]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/commpage/commpage.c
xnu-2422.100.13.tar.gz
[apple/xnu.git] / osfmk / i386 / commpage / commpage.c
1 /*
2 * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Here's what to do if you want to add a new routine to the comm page:
31 *
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
34 *
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
40 *
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
44 *
45 * 4. Write the code in Libc to use the new routine.
46 */
47
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
54 #include <i386/tsc.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
65
66 #include <ipc/ipc_port.h>
67
68 #include <kern/page_decrypt.h>
69 #include <kern/processor.h>
70
71 /* the lists of commpage routines are in commpage_asm.s */
72 extern commpage_descriptor* commpage_32_routines[];
73 extern commpage_descriptor* commpage_64_routines[];
74
75 extern vm_map_t commpage32_map; // the shared submap, set up in vm init
76 extern vm_map_t commpage64_map; // the shared submap, set up in vm init
77 extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init
78 extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init
79
80
81 char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
82 char *commPagePtr64 = NULL; // ...and of 64-bit commpage
83 char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
84 char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage
85
86 uint64_t _cpu_capabilities = 0; // define the capability vector
87
88 typedef uint32_t commpage_address_t;
89
90 static commpage_address_t next; // next available address in comm page
91
92 static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
93 static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
94
95 static commpage_time_data *time_data32 = NULL;
96 static commpage_time_data *time_data64 = NULL;
97
98 decl_simple_lock_data(static,commpage_active_cpus_lock);
99
100 /* Allocate the commpage and add to the shared submap created by vm:
101 * 1. allocate a page in the kernel map (RW)
102 * 2. wire it down
103 * 3. make a memory entry out of it
104 * 4. map that entry into the shared comm region map (R-only)
105 */
106
107 static void*
108 commpage_allocate(
109 vm_map_t submap, // commpage32_map or commpage_map64
110 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
111 vm_prot_t uperm)
112 {
113 vm_offset_t kernel_addr = 0; // address of commpage in kernel map
114 vm_offset_t zero = 0;
115 vm_size_t size = area_used; // size actually populated
116 vm_map_entry_t entry;
117 ipc_port_t handle;
118 kern_return_t kr;
119
120 if (submap == NULL)
121 panic("commpage submap is null");
122
123 if ((kr = vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE)))
124 panic("cannot allocate commpage %d", kr);
125
126 if ((kr = vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE)))
127 panic("cannot wire commpage: %d", kr);
128
129 /*
130 * Now that the object is created and wired into the kernel map, mark it so that no delay
131 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
132 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
133 * that would be a real disaster.
134 *
135 * JMM - What we really need is a way to create it like this in the first place.
136 */
137 if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map))
138 panic("cannot find commpage entry %d", kr);
139 entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
140
141 if ((kr = mach_make_memory_entry( kernel_map, // target map
142 &size, // size
143 kernel_addr, // offset (address in kernel map)
144 uperm, // protections as specified
145 &handle, // this is the object handle we get
146 NULL ))) // parent_entry (what is this?)
147 panic("cannot make entry for commpage %d", kr);
148
149 if ((kr = vm_map_64( submap, // target map (shared submap)
150 &zero, // address (map into 1st page in submap)
151 area_used, // size
152 0, // mask
153 VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
154 handle, // port is the memory entry we just made
155 0, // offset (map 1st page in memory entry)
156 FALSE, // copy
157 uperm, // cur_protection (R-only in user map)
158 uperm, // max_protection
159 VM_INHERIT_SHARE ))) // inheritance
160 panic("cannot map commpage %d", kr);
161
162 ipc_port_release(handle);
163 /* Make the kernel mapping non-executable. This cannot be done
164 * at the time of map entry creation as mach_make_memory_entry
165 * cannot handle disjoint permissions at this time.
166 */
167 kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE);
168 assert (kr == KERN_SUCCESS);
169
170 return (void*)(intptr_t)kernel_addr; // return address in kernel map
171 }
172
173 /* Get address (in kernel map) of a commpage field. */
174
175 static void*
176 commpage_addr_of(
177 commpage_address_t addr_at_runtime )
178 {
179 return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
180 }
181
182 /* Determine number of CPUs on this system. We cannot rely on
183 * machine_info.max_cpus this early in the boot.
184 */
185 static int
186 commpage_cpus( void )
187 {
188 int cpus;
189
190 cpus = ml_get_max_cpus(); // NB: this call can block
191
192 if (cpus == 0)
193 panic("commpage cpus==0");
194 if (cpus > 0xFF)
195 cpus = 0xFF;
196
197 return cpus;
198 }
199
200 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
201
202 static void
203 commpage_init_cpu_capabilities( void )
204 {
205 uint64_t bits;
206 int cpus;
207 ml_cpu_info_t cpu_info;
208
209 bits = 0;
210 ml_cpu_get_info(&cpu_info);
211
212 switch (cpu_info.vector_unit) {
213 case 9:
214 bits |= kHasAVX1_0;
215 /* fall thru */
216 case 8:
217 bits |= kHasSSE4_2;
218 /* fall thru */
219 case 7:
220 bits |= kHasSSE4_1;
221 /* fall thru */
222 case 6:
223 bits |= kHasSupplementalSSE3;
224 /* fall thru */
225 case 5:
226 bits |= kHasSSE3;
227 /* fall thru */
228 case 4:
229 bits |= kHasSSE2;
230 /* fall thru */
231 case 3:
232 bits |= kHasSSE;
233 /* fall thru */
234 case 2:
235 bits |= kHasMMX;
236 default:
237 break;
238 }
239 switch (cpu_info.cache_line_size) {
240 case 128:
241 bits |= kCache128;
242 break;
243 case 64:
244 bits |= kCache64;
245 break;
246 case 32:
247 bits |= kCache32;
248 break;
249 default:
250 break;
251 }
252 cpus = commpage_cpus(); // how many CPUs do we have
253
254 bits |= (cpus << kNumCPUsShift);
255
256 bits |= kFastThreadLocalStorage; // we use %gs for TLS
257
258 #define setif(_bits, _bit, _condition) \
259 if (_condition) _bits |= _bit
260
261 setif(bits, kUP, cpus == 1);
262 setif(bits, k64Bit, cpu_mode_is64bit());
263 setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD);
264
265 setif(bits, kHasAES, cpuid_features() &
266 CPUID_FEATURE_AES);
267 setif(bits, kHasF16C, cpuid_features() &
268 CPUID_FEATURE_F16C);
269 setif(bits, kHasRDRAND, cpuid_features() &
270 CPUID_FEATURE_RDRAND);
271 setif(bits, kHasFMA, cpuid_features() &
272 CPUID_FEATURE_FMA);
273
274 setif(bits, kHasBMI1, cpuid_leaf7_features() &
275 CPUID_LEAF7_FEATURE_BMI1);
276 setif(bits, kHasBMI2, cpuid_leaf7_features() &
277 CPUID_LEAF7_FEATURE_BMI2);
278 setif(bits, kHasRTM, cpuid_leaf7_features() &
279 CPUID_LEAF7_FEATURE_RTM);
280 setif(bits, kHasHLE, cpuid_leaf7_features() &
281 CPUID_LEAF7_FEATURE_HLE);
282 setif(bits, kHasAVX2_0, cpuid_leaf7_features() &
283 CPUID_LEAF7_FEATURE_AVX2);
284
285 uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE);
286 setif(bits, kHasENFSTRG, (misc_enable & 1ULL) &&
287 (cpuid_leaf7_features() &
288 CPUID_LEAF7_FEATURE_ENFSTRG));
289
290 _cpu_capabilities = bits; // set kernel version for use by drivers etc
291 }
292
293 uint64_t
294 _get_cpu_capabilities(void)
295 {
296 return _cpu_capabilities;
297 }
298
299 /* Copy data into commpage. */
300
301 static void
302 commpage_stuff(
303 commpage_address_t address,
304 const void *source,
305 int length )
306 {
307 void *dest = commpage_addr_of(address);
308
309 if (address < next)
310 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
311
312 bcopy(source,dest,length);
313
314 next = address + length;
315 }
316
317 /* Copy a routine into comm page if it matches running machine.
318 */
319 static void
320 commpage_stuff_routine(
321 commpage_descriptor *rd )
322 {
323 commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
324 }
325
326 /* Fill in the 32- or 64-bit commpage. Called once for each.
327 */
328
329 static void
330 commpage_populate_one(
331 vm_map_t submap, // commpage32_map or compage64_map
332 char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
333 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
334 commpage_address_t base_offset, // will become commPageBaseOffset
335 commpage_time_data** time_data, // &time_data32 or &time_data64
336 const char* signature, // "commpage 32-bit" or "commpage 64-bit"
337 vm_prot_t uperm)
338 {
339 uint8_t c1;
340 uint16_t c2;
341 int c4;
342 uint64_t c8;
343 uint32_t cfamily;
344 short version = _COMM_PAGE_THIS_VERSION;
345
346 next = 0;
347 commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm );
348 *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
349 commPageBaseOffset = base_offset;
350
351 *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
352
353 /* Stuff in the constants. We move things into the comm page in strictly
354 * ascending order, so we can check for overlap and panic if so.
355 * Note: the 32-bit cpu_capabilities vector is retained in addition to
356 * the expanded 64-bit vector.
357 */
358 commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature)));
359 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64,&_cpu_capabilities,sizeof(_cpu_capabilities));
360 commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
361 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(uint32_t));
362
363 c2 = 32; // default
364 if (_cpu_capabilities & kCache64)
365 c2 = 64;
366 else if (_cpu_capabilities & kCache128)
367 c2 = 128;
368 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
369
370 c4 = MP_SPIN_TRIES;
371 commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
372
373 /* machine_info valid after ml_get_max_cpus() */
374 c1 = machine_info.physical_cpu_max;
375 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
376 c1 = machine_info.logical_cpu_max;
377 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
378
379 c8 = ml_cpu_cache_size(0);
380 commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
381
382 cfamily = cpuid_info()->cpuid_cpufamily;
383 commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
384
385 if (next > _COMM_PAGE_END)
386 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
387
388 }
389
390
391 /* Fill in commpages: called once, during kernel initialization, from the
392 * startup thread before user-mode code is running.
393 *
394 * See the top of this file for a list of what you have to do to add
395 * a new routine to the commpage.
396 */
397
398 void
399 commpage_populate( void )
400 {
401 commpage_init_cpu_capabilities();
402
403 commpage_populate_one( commpage32_map,
404 &commPagePtr32,
405 _COMM_PAGE32_AREA_USED,
406 _COMM_PAGE32_BASE_ADDRESS,
407 &time_data32,
408 "commpage 32-bit",
409 VM_PROT_READ);
410 #ifndef __LP64__
411 pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
412 _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
413 #endif
414 time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
415
416 if (_cpu_capabilities & k64Bit) {
417 commpage_populate_one( commpage64_map,
418 &commPagePtr64,
419 _COMM_PAGE64_AREA_USED,
420 _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
421 &time_data64,
422 "commpage 64-bit",
423 VM_PROT_READ);
424 #ifndef __LP64__
425 pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
426 _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
427 #endif
428 }
429
430 simple_lock_init(&commpage_active_cpus_lock, 0);
431
432 commpage_update_active_cpus();
433 rtc_nanotime_init_commpage();
434 }
435
436 /* Fill in the common routines during kernel initialization.
437 * This is called before user-mode code is running.
438 */
439 void commpage_text_populate( void ){
440 commpage_descriptor **rd;
441
442 next = 0;
443 commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
444 commPageTextPtr32 = commPagePtr;
445
446 char *cptr = commPagePtr;
447 int i=0;
448 for(; i< _COMM_PAGE_TEXT_AREA_USED; i++){
449 cptr[i]=0xCC;
450 }
451
452 commPageBaseOffset = _COMM_PAGE_TEXT_START;
453 for (rd = commpage_32_routines; *rd != NULL; rd++) {
454 commpage_stuff_routine(*rd);
455 }
456
457 #ifndef __LP64__
458 pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START,
459 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
460 #endif
461
462 if (_cpu_capabilities & k64Bit) {
463 next = 0;
464 commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
465 commPageTextPtr64 = commPagePtr;
466
467 cptr=commPagePtr;
468 for(i=0; i<_COMM_PAGE_TEXT_AREA_USED; i++){
469 cptr[i]=0xCC;
470 }
471
472 for (rd = commpage_64_routines; *rd !=NULL; rd++) {
473 commpage_stuff_routine(*rd);
474 }
475
476 #ifndef __LP64__
477 pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START,
478 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
479 #endif
480 }
481
482 if (next > _COMM_PAGE_TEXT_END)
483 panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr);
484
485 }
486
487 /* Update commpage nanotime information.
488 *
489 * This routine must be serialized by some external means, ie a lock.
490 */
491
492 void
493 commpage_set_nanotime(
494 uint64_t tsc_base,
495 uint64_t ns_base,
496 uint32_t scale,
497 uint32_t shift )
498 {
499 commpage_time_data *p32 = time_data32;
500 commpage_time_data *p64 = time_data64;
501 static uint32_t generation = 0;
502 uint32_t next_gen;
503
504 if (p32 == NULL) /* have commpages been allocated yet? */
505 return;
506
507 if ( generation != p32->nt_generation )
508 panic("nanotime trouble 1"); /* possibly not serialized */
509 if ( ns_base < p32->nt_ns_base )
510 panic("nanotime trouble 2");
511 if ((shift != 0) && ((_cpu_capabilities & kSlow)==0) )
512 panic("nanotime trouble 3");
513
514 next_gen = ++generation;
515 if (next_gen == 0)
516 next_gen = ++generation;
517
518 p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
519 p64->nt_generation = 0;
520
521 p32->nt_tsc_base = tsc_base;
522 p64->nt_tsc_base = tsc_base;
523
524 p32->nt_ns_base = ns_base;
525 p64->nt_ns_base = ns_base;
526
527 p32->nt_scale = scale;
528 p64->nt_scale = scale;
529
530 p32->nt_shift = shift;
531 p64->nt_shift = shift;
532
533 p32->nt_generation = next_gen; /* mark data as valid */
534 p64->nt_generation = next_gen;
535 }
536
537
538 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
539
540 void
541 commpage_disable_timestamp( void )
542 {
543 time_data32->gtod_generation = 0;
544 time_data64->gtod_generation = 0;
545 }
546
547
548 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
549 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
550 * between the two environments.
551 *
552 * This routine must be serializeed by some external means, ie a lock.
553 */
554
555 void
556 commpage_set_timestamp(
557 uint64_t abstime,
558 uint64_t secs )
559 {
560 commpage_time_data *p32 = time_data32;
561 commpage_time_data *p64 = time_data64;
562 static uint32_t generation = 0;
563 uint32_t next_gen;
564
565 next_gen = ++generation;
566 if (next_gen == 0)
567 next_gen = ++generation;
568
569 p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
570 p64->gtod_generation = 0;
571
572 p32->gtod_ns_base = abstime;
573 p64->gtod_ns_base = abstime;
574
575 p32->gtod_sec_base = secs;
576 p64->gtod_sec_base = secs;
577
578 p32->gtod_generation = next_gen; /* mark data as valid */
579 p64->gtod_generation = next_gen;
580 }
581
582
583 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
584
585 void
586 commpage_set_memory_pressure(
587 unsigned int pressure )
588 {
589 char *cp;
590 uint32_t *ip;
591
592 cp = commPagePtr32;
593 if ( cp ) {
594 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
595 ip = (uint32_t*) (void *) cp;
596 *ip = (uint32_t) pressure;
597 }
598
599 cp = commPagePtr64;
600 if ( cp ) {
601 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
602 ip = (uint32_t*) (void *) cp;
603 *ip = (uint32_t) pressure;
604 }
605
606 }
607
608
609 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
610
611 void
612 commpage_set_spin_count(
613 unsigned int count )
614 {
615 char *cp;
616 uint32_t *ip;
617
618 if (count == 0) /* we test for 0 after decrement, not before */
619 count = 1;
620
621 cp = commPagePtr32;
622 if ( cp ) {
623 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
624 ip = (uint32_t*) (void *) cp;
625 *ip = (uint32_t) count;
626 }
627
628 cp = commPagePtr64;
629 if ( cp ) {
630 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
631 ip = (uint32_t*) (void *) cp;
632 *ip = (uint32_t) count;
633 }
634
635 }
636
637 /* Updated every time a logical CPU goes offline/online */
638 void
639 commpage_update_active_cpus(void)
640 {
641 char *cp;
642 volatile uint8_t *ip;
643
644 /* At least 32-bit commpage must be initialized */
645 if (!commPagePtr32)
646 return;
647
648 simple_lock(&commpage_active_cpus_lock);
649
650 cp = commPagePtr32;
651 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
652 ip = (volatile uint8_t*) cp;
653 *ip = (uint8_t) processor_avail_count;
654
655 cp = commPagePtr64;
656 if ( cp ) {
657 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
658 ip = (volatile uint8_t*) cp;
659 *ip = (uint8_t) processor_avail_count;
660 }
661
662 simple_unlock(&commpage_active_cpus_lock);
663 }
664
665 extern user32_addr_t commpage_text32_location;
666 extern user64_addr_t commpage_text64_location;
667
668 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
669
670 uint32_t
671 commpage_is_in_pfz32(uint32_t addr32)
672 {
673 if ( (addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET))
674 && (addr32 < (commpage_text32_location+_COMM_TEXT_PFZ_END_OFFSET))) {
675 return 1;
676 }
677 else
678 return 0;
679 }
680
681 uint32_t
682 commpage_is_in_pfz64(addr64_t addr64)
683 {
684 if ( (addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET))
685 && (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) {
686 return 1;
687 }
688 else
689 return 0;
690 }
691