
2071 | * we need to update the oldEOF so that we | |
2072 | * don't zero-fill the head of a page if we've successfully written | |
2073 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2074 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2075 | * want that to happen for the very first page of the cluster_write, | |
2076 | * NOT the first page of each vector making up a multi-vector write. | |
2077 | */ | |
2078 | if (uio->uio_offset > oldEOF) | |
2079 | oldEOF = uio->uio_offset; | |
2d21ac55 A |
2080 | } |
2081 | return (retval); | |
1c79356b A |
2082 | } |
2083 | ||
b4c24cb9 | 2084 | |
9bccf70c | 2085 | static int |
2d21ac55 A |
2086 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, |
2087 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2088 | { |
2089 | upl_t upl; | |
2090 | upl_page_info_t *pl; | |
1c79356b | 2091 | vm_offset_t upl_offset; |
b0d623f7 | 2092 | vm_offset_t vector_upl_offset = 0; |
2d21ac55 A |
2093 | u_int32_t io_req_size; |
2094 | u_int32_t offset_in_file; | |
2095 | u_int32_t offset_in_iovbase; | |
b0d623f7 A |
2096 | u_int32_t io_size; |
2097 | int io_flag = 0; | |
2098 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
2099 | vm_size_t upl_needed_size; |
2100 | mach_msg_type_number_t pages_in_pl; | |
1c79356b A |
2101 | int upl_flags; |
2102 | kern_return_t kret; | |
2d21ac55 | 2103 | mach_msg_type_number_t i; |
1c79356b | 2104 | int force_data_sync; |
2d21ac55 A |
2105 | int retval = 0; |
2106 | int first_IO = 1; | |
d7e50217 | 2107 | struct clios iostate; |
2d21ac55 A |
2108 | user_addr_t iov_base; |
2109 | u_int32_t mem_alignment_mask; | |
2110 | u_int32_t devblocksize; | |
316670eb | 2111 | u_int32_t max_io_size; |
b0d623f7 | 2112 | u_int32_t max_upl_size; |
316670eb A |
2113 | u_int32_t max_vector_size; |
2114 | boolean_t io_throttled = FALSE; | |
cf7d32b8 | 2115 | |
b0d623f7 A |
2116 | u_int32_t vector_upl_iosize = 0; |
2117 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
2118 | off_t v_upl_uio_offset = 0; | |
2119 | int vector_upl_index=0; | |
2120 | upl_t vector_upl = NULL; | |
cf7d32b8 | 2121 | |
1c79356b A |
2122 | |
2123 | /* | |
2124 | * When we enter this routine, we know | |
1c79356b A |
2125 | * -- the resid will not exceed iov_len |
2126 | */ | |
2d21ac55 A |
2127 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, |
2128 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
91447636 | 2129 | |
b0d623f7 A |
2130 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); |
2131 | ||
2132 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2133 | ||
2134 | if (flags & IO_PASSIVE) | |
2135 | io_flag |= CL_PASSIVE; | |
316670eb A |
2136 | |
2137 | if (flags & IO_NOCACHE) | |
2138 | io_flag |= CL_NOCACHE; | |
2139 | ||
d7e50217 A |
2140 | iostate.io_completed = 0; |
2141 | iostate.io_issued = 0; | |
2142 | iostate.io_error = 0; | |
2143 | iostate.io_wanted = 0; | |
2144 | ||
6d2010ae A |
2145 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2146 | ||
2d21ac55 A |
2147 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
2148 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2149 | ||
2150 | if (devblocksize == 1) { | |
2151 | /* | |
2152 | * the AFP client advertises a devblocksize of 1 | |
2153 | * however, its BLOCKMAP routine maps to physical | |
2154 | * blocks that are PAGE_SIZE in size... | |
2155 | * therefore we can't ask for I/Os that aren't page aligned | |
2156 | * or aren't multiples of PAGE_SIZE in size | |
2157 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2158 | * the old behavior we had before the mem_alignment_mask | |
2159 | * changes went in... | |
2160 | */ | |
2161 | devblocksize = PAGE_SIZE; | |
2162 | } | |
2163 | ||
2164 | next_dwrite: | |
2165 | io_req_size = *write_length; | |
2166 | iov_base = uio_curriovbase(uio); | |
cc9f6e38 | 2167 | |
2d21ac55 A |
2168 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; |
2169 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
1c79356b | 2170 | |
2d21ac55 A |
2171 | if (offset_in_file || offset_in_iovbase) { |
2172 | /* | |
2173 | * one of the 2 important offsets is misaligned | |
2174 | * so fire an I/O through the cache for this entire vector | |
2175 | */ | |
2176 | goto wait_for_dwrites; | |
2177 | } | |
2178 | if (iov_base & (devblocksize - 1)) { | |
2179 | /* | |
2180 | * the offset in memory must be on a device block boundary | |
2181 | * so that we can guarantee that we can generate an | |
2182 | * I/O that ends on a page boundary in cluster_io | |
2183 | */ | |
2184 | goto wait_for_dwrites; | |
2185 | } | |
1c79356b | 2186 | |
2d21ac55 | 2187 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { |
316670eb A |
2188 | int throttle_type; |
2189 | ||
39236c6e | 2190 | if ( (throttle_type = cluster_is_throttled(vp)) ) { |
316670eb A |
2191 | /* |
2192 | * we're in the throttle window, at the very least | |
2193 | * we want to limit the size of the I/O we're about | |
2194 | * to issue | |
2195 | */ | |
39236c6e | 2196 | if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { |
316670eb A |
2197 | /* |
2198 | * we're in the throttle window and at least 1 I/O | |
2199 | * has already been issued by a throttleable thread | |
2200 | * in this window, so return with EAGAIN to indicate | |
2201 | * to the FS issuing the cluster_write call that it | |
2202 | * should now throttle after dropping any locks | |
2203 | */ | |
2204 | throttle_info_update_by_mount(vp->v_mount); | |
2205 | ||
2206 | io_throttled = TRUE; | |
2207 | goto wait_for_dwrites; | |
2208 | } | |
2209 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
2210 | max_io_size = THROTTLE_MAX_IOSIZE; | |
2211 | } else { | |
2212 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
2213 | max_io_size = max_upl_size; | |
2214 | } | |
2d21ac55 A |
2215 | |
2216 | if (first_IO) { | |
2217 | cluster_syncup(vp, newEOF, callback, callback_arg); | |
2218 | first_IO = 0; | |
2219 | } | |
2220 | io_size = io_req_size & ~PAGE_MASK; | |
cc9f6e38 A |
2221 | iov_base = uio_curriovbase(uio); |
2222 | ||
316670eb A |
2223 | if (io_size > max_io_size) |
2224 | io_size = max_io_size; | |
2d21ac55 | 2225 | |
b0d623f7 A |
2226 | if(useVectorUPL && (iov_base & PAGE_MASK)) { |
2227 | /* | |
2228 | * We have an iov_base that's not page-aligned. | |
2229 | * Issue all I/O's that have been collected within | |
2230 | * this Vectored UPL. | |
2231 | */ | |
2232 | if(vector_upl_index) { | |
2233 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2234 | reset_vector_run_state(); | |
2235 | } | |
2236 | ||
2237 | /* | |
2238 | * After this point, if we are using the Vector UPL path and the base is | |
2239 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2240 | */ | |
2241 | } | |
2242 | ||
2d21ac55 | 2243 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 A |
2244 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
2245 | ||
2246 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
cc9f6e38 | 2247 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
d7e50217 A |
2248 | |
2249 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
2250 | pages_in_pl = 0; | |
2251 | upl_size = upl_needed_size; | |
2252 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
55e303ae | 2253 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
d7e50217 A |
2254 | |
2255 | kret = vm_map_get_upl(current_map(), | |
cc9f6e38 | 2256 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
d7e50217 A |
2257 | &upl_size, |
2258 | &upl, | |
2259 | NULL, | |
2260 | &pages_in_pl, | |
2261 | &upl_flags, | |
2262 | force_data_sync); | |
2263 | ||
2264 | if (kret != KERN_SUCCESS) { | |
2265 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2266 | 0, 0, 0, kret, 0); | |
d7e50217 | 2267 | /* |
2d21ac55 | 2268 | * failed to get pagelist |
d7e50217 A |
2269 | * |
2270 | * we may have already spun some portion of this request | |
2271 | * off as async requests... we need to wait for the I/O | |
2272 | * to complete before returning | |
2273 | */ | |
2d21ac55 | 2274 | goto wait_for_dwrites; |
d7e50217 A |
2275 | } |
2276 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2277 | pages_in_pl = upl_size / PAGE_SIZE; | |
1c79356b | 2278 | |
d7e50217 A |
2279 | for (i = 0; i < pages_in_pl; i++) { |
2280 | if (!upl_valid_page(pl, i)) | |
2281 | break; | |
2282 | } | |
2283 | if (i == pages_in_pl) | |
2284 | break; | |
1c79356b | 2285 | |
d7e50217 A |
2286 | /* |
2287 | * didn't get all the pages back that we | |
2288 | * needed... release this upl and try again | |
2289 | */ | |
2d21ac55 | 2290 | ubc_upl_abort(upl, 0); |
1c79356b | 2291 | } |
d7e50217 A |
2292 | if (force_data_sync >= 3) { |
2293 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2294 | i, pages_in_pl, upl_size, kret, 0); | |
d7e50217 A |
2295 | /* |
2296 | * for some reason, we couldn't acquire a hold on all | |
2297 | * the pages needed in the user's address space | |
2298 | * | |
2299 | * we may have already spun some portion of this request | |
2300 | * off as async requests... we need to wait for the I/O | |
2301 | * to complete before returning | |
2302 | */ | |
2d21ac55 | 2303 | goto wait_for_dwrites; |
1c79356b | 2304 | } |
0b4e3aa0 | 2305 | |
d7e50217 A |
2306 | /* |
2307 | * Consider the possibility that upl_size wasn't satisfied. | |
2308 | */ | |
2d21ac55 A |
2309 | if (upl_size < upl_needed_size) { |
2310 | if (upl_size && upl_offset == 0) | |
2311 | io_size = upl_size; | |
2312 | else | |
2313 | io_size = 0; | |
2314 | } | |
d7e50217 | 2315 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
cc9f6e38 | 2316 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); |
1c79356b | 2317 | |
d7e50217 | 2318 | if (io_size == 0) { |
2d21ac55 | 2319 | ubc_upl_abort(upl, 0); |
d7e50217 A |
2320 | /* |
2321 | * we may have already spun some portion of this request | |
2322 | * off as async requests... we need to wait for the I/O | |
2323 | * to complete before returning | |
2324 | */ | |
2d21ac55 | 2325 | goto wait_for_dwrites; |
d7e50217 | 2326 | } |
b0d623f7 A |
2327 | |
2328 | if(useVectorUPL) { | |
2329 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
2330 | if(end_off) | |
2331 | issueVectorUPL = 1; | |
2332 | /* | |
2333 | * After this point, if we are using a vector UPL, then | |
2334 | * either all the UPL elements end on a page boundary OR | |
2335 | * this UPL is the last element because it does not end | |
2336 | * on a page boundary. | |
2337 | */ | |
2338 | } | |
2d21ac55 | 2339 | |
d7e50217 A |
2340 | /* |
2341 | * Now look for pages already in the cache | |
2342 | * and throw them away. | |
55e303ae A |
2343 | * uio->uio_offset is page aligned within the file |
2344 | * io_size is a multiple of PAGE_SIZE | |
d7e50217 | 2345 | */ |
55e303ae | 2346 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL); |
1c79356b | 2347 | |
d7e50217 A |
2348 | /* |
2349 | * we want push out these writes asynchronously so that we can overlap | |
2350 | * the preparation of the next I/O | |
2351 | * if there are already too many outstanding writes | |
2352 | * wait until some complete before issuing the next | |
2353 | */ | |
6d2010ae A |
2354 | if (iostate.io_issued > iostate.io_completed) |
2355 | cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct"); | |
cf7d32b8 | 2356 | |
d7e50217 A |
2357 | if (iostate.io_error) { |
2358 | /* | |
2359 | * one of the earlier writes we issued ran into a hard error | |
2360 | * don't issue any more writes, cleanup the UPL | |
2361 | * that was just created but not used, then | |
2362 | * go wait for all writes that are part of this stream | |
2363 | * to complete before returning the error to the caller | |
2364 | */ | |
2d21ac55 | 2365 | ubc_upl_abort(upl, 0); |
1c79356b | 2366 | |
2d21ac55 | 2367 | goto wait_for_dwrites; |
d7e50217 | 2368 | } |
1c79356b | 2369 | |
d7e50217 A |
2370 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, |
2371 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
1c79356b | 2372 | |
b0d623f7 A |
2373 | if(!useVectorUPL) |
2374 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
2d21ac55 | 2375 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
7b1edb79 | 2376 | |
b0d623f7 A |
2377 | else { |
2378 | if(!vector_upl_index) { | |
2379 | vector_upl = vector_upl_create(upl_offset); | |
2380 | v_upl_uio_offset = uio->uio_offset; | |
2381 | vector_upl_offset = upl_offset; | |
2382 | } | |
2383 | ||
2384 | vector_upl_set_subupl(vector_upl,upl,upl_size); | |
2385 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
2386 | vector_upl_index++; | |
2387 | vector_upl_iosize += io_size; | |
2388 | vector_upl_size += upl_size; | |
2389 | ||
316670eb | 2390 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
2391 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2392 | reset_vector_run_state(); | |
2393 | } | |
2394 | } | |
2395 | ||
2d21ac55 A |
2396 | /* |
2397 | * update the uio structure to | |
2398 | * reflect the I/O that we just issued | |
2399 | */ | |
cc9f6e38 | 2400 | uio_update(uio, (user_size_t)io_size); |
1c79356b | 2401 | |
b0d623f7 A |
2402 | /* |
2403 | * in case we end up calling through to cluster_write_copy to finish | |
2404 | * the tail of this request, we need to update the oldEOF so that we | |
2405 | * don't zero-fill the head of a page if we've successfully written | |
2406 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2407 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2408 | * want that to happen for the very first page of the cluster_write, | |
2409 | * NOT the first page of each vector making up a multi-vector write. | |
2410 | */ | |
2411 | if (uio->uio_offset > oldEOF) | |
2412 | oldEOF = uio->uio_offset; | |
2413 | ||
2d21ac55 A |
2414 | io_req_size -= io_size; |
2415 | ||
d7e50217 | 2416 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, |
2d21ac55 | 2417 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
2418 | |
2419 | } /* end while */ | |
2420 | ||
2d21ac55 | 2421 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { |
91447636 | 2422 | |
2d21ac55 A |
2423 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); |
2424 | ||
2425 | if (retval == 0 && *write_type == IO_DIRECT) { | |
2426 | ||
2427 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, | |
2428 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2429 | ||
2430 | goto next_dwrite; | |
2431 | } | |
2432 | } | |
2433 | ||
2434 | wait_for_dwrites: | |
b0d623f7 | 2435 | |
6d2010ae | 2436 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
b0d623f7 A |
2437 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2438 | reset_vector_run_state(); | |
2439 | } | |
2440 | ||
2441 | if (iostate.io_issued > iostate.io_completed) { | |
2d21ac55 A |
2442 | /* |
2443 | * make sure all async writes issued as part of this stream | |
2444 | * have completed before we return | |
2445 | */ | |
6d2010ae | 2446 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); |
2d21ac55 | 2447 | } |
d7e50217 | 2448 | if (iostate.io_error) |
2d21ac55 A |
2449 | retval = iostate.io_error; |
2450 | ||
6d2010ae A |
2451 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2452 | ||
316670eb A |
2453 | if (io_throttled == TRUE && retval == 0) |
2454 | retval = EAGAIN; | |
2455 | ||
2d21ac55 A |
2456 | if (io_req_size && retval == 0) { |
2457 | /* | |
2458 | * we couldn't handle the tail of this request in DIRECT mode | |
2459 | * so fire it through the copy path | |
2460 | * | |
2461 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2462 | * so we can just pass 0 in for the headOff and tailOff | |
2463 | */ | |
b0d623f7 A |
2464 | if (uio->uio_offset > oldEOF) |
2465 | oldEOF = uio->uio_offset; | |
2466 | ||
2d21ac55 | 2467 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); |
1c79356b | 2468 | |
2d21ac55 A |
2469 | *write_type = IO_UNKNOWN; |
2470 | } | |
1c79356b | 2471 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, |
2d21ac55 | 2472 | (int)uio->uio_offset, io_req_size, retval, 4, 0); |
1c79356b | 2473 | |
2d21ac55 | 2474 | return (retval); |
1c79356b A |
2475 | } |
2476 | ||
b4c24cb9 | 2477 | |
9bccf70c | 2478 | static int |
2d21ac55 A |
2479 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, |
2480 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
0b4e3aa0 | 2481 | { |
b4c24cb9 | 2482 | upl_page_info_t *pl; |
2d21ac55 A |
2483 | addr64_t src_paddr = 0; |
2484 | upl_t upl[MAX_VECTS]; | |
0b4e3aa0 | 2485 | vm_offset_t upl_offset; |
2d21ac55 A |
2486 | u_int32_t tail_size = 0; |
2487 | u_int32_t io_size; | |
2488 | u_int32_t xsize; | |
b0d623f7 | 2489 | upl_size_t upl_size; |
2d21ac55 A |
2490 | vm_size_t upl_needed_size; |
2491 | mach_msg_type_number_t pages_in_pl; | |
0b4e3aa0 A |
2492 | int upl_flags; |
2493 | kern_return_t kret; | |
2d21ac55 | 2494 | struct clios iostate; |
0b4e3aa0 | 2495 | int error = 0; |
2d21ac55 A |
2496 | int cur_upl = 0; |
2497 | int num_upl = 0; | |
2498 | int n; | |
cc9f6e38 | 2499 | user_addr_t iov_base; |
2d21ac55 A |
2500 | u_int32_t devblocksize; |
2501 | u_int32_t mem_alignment_mask; | |
0b4e3aa0 A |
2502 | |
2503 | /* | |
2504 | * When we enter this routine, we know | |
2d21ac55 A |
2505 | * -- the io_req_size will not exceed iov_len |
2506 | * -- the target address is physically contiguous | |
0b4e3aa0 | 2507 | */ |
2d21ac55 | 2508 | cluster_syncup(vp, newEOF, callback, callback_arg); |
0b4e3aa0 | 2509 | |
2d21ac55 A |
2510 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
2511 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 2512 | |
2d21ac55 A |
2513 | iostate.io_completed = 0; |
2514 | iostate.io_issued = 0; | |
2515 | iostate.io_error = 0; | |
2516 | iostate.io_wanted = 0; | |
2517 | ||
6d2010ae A |
2518 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2519 | ||
2d21ac55 A |
2520 | next_cwrite: |
2521 | io_size = *write_length; | |
91447636 | 2522 | |
cc9f6e38 A |
2523 | iov_base = uio_curriovbase(uio); |
2524 | ||
2d21ac55 | 2525 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0b4e3aa0 A |
2526 | upl_needed_size = upl_offset + io_size; |
2527 | ||
2528 | pages_in_pl = 0; | |
2529 | upl_size = upl_needed_size; | |
9bccf70c | 2530 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
55e303ae | 2531 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 A |
2532 | |
2533 | kret = vm_map_get_upl(current_map(), | |
cc9f6e38 | 2534 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2d21ac55 | 2535 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); |
0b4e3aa0 | 2536 | |
b4c24cb9 A |
2537 | if (kret != KERN_SUCCESS) { |
2538 | /* | |
2d21ac55 | 2539 | * failed to get pagelist |
b4c24cb9 | 2540 | */ |
2d21ac55 A |
2541 | error = EINVAL; |
2542 | goto wait_for_cwrites; | |
b4c24cb9 | 2543 | } |
2d21ac55 A |
2544 | num_upl++; |
2545 | ||
0b4e3aa0 A |
2546 | /* |
2547 | * Consider the possibility that upl_size wasn't satisfied. | |
0b4e3aa0 | 2548 | */ |
b4c24cb9 | 2549 | if (upl_size < upl_needed_size) { |
2d21ac55 A |
2550 | /* |
2551 | * This is a failure in the physical memory case. | |
2552 | */ | |
2553 | error = EINVAL; | |
2554 | goto wait_for_cwrites; | |
b4c24cb9 | 2555 | } |
2d21ac55 | 2556 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
0b4e3aa0 | 2557 | |
cc9f6e38 | 2558 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; |
0b4e3aa0 | 2559 | |
b4c24cb9 | 2560 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 2561 | u_int32_t head_size; |
0b4e3aa0 | 2562 | |
2d21ac55 | 2563 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
0b4e3aa0 | 2564 | |
b4c24cb9 A |
2565 | if (head_size > io_size) |
2566 | head_size = io_size; | |
2567 | ||
2d21ac55 | 2568 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); |
b4c24cb9 | 2569 | |
2d21ac55 A |
2570 | if (error) |
2571 | goto wait_for_cwrites; | |
b4c24cb9 | 2572 | |
b4c24cb9 A |
2573 | upl_offset += head_size; |
2574 | src_paddr += head_size; | |
2575 | io_size -= head_size; | |
2d21ac55 A |
2576 | |
2577 | iov_base += head_size; | |
2578 | } | |
2579 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
2580 | /* | |
2581 | * request doesn't set up on a memory boundary | |
2582 | * the underlying DMA engine can handle... | |
2583 | * return an error instead of going through | |
2584 | * the slow copy path since the intent of this | |
2585 | * path is direct I/O from device memory | |
2586 | */ | |
2587 | error = EINVAL; | |
2588 | goto wait_for_cwrites; | |
0b4e3aa0 | 2589 | } |
2d21ac55 | 2590 | |
b4c24cb9 A |
2591 | tail_size = io_size & (devblocksize - 1); |
2592 | io_size -= tail_size; | |
2593 | ||
2d21ac55 A |
2594 | while (io_size && error == 0) { |
2595 | ||
2596 | if (io_size > MAX_IO_CONTIG_SIZE) | |
2597 | xsize = MAX_IO_CONTIG_SIZE; | |
2598 | else | |
2599 | xsize = io_size; | |
2600 | /* | |
2601 | * request asynchronously so that we can overlap | |
2602 | * the preparation of the next I/O... we'll do | |
2603 | * the commit after all the I/O has completed | |
2604 | * since its all issued against the same UPL | |
2605 | * if there are already too many outstanding writes | |
2606 | * wait until some have completed before issuing the next | |
b4c24cb9 | 2607 | */ |
6d2010ae A |
2608 | if (iostate.io_issued > iostate.io_completed) |
2609 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); | |
2d21ac55 | 2610 | |
2d21ac55 A |
2611 | if (iostate.io_error) { |
2612 | /* | |
2613 | * one of the earlier writes we issued ran into a hard error | |
2614 | * don't issue any more writes... | |
2615 | * go wait for all writes that are part of this stream | |
2616 | * to complete before returning the error to the caller | |
2617 | */ | |
2618 | goto wait_for_cwrites; | |
2619 | } | |
b4c24cb9 | 2620 | /* |
2d21ac55 | 2621 | * issue an asynchronous write to cluster_io |
b4c24cb9 | 2622 | */ |
2d21ac55 A |
2623 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, |
2624 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
cc9f6e38 | 2625 | |
2d21ac55 A |
2626 | if (error == 0) { |
2627 | /* | |
2628 | * The cluster_io write completed successfully, | |
2629 | * update the uio structure | |
2630 | */ | |
2631 | uio_update(uio, (user_size_t)xsize); | |
b4c24cb9 | 2632 | |
2d21ac55 A |
2633 | upl_offset += xsize; |
2634 | src_paddr += xsize; | |
2635 | io_size -= xsize; | |
2636 | } | |
b4c24cb9 | 2637 | } |
cf7d32b8 | 2638 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { |
2d21ac55 A |
2639 | |
2640 | error = cluster_io_type(uio, write_type, write_length, 0); | |
2641 | ||
2642 | if (error == 0 && *write_type == IO_CONTIG) { | |
2643 | cur_upl++; | |
2644 | goto next_cwrite; | |
2645 | } | |
2646 | } else | |
2647 | *write_type = IO_UNKNOWN; | |
2648 | ||
2649 | wait_for_cwrites: | |
b4c24cb9 | 2650 | /* |
2d21ac55 A |
2651 | * make sure all async writes that are part of this stream |
2652 | * have completed before we proceed | |
2653 | */ | |
6d2010ae A |
2654 | if (iostate.io_issued > iostate.io_completed) |
2655 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); | |
cf7d32b8 | 2656 | |
2d21ac55 A |
2657 | if (iostate.io_error) |
2658 | error = iostate.io_error; | |
2659 | ||
6d2010ae A |
2660 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2661 | ||
2d21ac55 A |
2662 | if (error == 0 && tail_size) |
2663 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
2664 | ||
2665 | for (n = 0; n < num_upl; n++) | |
2666 | /* | |
2667 | * just release our hold on each physically contiguous | |
2668 | * region without changing any state | |
2669 | */ | |
2670 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
2671 | |
2672 | return (error); | |
2673 | } | |
2674 | ||
b4c24cb9 | 2675 | |
b0d623f7 A |
2676 | /* |
2677 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
2678 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
2679 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
2680 | * | |
2681 | * we should never force-zero-fill pages that are already valid in the cache... | |
2682 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
2683 | * via an mmap) so we can only do damage by trying to zero-fill | |
2684 | * | |
2685 | */ | |
2686 | static int | |
2687 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
2688 | { | |
2689 | int zero_pg_index; | |
2690 | boolean_t need_cluster_zero = TRUE; | |
2691 | ||
2692 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2693 | ||
2694 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
2695 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
2696 | ||
2697 | if (upl_valid_page(pl, zero_pg_index)) { | |
2698 | /* | |
2699 | * never force zero valid pages - dirty or clean | |
2700 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
2701 | */ | |
2702 | need_cluster_zero = FALSE; | |
2703 | } | |
2704 | } | |
2705 | if (need_cluster_zero == TRUE) | |
2706 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2707 | ||
2708 | return (bytes_to_zero); | |
2709 | } | |
2710 | ||
2711 | ||
9bccf70c | 2712 | static int |
2d21ac55 A |
2713 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, |
2714 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2715 | { |
2716 | upl_page_info_t *pl; | |
2717 | upl_t upl; | |
91447636 | 2718 | vm_offset_t upl_offset = 0; |
2d21ac55 | 2719 | vm_size_t upl_size; |
1c79356b A |
2720 | off_t upl_f_offset; |
2721 | int pages_in_upl; | |
2722 | int start_offset; | |
2723 | int xfer_resid; | |
2724 | int io_size; | |
1c79356b A |
2725 | int io_offset; |
2726 | int bytes_to_zero; | |
2727 | int bytes_to_move; | |
2728 | kern_return_t kret; | |
2729 | int retval = 0; | |
91447636 | 2730 | int io_resid; |
1c79356b A |
2731 | long long total_size; |
2732 | long long zero_cnt; | |
2733 | off_t zero_off; | |
2734 | long long zero_cnt1; | |
2735 | off_t zero_off1; | |
6d2010ae A |
2736 | off_t write_off = 0; |
2737 | int write_cnt = 0; | |
2738 | boolean_t first_pass = FALSE; | |
91447636 | 2739 | struct cl_extent cl; |
91447636 | 2740 | struct cl_writebehind *wbp; |
2d21ac55 | 2741 | int bflag; |
b0d623f7 A |
2742 | u_int max_cluster_pgcount; |
2743 | u_int max_io_size; | |
1c79356b A |
2744 | |
2745 | if (uio) { | |
2746 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2d21ac55 | 2747 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); |
1c79356b | 2748 | |
2d21ac55 | 2749 | io_resid = io_req_size; |
1c79356b A |
2750 | } else { |
2751 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2752 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
2753 | ||
91447636 | 2754 | io_resid = 0; |
1c79356b | 2755 | } |
b0d623f7 A |
2756 | if (flags & IO_PASSIVE) |
2757 | bflag = CL_PASSIVE; | |
2758 | else | |
2759 | bflag = 0; | |
316670eb A |
2760 | if (flags & IO_NOCACHE) |
2761 | bflag |= CL_NOCACHE; | |
2762 | ||
1c79356b A |
2763 | zero_cnt = 0; |
2764 | zero_cnt1 = 0; | |
91447636 A |
2765 | zero_off = 0; |
2766 | zero_off1 = 0; | |
1c79356b | 2767 | |
cf7d32b8 A |
2768 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; |
2769 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
2770 | ||
1c79356b A |
2771 | if (flags & IO_HEADZEROFILL) { |
2772 | /* | |
2773 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
2774 | * so we zero fill the intervening space between the old EOF and the offset | |
2775 | * where the next chunk of real data begins.... ftruncate will also use this | |
2776 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
2777 | * uio structure will not be provided | |
2778 | */ | |
2779 | if (uio) { | |
2780 | if (headOff < uio->uio_offset) { | |
2781 | zero_cnt = uio->uio_offset - headOff; | |
2782 | zero_off = headOff; | |
2783 | } | |
2784 | } else if (headOff < newEOF) { | |
2785 | zero_cnt = newEOF - headOff; | |
2786 | zero_off = headOff; | |
2787 | } | |
b0d623f7 A |
2788 | } else { |
2789 | if (uio && uio->uio_offset > oldEOF) { | |
2790 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
2791 | ||
2792 | if (zero_off >= oldEOF) { | |
2793 | zero_cnt = uio->uio_offset - zero_off; | |
2794 | ||
2795 | flags |= IO_HEADZEROFILL; | |
2796 | } | |
2797 | } | |
1c79356b A |
2798 | } |
2799 | if (flags & IO_TAILZEROFILL) { | |
2800 | if (uio) { | |
2d21ac55 | 2801 | zero_off1 = uio->uio_offset + io_req_size; |
1c79356b A |
2802 | |
2803 | if (zero_off1 < tailOff) | |
2804 | zero_cnt1 = tailOff - zero_off1; | |
2805 | } | |
b0d623f7 A |
2806 | } else { |
2807 | if (uio && newEOF > oldEOF) { | |
2808 | zero_off1 = uio->uio_offset + io_req_size; | |
2809 | ||
2810 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
2811 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
2812 | ||
2813 | flags |= IO_TAILZEROFILL; | |
2814 | } | |
2815 | } | |
1c79356b | 2816 | } |
55e303ae | 2817 | if (zero_cnt == 0 && uio == (struct uio *) 0) { |
91447636 A |
2818 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, |
2819 | retval, 0, 0, 0, 0); | |
2820 | return (0); | |
55e303ae | 2821 | } |
6d2010ae A |
2822 | if (uio) { |
2823 | write_off = uio->uio_offset; | |
2824 | write_cnt = uio_resid(uio); | |
2825 | /* | |
2826 | * delay updating the sequential write info | |
2827 | * in the control block until we've obtained | |
2828 | * the lock for it | |
2829 | */ | |
2830 | first_pass = TRUE; | |
2831 | } | |
91447636 | 2832 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { |
1c79356b A |
2833 | /* |
2834 | * for this iteration of the loop, figure out where our starting point is | |
2835 | */ | |
2836 | if (zero_cnt) { | |
2837 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
2838 | upl_f_offset = zero_off - start_offset; | |
91447636 | 2839 | } else if (io_resid) { |
1c79356b A |
2840 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
2841 | upl_f_offset = uio->uio_offset - start_offset; | |
2842 | } else { | |
2843 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
2844 | upl_f_offset = zero_off1 - start_offset; | |
2845 | } | |
2846 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
2847 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
2848 | ||
cf7d32b8 A |
2849 | if (total_size > max_io_size) |
2850 | total_size = max_io_size; | |
1c79356b | 2851 | |
91447636 | 2852 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); |
55e303ae | 2853 | |
2d21ac55 | 2854 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { |
55e303ae | 2855 | /* |
91447636 | 2856 | * assumption... total_size <= io_resid |
55e303ae A |
2857 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set |
2858 | */ | |
cf7d32b8 | 2859 | if ((start_offset + total_size) > max_io_size) |
b7266188 | 2860 | total_size = max_io_size - start_offset; |
55e303ae A |
2861 | xfer_resid = total_size; |
2862 | ||
2d21ac55 | 2863 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); |
b0d623f7 | 2864 | |
55e303ae A |
2865 | if (retval) |
2866 | break; | |
2867 | ||
2d21ac55 | 2868 | io_resid -= (total_size - xfer_resid); |
55e303ae A |
2869 | total_size = xfer_resid; |
2870 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2871 | upl_f_offset = uio->uio_offset - start_offset; | |
2872 | ||
2873 | if (total_size == 0) { | |
2874 | if (start_offset) { | |
2875 | /* | |
2876 | * the write did not finish on a page boundary | |
2877 | * which will leave upl_f_offset pointing to the | |
2878 | * beginning of the last page written instead of | |
2879 | * the page beyond it... bump it in this case | |
2880 | * so that the cluster code records the last page | |
2881 | * written as dirty | |
2882 | */ | |
2883 | upl_f_offset += PAGE_SIZE_64; | |
2884 | } | |
2885 | upl_size = 0; | |
2886 | ||
2887 | goto check_cluster; | |
2888 | } | |
2889 | } | |
1c79356b A |
2890 | /* |
2891 | * compute the size of the upl needed to encompass | |
2892 | * the requested write... limit each call to cluster_io | |
0b4e3aa0 A |
2893 | * to the maximum UPL size... cluster_io will clip if |
2894 | * this exceeds the maximum io_size for the device, | |
2895 | * make sure to account for | |
1c79356b A |
2896 | * a starting offset that's not page aligned |
2897 | */ | |
2898 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2899 | ||
cf7d32b8 A |
2900 | if (upl_size > max_io_size) |
2901 | upl_size = max_io_size; | |
1c79356b A |
2902 | |
2903 | pages_in_upl = upl_size / PAGE_SIZE; | |
2904 | io_size = upl_size - start_offset; | |
2905 | ||
2906 | if ((long long)io_size > total_size) | |
2907 | io_size = total_size; | |
2908 | ||
55e303ae A |
2909 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); |
2910 | ||
1c79356b | 2911 | |
91447636 A |
2912 | /* |
2913 | * Gather the pages from the buffer cache. | |
2914 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
2915 | * that we intend to modify these pages. | |
2916 | */ | |
0b4e3aa0 | 2917 | kret = ubc_create_upl(vp, |
91447636 A |
2918 | upl_f_offset, |
2919 | upl_size, | |
2920 | &upl, | |
2921 | &pl, | |
b0d623f7 | 2922 | UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY)); |
1c79356b | 2923 | if (kret != KERN_SUCCESS) |
2d21ac55 | 2924 | panic("cluster_write_copy: failed to get pagelist"); |
1c79356b | 2925 | |
55e303ae | 2926 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, |
b0d623f7 | 2927 | upl, (int)upl_f_offset, start_offset, 0, 0); |
1c79356b | 2928 | |
b0d623f7 | 2929 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { |
0b4e3aa0 | 2930 | int read_size; |
1c79356b | 2931 | |
0b4e3aa0 | 2932 | /* |
1c79356b A |
2933 | * we're starting in the middle of the first page of the upl |
2934 | * and the page isn't currently valid, so we're going to have | |
2935 | * to read it in first... this is a synchronous operation | |
2936 | */ | |
2937 | read_size = PAGE_SIZE; | |
2938 | ||
b0d623f7 A |
2939 | if ((upl_f_offset + read_size) > oldEOF) |
2940 | read_size = oldEOF - upl_f_offset; | |
9bccf70c | 2941 | |
91447636 | 2942 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, |
2d21ac55 | 2943 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2944 | if (retval) { |
0b4e3aa0 | 2945 | /* |
1c79356b A |
2946 | * we had an error during the read which causes us to abort |
2947 | * the current cluster_write request... before we do, we need | |
2948 | * to release the rest of the pages in the upl without modifying | |
2949 | * there state and mark the failed page in error | |
2950 | */ | |
935ed37a | 2951 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
2952 | |
2953 | if (upl_size > PAGE_SIZE) | |
2954 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
2955 | |
2956 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 2957 | upl, 0, 0, retval, 0); |
1c79356b A |
2958 | break; |
2959 | } | |
2960 | } | |
2961 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
2962 | /* | |
2963 | * the last offset we're writing to in this upl does not end on a page | |
2964 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
2965 | * pre-read this page in if it isn't already valid | |
2966 | */ | |
2967 | upl_offset = upl_size - PAGE_SIZE; | |
2968 | ||
2969 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
2970 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { | |
2971 | int read_size; | |
2972 | ||
2973 | read_size = PAGE_SIZE; | |
2974 | ||
b0d623f7 A |
2975 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) |
2976 | read_size = oldEOF - (upl_f_offset + upl_offset); | |
9bccf70c | 2977 | |
91447636 | 2978 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, |
2d21ac55 | 2979 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2980 | if (retval) { |
0b4e3aa0 | 2981 | /* |
1c79356b | 2982 | * we had an error during the read which causes us to abort |
0b4e3aa0 A |
2983 | * the current cluster_write request... before we do, we |
2984 | * need to release the rest of the pages in the upl without | |
2985 | * modifying there state and mark the failed page in error | |
1c79356b | 2986 | */ |
935ed37a | 2987 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
2988 | |
2989 | if (upl_size > PAGE_SIZE) | |
2990 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
2991 | |
2992 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 2993 | upl, 0, 0, retval, 0); |
1c79356b A |
2994 | break; |
2995 | } | |
2996 | } | |
2997 | } | |
1c79356b A |
2998 | xfer_resid = io_size; |
2999 | io_offset = start_offset; | |
3000 | ||
3001 | while (zero_cnt && xfer_resid) { | |
3002 | ||
3003 | if (zero_cnt < (long long)xfer_resid) | |
3004 | bytes_to_zero = zero_cnt; | |
3005 | else | |
3006 | bytes_to_zero = xfer_resid; | |
3007 | ||
b0d623f7 | 3008 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); |
9bccf70c | 3009 | |
1c79356b A |
3010 | xfer_resid -= bytes_to_zero; |
3011 | zero_cnt -= bytes_to_zero; | |
3012 | zero_off += bytes_to_zero; | |
3013 | io_offset += bytes_to_zero; | |
3014 | } | |
91447636 | 3015 | if (xfer_resid && io_resid) { |
2d21ac55 A |
3016 | u_int32_t io_requested; |
3017 | ||
91447636 | 3018 | bytes_to_move = min(io_resid, xfer_resid); |
2d21ac55 | 3019 | io_requested = bytes_to_move; |
1c79356b | 3020 | |
2d21ac55 | 3021 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); |
9bccf70c | 3022 | |
1c79356b | 3023 | if (retval) { |
9bccf70c | 3024 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
3025 | |
3026 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3027 | upl, 0, 0, retval, 0); |
1c79356b | 3028 | } else { |
2d21ac55 | 3029 | io_resid -= bytes_to_move; |
1c79356b A |
3030 | xfer_resid -= bytes_to_move; |
3031 | io_offset += bytes_to_move; | |
3032 | } | |
3033 | } | |
3034 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
3035 | ||
3036 | if (zero_cnt1 < (long long)xfer_resid) | |
3037 | bytes_to_zero = zero_cnt1; | |
3038 | else | |
3039 | bytes_to_zero = xfer_resid; | |
3040 | ||
b0d623f7 A |
3041 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); |
3042 | ||
1c79356b A |
3043 | xfer_resid -= bytes_to_zero; |
3044 | zero_cnt1 -= bytes_to_zero; | |
3045 | zero_off1 += bytes_to_zero; | |
3046 | io_offset += bytes_to_zero; | |
3047 | } | |
1c79356b | 3048 | if (retval == 0) { |
9bccf70c | 3049 | int cl_index; |
2d21ac55 | 3050 | int ret_cluster_try_push; |
1c79356b A |
3051 | |
3052 | io_size += start_offset; | |
3053 | ||
2d21ac55 | 3054 | if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { |
1c79356b A |
3055 | /* |
3056 | * if we're extending the file with this write | |
3057 | * we'll zero fill the rest of the page so that | |
3058 | * if the file gets extended again in such a way as to leave a | |
3059 | * hole starting at this EOF, we'll have zero's in the correct spot | |
3060 | */ | |
55e303ae | 3061 | cluster_zero(upl, io_size, upl_size - io_size, NULL); |
1c79356b | 3062 | } |
935ed37a A |
3063 | /* |
3064 | * release the upl now if we hold one since... | |
3065 | * 1) pages in it may be present in the sparse cluster map | |
3066 | * and may span 2 separate buckets there... if they do and | |
3067 | * we happen to have to flush a bucket to make room and it intersects | |
3068 | * this upl, a deadlock may result on page BUSY | |
3069 | * 2) we're delaying the I/O... from this point forward we're just updating | |
3070 | * the cluster state... no need to hold the pages, so commit them | |
3071 | * 3) IO_SYNC is set... | |
3072 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
3073 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
3074 | * upon committing it... this is not the behavior we want since it's possible for | |
3075 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
3076 | * we'll pick these pages back up later with the correct behavior specified. | |
3077 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
3078 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
3079 | * we hold since the flushing context is holding the cluster lock. | |
3080 | */ | |
3081 | ubc_upl_commit_range(upl, 0, upl_size, | |
3082 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
3083 | check_cluster: | |
3084 | /* | |
3085 | * calculate the last logical block number | |
3086 | * that this delayed I/O encompassed | |
3087 | */ | |
3088 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3089 | ||
b0d623f7 | 3090 | if (flags & IO_SYNC) { |
9bccf70c A |
3091 | /* |
3092 | * if the IO_SYNC flag is set than we need to | |
3093 | * bypass any clusters and immediately issue | |
3094 | * the I/O | |
3095 | */ | |
3096 | goto issue_io; | |
b0d623f7 | 3097 | } |
91447636 A |
3098 | /* |
3099 | * take the lock to protect our accesses | |
3100 | * of the writebehind and sparse cluster state | |
3101 | */ | |
3102 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3103 | ||
91447636 | 3104 | if (wbp->cl_scmap) { |
55e303ae | 3105 | |
91447636 | 3106 | if ( !(flags & IO_NOCACHE)) { |
55e303ae A |
3107 | /* |
3108 | * we've fallen into the sparse | |
3109 | * cluster method of delaying dirty pages | |
55e303ae | 3110 | */ |
b0d623f7 | 3111 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3112 | |
3113 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3114 | |
3115 | continue; | |
3116 | } | |
3117 | /* | |
3118 | * must have done cached writes that fell into | |
3119 | * the sparse cluster mechanism... we've switched | |
3120 | * to uncached writes on the file, so go ahead | |
3121 | * and push whatever's in the sparse map | |
3122 | * and switch back to normal clustering | |
55e303ae | 3123 | */ |
91447636 | 3124 | wbp->cl_number = 0; |
935ed37a | 3125 | |
6d2010ae | 3126 | sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg); |
55e303ae A |
3127 | /* |
3128 | * no clusters of either type present at this point | |
3129 | * so just go directly to start_new_cluster since | |
3130 | * we know we need to delay this I/O since we've | |
3131 | * already released the pages back into the cache | |
3132 | * to avoid the deadlock with sparse_cluster_push | |
3133 | */ | |
3134 | goto start_new_cluster; | |
6d2010ae A |
3135 | } |
3136 | if (first_pass) { | |
3137 | if (write_off == wbp->cl_last_write) | |
3138 | wbp->cl_seq_written += write_cnt; | |
3139 | else | |
3140 | wbp->cl_seq_written = write_cnt; | |
3141 | ||
3142 | wbp->cl_last_write = write_off + write_cnt; | |
3143 | ||
3144 | first_pass = FALSE; | |
3145 | } | |
91447636 | 3146 | if (wbp->cl_number == 0) |
9bccf70c A |
3147 | /* |
3148 | * no clusters currently present | |
3149 | */ | |
3150 | goto start_new_cluster; | |
1c79356b | 3151 | |
91447636 | 3152 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
1c79356b | 3153 | /* |
55e303ae A |
3154 | * check each cluster that we currently hold |
3155 | * try to merge some or all of this write into | |
3156 | * one or more of the existing clusters... if | |
3157 | * any portion of the write remains, start a | |
3158 | * new cluster | |
1c79356b | 3159 | */ |
91447636 | 3160 | if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { |
9bccf70c A |
3161 | /* |
3162 | * the current write starts at or after the current cluster | |
3163 | */ | |
cf7d32b8 | 3164 | if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3165 | /* |
3166 | * we have a write that fits entirely | |
3167 | * within the existing cluster limits | |
3168 | */ | |
91447636 | 3169 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) |
1c79356b | 3170 | /* |
9bccf70c | 3171 | * update our idea of where the cluster ends |
1c79356b | 3172 | */ |
91447636 | 3173 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c | 3174 | break; |
1c79356b | 3175 | } |
cf7d32b8 | 3176 | if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3177 | /* |
3178 | * we have a write that starts in the middle of the current cluster | |
55e303ae A |
3179 | * but extends beyond the cluster's limit... we know this because |
3180 | * of the previous checks | |
3181 | * we'll extend the current cluster to the max | |
91447636 | 3182 | * and update the b_addr for the current write to reflect that |
55e303ae A |
3183 | * the head of it was absorbed into this cluster... |
3184 | * note that we'll always have a leftover tail in this case since | |
3185 | * full absorbtion would have occurred in the clause above | |
1c79356b | 3186 | */ |
cf7d32b8 | 3187 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; |
55e303ae | 3188 | |
91447636 | 3189 | cl.b_addr = wbp->cl_clusters[cl_index].e_addr; |
1c79356b A |
3190 | } |
3191 | /* | |
55e303ae A |
3192 | * we come here for the case where the current write starts |
3193 | * beyond the limit of the existing cluster or we have a leftover | |
3194 | * tail after a partial absorbtion | |
9bccf70c A |
3195 | * |
3196 | * in either case, we'll check the remaining clusters before | |
3197 | * starting a new one | |
1c79356b | 3198 | */ |
9bccf70c | 3199 | } else { |
1c79356b | 3200 | /* |
55e303ae | 3201 | * the current write starts in front of the cluster we're currently considering |
1c79356b | 3202 | */ |
cf7d32b8 | 3203 | if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) { |
1c79356b | 3204 | /* |
55e303ae A |
3205 | * we can just merge the new request into |
3206 | * this cluster and leave it in the cache | |
3207 | * since the resulting cluster is still | |
3208 | * less than the maximum allowable size | |
1c79356b | 3209 | */ |
91447636 | 3210 | wbp->cl_clusters[cl_index].b_addr = cl.b_addr; |
1c79356b | 3211 | |
91447636 | 3212 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { |
9bccf70c A |
3213 | /* |
3214 | * the current write completely | |
55e303ae | 3215 | * envelops the existing cluster and since |
cf7d32b8 | 3216 | * each write is limited to at most max_cluster_pgcount pages |
55e303ae A |
3217 | * we can just use the start and last blocknos of the write |
3218 | * to generate the cluster limits | |
9bccf70c | 3219 | */ |
91447636 | 3220 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c A |
3221 | } |
3222 | break; | |
1c79356b | 3223 | } |
9bccf70c | 3224 | |
1c79356b | 3225 | /* |
9bccf70c A |
3226 | * if we were to combine this write with the current cluster |
3227 | * we would exceed the cluster size limit.... so, | |
3228 | * let's see if there's any overlap of the new I/O with | |
55e303ae A |
3229 | * the cluster we're currently considering... in fact, we'll |
3230 | * stretch the cluster out to it's full limit and see if we | |
3231 | * get an intersection with the current write | |
9bccf70c | 3232 | * |
1c79356b | 3233 | */ |
cf7d32b8 | 3234 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { |
1c79356b | 3235 | /* |
55e303ae A |
3236 | * the current write extends into the proposed cluster |
3237 | * clip the length of the current write after first combining it's | |
3238 | * tail with the newly shaped cluster | |
1c79356b | 3239 | */ |
cf7d32b8 | 3240 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; |
55e303ae | 3241 | |
91447636 | 3242 | cl.e_addr = wbp->cl_clusters[cl_index].b_addr; |
55e303ae | 3243 | } |
9bccf70c A |
3244 | /* |
3245 | * if we get here, there was no way to merge | |
55e303ae A |
3246 | * any portion of this write with this cluster |
3247 | * or we could only merge part of it which | |
3248 | * will leave a tail... | |
9bccf70c A |
3249 | * we'll check the remaining clusters before starting a new one |
3250 | */ | |
1c79356b | 3251 | } |
9bccf70c | 3252 | } |
91447636 | 3253 | if (cl_index < wbp->cl_number) |
9bccf70c | 3254 | /* |
55e303ae A |
3255 | * we found an existing cluster(s) that we |
3256 | * could entirely merge this I/O into | |
9bccf70c A |
3257 | */ |
3258 | goto delay_io; | |
3259 | ||
6d2010ae A |
3260 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && |
3261 | wbp->cl_number == MAX_CLUSTERS && | |
3262 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
3263 | uint32_t n; | |
3264 | ||
3265 | if (vp->v_mount->mnt_kern_flag & MNTK_SSD) | |
3266 | n = WRITE_BEHIND_SSD; | |
3267 | else | |
3268 | n = WRITE_BEHIND; | |
3269 | ||
3270 | while (n--) | |
3271 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg); | |
3272 | } | |
3273 | if (wbp->cl_number < MAX_CLUSTERS) { | |
9bccf70c A |
3274 | /* |
3275 | * we didn't find an existing cluster to | |
3276 | * merge into, but there's room to start | |
1c79356b A |
3277 | * a new one |
3278 | */ | |
9bccf70c | 3279 | goto start_new_cluster; |
6d2010ae | 3280 | } |
9bccf70c A |
3281 | /* |
3282 | * no exisitng cluster to merge with and no | |
3283 | * room to start a new one... we'll try | |
55e303ae A |
3284 | * pushing one of the existing ones... if none of |
3285 | * them are able to be pushed, we'll switch | |
3286 | * to the sparse cluster mechanism | |
91447636 | 3287 | * cluster_try_push updates cl_number to the |
55e303ae A |
3288 | * number of remaining clusters... and |
3289 | * returns the number of currently unused clusters | |
9bccf70c | 3290 | */ |
2d21ac55 A |
3291 | ret_cluster_try_push = 0; |
3292 | ||
3293 | /* | |
3294 | * if writes are not deferred, call cluster push immediately | |
3295 | */ | |
91447636 | 3296 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { |
91447636 | 3297 | |
6d2010ae | 3298 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg); |
91447636 | 3299 | } |
9bccf70c | 3300 | |
2d21ac55 A |
3301 | /* |
3302 | * execute following regardless of writes being deferred or not | |
3303 | */ | |
91447636 | 3304 | if (ret_cluster_try_push == 0) { |
55e303ae A |
3305 | /* |
3306 | * no more room in the normal cluster mechanism | |
3307 | * so let's switch to the more expansive but expensive | |
3308 | * sparse mechanism.... | |
55e303ae | 3309 | */ |
2d21ac55 | 3310 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg); |
b0d623f7 | 3311 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3312 | |
3313 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3314 | |
3315 | continue; | |
9bccf70c A |
3316 | } |
3317 | start_new_cluster: | |
91447636 A |
3318 | wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; |
3319 | wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; | |
9bccf70c | 3320 | |
2d21ac55 A |
3321 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; |
3322 | ||
91447636 | 3323 | if (flags & IO_NOCACHE) |
2d21ac55 A |
3324 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; |
3325 | ||
3326 | if (bflag & CL_PASSIVE) | |
3327 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; | |
3328 | ||
91447636 | 3329 | wbp->cl_number++; |
55e303ae | 3330 | delay_io: |
91447636 A |
3331 | lck_mtx_unlock(&wbp->cl_lockw); |
3332 | ||
9bccf70c A |
3333 | continue; |
3334 | issue_io: | |
3335 | /* | |
935ed37a | 3336 | * we don't hold the lock at this point |
91447636 | 3337 | * |
935ed37a | 3338 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set |
91447636 | 3339 | * so that we correctly deal with a change in state of the hardware modify bit... |
2d21ac55 A |
3340 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force |
3341 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
91447636 | 3342 | * responsible for generating the correct sized I/O(s) |
9bccf70c | 3343 | */ |
2d21ac55 | 3344 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg); |
1c79356b A |
3345 | } |
3346 | } | |
2d21ac55 | 3347 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); |
1c79356b A |
3348 | |
3349 | return (retval); | |
3350 | } | |
3351 | ||
2d21ac55 A |
3352 | |
3353 | ||
9bccf70c | 3354 | int |
91447636 | 3355 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) |
1c79356b | 3356 | { |
2d21ac55 A |
3357 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); |
3358 | } | |
3359 | ||
3360 | ||
3361 | int | |
3362 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3363 | { | |
3364 | int retval = 0; | |
3365 | int flags; | |
3366 | user_ssize_t cur_resid; | |
3367 | u_int32_t io_size; | |
3368 | u_int32_t read_length = 0; | |
3369 | int read_type = IO_COPY; | |
1c79356b | 3370 | |
91447636 | 3371 | flags = xflags; |
1c79356b | 3372 | |
91447636 A |
3373 | if (vp->v_flag & VNOCACHE_DATA) |
3374 | flags |= IO_NOCACHE; | |
2d21ac55 | 3375 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) |
91447636 | 3376 | flags |= IO_RAOFF; |
316670eb A |
3377 | |
3378 | /* | |
3379 | * If we're doing an encrypted IO, then first check to see | |
3380 | * if the IO requested was page aligned. If not, then bail | |
3381 | * out immediately. | |
3382 | */ | |
3383 | if (flags & IO_ENCRYPTED) { | |
3384 | if (read_length & PAGE_MASK) { | |
3385 | retval = EINVAL; | |
3386 | return retval; | |
3387 | } | |
3388 | } | |
91447636 | 3389 | |
316670eb | 3390 | /* |
2d21ac55 A |
3391 | * do a read through the cache if one of the following is true.... |
3392 | * NOCACHE is not true | |
3393 | * the uio request doesn't target USERSPACE | |
316670eb A |
3394 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. |
3395 | * Reading encrypted data from a CP filesystem should never result in the data touching | |
3396 | * the UBC. | |
3397 | * | |
2d21ac55 A |
3398 | * otherwise, find out if we want the direct or contig variant for |
3399 | * the first vector in the uio request | |
3400 | */ | |
316670eb | 3401 | if (((flags & IO_NOCACHE) || (flags & IO_ENCRYPTED)) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) { |
39236c6e A |
3402 | |
3403 | boolean_t check_io_type = TRUE; | |
3404 | ||
3405 | ||
3406 | if (check_io_type) { | |
3407 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3408 | } | |
316670eb A |
3409 | } |
3410 | ||
2d21ac55 | 3411 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { |
91447636 | 3412 | |
2d21ac55 A |
3413 | switch (read_type) { |
3414 | ||
3415 | case IO_COPY: | |
91447636 | 3416 | /* |
2d21ac55 A |
3417 | * make sure the uio_resid isn't too big... |
3418 | * internally, we want to handle all of the I/O in | |
3419 | * chunk sizes that fit in a 32 bit int | |
91447636 | 3420 | */ |
2d21ac55 A |
3421 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) |
3422 | io_size = MAX_IO_REQUEST_SIZE; | |
3423 | else | |
3424 | io_size = (u_int32_t)cur_resid; | |
91447636 | 3425 | |
2d21ac55 A |
3426 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); |
3427 | break; | |
1c79356b | 3428 | |
2d21ac55 A |
3429 | case IO_DIRECT: |
3430 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); | |
3431 | break; | |
91447636 | 3432 | |
2d21ac55 A |
3433 | case IO_CONTIG: |
3434 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); | |
3435 | break; | |
3436 | ||
3437 | case IO_UNKNOWN: | |
3438 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3439 | break; | |
3440 | } | |
3441 | } | |
3442 | return (retval); | |
3443 | } | |
91447636 | 3444 | |
91447636 | 3445 | |
91447636 | 3446 | |
2d21ac55 | 3447 | static void |
b0d623f7 | 3448 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) |
2d21ac55 A |
3449 | { |
3450 | int range; | |
3451 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
1c79356b | 3452 | |
2d21ac55 | 3453 | if ((range = last_pg - start_pg)) { |
b0d623f7 | 3454 | if (take_reference) |
2d21ac55 A |
3455 | abort_flags |= UPL_ABORT_REFERENCE; |
3456 | ||
3457 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3458 | } | |
1c79356b A |
3459 | } |
3460 | ||
2d21ac55 | 3461 | |
9bccf70c | 3462 | static int |
2d21ac55 | 3463 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
3464 | { |
3465 | upl_page_info_t *pl; | |
3466 | upl_t upl; | |
3467 | vm_offset_t upl_offset; | |
b0d623f7 | 3468 | u_int32_t upl_size; |
1c79356b A |
3469 | off_t upl_f_offset; |
3470 | int start_offset; | |
3471 | int start_pg; | |
3472 | int last_pg; | |
91447636 | 3473 | int uio_last = 0; |
1c79356b A |
3474 | int pages_in_upl; |
3475 | off_t max_size; | |
55e303ae A |
3476 | off_t last_ioread_offset; |
3477 | off_t last_request_offset; | |
1c79356b | 3478 | kern_return_t kret; |
1c79356b A |
3479 | int error = 0; |
3480 | int retval = 0; | |
2d21ac55 A |
3481 | u_int32_t size_of_prefetch; |
3482 | u_int32_t xsize; | |
3483 | u_int32_t io_size; | |
cf7d32b8 | 3484 | u_int32_t max_rd_size; |
b0d623f7 A |
3485 | u_int32_t max_io_size; |
3486 | u_int32_t max_prefetch; | |
55e303ae A |
3487 | u_int rd_ahead_enabled = 1; |
3488 | u_int prefetch_enabled = 1; | |
91447636 A |
3489 | struct cl_readahead * rap; |
3490 | struct clios iostate; | |
3491 | struct cl_extent extent; | |
2d21ac55 A |
3492 | int bflag; |
3493 | int take_reference = 1; | |
2d21ac55 | 3494 | int policy = IOPOL_DEFAULT; |
6d2010ae | 3495 | boolean_t iolock_inited = FALSE; |
b0d623f7 A |
3496 | |
3497 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
3498 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); | |
316670eb A |
3499 | |
3500 | if (flags & IO_ENCRYPTED) { | |
3501 | panic ("encrypted blocks will hit UBC!"); | |
3502 | } | |
b0d623f7 | 3503 | |
39236c6e | 3504 | policy = throttle_get_io_policy(NULL); |
2d21ac55 | 3505 | |
39236c6e | 3506 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) |
2d21ac55 A |
3507 | take_reference = 0; |
3508 | ||
3509 | if (flags & IO_PASSIVE) | |
cf7d32b8 | 3510 | bflag = CL_PASSIVE; |
2d21ac55 | 3511 | else |
b0d623f7 | 3512 | bflag = 0; |
cf7d32b8 | 3513 | |
316670eb A |
3514 | if (flags & IO_NOCACHE) |
3515 | bflag |= CL_NOCACHE; | |
3516 | ||
b0d623f7 | 3517 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
6d2010ae | 3518 | max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD)); |
b0d623f7 | 3519 | max_rd_size = max_prefetch; |
55e303ae | 3520 | |
2d21ac55 | 3521 | last_request_offset = uio->uio_offset + io_req_size; |
55e303ae | 3522 | |
b0d623f7 A |
3523 | if (last_request_offset > filesize) |
3524 | last_request_offset = filesize; | |
3525 | ||
2d21ac55 | 3526 | if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { |
55e303ae | 3527 | rd_ahead_enabled = 0; |
91447636 A |
3528 | rap = NULL; |
3529 | } else { | |
39236c6e | 3530 | if (cluster_is_throttled(vp)) { |
316670eb A |
3531 | /* |
3532 | * we're in the throttle window, at the very least | |
3533 | * we want to limit the size of the I/O we're about | |
3534 | * to issue | |
3535 | */ | |
91447636 A |
3536 | rd_ahead_enabled = 0; |
3537 | prefetch_enabled = 0; | |
55e303ae | 3538 | |
316670eb | 3539 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 A |
3540 | } |
3541 | if ((rap = cluster_get_rap(vp)) == NULL) | |
3542 | rd_ahead_enabled = 0; | |
b0d623f7 A |
3543 | else { |
3544 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
3545 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
3546 | } | |
55e303ae | 3547 | } |
91447636 | 3548 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { |
55e303ae A |
3549 | /* |
3550 | * determine if we already have a read-ahead in the pipe courtesy of the | |
3551 | * last read systemcall that was issued... | |
3552 | * if so, pick up it's extent to determine where we should start | |
3553 | * with respect to any read-ahead that might be necessary to | |
3554 | * garner all the data needed to complete this read systemcall | |
3555 | */ | |
91447636 | 3556 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; |
1c79356b | 3557 | |
55e303ae A |
3558 | if (last_ioread_offset < uio->uio_offset) |
3559 | last_ioread_offset = (off_t)0; | |
3560 | else if (last_ioread_offset > last_request_offset) | |
3561 | last_ioread_offset = last_request_offset; | |
3562 | } else | |
3563 | last_ioread_offset = (off_t)0; | |
1c79356b | 3564 | |
2d21ac55 | 3565 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { |
b0d623f7 A |
3566 | |
3567 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3568 | |
2d21ac55 A |
3569 | if ((off_t)(io_req_size) < max_size) |
3570 | io_size = io_req_size; | |
1c79356b A |
3571 | else |
3572 | io_size = max_size; | |
9bccf70c | 3573 | |
91447636 | 3574 | if (!(flags & IO_NOCACHE)) { |
1c79356b | 3575 | |
55e303ae | 3576 | while (io_size) { |
2d21ac55 A |
3577 | u_int32_t io_resid; |
3578 | u_int32_t io_requested; | |
1c79356b | 3579 | |
55e303ae A |
3580 | /* |
3581 | * if we keep finding the pages we need already in the cache, then | |
2d21ac55 | 3582 | * don't bother to call cluster_read_prefetch since it costs CPU cycles |
55e303ae A |
3583 | * to determine that we have all the pages we need... once we miss in |
3584 | * the cache and have issued an I/O, than we'll assume that we're likely | |
3585 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
3586 | */ | |
3587 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
3588 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
3589 | /* | |
3590 | * we've already issued I/O for this request and | |
3591 | * there's still work to do and | |
3592 | * our prefetch stream is running dry, so issue a | |
3593 | * pre-fetch I/O... the I/O latency will overlap | |
3594 | * with the copying of the data | |
3595 | */ | |
3596 | if (size_of_prefetch > max_rd_size) | |
3597 | size_of_prefetch = max_rd_size; | |
1c79356b | 3598 | |
2d21ac55 | 3599 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); |
1c79356b | 3600 | |
55e303ae A |
3601 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
3602 | ||
3603 | if (last_ioread_offset > last_request_offset) | |
3604 | last_ioread_offset = last_request_offset; | |
3605 | } | |
3606 | } | |
3607 | /* | |
3608 | * limit the size of the copy we're about to do so that | |
3609 | * we can notice that our I/O pipe is running dry and | |
3610 | * get the next I/O issued before it does go dry | |
3611 | */ | |
cf7d32b8 A |
3612 | if (last_ioread_offset && io_size > (max_io_size / 4)) |
3613 | io_resid = (max_io_size / 4); | |
55e303ae A |
3614 | else |
3615 | io_resid = io_size; | |
1c79356b | 3616 | |
55e303ae | 3617 | io_requested = io_resid; |
1c79356b | 3618 | |
6d2010ae | 3619 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); |
2d21ac55 A |
3620 | |
3621 | xsize = io_requested - io_resid; | |
1c79356b | 3622 | |
2d21ac55 A |
3623 | io_size -= xsize; |
3624 | io_req_size -= xsize; | |
1c79356b | 3625 | |
55e303ae A |
3626 | if (retval || io_resid) |
3627 | /* | |
3628 | * if we run into a real error or | |
3629 | * a page that is not in the cache | |
3630 | * we need to leave streaming mode | |
3631 | */ | |
3632 | break; | |
3633 | ||
b0d623f7 | 3634 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { |
55e303ae A |
3635 | /* |
3636 | * we're already finished the I/O for this read request | |
3637 | * let's see if we should do a read-ahead | |
3638 | */ | |
2d21ac55 | 3639 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
55e303ae | 3640 | } |
1c79356b | 3641 | } |
1c79356b A |
3642 | if (retval) |
3643 | break; | |
1c79356b | 3644 | if (io_size == 0) { |
91447636 A |
3645 | if (rap != NULL) { |
3646 | if (extent.e_addr < rap->cl_lastr) | |
3647 | rap->cl_maxra = 0; | |
3648 | rap->cl_lastr = extent.e_addr; | |
3649 | } | |
1c79356b A |
3650 | break; |
3651 | } | |
b0d623f7 A |
3652 | /* |
3653 | * recompute max_size since cluster_copy_ubc_data_internal | |
3654 | * may have advanced uio->uio_offset | |
3655 | */ | |
3656 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3657 | } |
316670eb A |
3658 | |
3659 | iostate.io_completed = 0; | |
3660 | iostate.io_issued = 0; | |
3661 | iostate.io_error = 0; | |
3662 | iostate.io_wanted = 0; | |
3663 | ||
3664 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { | |
39236c6e | 3665 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
316670eb A |
3666 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { |
3667 | /* | |
3668 | * we're in the throttle window and at least 1 I/O | |
3669 | * has already been issued by a throttleable thread | |
3670 | * in this window, so return with EAGAIN to indicate | |
3671 | * to the FS issuing the cluster_read call that it | |
3672 | * should now throttle after dropping any locks | |
3673 | */ | |
3674 | throttle_info_update_by_mount(vp->v_mount); | |
3675 | ||
3676 | retval = EAGAIN; | |
3677 | break; | |
3678 | } | |
3679 | } | |
3680 | } | |
3681 | ||
b0d623f7 A |
3682 | /* |
3683 | * compute the size of the upl needed to encompass | |
3684 | * the requested read... limit each call to cluster_io | |
3685 | * to the maximum UPL size... cluster_io will clip if | |
3686 | * this exceeds the maximum io_size for the device, | |
3687 | * make sure to account for | |
3688 | * a starting offset that's not page aligned | |
3689 | */ | |
3690 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3691 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
3692 | ||
55e303ae A |
3693 | if (io_size > max_rd_size) |
3694 | io_size = max_rd_size; | |
3695 | ||
1c79356b | 3696 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
55e303ae | 3697 | |
2d21ac55 | 3698 | if (flags & IO_NOCACHE) { |
cf7d32b8 A |
3699 | if (upl_size > max_io_size) |
3700 | upl_size = max_io_size; | |
2d21ac55 | 3701 | } else { |
cf7d32b8 A |
3702 | if (upl_size > max_io_size / 4) |
3703 | upl_size = max_io_size / 4; | |
2d21ac55 | 3704 | } |
1c79356b A |
3705 | pages_in_upl = upl_size / PAGE_SIZE; |
3706 | ||
3707 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
b0d623f7 | 3708 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b | 3709 | |
0b4e3aa0 | 3710 | kret = ubc_create_upl(vp, |
91447636 A |
3711 | upl_f_offset, |
3712 | upl_size, | |
3713 | &upl, | |
3714 | &pl, | |
2d21ac55 | 3715 | UPL_FILE_IO | UPL_SET_LITE); |
1c79356b | 3716 | if (kret != KERN_SUCCESS) |
2d21ac55 | 3717 | panic("cluster_read_copy: failed to get pagelist"); |
1c79356b | 3718 | |
1c79356b | 3719 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, |
b0d623f7 | 3720 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b A |
3721 | |
3722 | /* | |
3723 | * scan from the beginning of the upl looking for the first | |
3724 | * non-valid page.... this will become the first page in | |
3725 | * the request we're going to make to 'cluster_io'... if all | |
3726 | * of the pages are valid, we won't call through to 'cluster_io' | |
3727 | */ | |
3728 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
3729 | if (!upl_valid_page(pl, start_pg)) | |
3730 | break; | |
3731 | } | |
3732 | ||
3733 | /* | |
3734 | * scan from the starting invalid page looking for a valid | |
3735 | * page before the end of the upl is reached, if we | |
3736 | * find one, then it will be the last page of the request to | |
3737 | * 'cluster_io' | |
3738 | */ | |
3739 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
3740 | if (upl_valid_page(pl, last_pg)) | |
3741 | break; | |
3742 | } | |
3743 | ||
3744 | if (start_pg < last_pg) { | |
3745 | /* | |
3746 | * we found a range of 'invalid' pages that must be filled | |
3747 | * if the last page in this range is the last page of the file | |
3748 | * we may have to clip the size of it to keep from reading past | |
3749 | * the end of the last physical block associated with the file | |
3750 | */ | |
6d2010ae A |
3751 | if (iolock_inited == FALSE) { |
3752 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
3753 | ||
3754 | iolock_inited = TRUE; | |
3755 | } | |
1c79356b A |
3756 | upl_offset = start_pg * PAGE_SIZE; |
3757 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3758 | ||
b0d623f7 | 3759 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
1c79356b | 3760 | io_size = filesize - (upl_f_offset + upl_offset); |
9bccf70c | 3761 | |
1c79356b | 3762 | /* |
55e303ae | 3763 | * issue an asynchronous read to cluster_io |
1c79356b A |
3764 | */ |
3765 | ||
3766 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
2d21ac55 | 3767 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); |
6d2010ae A |
3768 | |
3769 | if (rap) { | |
3770 | if (extent.e_addr < rap->cl_maxra) { | |
3771 | /* | |
3772 | * we've just issued a read for a block that should have been | |
3773 | * in the cache courtesy of the read-ahead engine... something | |
3774 | * has gone wrong with the pipeline, so reset the read-ahead | |
3775 | * logic which will cause us to restart from scratch | |
3776 | */ | |
3777 | rap->cl_maxra = 0; | |
3778 | } | |
3779 | } | |
1c79356b A |
3780 | } |
3781 | if (error == 0) { | |
3782 | /* | |
3783 | * if the read completed successfully, or there was no I/O request | |
55e303ae A |
3784 | * issued, than copy the data into user land via 'cluster_upl_copy_data' |
3785 | * we'll first add on any 'valid' | |
1c79356b A |
3786 | * pages that were present in the upl when we acquired it. |
3787 | */ | |
3788 | u_int val_size; | |
1c79356b A |
3789 | |
3790 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
3791 | if (!upl_valid_page(pl, uio_last)) | |
3792 | break; | |
3793 | } | |
2d21ac55 A |
3794 | if (uio_last < pages_in_upl) { |
3795 | /* | |
3796 | * there were some invalid pages beyond the valid pages | |
3797 | * that we didn't issue an I/O for, just release them | |
3798 | * unchanged now, so that any prefetch/readahed can | |
3799 | * include them | |
3800 | */ | |
3801 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
3802 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
3803 | } | |
3804 | ||
1c79356b | 3805 | /* |
2d21ac55 | 3806 | * compute size to transfer this round, if io_req_size is |
55e303ae | 3807 | * still non-zero after this attempt, we'll loop around and |
1c79356b A |
3808 | * set up for another I/O. |
3809 | */ | |
3810 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
3811 | ||
55e303ae | 3812 | if (val_size > max_size) |
1c79356b A |
3813 | val_size = max_size; |
3814 | ||
2d21ac55 A |
3815 | if (val_size > io_req_size) |
3816 | val_size = io_req_size; | |
1c79356b | 3817 | |
2d21ac55 | 3818 | if ((uio->uio_offset + val_size) > last_ioread_offset) |
55e303ae | 3819 | last_ioread_offset = uio->uio_offset + val_size; |
1c79356b | 3820 | |
55e303ae | 3821 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { |
1c79356b | 3822 | |
2d21ac55 A |
3823 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { |
3824 | /* | |
3825 | * if there's still I/O left to do for this request, and... | |
3826 | * we're not in hard throttle mode, and... | |
3827 | * we're close to using up the previous prefetch, then issue a | |
3828 | * new pre-fetch I/O... the I/O latency will overlap | |
3829 | * with the copying of the data | |
3830 | */ | |
3831 | if (size_of_prefetch > max_rd_size) | |
3832 | size_of_prefetch = max_rd_size; | |
3833 | ||
3834 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
3835 | ||
3836 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
55e303ae | 3837 | |
2d21ac55 A |
3838 | if (last_ioread_offset > last_request_offset) |
3839 | last_ioread_offset = last_request_offset; | |
3840 | } | |
1c79356b | 3841 | |
55e303ae A |
3842 | } else if ((uio->uio_offset + val_size) == last_request_offset) { |
3843 | /* | |
3844 | * this transfer will finish this request, so... | |
3845 | * let's try to read ahead if we're in | |
3846 | * a sequential access pattern and we haven't | |
3847 | * explicitly disabled it | |
3848 | */ | |
3849 | if (rd_ahead_enabled) | |
2d21ac55 | 3850 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
91447636 A |
3851 | |
3852 | if (rap != NULL) { | |
3853 | if (extent.e_addr < rap->cl_lastr) | |
3854 | rap->cl_maxra = 0; | |
3855 | rap->cl_lastr = extent.e_addr; | |
3856 | } | |
9bccf70c | 3857 | } |
6d2010ae A |
3858 | if (iostate.io_issued > iostate.io_completed) |
3859 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
cf7d32b8 | 3860 | |
55e303ae A |
3861 | if (iostate.io_error) |
3862 | error = iostate.io_error; | |
2d21ac55 A |
3863 | else { |
3864 | u_int32_t io_requested; | |
3865 | ||
3866 | io_requested = val_size; | |
3867 | ||
3868 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); | |
3869 | ||
3870 | io_req_size -= (val_size - io_requested); | |
3871 | } | |
6d2010ae A |
3872 | } else { |
3873 | if (iostate.io_issued > iostate.io_completed) | |
3874 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
1c79356b A |
3875 | } |
3876 | if (start_pg < last_pg) { | |
3877 | /* | |
3878 | * compute the range of pages that we actually issued an I/O for | |
3879 | * and either commit them as valid if the I/O succeeded | |
2d21ac55 A |
3880 | * or abort them if the I/O failed or we're not supposed to |
3881 | * keep them in the cache | |
1c79356b A |
3882 | */ |
3883 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3884 | ||
b0d623f7 | 3885 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
1c79356b | 3886 | |
91447636 | 3887 | if (error || (flags & IO_NOCACHE)) |
0b4e3aa0 | 3888 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, |
2d21ac55 | 3889 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
b0d623f7 A |
3890 | else { |
3891 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
3892 | ||
3893 | if (take_reference) | |
3894 | commit_flags |= UPL_COMMIT_INACTIVATE; | |
3895 | else | |
3896 | commit_flags |= UPL_COMMIT_SPECULATE; | |
1c79356b | 3897 | |
b0d623f7 A |
3898 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); |
3899 | } | |
3900 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
1c79356b A |
3901 | } |
3902 | if ((last_pg - start_pg) < pages_in_upl) { | |
1c79356b A |
3903 | /* |
3904 | * the set of pages that we issued an I/O for did not encompass | |
3905 | * the entire upl... so just release these without modifying | |
55e303ae | 3906 | * their state |
1c79356b A |
3907 | */ |
3908 | if (error) | |
9bccf70c | 3909 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b | 3910 | else { |
1c79356b | 3911 | |
2d21ac55 | 3912 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, |
b0d623f7 | 3913 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); |
2d21ac55 A |
3914 | |
3915 | /* | |
3916 | * handle any valid pages at the beginning of | |
3917 | * the upl... release these appropriately | |
3918 | */ | |
b0d623f7 | 3919 | cluster_read_upl_release(upl, 0, start_pg, take_reference); |
2d21ac55 A |
3920 | |
3921 | /* | |
3922 | * handle any valid pages immediately after the | |
3923 | * pages we issued I/O for... ... release these appropriately | |
3924 | */ | |
b0d623f7 | 3925 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); |
2d21ac55 | 3926 | |
b0d623f7 | 3927 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); |
1c79356b A |
3928 | } |
3929 | } | |
3930 | if (retval == 0) | |
3931 | retval = error; | |
91447636 | 3932 | |
2d21ac55 | 3933 | if (io_req_size) { |
39236c6e | 3934 | if (cluster_is_throttled(vp)) { |
316670eb A |
3935 | /* |
3936 | * we're in the throttle window, at the very least | |
3937 | * we want to limit the size of the I/O we're about | |
3938 | * to issue | |
3939 | */ | |
91447636 A |
3940 | rd_ahead_enabled = 0; |
3941 | prefetch_enabled = 0; | |
316670eb | 3942 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 | 3943 | } else { |
316670eb | 3944 | if (max_rd_size == THROTTLE_MAX_IOSIZE) { |
2d21ac55 A |
3945 | /* |
3946 | * coming out of throttled state | |
3947 | */ | |
39236c6e | 3948 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { |
b0d623f7 A |
3949 | if (rap != NULL) |
3950 | rd_ahead_enabled = 1; | |
3951 | prefetch_enabled = 1; | |
3952 | } | |
cf7d32b8 | 3953 | max_rd_size = max_prefetch; |
2d21ac55 A |
3954 | last_ioread_offset = 0; |
3955 | } | |
91447636 A |
3956 | } |
3957 | } | |
3958 | } | |
6d2010ae A |
3959 | if (iolock_inited == TRUE) { |
3960 | if (iostate.io_issued > iostate.io_completed) { | |
3961 | /* | |
3962 | * cluster_io returned an error after it | |
3963 | * had already issued some I/O. we need | |
3964 | * to wait for that I/O to complete before | |
3965 | * we can destroy the iostate mutex... | |
3966 | * 'retval' already contains the early error | |
3967 | * so no need to pick it up from iostate.io_error | |
3968 | */ | |
3969 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
3970 | } | |
3971 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
3972 | } | |
91447636 A |
3973 | if (rap != NULL) { |
3974 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 3975 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); |
91447636 A |
3976 | |
3977 | lck_mtx_unlock(&rap->cl_lockr); | |
3978 | } else { | |
3979 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 3980 | (int)uio->uio_offset, io_req_size, 0, retval, 0); |
1c79356b A |
3981 | } |
3982 | ||
3983 | return (retval); | |
3984 | } | |
3985 | ||
b4c24cb9 | 3986 | |
9bccf70c | 3987 | static int |
2d21ac55 A |
3988 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
3989 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
3990 | { |
3991 | upl_t upl; | |
3992 | upl_page_info_t *pl; | |
2d21ac55 | 3993 | off_t max_io_size; |
b0d623f7 A |
3994 | vm_offset_t upl_offset, vector_upl_offset = 0; |
3995 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
3996 | vm_size_t upl_needed_size; |
3997 | unsigned int pages_in_pl; | |
1c79356b A |
3998 | int upl_flags; |
3999 | kern_return_t kret; | |
2d21ac55 | 4000 | unsigned int i; |
1c79356b | 4001 | int force_data_sync; |
1c79356b | 4002 | int retval = 0; |
91447636 | 4003 | int no_zero_fill = 0; |
2d21ac55 A |
4004 | int io_flag = 0; |
4005 | int misaligned = 0; | |
d7e50217 | 4006 | struct clios iostate; |
2d21ac55 A |
4007 | user_addr_t iov_base; |
4008 | u_int32_t io_req_size; | |
4009 | u_int32_t offset_in_file; | |
4010 | u_int32_t offset_in_iovbase; | |
4011 | u_int32_t io_size; | |
4012 | u_int32_t io_min; | |
4013 | u_int32_t xsize; | |
4014 | u_int32_t devblocksize; | |
4015 | u_int32_t mem_alignment_mask; | |
b0d623f7 A |
4016 | u_int32_t max_upl_size; |
4017 | u_int32_t max_rd_size; | |
4018 | u_int32_t max_rd_ahead; | |
316670eb | 4019 | u_int32_t max_vector_size; |
6d2010ae | 4020 | boolean_t strict_uncached_IO = FALSE; |
316670eb | 4021 | boolean_t io_throttled = FALSE; |
cf7d32b8 | 4022 | |
b0d623f7 A |
4023 | u_int32_t vector_upl_iosize = 0; |
4024 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
4025 | off_t v_upl_uio_offset = 0; | |
4026 | int vector_upl_index=0; | |
4027 | upl_t vector_upl = NULL; | |
cf7d32b8 | 4028 | |
b0d623f7 A |
4029 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, |
4030 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
cf7d32b8 | 4031 | |
b0d623f7 | 4032 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); |
2d21ac55 | 4033 | |
b0d623f7 A |
4034 | max_rd_size = max_upl_size; |
4035 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
1c79356b | 4036 | |
b0d623f7 | 4037 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; |
6d2010ae | 4038 | |
b0d623f7 A |
4039 | if (flags & IO_PASSIVE) |
4040 | io_flag |= CL_PASSIVE; | |
1c79356b | 4041 | |
316670eb A |
4042 | if (flags & IO_ENCRYPTED) { |
4043 | io_flag |= CL_RAW_ENCRYPTED; | |
4044 | } | |
4045 | ||
4046 | if (flags & IO_NOCACHE) { | |
4047 | io_flag |= CL_NOCACHE; | |
4048 | } | |
4049 | ||
d7e50217 A |
4050 | iostate.io_completed = 0; |
4051 | iostate.io_issued = 0; | |
4052 | iostate.io_error = 0; | |
4053 | iostate.io_wanted = 0; | |
4054 | ||
6d2010ae A |
4055 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4056 | ||
2d21ac55 A |
4057 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4058 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4059 | ||
4060 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4061 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); | |
4062 | ||
4063 | if (devblocksize == 1) { | |
4064 | /* | |
4065 | * the AFP client advertises a devblocksize of 1 | |
4066 | * however, its BLOCKMAP routine maps to physical | |
4067 | * blocks that are PAGE_SIZE in size... | |
4068 | * therefore we can't ask for I/Os that aren't page aligned | |
4069 | * or aren't multiples of PAGE_SIZE in size | |
4070 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
4071 | * the old behavior we had before the mem_alignment_mask | |
4072 | * changes went in... | |
4073 | */ | |
4074 | devblocksize = PAGE_SIZE; | |
4075 | } | |
6d2010ae A |
4076 | |
4077 | strict_uncached_IO = ubc_strict_uncached_IO(vp); | |
4078 | ||
2d21ac55 A |
4079 | next_dread: |
4080 | io_req_size = *read_length; | |
4081 | iov_base = uio_curriovbase(uio); | |
4082 | ||
4083 | max_io_size = filesize - uio->uio_offset; | |
4084 | ||
4085 | if ((off_t)io_req_size > max_io_size) | |
4086 | io_req_size = max_io_size; | |
4087 | ||
4088 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); | |
4089 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
4090 | ||
4091 | if (offset_in_file || offset_in_iovbase) { | |
4092 | /* | |
4093 | * one of the 2 important offsets is misaligned | |
4094 | * so fire an I/O through the cache for this entire vector | |
4095 | */ | |
4096 | misaligned = 1; | |
4097 | } | |
4098 | if (iov_base & (devblocksize - 1)) { | |
4099 | /* | |
4100 | * the offset in memory must be on a device block boundary | |
4101 | * so that we can guarantee that we can generate an | |
4102 | * I/O that ends on a page boundary in cluster_io | |
4103 | */ | |
4104 | misaligned = 1; | |
316670eb A |
4105 | } |
4106 | ||
4107 | /* | |
4108 | * The user must request IO in aligned chunks. If the | |
4109 | * offset into the file is bad, or the userland pointer | |
4110 | * is non-aligned, then we cannot service the encrypted IO request. | |
4111 | */ | |
4112 | if ((flags & IO_ENCRYPTED) && (misaligned)) { | |
4113 | retval = EINVAL; | |
4114 | } | |
4115 | ||
2d21ac55 A |
4116 | /* |
4117 | * When we get to this point, we know... | |
4118 | * -- the offset into the file is on a devblocksize boundary | |
4119 | */ | |
4120 | ||
4121 | while (io_req_size && retval == 0) { | |
4122 | u_int32_t io_start; | |
1c79356b | 4123 | |
39236c6e | 4124 | if (cluster_is_throttled(vp)) { |
316670eb A |
4125 | /* |
4126 | * we're in the throttle window, at the very least | |
4127 | * we want to limit the size of the I/O we're about | |
4128 | * to issue | |
4129 | */ | |
4130 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
4131 | max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; | |
4132 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
91447636 | 4133 | } else { |
cf7d32b8 | 4134 | max_rd_size = max_upl_size; |
b0d623f7 | 4135 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); |
316670eb | 4136 | max_vector_size = MAX_VECTOR_UPL_SIZE; |
91447636 | 4137 | } |
2d21ac55 | 4138 | io_start = io_size = io_req_size; |
1c79356b | 4139 | |
d7e50217 A |
4140 | /* |
4141 | * First look for pages already in the cache | |
316670eb A |
4142 | * and move them to user space. But only do this |
4143 | * check if we are not retrieving encrypted data directly | |
4144 | * from the filesystem; those blocks should never | |
4145 | * be in the UBC. | |
2d21ac55 A |
4146 | * |
4147 | * cluster_copy_ubc_data returns the resid | |
4148 | * in io_size | |
d7e50217 | 4149 | */ |
316670eb | 4150 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { |
6d2010ae A |
4151 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); |
4152 | } | |
2d21ac55 A |
4153 | /* |
4154 | * calculate the number of bytes actually copied | |
4155 | * starting size - residual | |
4156 | */ | |
4157 | xsize = io_start - io_size; | |
4158 | ||
4159 | io_req_size -= xsize; | |
4160 | ||
b0d623f7 A |
4161 | if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { |
4162 | /* | |
4163 | * We found something in the cache or we have an iov_base that's not | |
4164 | * page-aligned. | |
4165 | * | |
4166 | * Issue all I/O's that have been collected within this Vectored UPL. | |
4167 | */ | |
4168 | if(vector_upl_index) { | |
4169 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4170 | reset_vector_run_state(); | |
4171 | } | |
4172 | ||
4173 | if(xsize) | |
4174 | useVectorUPL = 0; | |
4175 | ||
4176 | /* | |
4177 | * After this point, if we are using the Vector UPL path and the base is | |
4178 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4179 | */ | |
4180 | } | |
4181 | ||
2d21ac55 | 4182 | /* |
316670eb A |
4183 | * check to see if we are finished with this request. |
4184 | * | |
4185 | * If we satisfied this IO already, then io_req_size will be 0. | |
4186 | * Otherwise, see if the IO was mis-aligned and needs to go through | |
4187 | * the UBC to deal with the 'tail'. | |
4188 | * | |
2d21ac55 | 4189 | */ |
316670eb | 4190 | if (io_req_size == 0 || (misaligned)) { |
2d21ac55 A |
4191 | /* |
4192 | * see if there's another uio vector to | |
4193 | * process that's of type IO_DIRECT | |
4194 | * | |
4195 | * break out of while loop to get there | |
d7e50217 | 4196 | */ |
2d21ac55 | 4197 | break; |
0b4e3aa0 | 4198 | } |
d7e50217 | 4199 | /* |
2d21ac55 | 4200 | * assume the request ends on a device block boundary |
d7e50217 | 4201 | */ |
2d21ac55 A |
4202 | io_min = devblocksize; |
4203 | ||
4204 | /* | |
4205 | * we can handle I/O's in multiples of the device block size | |
4206 | * however, if io_size isn't a multiple of devblocksize we | |
4207 | * want to clip it back to the nearest page boundary since | |
4208 | * we are going to have to go through cluster_read_copy to | |
4209 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4210 | * multiple, we avoid asking the drive for the same physical | |
4211 | * blocks twice.. once for the partial page at the end of the | |
4212 | * request and a 2nd time for the page we read into the cache | |
4213 | * (which overlaps the end of the direct read) in order to | |
4214 | * get at the overhang bytes | |
4215 | */ | |
316670eb A |
4216 | if (io_size & (devblocksize - 1)) { |
4217 | if (flags & IO_ENCRYPTED) { | |
4218 | /* | |
4219 | * Normally, we'd round down to the previous page boundary to | |
4220 | * let the UBC manage the zero-filling of the file past the EOF. | |
4221 | * But if we're doing encrypted IO, we can't let any of | |
4222 | * the data hit the UBC. This means we have to do the full | |
4223 | * IO to the upper block boundary of the device block that | |
4224 | * contains the EOF. The user will be responsible for not | |
4225 | * interpreting data PAST the EOF in its buffer. | |
4226 | * | |
4227 | * So just bump the IO back up to a multiple of devblocksize | |
4228 | */ | |
4229 | io_size = ((io_size + devblocksize) & ~(devblocksize - 1)); | |
4230 | io_min = io_size; | |
4231 | } | |
4232 | else { | |
4233 | /* | |
4234 | * Clip the request to the previous page size boundary | |
4235 | * since request does NOT end on a device block boundary | |
4236 | */ | |
4237 | io_size &= ~PAGE_MASK; | |
4238 | io_min = PAGE_SIZE; | |
4239 | } | |
4240 | ||
2d21ac55 A |
4241 | } |
4242 | if (retval || io_size < io_min) { | |
4243 | /* | |
4244 | * either an error or we only have the tail left to | |
4245 | * complete via the copy path... | |
d7e50217 A |
4246 | * we may have already spun some portion of this request |
4247 | * off as async requests... we need to wait for the I/O | |
4248 | * to complete before returning | |
4249 | */ | |
2d21ac55 | 4250 | goto wait_for_dreads; |
d7e50217 | 4251 | } |
55e303ae | 4252 | |
316670eb A |
4253 | /* |
4254 | * Don't re-check the UBC data if we are looking for uncached IO | |
4255 | * or asking for encrypted blocks. | |
4256 | */ | |
4257 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { | |
1c79356b | 4258 | |
6d2010ae | 4259 | if ((xsize = io_size) > max_rd_size) |
316670eb | 4260 | xsize = max_rd_size; |
55e303ae | 4261 | |
6d2010ae A |
4262 | io_size = 0; |
4263 | ||
4264 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); | |
4265 | ||
4266 | if (io_size == 0) { | |
4267 | /* | |
4268 | * a page must have just come into the cache | |
4269 | * since the first page in this range is no | |
4270 | * longer absent, go back and re-evaluate | |
4271 | */ | |
4272 | continue; | |
4273 | } | |
2d21ac55 | 4274 | } |
316670eb | 4275 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { |
39236c6e | 4276 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
316670eb A |
4277 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { |
4278 | /* | |
4279 | * we're in the throttle window and at least 1 I/O | |
4280 | * has already been issued by a throttleable thread | |
4281 | * in this window, so return with EAGAIN to indicate | |
4282 | * to the FS issuing the cluster_read call that it | |
4283 | * should now throttle after dropping any locks | |
4284 | */ | |
4285 | throttle_info_update_by_mount(vp->v_mount); | |
4286 | ||
4287 | io_throttled = TRUE; | |
4288 | goto wait_for_dreads; | |
4289 | } | |
4290 | } | |
4291 | } | |
4292 | if (io_size > max_rd_size) | |
4293 | io_size = max_rd_size; | |
6d2010ae | 4294 | |
cc9f6e38 | 4295 | iov_base = uio_curriovbase(uio); |
1c79356b | 4296 | |
2d21ac55 | 4297 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 | 4298 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
1c79356b | 4299 | |
d7e50217 | 4300 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, |
cc9f6e38 | 4301 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
1c79356b | 4302 | |
0b4c1975 | 4303 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) |
91447636 | 4304 | no_zero_fill = 1; |
0b4c1975 | 4305 | else |
91447636 | 4306 | no_zero_fill = 0; |
0b4c1975 | 4307 | |
d7e50217 A |
4308 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
4309 | pages_in_pl = 0; | |
4310 | upl_size = upl_needed_size; | |
55e303ae | 4311 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
1c79356b | 4312 | |
91447636 A |
4313 | if (no_zero_fill) |
4314 | upl_flags |= UPL_NOZEROFILL; | |
4315 | if (force_data_sync) | |
4316 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4317 | ||
91447636 | 4318 | kret = vm_map_create_upl(current_map(), |
cc9f6e38 | 4319 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
91447636 | 4320 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); |
1c79356b | 4321 | |
d7e50217 A |
4322 | if (kret != KERN_SUCCESS) { |
4323 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4324 | (int)upl_offset, upl_size, io_size, kret, 0); | |
d7e50217 | 4325 | /* |
2d21ac55 | 4326 | * failed to get pagelist |
d7e50217 A |
4327 | * |
4328 | * we may have already spun some portion of this request | |
4329 | * off as async requests... we need to wait for the I/O | |
4330 | * to complete before returning | |
4331 | */ | |
2d21ac55 | 4332 | goto wait_for_dreads; |
d7e50217 A |
4333 | } |
4334 | pages_in_pl = upl_size / PAGE_SIZE; | |
4335 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1c79356b | 4336 | |
d7e50217 | 4337 | for (i = 0; i < pages_in_pl; i++) { |
0b4c1975 | 4338 | if (!upl_page_present(pl, i)) |
d7e50217 A |
4339 | break; |
4340 | } | |
4341 | if (i == pages_in_pl) | |
4342 | break; | |
0b4e3aa0 | 4343 | |
0b4c1975 | 4344 | ubc_upl_abort(upl, 0); |
1c79356b | 4345 | } |
d7e50217 A |
4346 | if (force_data_sync >= 3) { |
4347 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4348 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4349 | |
2d21ac55 | 4350 | goto wait_for_dreads; |
d7e50217 A |
4351 | } |
4352 | /* | |
4353 | * Consider the possibility that upl_size wasn't satisfied. | |
4354 | */ | |
2d21ac55 A |
4355 | if (upl_size < upl_needed_size) { |
4356 | if (upl_size && upl_offset == 0) | |
4357 | io_size = upl_size; | |
4358 | else | |
4359 | io_size = 0; | |
4360 | } | |
d7e50217 | 4361 | if (io_size == 0) { |
0b4c1975 | 4362 | ubc_upl_abort(upl, 0); |
2d21ac55 | 4363 | goto wait_for_dreads; |
d7e50217 A |
4364 | } |
4365 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4366 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4367 | |
b0d623f7 A |
4368 | if(useVectorUPL) { |
4369 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
4370 | if(end_off) | |
4371 | issueVectorUPL = 1; | |
4372 | /* | |
4373 | * After this point, if we are using a vector UPL, then | |
4374 | * either all the UPL elements end on a page boundary OR | |
4375 | * this UPL is the last element because it does not end | |
4376 | * on a page boundary. | |
4377 | */ | |
4378 | } | |
4379 | ||
d7e50217 A |
4380 | /* |
4381 | * request asynchronously so that we can overlap | |
4382 | * the preparation of the next I/O | |
4383 | * if there are already too many outstanding reads | |
4384 | * wait until some have completed before issuing the next read | |
4385 | */ | |
6d2010ae A |
4386 | if (iostate.io_issued > iostate.io_completed) |
4387 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); | |
91447636 | 4388 | |
d7e50217 A |
4389 | if (iostate.io_error) { |
4390 | /* | |
4391 | * one of the earlier reads we issued ran into a hard error | |
4392 | * don't issue any more reads, cleanup the UPL | |
4393 | * that was just created but not used, then | |
4394 | * go wait for any other reads to complete before | |
4395 | * returning the error to the caller | |
4396 | */ | |
0b4c1975 | 4397 | ubc_upl_abort(upl, 0); |
1c79356b | 4398 | |
2d21ac55 | 4399 | goto wait_for_dreads; |
d7e50217 A |
4400 | } |
4401 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
b0d623f7 | 4402 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); |
1c79356b | 4403 | |
2d21ac55 | 4404 | |
b0d623f7 A |
4405 | if(!useVectorUPL) { |
4406 | if (no_zero_fill) | |
4407 | io_flag &= ~CL_PRESERVE; | |
4408 | else | |
4409 | io_flag |= CL_PRESERVE; | |
4410 | ||
4411 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4412 | ||
4413 | } else { | |
1c79356b | 4414 | |
b0d623f7 A |
4415 | if(!vector_upl_index) { |
4416 | vector_upl = vector_upl_create(upl_offset); | |
4417 | v_upl_uio_offset = uio->uio_offset; | |
4418 | vector_upl_offset = upl_offset; | |
4419 | } | |
4420 | ||
4421 | vector_upl_set_subupl(vector_upl,upl, upl_size); | |
4422 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
4423 | vector_upl_index++; | |
4424 | vector_upl_size += upl_size; | |
4425 | vector_upl_iosize += io_size; | |
4426 | ||
316670eb | 4427 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
4428 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
4429 | reset_vector_run_state(); | |
4430 | } | |
4431 | } | |
d7e50217 A |
4432 | /* |
4433 | * update the uio structure | |
4434 | */ | |
316670eb A |
4435 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { |
4436 | uio_update(uio, (user_size_t)max_io_size); | |
4437 | } | |
4438 | else { | |
4439 | uio_update(uio, (user_size_t)io_size); | |
4440 | } | |
4441 | /* | |
4442 | * Under normal circumstances, the io_size should not be | |
4443 | * bigger than the io_req_size, but we may have had to round up | |
4444 | * to the end of the page in the encrypted IO case. In that case only, | |
4445 | * ensure that we only decrement io_req_size to 0. | |
4446 | */ | |
4447 | if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) { | |
4448 | io_req_size = 0; | |
4449 | } | |
4450 | else { | |
4451 | io_req_size -= io_size; | |
4452 | } | |
2d21ac55 | 4453 | |
d7e50217 | 4454 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, |
b0d623f7 | 4455 | upl, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
4456 | |
4457 | } /* end while */ | |
4458 | ||
2d21ac55 | 4459 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { |
91447636 | 4460 | |
2d21ac55 A |
4461 | retval = cluster_io_type(uio, read_type, read_length, 0); |
4462 | ||
4463 | if (retval == 0 && *read_type == IO_DIRECT) { | |
4464 | ||
4465 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4466 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4467 | ||
4468 | goto next_dread; | |
4469 | } | |
4470 | } | |
4471 | ||
4472 | wait_for_dreads: | |
b0d623f7 A |
4473 | |
4474 | if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
4475 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4476 | reset_vector_run_state(); | |
4477 | } | |
4478 | /* | |
4479 | * make sure all async reads that are part of this stream | |
4480 | * have completed before we return | |
4481 | */ | |
6d2010ae A |
4482 | if (iostate.io_issued > iostate.io_completed) |
4483 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); | |
b0d623f7 | 4484 | |
d7e50217 | 4485 | if (iostate.io_error) |
2d21ac55 A |
4486 | retval = iostate.io_error; |
4487 | ||
6d2010ae A |
4488 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4489 | ||
316670eb A |
4490 | if (io_throttled == TRUE && retval == 0) |
4491 | retval = EAGAIN; | |
4492 | ||
2d21ac55 A |
4493 | if (io_req_size && retval == 0) { |
4494 | /* | |
4495 | * we couldn't handle the tail of this request in DIRECT mode | |
4496 | * so fire it through the copy path | |
4497 | */ | |
4498 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
1c79356b | 4499 | |
2d21ac55 A |
4500 | *read_type = IO_UNKNOWN; |
4501 | } | |
1c79356b | 4502 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, |
2d21ac55 | 4503 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); |
1c79356b A |
4504 | |
4505 | return (retval); | |
4506 | } | |
4507 | ||
4508 | ||
9bccf70c | 4509 | static int |
2d21ac55 A |
4510 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
4511 | int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
0b4e3aa0 | 4512 | { |
b4c24cb9 | 4513 | upl_page_info_t *pl; |
2d21ac55 | 4514 | upl_t upl[MAX_VECTS]; |
0b4e3aa0 | 4515 | vm_offset_t upl_offset; |
2d21ac55 | 4516 | addr64_t dst_paddr = 0; |
cc9f6e38 | 4517 | user_addr_t iov_base; |
2d21ac55 | 4518 | off_t max_size; |
b0d623f7 | 4519 | upl_size_t upl_size; |
2d21ac55 A |
4520 | vm_size_t upl_needed_size; |
4521 | mach_msg_type_number_t pages_in_pl; | |
0b4e3aa0 A |
4522 | int upl_flags; |
4523 | kern_return_t kret; | |
b4c24cb9 | 4524 | struct clios iostate; |
2d21ac55 A |
4525 | int error= 0; |
4526 | int cur_upl = 0; | |
4527 | int num_upl = 0; | |
4528 | int n; | |
4529 | u_int32_t xsize; | |
4530 | u_int32_t io_size; | |
4531 | u_int32_t devblocksize; | |
4532 | u_int32_t mem_alignment_mask; | |
4533 | u_int32_t tail_size = 0; | |
4534 | int bflag; | |
4535 | ||
4536 | if (flags & IO_PASSIVE) | |
b0d623f7 | 4537 | bflag = CL_PASSIVE; |
2d21ac55 | 4538 | else |
b0d623f7 | 4539 | bflag = 0; |
316670eb A |
4540 | |
4541 | if (flags & IO_NOCACHE) | |
4542 | bflag |= CL_NOCACHE; | |
4543 | ||
0b4e3aa0 A |
4544 | /* |
4545 | * When we enter this routine, we know | |
2d21ac55 A |
4546 | * -- the read_length will not exceed the current iov_len |
4547 | * -- the target address is physically contiguous for read_length | |
0b4e3aa0 | 4548 | */ |
2d21ac55 | 4549 | cluster_syncup(vp, filesize, callback, callback_arg); |
0b4e3aa0 | 4550 | |
2d21ac55 A |
4551 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4552 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 4553 | |
2d21ac55 A |
4554 | iostate.io_completed = 0; |
4555 | iostate.io_issued = 0; | |
4556 | iostate.io_error = 0; | |
4557 | iostate.io_wanted = 0; | |
4558 | ||
6d2010ae A |
4559 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4560 | ||
2d21ac55 A |
4561 | next_cread: |
4562 | io_size = *read_length; | |
0b4e3aa0 A |
4563 | |
4564 | max_size = filesize - uio->uio_offset; | |
4565 | ||
2d21ac55 | 4566 | if (io_size > max_size) |
b4c24cb9 | 4567 | io_size = max_size; |
0b4e3aa0 | 4568 | |
2d21ac55 A |
4569 | iov_base = uio_curriovbase(uio); |
4570 | ||
4571 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
0b4e3aa0 A |
4572 | upl_needed_size = upl_offset + io_size; |
4573 | ||
4574 | pages_in_pl = 0; | |
4575 | upl_size = upl_needed_size; | |
55e303ae | 4576 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 | 4577 | |
2d21ac55 A |
4578 | |
4579 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
4580 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); | |
4581 | ||
0b4e3aa0 | 4582 | kret = vm_map_get_upl(current_map(), |
cc9f6e38 | 4583 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2d21ac55 A |
4584 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); |
4585 | ||
4586 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
4587 | (int)upl_offset, upl_size, io_size, kret, 0); | |
0b4e3aa0 | 4588 | |
b4c24cb9 A |
4589 | if (kret != KERN_SUCCESS) { |
4590 | /* | |
2d21ac55 | 4591 | * failed to get pagelist |
b4c24cb9 | 4592 | */ |
2d21ac55 A |
4593 | error = EINVAL; |
4594 | goto wait_for_creads; | |
b4c24cb9 | 4595 | } |
2d21ac55 A |
4596 | num_upl++; |
4597 | ||
b4c24cb9 A |
4598 | if (upl_size < upl_needed_size) { |
4599 | /* | |
4600 | * The upl_size wasn't satisfied. | |
4601 | */ | |
2d21ac55 A |
4602 | error = EINVAL; |
4603 | goto wait_for_creads; | |
b4c24cb9 | 4604 | } |
2d21ac55 | 4605 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
b4c24cb9 | 4606 | |
cc9f6e38 | 4607 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; |
0b4e3aa0 | 4608 | |
b4c24cb9 | 4609 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 4610 | u_int32_t head_size; |
b4c24cb9 | 4611 | |
2d21ac55 | 4612 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
b4c24cb9 A |
4613 | |
4614 | if (head_size > io_size) | |
4615 | head_size = io_size; | |
4616 | ||
2d21ac55 | 4617 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); |
b4c24cb9 | 4618 | |
2d21ac55 A |
4619 | if (error) |
4620 | goto wait_for_creads; | |
b4c24cb9 | 4621 | |
b4c24cb9 A |
4622 | upl_offset += head_size; |
4623 | dst_paddr += head_size; | |
4624 | io_size -= head_size; | |
2d21ac55 A |
4625 | |
4626 | iov_base += head_size; | |
4627 | } | |
4628 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
4629 | /* | |
4630 | * request doesn't set up on a memory boundary | |
4631 | * the underlying DMA engine can handle... | |
4632 | * return an error instead of going through | |
4633 | * the slow copy path since the intent of this | |
4634 | * path is direct I/O to device memory | |
4635 | */ | |
4636 | error = EINVAL; | |
4637 | goto wait_for_creads; | |
b4c24cb9 | 4638 | } |
2d21ac55 | 4639 | |
b4c24cb9 | 4640 | tail_size = io_size & (devblocksize - 1); |
b4c24cb9 | 4641 | |
2d21ac55 | 4642 | io_size -= tail_size; |
b4c24cb9 A |
4643 | |
4644 | while (io_size && error == 0) { | |
b4c24cb9 | 4645 | |
2d21ac55 A |
4646 | if (io_size > MAX_IO_CONTIG_SIZE) |
4647 | xsize = MAX_IO_CONTIG_SIZE; | |
b4c24cb9 A |
4648 | else |
4649 | xsize = io_size; | |
4650 | /* | |
4651 | * request asynchronously so that we can overlap | |
4652 | * the preparation of the next I/O... we'll do | |
4653 | * the commit after all the I/O has completed | |
4654 | * since its all issued against the same UPL | |
4655 | * if there are already too many outstanding reads | |
d7e50217 | 4656 | * wait until some have completed before issuing the next |
b4c24cb9 | 4657 | */ |
6d2010ae A |
4658 | if (iostate.io_issued > iostate.io_completed) |
4659 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); | |
cf7d32b8 | 4660 | |
2d21ac55 A |
4661 | if (iostate.io_error) { |
4662 | /* | |
4663 | * one of the earlier reads we issued ran into a hard error | |
4664 | * don't issue any more reads... | |
4665 | * go wait for any other reads to complete before | |
4666 | * returning the error to the caller | |
4667 | */ | |
4668 | goto wait_for_creads; | |
4669 | } | |
4670 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, | |
4671 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
4672 | (buf_t)NULL, &iostate, callback, callback_arg); | |
b4c24cb9 A |
4673 | /* |
4674 | * The cluster_io read was issued successfully, | |
4675 | * update the uio structure | |
4676 | */ | |
4677 | if (error == 0) { | |
cc9f6e38 A |
4678 | uio_update(uio, (user_size_t)xsize); |
4679 | ||
4680 | dst_paddr += xsize; | |
4681 | upl_offset += xsize; | |
4682 | io_size -= xsize; | |
b4c24cb9 A |
4683 | } |
4684 | } | |
2d21ac55 A |
4685 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { |
4686 | ||
4687 | error = cluster_io_type(uio, read_type, read_length, 0); | |
4688 | ||
4689 | if (error == 0 && *read_type == IO_CONTIG) { | |
4690 | cur_upl++; | |
4691 | goto next_cread; | |
4692 | } | |
4693 | } else | |
4694 | *read_type = IO_UNKNOWN; | |
4695 | ||
4696 | wait_for_creads: | |
0b4e3aa0 | 4697 | /* |
d7e50217 A |
4698 | * make sure all async reads that are part of this stream |
4699 | * have completed before we proceed | |
0b4e3aa0 | 4700 | */ |
6d2010ae A |
4701 | if (iostate.io_issued > iostate.io_completed) |
4702 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); | |
91447636 A |
4703 | |
4704 | if (iostate.io_error) | |
b4c24cb9 | 4705 | error = iostate.io_error; |
91447636 | 4706 | |
6d2010ae A |
4707 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4708 | ||
b4c24cb9 | 4709 | if (error == 0 && tail_size) |
2d21ac55 | 4710 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); |
0b4e3aa0 | 4711 | |
2d21ac55 A |
4712 | for (n = 0; n < num_upl; n++) |
4713 | /* | |
4714 | * just release our hold on each physically contiguous | |
4715 | * region without changing any state | |
4716 | */ | |
4717 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
4718 | |
4719 | return (error); | |
4720 | } | |
1c79356b | 4721 | |
b4c24cb9 | 4722 | |
2d21ac55 A |
4723 | static int |
4724 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
4725 | { | |
4726 | user_size_t iov_len; | |
4727 | user_addr_t iov_base = 0; | |
4728 | upl_t upl; | |
b0d623f7 | 4729 | upl_size_t upl_size; |
2d21ac55 A |
4730 | int upl_flags; |
4731 | int retval = 0; | |
4732 | ||
4733 | /* | |
4734 | * skip over any emtpy vectors | |
4735 | */ | |
4736 | uio_update(uio, (user_size_t)0); | |
4737 | ||
4738 | iov_len = uio_curriovlen(uio); | |
4739 | ||
b0d623f7 | 4740 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); |
2d21ac55 A |
4741 | |
4742 | if (iov_len) { | |
4743 | iov_base = uio_curriovbase(uio); | |
4744 | /* | |
4745 | * make sure the size of the vector isn't too big... | |
4746 | * internally, we want to handle all of the I/O in | |
4747 | * chunk sizes that fit in a 32 bit int | |
4748 | */ | |
4749 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) | |
4750 | upl_size = MAX_IO_REQUEST_SIZE; | |
4751 | else | |
4752 | upl_size = (u_int32_t)iov_len; | |
4753 | ||
4754 | upl_flags = UPL_QUERY_OBJECT_TYPE; | |
4755 | ||
4756 | if ((vm_map_get_upl(current_map(), | |
4757 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
4758 | &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { | |
4759 | /* | |
4760 | * the user app must have passed in an invalid address | |
4761 | */ | |
4762 | retval = EFAULT; | |
4763 | } | |
4764 | if (upl_size == 0) | |
4765 | retval = EFAULT; | |
4766 | ||
4767 | *io_length = upl_size; | |
4768 | ||
4769 | if (upl_flags & UPL_PHYS_CONTIG) | |
4770 | *io_type = IO_CONTIG; | |
4771 | else if (iov_len >= min_length) | |
4772 | *io_type = IO_DIRECT; | |
4773 | else | |
4774 | *io_type = IO_COPY; | |
4775 | } else { | |
4776 | /* | |
4777 | * nothing left to do for this uio | |
4778 | */ | |
4779 | *io_length = 0; | |
4780 | *io_type = IO_UNKNOWN; | |
4781 | } | |
b0d623f7 | 4782 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); |
2d21ac55 A |
4783 | |
4784 | return (retval); | |
4785 | } | |
4786 | ||
4787 | ||
1c79356b A |
4788 | /* |
4789 | * generate advisory I/O's in the largest chunks possible | |
4790 | * the completed pages will be released into the VM cache | |
4791 | */ | |
9bccf70c | 4792 | int |
91447636 | 4793 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) |
2d21ac55 A |
4794 | { |
4795 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); | |
4796 | } | |
4797 | ||
4798 | int | |
4799 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
1c79356b | 4800 | { |
1c79356b A |
4801 | upl_page_info_t *pl; |
4802 | upl_t upl; | |
4803 | vm_offset_t upl_offset; | |
b0d623f7 | 4804 | int upl_size; |
1c79356b A |
4805 | off_t upl_f_offset; |
4806 | int start_offset; | |
4807 | int start_pg; | |
4808 | int last_pg; | |
4809 | int pages_in_upl; | |
4810 | off_t max_size; | |
4811 | int io_size; | |
4812 | kern_return_t kret; | |
4813 | int retval = 0; | |
9bccf70c | 4814 | int issued_io; |
55e303ae | 4815 | int skip_range; |
b0d623f7 A |
4816 | uint32_t max_io_size; |
4817 | ||
4818 | ||
91447636 | 4819 | if ( !UBCINFOEXISTS(vp)) |
1c79356b A |
4820 | return(EINVAL); |
4821 | ||
ca66cea6 A |
4822 | if (resid < 0) |
4823 | return(EINVAL); | |
4824 | ||
cf7d32b8 | 4825 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
b0d623f7 | 4826 | |
316670eb A |
4827 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) { |
4828 | if (max_io_size > speculative_prefetch_max_iosize) | |
4829 | max_io_size = speculative_prefetch_max_iosize; | |
4830 | } | |
316670eb | 4831 | |
1c79356b | 4832 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, |
b0d623f7 | 4833 | (int)f_offset, resid, (int)filesize, 0, 0); |
1c79356b A |
4834 | |
4835 | while (resid && f_offset < filesize && retval == 0) { | |
4836 | /* | |
4837 | * compute the size of the upl needed to encompass | |
4838 | * the requested read... limit each call to cluster_io | |
0b4e3aa0 A |
4839 | * to the maximum UPL size... cluster_io will clip if |
4840 | * this exceeds the maximum io_size for the device, | |
4841 | * make sure to account for | |
1c79356b A |
4842 | * a starting offset that's not page aligned |
4843 | */ | |
4844 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
4845 | upl_f_offset = f_offset - (off_t)start_offset; | |
4846 | max_size = filesize - f_offset; | |
4847 | ||
4848 | if (resid < max_size) | |
4849 | io_size = resid; | |
4850 | else | |
4851 | io_size = max_size; | |
4852 | ||
4853 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
cf7d32b8 A |
4854 | if ((uint32_t)upl_size > max_io_size) |
4855 | upl_size = max_io_size; | |
55e303ae A |
4856 | |
4857 | skip_range = 0; | |
4858 | /* | |
4859 | * return the number of contiguously present pages in the cache | |
4860 | * starting at upl_f_offset within the file | |
4861 | */ | |
4862 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
4863 | ||
4864 | if (skip_range) { | |
4865 | /* | |
4866 | * skip over pages already present in the cache | |
4867 | */ | |
4868 | io_size = skip_range - start_offset; | |
4869 | ||
4870 | f_offset += io_size; | |
4871 | resid -= io_size; | |
4872 | ||
4873 | if (skip_range == upl_size) | |
4874 | continue; | |
4875 | /* | |
4876 | * have to issue some real I/O | |
4877 | * at this point, we know it's starting on a page boundary | |
4878 | * because we've skipped over at least the first page in the request | |
4879 | */ | |
4880 | start_offset = 0; | |
4881 | upl_f_offset += skip_range; | |
4882 | upl_size -= skip_range; | |
4883 | } | |
1c79356b A |
4884 | pages_in_upl = upl_size / PAGE_SIZE; |
4885 | ||
55e303ae | 4886 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, |
b0d623f7 | 4887 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
55e303ae | 4888 | |
0b4e3aa0 | 4889 | kret = ubc_create_upl(vp, |
91447636 A |
4890 | upl_f_offset, |
4891 | upl_size, | |
4892 | &upl, | |
4893 | &pl, | |
4894 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE); | |
1c79356b | 4895 | if (kret != KERN_SUCCESS) |
9bccf70c A |
4896 | return(retval); |
4897 | issued_io = 0; | |
1c79356b A |
4898 | |
4899 | /* | |
9bccf70c A |
4900 | * before we start marching forward, we must make sure we end on |
4901 | * a present page, otherwise we will be working with a freed | |
4902 | * upl | |
1c79356b | 4903 | */ |
9bccf70c A |
4904 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
4905 | if (upl_page_present(pl, last_pg)) | |
4906 | break; | |
1c79356b | 4907 | } |
9bccf70c | 4908 | pages_in_upl = last_pg + 1; |
1c79356b | 4909 | |
1c79356b | 4910 | |
55e303ae | 4911 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, |
b0d623f7 | 4912 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
9bccf70c A |
4913 | |
4914 | ||
4915 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
1c79356b | 4916 | /* |
9bccf70c A |
4917 | * scan from the beginning of the upl looking for the first |
4918 | * page that is present.... this will become the first page in | |
4919 | * the request we're going to make to 'cluster_io'... if all | |
4920 | * of the pages are absent, we won't call through to 'cluster_io' | |
1c79356b | 4921 | */ |
9bccf70c A |
4922 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
4923 | if (upl_page_present(pl, start_pg)) | |
4924 | break; | |
1c79356b | 4925 | } |
1c79356b | 4926 | |
1c79356b | 4927 | /* |
9bccf70c A |
4928 | * scan from the starting present page looking for an absent |
4929 | * page before the end of the upl is reached, if we | |
4930 | * find one, then it will terminate the range of pages being | |
4931 | * presented to 'cluster_io' | |
1c79356b | 4932 | */ |
9bccf70c A |
4933 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
4934 | if (!upl_page_present(pl, last_pg)) | |
4935 | break; | |
4936 | } | |
4937 | ||
4938 | if (last_pg > start_pg) { | |
4939 | /* | |
4940 | * we found a range of pages that must be filled | |
4941 | * if the last page in this range is the last page of the file | |
4942 | * we may have to clip the size of it to keep from reading past | |
4943 | * the end of the last physical block associated with the file | |
4944 | */ | |
4945 | upl_offset = start_pg * PAGE_SIZE; | |
4946 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4947 | ||
b0d623f7 | 4948 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
9bccf70c A |
4949 | io_size = filesize - (upl_f_offset + upl_offset); |
4950 | ||
4951 | /* | |
4952 | * issue an asynchronous read to cluster_io | |
4953 | */ | |
91447636 | 4954 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 4955 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 4956 | |
9bccf70c A |
4957 | issued_io = 1; |
4958 | } | |
1c79356b | 4959 | } |
9bccf70c A |
4960 | if (issued_io == 0) |
4961 | ubc_upl_abort(upl, 0); | |
4962 | ||
4963 | io_size = upl_size - start_offset; | |
1c79356b A |
4964 | |
4965 | if (io_size > resid) | |
4966 | io_size = resid; | |
4967 | f_offset += io_size; | |
4968 | resid -= io_size; | |
4969 | } | |
9bccf70c | 4970 | |
1c79356b A |
4971 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, |
4972 | (int)f_offset, resid, retval, 0, 0); | |
4973 | ||
4974 | return(retval); | |
4975 | } | |
4976 | ||
4977 | ||
9bccf70c | 4978 | int |
91447636 | 4979 | cluster_push(vnode_t vp, int flags) |
2d21ac55 A |
4980 | { |
4981 | return cluster_push_ext(vp, flags, NULL, NULL); | |
4982 | } | |
4983 | ||
4984 | ||
4985 | int | |
4986 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
9bccf70c | 4987 | { |
91447636 | 4988 | int retval; |
b0d623f7 | 4989 | int my_sparse_wait = 0; |
91447636 | 4990 | struct cl_writebehind *wbp; |
9bccf70c | 4991 | |
91447636 | 4992 | if ( !UBCINFOEXISTS(vp)) { |
b0d623f7 | 4993 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0); |
91447636 A |
4994 | return (0); |
4995 | } | |
4996 | /* return if deferred write is set */ | |
4997 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
4998 | return (0); | |
4999 | } | |
5000 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
b0d623f7 | 5001 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0); |
91447636 A |
5002 | return (0); |
5003 | } | |
5004 | if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) { | |
5005 | lck_mtx_unlock(&wbp->cl_lockw); | |
9bccf70c | 5006 | |
b0d623f7 | 5007 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0); |
91447636 A |
5008 | return(0); |
5009 | } | |
9bccf70c | 5010 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, |
b0d623f7 A |
5011 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); |
5012 | ||
5013 | /* | |
5014 | * if we have an fsync in progress, we don't want to allow any additional | |
5015 | * sync/fsync/close(s) to occur until it finishes. | |
5016 | * note that its possible for writes to continue to occur to this file | |
5017 | * while we're waiting and also once the fsync starts to clean if we're | |
5018 | * in the sparse map case | |
5019 | */ | |
5020 | while (wbp->cl_sparse_wait) { | |
5021 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0); | |
5022 | ||
5023 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5024 | ||
5025 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0); | |
5026 | } | |
5027 | if (flags & IO_SYNC) { | |
5028 | my_sparse_wait = 1; | |
5029 | wbp->cl_sparse_wait = 1; | |
9bccf70c | 5030 | |
b0d623f7 A |
5031 | /* |
5032 | * this is an fsync (or equivalent)... we must wait for any existing async | |
5033 | * cleaning operations to complete before we evaulate the current state | |
5034 | * and finish cleaning... this insures that all writes issued before this | |
5035 | * fsync actually get cleaned to the disk before this fsync returns | |
5036 | */ | |
5037 | while (wbp->cl_sparse_pushes) { | |
5038 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0); | |
5039 | ||
5040 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5041 | ||
5042 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0); | |
5043 | } | |
5044 | } | |
91447636 | 5045 | if (wbp->cl_scmap) { |
b0d623f7 A |
5046 | void *scmap; |
5047 | ||
5048 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
5049 | ||
5050 | scmap = wbp->cl_scmap; | |
5051 | wbp->cl_scmap = NULL; | |
5052 | ||
5053 | wbp->cl_sparse_pushes++; | |
5054 | ||
5055 | lck_mtx_unlock(&wbp->cl_lockw); | |
5056 | ||
39236c6e | 5057 | sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 A |
5058 | |
5059 | lck_mtx_lock(&wbp->cl_lockw); | |
9bccf70c | 5060 | |
b0d623f7 A |
5061 | wbp->cl_sparse_pushes--; |
5062 | ||
5063 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) | |
5064 | wakeup((caddr_t)&wbp->cl_sparse_pushes); | |
5065 | } else { | |
39236c6e | 5066 | sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 | 5067 | } |
55e303ae | 5068 | retval = 1; |
b0d623f7 | 5069 | } else { |
39236c6e | 5070 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 | 5071 | } |
91447636 A |
5072 | lck_mtx_unlock(&wbp->cl_lockw); |
5073 | ||
5074 | if (flags & IO_SYNC) | |
2d21ac55 | 5075 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); |
9bccf70c | 5076 | |
b0d623f7 A |
5077 | if (my_sparse_wait) { |
5078 | /* | |
5079 | * I'm the owner of the serialization token | |
5080 | * clear it and wakeup anyone that is waiting | |
5081 | * for me to finish | |
5082 | */ | |
5083 | lck_mtx_lock(&wbp->cl_lockw); | |
5084 | ||
5085 | wbp->cl_sparse_wait = 0; | |
5086 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
5087 | ||
5088 | lck_mtx_unlock(&wbp->cl_lockw); | |
5089 | } | |
55e303ae | 5090 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, |
b0d623f7 | 5091 | wbp->cl_scmap, wbp->cl_number, retval, 0, 0); |
9bccf70c | 5092 | |
55e303ae A |
5093 | return (retval); |
5094 | } | |
9bccf70c | 5095 | |
9bccf70c | 5096 | |
91447636 A |
5097 | __private_extern__ void |
5098 | cluster_release(struct ubc_info *ubc) | |
55e303ae | 5099 | { |
91447636 A |
5100 | struct cl_writebehind *wbp; |
5101 | struct cl_readahead *rap; | |
5102 | ||
5103 | if ((wbp = ubc->cl_wbehind)) { | |
9bccf70c | 5104 | |
b0d623f7 | 5105 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5106 | |
5107 | if (wbp->cl_scmap) | |
5108 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
5109 | } else { | |
b0d623f7 | 5110 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); |
91447636 | 5111 | } |
9bccf70c | 5112 | |
91447636 | 5113 | rap = ubc->cl_rahead; |
55e303ae | 5114 | |
91447636 A |
5115 | if (wbp != NULL) { |
5116 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
5117 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
5118 | } | |
5119 | if ((rap = ubc->cl_rahead)) { | |
5120 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
5121 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
55e303ae | 5122 | } |
91447636 A |
5123 | ubc->cl_rahead = NULL; |
5124 | ubc->cl_wbehind = NULL; | |
5125 | ||
b0d623f7 | 5126 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); |
91447636 A |
5127 | } |
5128 | ||
5129 | ||
9bccf70c | 5130 | static int |
6d2010ae | 5131 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
9bccf70c A |
5132 | { |
5133 | int cl_index; | |
5134 | int cl_index1; | |
5135 | int min_index; | |
5136 | int cl_len; | |
55e303ae | 5137 | int cl_pushed = 0; |
91447636 | 5138 | struct cl_wextent l_clusters[MAX_CLUSTERS]; |
b0d623f7 A |
5139 | u_int max_cluster_pgcount; |
5140 | ||
5141 | ||
5142 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
9bccf70c | 5143 | /* |
91447636 A |
5144 | * the write behind context exists and has |
5145 | * already been locked... | |
2d21ac55 A |
5146 | */ |
5147 | if (wbp->cl_number == 0) | |
5148 | /* | |
5149 | * no clusters to push | |
5150 | * return number of empty slots | |
5151 | */ | |
5152 | return (MAX_CLUSTERS); | |
5153 | ||
5154 | /* | |
9bccf70c | 5155 | * make a local 'sorted' copy of the clusters |
91447636 | 5156 | * and clear wbp->cl_number so that new clusters can |
9bccf70c A |
5157 | * be developed |
5158 | */ | |
91447636 A |
5159 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
5160 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
5161 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) | |
9bccf70c A |
5162 | continue; |
5163 | if (min_index == -1) | |
5164 | min_index = cl_index1; | |
91447636 | 5165 | else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) |
9bccf70c A |
5166 | min_index = cl_index1; |
5167 | } | |
5168 | if (min_index == -1) | |
5169 | break; | |
b0d623f7 | 5170 | |
91447636 A |
5171 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; |
5172 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
2d21ac55 | 5173 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; |
9bccf70c | 5174 | |
91447636 | 5175 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; |
9bccf70c | 5176 | } |
91447636 A |
5177 | wbp->cl_number = 0; |
5178 | ||
5179 | cl_len = cl_index; | |
9bccf70c | 5180 | |
2d21ac55 | 5181 | if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) { |
55e303ae A |
5182 | int i; |
5183 | ||
5184 | /* | |
5185 | * determine if we appear to be writing the file sequentially | |
5186 | * if not, by returning without having pushed any clusters | |
5187 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
5188 | * used for managing more random I/O patterns | |
5189 | * | |
5190 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
2d21ac55 | 5191 | * that's why we're in try_push with PUSH_DELAY... |
55e303ae A |
5192 | * |
5193 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
5194 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
91447636 A |
5195 | * so we can just make a simple pass through, up to, but not including the last one... |
5196 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
55e303ae A |
5197 | * are sequential |
5198 | * | |
5199 | * we let the last one be partial as long as it was adjacent to the previous one... | |
5200 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
5201 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
5202 | */ | |
5203 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
cf7d32b8 | 5204 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) |
55e303ae | 5205 | goto dont_try; |
91447636 | 5206 | if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) |
55e303ae A |
5207 | goto dont_try; |
5208 | } | |
5209 | } | |
5210 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
2d21ac55 A |
5211 | int flags; |
5212 | struct cl_extent cl; | |
91447636 | 5213 | |
6d2010ae A |
5214 | flags = io_flags & (IO_PASSIVE|IO_CLOSE); |
5215 | ||
9bccf70c | 5216 | /* |
91447636 | 5217 | * try to push each cluster in turn... |
9bccf70c | 5218 | */ |
2d21ac55 | 5219 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) |
6d2010ae | 5220 | flags |= IO_NOCACHE; |
2d21ac55 | 5221 | |
6d2010ae | 5222 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) |
2d21ac55 A |
5223 | flags |= IO_PASSIVE; |
5224 | ||
5225 | if (push_flag & PUSH_SYNC) | |
5226 | flags |= IO_SYNC; | |
5227 | ||
91447636 A |
5228 | cl.b_addr = l_clusters[cl_index].b_addr; |
5229 | cl.e_addr = l_clusters[cl_index].e_addr; | |
9bccf70c | 5230 | |
2d21ac55 | 5231 | cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg); |
9bccf70c | 5232 | |
91447636 A |
5233 | l_clusters[cl_index].b_addr = 0; |
5234 | l_clusters[cl_index].e_addr = 0; | |
5235 | ||
5236 | cl_pushed++; | |
5237 | ||
2d21ac55 | 5238 | if ( !(push_flag & PUSH_ALL) ) |
91447636 | 5239 | break; |
9bccf70c | 5240 | } |
55e303ae | 5241 | dont_try: |
9bccf70c A |
5242 | if (cl_len > cl_pushed) { |
5243 | /* | |
5244 | * we didn't push all of the clusters, so | |
5245 | * lets try to merge them back in to the vnode | |
5246 | */ | |
91447636 | 5247 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { |
9bccf70c A |
5248 | /* |
5249 | * we picked up some new clusters while we were trying to | |
91447636 A |
5250 | * push the old ones... this can happen because I've dropped |
5251 | * the vnode lock... the sum of the | |
9bccf70c | 5252 | * leftovers plus the new cluster count exceeds our ability |
55e303ae | 5253 | * to represent them, so switch to the sparse cluster mechanism |
91447636 A |
5254 | * |
5255 | * collect the active public clusters... | |
9bccf70c | 5256 | */ |
2d21ac55 | 5257 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae A |
5258 | |
5259 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
91447636 | 5260 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) |
9bccf70c | 5261 | continue; |
91447636 A |
5262 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5263 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5264 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5265 | |
55e303ae | 5266 | cl_index1++; |
9bccf70c | 5267 | } |
55e303ae A |
5268 | /* |
5269 | * update the cluster count | |
5270 | */ | |
91447636 | 5271 | wbp->cl_number = cl_index1; |
55e303ae A |
5272 | |
5273 | /* | |
5274 | * and collect the original clusters that were moved into the | |
5275 | * local storage for sorting purposes | |
5276 | */ | |
2d21ac55 | 5277 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae | 5278 | |
9bccf70c A |
5279 | } else { |
5280 | /* | |
5281 | * we've got room to merge the leftovers back in | |
5282 | * just append them starting at the next 'hole' | |
91447636 | 5283 | * represented by wbp->cl_number |
9bccf70c | 5284 | */ |
91447636 A |
5285 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { |
5286 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
9bccf70c A |
5287 | continue; |
5288 | ||
91447636 A |
5289 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5290 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5291 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5292 | |
9bccf70c A |
5293 | cl_index1++; |
5294 | } | |
5295 | /* | |
5296 | * update the cluster count | |
5297 | */ | |
91447636 | 5298 | wbp->cl_number = cl_index1; |
9bccf70c A |
5299 | } |
5300 | } | |
2d21ac55 | 5301 | return (MAX_CLUSTERS - wbp->cl_number); |
9bccf70c A |
5302 | } |
5303 | ||
5304 | ||
5305 | ||
5306 | static int | |
2d21ac55 | 5307 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 5308 | { |
1c79356b A |
5309 | upl_page_info_t *pl; |
5310 | upl_t upl; | |
5311 | vm_offset_t upl_offset; | |
5312 | int upl_size; | |
5313 | off_t upl_f_offset; | |
5314 | int pages_in_upl; | |
5315 | int start_pg; | |
5316 | int last_pg; | |
5317 | int io_size; | |
5318 | int io_flags; | |
55e303ae | 5319 | int upl_flags; |
2d21ac55 | 5320 | int bflag; |
1c79356b | 5321 | int size; |
91447636 A |
5322 | int error = 0; |
5323 | int retval; | |
1c79356b A |
5324 | kern_return_t kret; |
5325 | ||
2d21ac55 | 5326 | if (flags & IO_PASSIVE) |
6d2010ae | 5327 | bflag = CL_PASSIVE; |
2d21ac55 | 5328 | else |
6d2010ae | 5329 | bflag = 0; |
1c79356b | 5330 | |
9bccf70c | 5331 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, |
91447636 | 5332 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); |
9bccf70c | 5333 | |
91447636 | 5334 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { |
9bccf70c | 5335 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); |
1c79356b | 5336 | |
91447636 | 5337 | return (0); |
9bccf70c | 5338 | } |
1c79356b | 5339 | upl_size = pages_in_upl * PAGE_SIZE; |
91447636 | 5340 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
1c79356b | 5341 | |
9bccf70c A |
5342 | if (upl_f_offset + upl_size >= EOF) { |
5343 | ||
5344 | if (upl_f_offset >= EOF) { | |
5345 | /* | |
5346 | * must have truncated the file and missed | |
5347 | * clearing a dangling cluster (i.e. it's completely | |
5348 | * beyond the new EOF | |
5349 | */ | |
5350 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
5351 | ||
91447636 | 5352 | return(0); |
9bccf70c A |
5353 | } |
5354 | size = EOF - upl_f_offset; | |
1c79356b | 5355 | |
55e303ae | 5356 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
9bccf70c | 5357 | pages_in_upl = upl_size / PAGE_SIZE; |
55e303ae | 5358 | } else |
9bccf70c | 5359 | size = upl_size; |
55e303ae A |
5360 | |
5361 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
5362 | ||
91447636 A |
5363 | /* |
5364 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
5365 | * | |
5366 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
5367 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
5368 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
5369 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
5370 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
5371 | * | |
5372 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
5373 | */ | |
5374 | ||
5375 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) | |
55e303ae A |
5376 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; |
5377 | else | |
5378 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
5379 | ||
0b4e3aa0 A |
5380 | kret = ubc_create_upl(vp, |
5381 | upl_f_offset, | |
5382 | upl_size, | |
5383 | &upl, | |
9bccf70c | 5384 | &pl, |
55e303ae | 5385 | upl_flags); |
1c79356b A |
5386 | if (kret != KERN_SUCCESS) |
5387 | panic("cluster_push: failed to get pagelist"); | |
5388 | ||
b0d623f7 | 5389 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); |
9bccf70c | 5390 | |
55e303ae A |
5391 | /* |
5392 | * since we only asked for the dirty pages back | |
5393 | * it's possible that we may only get a few or even none, so... | |
5394 | * before we start marching forward, we must make sure we know | |
5395 | * where the last present page is in the UPL, otherwise we could | |
5396 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
5397 | * employed by commit_range and abort_range. | |
5398 | */ | |
5399 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
5400 | if (upl_page_present(pl, last_pg)) | |
5401 | break; | |
9bccf70c | 5402 | } |
55e303ae | 5403 | pages_in_upl = last_pg + 1; |
1c79356b | 5404 | |
55e303ae A |
5405 | if (pages_in_upl == 0) { |
5406 | ubc_upl_abort(upl, 0); | |
1c79356b | 5407 | |
55e303ae | 5408 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); |
91447636 | 5409 | return(0); |
55e303ae A |
5410 | } |
5411 | ||
5412 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
5413 | /* | |
5414 | * find the next dirty page in the UPL | |
5415 | * this will become the first page in the | |
5416 | * next I/O to generate | |
5417 | */ | |
1c79356b | 5418 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
55e303ae | 5419 | if (upl_dirty_page(pl, start_pg)) |
1c79356b | 5420 | break; |
55e303ae A |
5421 | if (upl_page_present(pl, start_pg)) |
5422 | /* | |
5423 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
5424 | * just release these unchanged since we're not going | |
5425 | * to steal them or change their state | |
5426 | */ | |
5427 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b | 5428 | } |
55e303ae A |
5429 | if (start_pg >= pages_in_upl) |
5430 | /* | |
5431 | * done... no more dirty pages to push | |
5432 | */ | |
5433 | break; | |
5434 | if (start_pg > last_pg) | |
5435 | /* | |
5436 | * skipped over some non-dirty pages | |
5437 | */ | |
5438 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
1c79356b | 5439 | |
55e303ae A |
5440 | /* |
5441 | * find a range of dirty pages to write | |
5442 | */ | |
1c79356b | 5443 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
55e303ae | 5444 | if (!upl_dirty_page(pl, last_pg)) |
1c79356b A |
5445 | break; |
5446 | } | |
5447 | upl_offset = start_pg * PAGE_SIZE; | |
5448 | ||
5449 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
5450 | ||
2d21ac55 | 5451 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; |
91447636 A |
5452 | |
5453 | if ( !(flags & IO_SYNC)) | |
5454 | io_flags |= CL_ASYNC; | |
5455 | ||
6d2010ae A |
5456 | if (flags & IO_CLOSE) |
5457 | io_flags |= CL_CLOSE; | |
5458 | ||
316670eb A |
5459 | if (flags & IO_NOCACHE) |
5460 | io_flags |= CL_NOCACHE; | |
5461 | ||
91447636 | 5462 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 5463 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5464 | |
91447636 A |
5465 | if (error == 0 && retval) |
5466 | error = retval; | |
1c79356b A |
5467 | |
5468 | size -= io_size; | |
5469 | } | |
9bccf70c A |
5470 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); |
5471 | ||
91447636 | 5472 | return(error); |
1c79356b | 5473 | } |
b4c24cb9 A |
5474 | |
5475 | ||
91447636 A |
5476 | /* |
5477 | * sparse_cluster_switch is called with the write behind lock held | |
5478 | */ | |
5479 | static void | |
2d21ac55 | 5480 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
b4c24cb9 | 5481 | { |
91447636 | 5482 | int cl_index; |
b4c24cb9 | 5483 | |
b0d623f7 | 5484 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5485 | |
5486 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5487 | int flags; | |
5488 | struct cl_extent cl; | |
5489 | ||
5490 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
b4c24cb9 | 5491 | |
2d21ac55 | 5492 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { |
91447636 A |
5493 | if (flags & UPL_POP_DIRTY) { |
5494 | cl.e_addr = cl.b_addr + 1; | |
b4c24cb9 | 5495 | |
b0d623f7 | 5496 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg); |
91447636 | 5497 | } |
55e303ae A |
5498 | } |
5499 | } | |
5500 | } | |
91447636 A |
5501 | wbp->cl_number = 0; |
5502 | ||
b0d623f7 | 5503 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0); |
55e303ae A |
5504 | } |
5505 | ||
5506 | ||
91447636 | 5507 | /* |
b0d623f7 A |
5508 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is |
5509 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
5510 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
91447636 A |
5511 | */ |
5512 | static void | |
6d2010ae | 5513 | sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5514 | { |
91447636 A |
5515 | struct cl_extent cl; |
5516 | off_t offset; | |
5517 | u_int length; | |
55e303ae | 5518 | |
b0d623f7 | 5519 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0); |
55e303ae | 5520 | |
2d21ac55 | 5521 | if (push_flag & PUSH_ALL) |
b0d623f7 | 5522 | vfs_drt_control(scmap, 1); |
55e303ae A |
5523 | |
5524 | for (;;) { | |
b0d623f7 | 5525 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) |
55e303ae | 5526 | break; |
55e303ae | 5527 | |
91447636 A |
5528 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); |
5529 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
5530 | ||
6d2010ae | 5531 | cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg); |
2d21ac55 | 5532 | |
2d21ac55 | 5533 | if ( !(push_flag & PUSH_ALL) ) |
55e303ae A |
5534 | break; |
5535 | } | |
b0d623f7 | 5536 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); |
55e303ae A |
5537 | } |
5538 | ||
5539 | ||
91447636 A |
5540 | /* |
5541 | * sparse_cluster_add is called with the write behind lock held | |
5542 | */ | |
5543 | static void | |
b0d623f7 | 5544 | sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5545 | { |
91447636 A |
5546 | u_int new_dirty; |
5547 | u_int length; | |
5548 | off_t offset; | |
55e303ae | 5549 | |
b0d623f7 | 5550 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); |
55e303ae | 5551 | |
91447636 A |
5552 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
5553 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
55e303ae | 5554 | |
b0d623f7 | 5555 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { |
55e303ae A |
5556 | /* |
5557 | * no room left in the map | |
5558 | * only a partial update was done | |
5559 | * push out some pages and try again | |
5560 | */ | |
6d2010ae | 5561 | sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg); |
55e303ae A |
5562 | |
5563 | offset += (new_dirty * PAGE_SIZE_64); | |
5564 | length -= (new_dirty * PAGE_SIZE); | |
5565 | } | |
b0d623f7 | 5566 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); |
55e303ae A |
5567 | } |
5568 | ||
5569 | ||
5570 | static int | |
2d21ac55 | 5571 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5572 | { |
55e303ae A |
5573 | upl_page_info_t *pl; |
5574 | upl_t upl; | |
5575 | addr64_t ubc_paddr; | |
5576 | kern_return_t kret; | |
5577 | int error = 0; | |
91447636 A |
5578 | int did_read = 0; |
5579 | int abort_flags; | |
5580 | int upl_flags; | |
2d21ac55 A |
5581 | int bflag; |
5582 | ||
5583 | if (flags & IO_PASSIVE) | |
6d2010ae | 5584 | bflag = CL_PASSIVE; |
2d21ac55 | 5585 | else |
6d2010ae | 5586 | bflag = 0; |
55e303ae | 5587 | |
316670eb A |
5588 | if (flags & IO_NOCACHE) |
5589 | bflag |= CL_NOCACHE; | |
5590 | ||
91447636 | 5591 | upl_flags = UPL_SET_LITE; |
2d21ac55 A |
5592 | |
5593 | if ( !(flags & CL_READ) ) { | |
91447636 A |
5594 | /* |
5595 | * "write" operation: let the UPL subsystem know | |
5596 | * that we intend to modify the buffer cache pages | |
5597 | * we're gathering. | |
5598 | */ | |
5599 | upl_flags |= UPL_WILL_MODIFY; | |
2d21ac55 A |
5600 | } else { |
5601 | /* | |
5602 | * indicate that there is no need to pull the | |
5603 | * mapping for this page... we're only going | |
5604 | * to read from it, not modify it. | |
5605 | */ | |
5606 | upl_flags |= UPL_FILE_IO; | |
91447636 | 5607 | } |
55e303ae A |
5608 | kret = ubc_create_upl(vp, |
5609 | uio->uio_offset & ~PAGE_MASK_64, | |
5610 | PAGE_SIZE, | |
5611 | &upl, | |
5612 | &pl, | |
91447636 | 5613 | upl_flags); |
55e303ae A |
5614 | |
5615 | if (kret != KERN_SUCCESS) | |
5616 | return(EINVAL); | |
5617 | ||
5618 | if (!upl_valid_page(pl, 0)) { | |
5619 | /* | |
5620 | * issue a synchronous read to cluster_io | |
5621 | */ | |
91447636 | 5622 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 5623 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
55e303ae | 5624 | if (error) { |
b4c24cb9 A |
5625 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
5626 | ||
5627 | return(error); | |
5628 | } | |
91447636 | 5629 | did_read = 1; |
b4c24cb9 | 5630 | } |
55e303ae | 5631 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); |
b4c24cb9 | 5632 | |
55e303ae A |
5633 | /* |
5634 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
5635 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
5636 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
5637 | * way to do so without exporting them to kexts as well. | |
5638 | */ | |
de355530 | 5639 | if (flags & CL_READ) |
55e303ae A |
5640 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ |
5641 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
de355530 | 5642 | else |
4a249263 A |
5643 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ |
5644 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
55e303ae A |
5645 | |
5646 | if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
5647 | /* | |
5648 | * issue a synchronous write to cluster_io | |
5649 | */ | |
91447636 | 5650 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 5651 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
de355530 | 5652 | } |
2d21ac55 | 5653 | if (error == 0) |
cc9f6e38 A |
5654 | uio_update(uio, (user_size_t)xsize); |
5655 | ||
91447636 A |
5656 | if (did_read) |
5657 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
5658 | else | |
5659 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
5660 | ||
5661 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
55e303ae A |
5662 | |
5663 | return (error); | |
5664 | } | |
5665 | ||
5666 | ||
5667 | ||
5668 | int | |
2d21ac55 | 5669 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) |
55e303ae A |
5670 | { |
5671 | int pg_offset; | |
5672 | int pg_index; | |
5673 | int csize; | |
5674 | int segflg; | |
5675 | int retval = 0; | |
2d21ac55 | 5676 | int xsize; |
55e303ae | 5677 | upl_page_info_t *pl; |
55e303ae | 5678 | |
2d21ac55 A |
5679 | xsize = *io_resid; |
5680 | ||
55e303ae | 5681 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
2d21ac55 | 5682 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); |
55e303ae A |
5683 | |
5684 | segflg = uio->uio_segflg; | |
5685 | ||
5686 | switch(segflg) { | |
5687 | ||
91447636 A |
5688 | case UIO_USERSPACE32: |
5689 | case UIO_USERISPACE32: | |
5690 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
5691 | break; | |
5692 | ||
55e303ae A |
5693 | case UIO_USERSPACE: |
5694 | case UIO_USERISPACE: | |
5695 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
5696 | break; | |
5697 | ||
91447636 A |
5698 | case UIO_USERSPACE64: |
5699 | case UIO_USERISPACE64: | |
5700 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
5701 | break; | |
5702 | ||
55e303ae A |
5703 | case UIO_SYSSPACE: |
5704 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
5705 | break; | |
91447636 | 5706 | |
55e303ae A |
5707 | } |
5708 | pl = ubc_upl_pageinfo(upl); | |
5709 | ||
5710 | pg_index = upl_offset / PAGE_SIZE; | |
5711 | pg_offset = upl_offset & PAGE_MASK; | |
5712 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
5713 | ||
5714 | while (xsize && retval == 0) { | |
5715 | addr64_t paddr; | |
5716 | ||
5717 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset; | |
de355530 | 5718 | |
55e303ae A |
5719 | retval = uiomove64(paddr, csize, uio); |
5720 | ||
5721 | pg_index += 1; | |
5722 | pg_offset = 0; | |
5723 | xsize -= csize; | |
5724 | csize = min(PAGE_SIZE, xsize); | |
5725 | } | |
2d21ac55 A |
5726 | *io_resid = xsize; |
5727 | ||
55e303ae A |
5728 | uio->uio_segflg = segflg; |
5729 | ||
55e303ae | 5730 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 5731 | (int)uio->uio_offset, xsize, retval, segflg, 0); |
55e303ae A |
5732 | |
5733 | return (retval); | |
5734 | } | |
5735 | ||
5736 | ||
5737 | int | |
91447636 | 5738 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) |
2d21ac55 A |
5739 | { |
5740 | ||
5741 | return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1)); | |
5742 | } | |
5743 | ||
5744 | ||
5745 | static int | |
5746 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
55e303ae A |
5747 | { |
5748 | int segflg; | |
5749 | int io_size; | |
5750 | int xsize; | |
5751 | int start_offset; | |
55e303ae A |
5752 | int retval = 0; |
5753 | memory_object_control_t control; | |
55e303ae | 5754 | |
2d21ac55 | 5755 | io_size = *io_resid; |
55e303ae A |
5756 | |
5757 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
6d2010ae | 5758 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); |
55e303ae A |
5759 | |
5760 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
2d21ac55 | 5761 | |
55e303ae A |
5762 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
5763 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
2d21ac55 | 5764 | (int)uio->uio_offset, io_size, retval, 3, 0); |
55e303ae A |
5765 | |
5766 | return(0); | |
5767 | } | |
55e303ae A |
5768 | segflg = uio->uio_segflg; |
5769 | ||
5770 | switch(segflg) { | |
5771 | ||
91447636 A |
5772 | case UIO_USERSPACE32: |
5773 | case UIO_USERISPACE32: | |
5774 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
5775 | break; | |
5776 | ||
5777 | case UIO_USERSPACE64: | |
5778 | case UIO_USERISPACE64: | |
5779 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
5780 | break; | |
5781 | ||
55e303ae A |
5782 | case UIO_USERSPACE: |
5783 | case UIO_USERISPACE: | |
5784 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
5785 | break; | |
5786 | ||
5787 | case UIO_SYSSPACE: | |
5788 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
5789 | break; | |
5790 | } | |
55e303ae | 5791 | |
91447636 A |
5792 | if ( (io_size = *io_resid) ) { |
5793 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
5794 | xsize = uio_resid(uio); | |
55e303ae | 5795 | |
2d21ac55 A |
5796 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, |
5797 | start_offset, io_size, mark_dirty, take_reference); | |
91447636 A |
5798 | xsize -= uio_resid(uio); |
5799 | io_size -= xsize; | |
55e303ae A |
5800 | } |
5801 | uio->uio_segflg = segflg; | |
5802 | *io_resid = io_size; | |
5803 | ||
55e303ae | 5804 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 5805 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); |
55e303ae A |
5806 | |
5807 | return(retval); | |
5808 | } | |
5809 | ||
5810 | ||
5811 | int | |
91447636 | 5812 | is_file_clean(vnode_t vp, off_t filesize) |
55e303ae A |
5813 | { |
5814 | off_t f_offset; | |
5815 | int flags; | |
5816 | int total_dirty = 0; | |
5817 | ||
5818 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
2d21ac55 | 5819 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { |
55e303ae A |
5820 | if (flags & UPL_POP_DIRTY) { |
5821 | total_dirty++; | |
5822 | } | |
5823 | } | |
5824 | } | |
5825 | if (total_dirty) | |
5826 | return(EINVAL); | |
5827 | ||
5828 | return (0); | |
5829 | } | |
5830 | ||
5831 | ||
5832 | ||
5833 | /* | |
5834 | * Dirty region tracking/clustering mechanism. | |
5835 | * | |
5836 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
5837 | * dirty regions within a larger space (file). It is primarily intended to | |
5838 | * support clustering in large files with many dirty areas. | |
5839 | * | |
5840 | * The implementation assumes that the dirty regions are pages. | |
5841 | * | |
5842 | * To represent dirty pages within the file, we store bit vectors in a | |
5843 | * variable-size circular hash. | |
5844 | */ | |
5845 | ||
5846 | /* | |
5847 | * Bitvector size. This determines the number of pages we group in a | |
5848 | * single hashtable entry. Each hashtable entry is aligned to this | |
5849 | * size within the file. | |
5850 | */ | |
5851 | #define DRT_BITVECTOR_PAGES 256 | |
5852 | ||
5853 | /* | |
5854 | * File offset handling. | |
5855 | * | |
5856 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; | |
5857 | * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1) | |
5858 | */ | |
5859 | #define DRT_ADDRESS_MASK (~((1 << 20) - 1)) | |
5860 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) | |
5861 | ||
5862 | /* | |
5863 | * Hashtable address field handling. | |
5864 | * | |
5865 | * The low-order bits of the hashtable address are used to conserve | |
5866 | * space. | |
5867 | * | |
5868 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
5869 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
5870 | * to indicate that the bucket is actually unoccupied. | |
5871 | */ | |
5872 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
5873 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
5874 | do { \ | |
5875 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
5876 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
5877 | } while (0) | |
5878 | #define DRT_HASH_COUNT_MASK 0x1ff | |
5879 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
5880 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
5881 | do { \ | |
5882 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
5883 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
5884 | } while (0) | |
5885 | #define DRT_HASH_CLEAR(scm, i) \ | |
5886 | do { \ | |
5887 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
5888 | } while (0) | |
5889 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
5890 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
5891 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
5892 | do { \ | |
5893 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
5894 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
5895 | } while(0); | |
5896 | ||
5897 | ||
5898 | /* | |
5899 | * Hash table moduli. | |
5900 | * | |
5901 | * Since the hashtable entry's size is dependent on the size of | |
5902 | * the bitvector, and since the hashtable size is constrained to | |
5903 | * both being prime and fitting within the desired allocation | |
5904 | * size, these values need to be manually determined. | |
5905 | * | |
5906 | * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. | |
5907 | * | |
5908 | * The small hashtable allocation is 1024 bytes, so the modulus is 23. | |
5909 | * The large hashtable allocation is 16384 bytes, so the modulus is 401. | |
5910 | */ | |
5911 | #define DRT_HASH_SMALL_MODULUS 23 | |
5912 | #define DRT_HASH_LARGE_MODULUS 401 | |
5913 | ||
b7266188 A |
5914 | /* |
5915 | * Physical memory required before the large hash modulus is permitted. | |
5916 | * | |
5917 | * On small memory systems, the large hash modulus can lead to phsyical | |
5918 | * memory starvation, so we avoid using it there. | |
5919 | */ | |
5920 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ | |
5921 | ||
55e303ae A |
5922 | #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ |
5923 | #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ | |
5924 | ||
5925 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
5926 | ||
5927 | /* | |
5928 | * Hashtable bitvector handling. | |
5929 | * | |
5930 | * Bitvector fields are 32 bits long. | |
5931 | */ | |
5932 | ||
5933 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
5934 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
5935 | ||
5936 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
5937 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
5938 | ||
5939 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
5940 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
5941 | ||
5942 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
5943 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
5944 | ||
5945 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
5946 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
5947 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
5948 | (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
5949 | ||
5950 | ||
5951 | ||
5952 | /* | |
5953 | * Hashtable entry. | |
5954 | */ | |
5955 | struct vfs_drt_hashentry { | |
5956 | u_int64_t dhe_control; | |
5957 | u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
5958 | }; | |
5959 | ||
5960 | /* | |
5961 | * Dirty Region Tracking structure. | |
5962 | * | |
5963 | * The hashtable is allocated entirely inside the DRT structure. | |
5964 | * | |
5965 | * The hash is a simple circular prime modulus arrangement, the structure | |
5966 | * is resized from small to large if it overflows. | |
5967 | */ | |
5968 | ||
5969 | struct vfs_drt_clustermap { | |
5970 | u_int32_t scm_magic; /* sanity/detection */ | |
5971 | #define DRT_SCM_MAGIC 0x12020003 | |
5972 | u_int32_t scm_modulus; /* current ring size */ | |
5973 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
5974 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
5975 | u_int32_t scm_iskips; /* number of slot skips */ | |
5976 | ||
5977 | struct vfs_drt_hashentry scm_hashtable[0]; | |
5978 | }; | |
5979 | ||
5980 | ||
5981 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
5982 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
5983 | ||
5984 | /* | |
5985 | * Debugging codes and arguments. | |
5986 | */ | |
5987 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
5988 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
5989 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
5990 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
5991 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
5992 | * dirty */ | |
5993 | /* 0, setcount */ | |
5994 | /* 1 (clean, no map) */ | |
5995 | /* 2 (map alloc fail) */ | |
5996 | /* 3, resid (partial) */ | |
5997 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
5998 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
5999 | * lastclean, iskips */ | |
6000 | ||
6001 | ||
55e303ae A |
6002 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); |
6003 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
6004 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
6005 | u_int64_t offset, int *indexp); | |
6006 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
6007 | u_int64_t offset, | |
6008 | int *indexp, | |
6009 | int recursed); | |
6010 | static kern_return_t vfs_drt_do_mark_pages( | |
6011 | void **cmapp, | |
6012 | u_int64_t offset, | |
6013 | u_int length, | |
2d21ac55 | 6014 | u_int *setcountp, |
55e303ae A |
6015 | int dirty); |
6016 | static void vfs_drt_trace( | |
6017 | struct vfs_drt_clustermap *cmap, | |
6018 | int code, | |
6019 | int arg1, | |
6020 | int arg2, | |
6021 | int arg3, | |
6022 | int arg4); | |
6023 | ||
6024 | ||
6025 | /* | |
6026 | * Allocate and initialise a sparse cluster map. | |
6027 | * | |
6028 | * Will allocate a new map, resize or compact an existing map. | |
6029 | * | |
6030 | * XXX we should probably have at least one intermediate map size, | |
6031 | * as the 1:16 ratio seems a bit drastic. | |
6032 | */ | |
6033 | static kern_return_t | |
6034 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
6035 | { | |
6036 | struct vfs_drt_clustermap *cmap, *ocmap; | |
6037 | kern_return_t kret; | |
6038 | u_int64_t offset; | |
2d21ac55 A |
6039 | u_int32_t i; |
6040 | int nsize, active_buckets, index, copycount; | |
55e303ae A |
6041 | |
6042 | ocmap = NULL; | |
6043 | if (cmapp != NULL) | |
6044 | ocmap = *cmapp; | |
6045 | ||
6046 | /* | |
6047 | * Decide on the size of the new map. | |
6048 | */ | |
6049 | if (ocmap == NULL) { | |
6050 | nsize = DRT_HASH_SMALL_MODULUS; | |
6051 | } else { | |
6052 | /* count the number of active buckets in the old map */ | |
6053 | active_buckets = 0; | |
6054 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6055 | if (!DRT_HASH_VACANT(ocmap, i) && | |
6056 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) | |
6057 | active_buckets++; | |
6058 | } | |
6059 | /* | |
6060 | * If we're currently using the small allocation, check to | |
6061 | * see whether we should grow to the large one. | |
6062 | */ | |
6063 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
b7266188 A |
6064 | /* |
6065 | * If the ring is nearly full and we are allowed to | |
6066 | * use the large modulus, upgrade. | |
6067 | */ | |
6068 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
6069 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
55e303ae A |
6070 | nsize = DRT_HASH_LARGE_MODULUS; |
6071 | } else { | |
6072 | nsize = DRT_HASH_SMALL_MODULUS; | |
6073 | } | |
6074 | } else { | |
6075 | /* already using the large modulus */ | |
6076 | nsize = DRT_HASH_LARGE_MODULUS; | |
6077 | /* | |
6078 | * If the ring is completely full, there's | |
6079 | * nothing useful for us to do. Behave as | |
6080 | * though we had compacted into the new | |
6081 | * array and return. | |
6082 | */ | |
6083 | if (active_buckets >= DRT_HASH_LARGE_MODULUS) | |
6084 | return(KERN_SUCCESS); | |
6085 | } | |
6086 | } | |
6087 | ||
6088 | /* | |
6089 | * Allocate and initialise the new map. | |
6090 | */ | |
6091 | ||
6092 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, | |
6093 | (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
6094 | if (kret != KERN_SUCCESS) | |
6095 | return(kret); | |
6096 | cmap->scm_magic = DRT_SCM_MAGIC; | |
6097 | cmap->scm_modulus = nsize; | |
6098 | cmap->scm_buckets = 0; | |
6099 | cmap->scm_lastclean = 0; | |
6100 | cmap->scm_iskips = 0; | |
6101 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6102 | DRT_HASH_CLEAR(cmap, i); | |
6103 | DRT_HASH_VACATE(cmap, i); | |
6104 | DRT_BITVECTOR_CLEAR(cmap, i); | |
6105 | } | |
6106 | ||
6107 | /* | |
6108 | * If there's an old map, re-hash entries from it into the new map. | |
6109 | */ | |
6110 | copycount = 0; | |
6111 | if (ocmap != NULL) { | |
6112 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6113 | /* skip empty buckets */ | |
6114 | if (DRT_HASH_VACANT(ocmap, i) || | |
6115 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) | |
6116 | continue; | |
6117 | /* get new index */ | |
6118 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
6119 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
6120 | if (kret != KERN_SUCCESS) { | |
6121 | /* XXX need to bail out gracefully here */ | |
6122 | panic("vfs_drt: new cluster map mysteriously too small"); | |
2d21ac55 | 6123 | index = 0; |
55e303ae A |
6124 | } |
6125 | /* copy */ | |
6126 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
6127 | copycount++; | |
6128 | } | |
6129 | } | |
6130 | ||
6131 | /* log what we've done */ | |
6132 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
6133 | ||
6134 | /* | |
6135 | * It's important to ensure that *cmapp always points to | |
6136 | * a valid map, so we must overwrite it before freeing | |
6137 | * the old map. | |
6138 | */ | |
6139 | *cmapp = cmap; | |
6140 | if (ocmap != NULL) { | |
6141 | /* emit stats into trace buffer */ | |
6142 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
6143 | ocmap->scm_modulus, | |
6144 | ocmap->scm_buckets, | |
6145 | ocmap->scm_lastclean, | |
6146 | ocmap->scm_iskips); | |
6147 | ||
6148 | vfs_drt_free_map(ocmap); | |
6149 | } | |
6150 | return(KERN_SUCCESS); | |
6151 | } | |
6152 | ||
6153 | ||
6154 | /* | |
6155 | * Free a sparse cluster map. | |
6156 | */ | |
6157 | static kern_return_t | |
6158 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
6159 | { | |
55e303ae A |
6160 | kmem_free(kernel_map, (vm_offset_t)cmap, |
6161 | (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
6162 | return(KERN_SUCCESS); | |
6163 | } | |
6164 | ||
6165 | ||
6166 | /* | |
6167 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
6168 | */ | |
6169 | static kern_return_t | |
6170 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
6171 | { | |
2d21ac55 A |
6172 | int index; |
6173 | u_int32_t i; | |
55e303ae A |
6174 | |
6175 | offset = DRT_ALIGN_ADDRESS(offset); | |
6176 | index = DRT_HASH(cmap, offset); | |
6177 | ||
6178 | /* traverse the hashtable */ | |
6179 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6180 | ||
6181 | /* | |
6182 | * If the slot is vacant, we can stop. | |
6183 | */ | |
6184 | if (DRT_HASH_VACANT(cmap, index)) | |
6185 | break; | |
6186 | ||
6187 | /* | |
6188 | * If the address matches our offset, we have success. | |
6189 | */ | |
6190 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
6191 | *indexp = index; | |
6192 | return(KERN_SUCCESS); | |
6193 | } | |
6194 | ||
6195 | /* | |
6196 | * Move to the next slot, try again. | |
6197 | */ | |
6198 | index = DRT_HASH_NEXT(cmap, index); | |
6199 | } | |
6200 | /* | |
6201 | * It's not there. | |
6202 | */ | |
6203 | return(KERN_FAILURE); | |
6204 | } | |
6205 | ||
6206 | /* | |
6207 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
6208 | * one yet, allocate one and populate the address field. Note that it will | |
6209 | * not have a nonzero page count and thus will still technically be free, so | |
6210 | * in the case where we are called to clean pages, the slot will remain free. | |
6211 | */ | |
6212 | static kern_return_t | |
6213 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
6214 | { | |
6215 | struct vfs_drt_clustermap *cmap; | |
6216 | kern_return_t kret; | |
2d21ac55 A |
6217 | u_int32_t index; |
6218 | u_int32_t i; | |
55e303ae A |
6219 | |
6220 | cmap = *cmapp; | |
6221 | ||
6222 | /* look for an existing entry */ | |
6223 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
6224 | if (kret == KERN_SUCCESS) | |
6225 | return(kret); | |
6226 | ||
6227 | /* need to allocate an entry */ | |
6228 | offset = DRT_ALIGN_ADDRESS(offset); | |
6229 | index = DRT_HASH(cmap, offset); | |
6230 | ||
6231 | /* scan from the index forwards looking for a vacant slot */ | |
6232 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6233 | /* slot vacant? */ | |
6234 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { | |
6235 | cmap->scm_buckets++; | |
6236 | if (index < cmap->scm_lastclean) | |
6237 | cmap->scm_lastclean = index; | |
6238 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
6239 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
6240 | DRT_BITVECTOR_CLEAR(cmap, index); | |
6241 | *indexp = index; | |
6242 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
6243 | return(KERN_SUCCESS); | |
6244 | } | |
6245 | cmap->scm_iskips += i; | |
6246 | index = DRT_HASH_NEXT(cmap, index); | |
6247 | } | |
6248 | ||
6249 | /* | |
6250 | * We haven't found a vacant slot, so the map is full. If we're not | |
6251 | * already recursed, try reallocating/compacting it. | |
6252 | */ | |
6253 | if (recursed) | |
6254 | return(KERN_FAILURE); | |
6255 | kret = vfs_drt_alloc_map(cmapp); | |
6256 | if (kret == KERN_SUCCESS) { | |
6257 | /* now try to insert again */ | |
6258 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
6259 | } | |
6260 | return(kret); | |
6261 | } | |
6262 | ||
6263 | /* | |
6264 | * Implementation of set dirty/clean. | |
6265 | * | |
6266 | * In the 'clean' case, not finding a map is OK. | |
6267 | */ | |
6268 | static kern_return_t | |
6269 | vfs_drt_do_mark_pages( | |
6270 | void **private, | |
6271 | u_int64_t offset, | |
6272 | u_int length, | |
2d21ac55 | 6273 | u_int *setcountp, |
55e303ae A |
6274 | int dirty) |
6275 | { | |
6276 | struct vfs_drt_clustermap *cmap, **cmapp; | |
6277 | kern_return_t kret; | |
6278 | int i, index, pgoff, pgcount, setcount, ecount; | |
6279 | ||
6280 | cmapp = (struct vfs_drt_clustermap **)private; | |
6281 | cmap = *cmapp; | |
6282 | ||
6283 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
6284 | ||
6285 | if (setcountp != NULL) | |
6286 | *setcountp = 0; | |
6287 | ||
6288 | /* allocate a cluster map if we don't already have one */ | |
6289 | if (cmap == NULL) { | |
6290 | /* no cluster map, nothing to clean */ | |
6291 | if (!dirty) { | |
6292 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
6293 | return(KERN_SUCCESS); | |
6294 | } | |
6295 | kret = vfs_drt_alloc_map(cmapp); | |
6296 | if (kret != KERN_SUCCESS) { | |
6297 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
6298 | return(kret); | |
6299 | } | |
6300 | } | |
6301 | setcount = 0; | |
6302 | ||
6303 | /* | |
6304 | * Iterate over the length of the region. | |
6305 | */ | |
6306 | while (length > 0) { | |
6307 | /* | |
6308 | * Get the hashtable index for this offset. | |
6309 | * | |
6310 | * XXX this will add blank entries if we are clearing a range | |
6311 | * that hasn't been dirtied. | |
6312 | */ | |
6313 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
6314 | cmap = *cmapp; /* may have changed! */ | |
6315 | /* this may be a partial-success return */ | |
6316 | if (kret != KERN_SUCCESS) { | |
6317 | if (setcountp != NULL) | |
6318 | *setcountp = setcount; | |
6319 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
6320 | ||
6321 | return(kret); | |
6322 | } | |
6323 | ||
6324 | /* | |
6325 | * Work out how many pages we're modifying in this | |
6326 | * hashtable entry. | |
6327 | */ | |
6328 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
6329 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
6330 | ||
6331 | /* | |
6332 | * Iterate over pages, dirty/clearing as we go. | |
6333 | */ | |
6334 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
6335 | for (i = 0; i < pgcount; i++) { | |
6336 | if (dirty) { | |
6337 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6338 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
6339 | ecount++; | |
6340 | setcount++; | |
6341 | } | |
6342 | } else { | |
6343 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6344 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
6345 | ecount--; | |
6346 | setcount++; | |
6347 | } | |
6348 | } | |
6349 | } | |
6350 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
91447636 | 6351 | |
55e303ae A |
6352 | offset += pgcount * PAGE_SIZE; |
6353 | length -= pgcount * PAGE_SIZE; | |
6354 | } | |
6355 | if (setcountp != NULL) | |
6356 | *setcountp = setcount; | |
6357 | ||
6358 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
6359 | ||
6360 | return(KERN_SUCCESS); | |
6361 | } | |
6362 | ||
6363 | /* | |
6364 | * Mark a set of pages as dirty/clean. | |
6365 | * | |
6366 | * This is a public interface. | |
6367 | * | |
6368 | * cmapp | |
6369 | * Pointer to storage suitable for holding a pointer. Note that | |
6370 | * this must either be NULL or a value set by this function. | |
6371 | * | |
6372 | * size | |
6373 | * Current file size in bytes. | |
6374 | * | |
6375 | * offset | |
6376 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
6377 | * page-aligned. | |
6378 | * | |
6379 | * length | |
6380 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
6381 | * | |
6382 | * setcountp | |
6383 | * Number of pages newly marked dirty by this call (optional). | |
6384 | * | |
6385 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
6386 | */ | |
6387 | static kern_return_t | |
2d21ac55 | 6388 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) |
55e303ae A |
6389 | { |
6390 | /* XXX size unused, drop from interface */ | |
6391 | return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); | |
6392 | } | |
6393 | ||
91447636 | 6394 | #if 0 |
55e303ae A |
6395 | static kern_return_t |
6396 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
6397 | { | |
6398 | return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); | |
6399 | } | |
91447636 | 6400 | #endif |
55e303ae A |
6401 | |
6402 | /* | |
6403 | * Get a cluster of dirty pages. | |
6404 | * | |
6405 | * This is a public interface. | |
6406 | * | |
6407 | * cmapp | |
6408 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
6409 | * be NULL or a value set by drt_mark_pages. | |
6410 | * | |
6411 | * offsetp | |
6412 | * Returns the byte offset into the file of the first page in the cluster. | |
6413 | * | |
6414 | * lengthp | |
6415 | * Returns the length in bytes of the cluster of dirty pages. | |
6416 | * | |
6417 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
6418 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
6419 | * be released if there are no more dirty pages left in the map | |
6420 | * | |
6421 | */ | |
6422 | static kern_return_t | |
6423 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
6424 | { | |
6425 | struct vfs_drt_clustermap *cmap; | |
6426 | u_int64_t offset; | |
6427 | u_int length; | |
2d21ac55 A |
6428 | u_int32_t j; |
6429 | int index, i, fs, ls; | |
55e303ae A |
6430 | |
6431 | /* sanity */ | |
6432 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6433 | return(KERN_FAILURE); | |
6434 | cmap = *cmapp; | |
6435 | ||
6436 | /* walk the hashtable */ | |
6437 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
6438 | index = DRT_HASH(cmap, offset); | |
6439 | ||
6440 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) | |
6441 | continue; | |
6442 | ||
6443 | /* scan the bitfield for a string of bits */ | |
6444 | fs = -1; | |
6445 | ||
6446 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6447 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
6448 | fs = i; | |
6449 | break; | |
6450 | } | |
6451 | } | |
6452 | if (fs == -1) { | |
6453 | /* didn't find any bits set */ | |
6454 | panic("vfs_drt: entry summary count > 0 but no bits set in map"); | |
6455 | } | |
6456 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
6457 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) | |
6458 | break; | |
6459 | } | |
6460 | ||
6461 | /* compute offset and length, mark pages clean */ | |
6462 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
6463 | length = ls * PAGE_SIZE; | |
6464 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
6465 | cmap->scm_lastclean = index; | |
6466 | ||
6467 | /* return successful */ | |
6468 | *offsetp = (off_t)offset; | |
6469 | *lengthp = length; | |
6470 | ||
6471 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
6472 | return(KERN_SUCCESS); | |
6473 | } | |
6474 | /* | |
6475 | * We didn't find anything... hashtable is empty | |
6476 | * emit stats into trace buffer and | |
6477 | * then free it | |
6478 | */ | |
6479 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6480 | cmap->scm_modulus, | |
6481 | cmap->scm_buckets, | |
6482 | cmap->scm_lastclean, | |
6483 | cmap->scm_iskips); | |
6484 | ||
6485 | vfs_drt_free_map(cmap); | |
6486 | *cmapp = NULL; | |
6487 | ||
6488 | return(KERN_FAILURE); | |
6489 | } | |
6490 | ||
6491 | ||
6492 | static kern_return_t | |
6493 | vfs_drt_control(void **cmapp, int op_type) | |
6494 | { | |
6495 | struct vfs_drt_clustermap *cmap; | |
6496 | ||
6497 | /* sanity */ | |
6498 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6499 | return(KERN_FAILURE); | |
6500 | cmap = *cmapp; | |
6501 | ||
6502 | switch (op_type) { | |
6503 | case 0: | |
6504 | /* emit stats into trace buffer */ | |
6505 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6506 | cmap->scm_modulus, | |
6507 | cmap->scm_buckets, | |
6508 | cmap->scm_lastclean, | |
6509 | cmap->scm_iskips); | |
6510 | ||
6511 | vfs_drt_free_map(cmap); | |
6512 | *cmapp = NULL; | |
6513 | break; | |
6514 | ||
6515 | case 1: | |
6516 | cmap->scm_lastclean = 0; | |
6517 | break; | |
6518 | } | |
6519 | return(KERN_SUCCESS); | |
6520 | } | |
6521 | ||
6522 | ||
6523 | ||
6524 | /* | |
6525 | * Emit a summary of the state of the clustermap into the trace buffer | |
6526 | * along with some caller-provided data. | |
6527 | */ | |
91447636 | 6528 | #if KDEBUG |
55e303ae | 6529 | static void |
91447636 | 6530 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) |
55e303ae A |
6531 | { |
6532 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
6533 | } | |
91447636 A |
6534 | #else |
6535 | static void | |
6536 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
6537 | __unused int arg1, __unused int arg2, __unused int arg3, | |
6538 | __unused int arg4) | |
6539 | { | |
6540 | } | |
6541 | #endif | |
55e303ae | 6542 | |
91447636 | 6543 | #if 0 |
55e303ae A |
6544 | /* |
6545 | * Perform basic sanity check on the hash entry summary count | |
6546 | * vs. the actual bits set in the entry. | |
6547 | */ | |
6548 | static void | |
6549 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
6550 | { | |
6551 | int index, i; | |
6552 | int bits_on; | |
6553 | ||
6554 | for (index = 0; index < cmap->scm_modulus; index++) { | |
6555 | if (DRT_HASH_VACANT(cmap, index)) | |
6556 | continue; | |
6557 | ||
6558 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6559 | if (DRT_HASH_TEST_BIT(cmap, index, i)) | |
6560 | bits_on++; | |
6561 | } | |
6562 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) | |
6563 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
6564 | } | |
b4c24cb9 | 6565 | } |
91447636 | 6566 | #endif |