]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/commpage/commpage.c
xnu-3789.60.24.tar.gz
[apple/xnu.git] / osfmk / i386 / commpage / commpage.c
1 /*
2 * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Here's what to do if you want to add a new routine to the comm page:
31 *
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
34 *
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
40 *
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
44 *
45 * 4. Write the code in Libc to use the new routine.
46 */
47
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
54 #include <i386/tsc.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
65
66 #include <ipc/ipc_port.h>
67
68 #include <kern/page_decrypt.h>
69 #include <kern/processor.h>
70
71 #include <sys/kdebug.h>
72
73 #if CONFIG_ATM
74 #include <atm/atm_internal.h>
75 #endif
76
77 /* the lists of commpage routines are in commpage_asm.s */
78 extern commpage_descriptor* commpage_32_routines[];
79 extern commpage_descriptor* commpage_64_routines[];
80
81 extern vm_map_t commpage32_map; // the shared submap, set up in vm init
82 extern vm_map_t commpage64_map; // the shared submap, set up in vm init
83 extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init
84 extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init
85
86
87 char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
88 char *commPagePtr64 = NULL; // ...and of 64-bit commpage
89 char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
90 char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage
91
92 uint64_t _cpu_capabilities = 0; // define the capability vector
93
94 typedef uint32_t commpage_address_t;
95
96 static commpage_address_t next; // next available address in comm page
97
98 static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
99 static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
100
101 static commpage_time_data *time_data32 = NULL;
102 static commpage_time_data *time_data64 = NULL;
103
104 decl_simple_lock_data(static,commpage_active_cpus_lock);
105
106 /* Allocate the commpage and add to the shared submap created by vm:
107 * 1. allocate a page in the kernel map (RW)
108 * 2. wire it down
109 * 3. make a memory entry out of it
110 * 4. map that entry into the shared comm region map (R-only)
111 */
112
113 static void*
114 commpage_allocate(
115 vm_map_t submap, // commpage32_map or commpage_map64
116 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
117 vm_prot_t uperm)
118 {
119 vm_offset_t kernel_addr = 0; // address of commpage in kernel map
120 vm_offset_t zero = 0;
121 vm_size_t size = area_used; // size actually populated
122 vm_map_entry_t entry;
123 ipc_port_t handle;
124 kern_return_t kr;
125
126 if (submap == NULL)
127 panic("commpage submap is null");
128
129 if ((kr = vm_map(kernel_map,
130 &kernel_addr,
131 area_used,
132 0,
133 VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_OSFMK),
134 NULL,
135 0,
136 FALSE,
137 VM_PROT_ALL,
138 VM_PROT_ALL,
139 VM_INHERIT_NONE)))
140 panic("cannot allocate commpage %d", kr);
141
142 if ((kr = vm_map_wire(kernel_map,
143 kernel_addr,
144 kernel_addr+area_used,
145 VM_PROT_DEFAULT|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_OSFMK),
146 FALSE)))
147 panic("cannot wire commpage: %d", kr);
148
149 /*
150 * Now that the object is created and wired into the kernel map, mark it so that no delay
151 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
152 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
153 * that would be a real disaster.
154 *
155 * JMM - What we really need is a way to create it like this in the first place.
156 */
157 if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map))
158 panic("cannot find commpage entry %d", kr);
159 VME_OBJECT(entry)->copy_strategy = MEMORY_OBJECT_COPY_NONE;
160
161 if ((kr = mach_make_memory_entry( kernel_map, // target map
162 &size, // size
163 kernel_addr, // offset (address in kernel map)
164 uperm, // protections as specified
165 &handle, // this is the object handle we get
166 NULL ))) // parent_entry (what is this?)
167 panic("cannot make entry for commpage %d", kr);
168
169 if ((kr = vm_map_64( submap, // target map (shared submap)
170 &zero, // address (map into 1st page in submap)
171 area_used, // size
172 0, // mask
173 VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
174 handle, // port is the memory entry we just made
175 0, // offset (map 1st page in memory entry)
176 FALSE, // copy
177 uperm, // cur_protection (R-only in user map)
178 uperm, // max_protection
179 VM_INHERIT_SHARE ))) // inheritance
180 panic("cannot map commpage %d", kr);
181
182 ipc_port_release(handle);
183 /* Make the kernel mapping non-executable. This cannot be done
184 * at the time of map entry creation as mach_make_memory_entry
185 * cannot handle disjoint permissions at this time.
186 */
187 kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE);
188 assert (kr == KERN_SUCCESS);
189
190 return (void*)(intptr_t)kernel_addr; // return address in kernel map
191 }
192
193 /* Get address (in kernel map) of a commpage field. */
194
195 static void*
196 commpage_addr_of(
197 commpage_address_t addr_at_runtime )
198 {
199 return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
200 }
201
202 /* Determine number of CPUs on this system. We cannot rely on
203 * machine_info.max_cpus this early in the boot.
204 */
205 static int
206 commpage_cpus( void )
207 {
208 int cpus;
209
210 cpus = ml_get_max_cpus(); // NB: this call can block
211
212 if (cpus == 0)
213 panic("commpage cpus==0");
214 if (cpus > 0xFF)
215 cpus = 0xFF;
216
217 return cpus;
218 }
219
220 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
221
222 static void
223 commpage_init_cpu_capabilities( void )
224 {
225 uint64_t bits;
226 int cpus;
227 ml_cpu_info_t cpu_info;
228
229 bits = 0;
230 ml_cpu_get_info(&cpu_info);
231
232 switch (cpu_info.vector_unit) {
233 case 9:
234 bits |= kHasAVX1_0;
235 /* fall thru */
236 case 8:
237 bits |= kHasSSE4_2;
238 /* fall thru */
239 case 7:
240 bits |= kHasSSE4_1;
241 /* fall thru */
242 case 6:
243 bits |= kHasSupplementalSSE3;
244 /* fall thru */
245 case 5:
246 bits |= kHasSSE3;
247 /* fall thru */
248 case 4:
249 bits |= kHasSSE2;
250 /* fall thru */
251 case 3:
252 bits |= kHasSSE;
253 /* fall thru */
254 case 2:
255 bits |= kHasMMX;
256 default:
257 break;
258 }
259 switch (cpu_info.cache_line_size) {
260 case 128:
261 bits |= kCache128;
262 break;
263 case 64:
264 bits |= kCache64;
265 break;
266 case 32:
267 bits |= kCache32;
268 break;
269 default:
270 break;
271 }
272 cpus = commpage_cpus(); // how many CPUs do we have
273
274 bits |= (cpus << kNumCPUsShift);
275
276 bits |= kFastThreadLocalStorage; // we use %gs for TLS
277
278 #define setif(_bits, _bit, _condition) \
279 if (_condition) _bits |= _bit
280
281 setif(bits, kUP, cpus == 1);
282 setif(bits, k64Bit, cpu_mode_is64bit());
283 setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD);
284
285 setif(bits, kHasAES, cpuid_features() &
286 CPUID_FEATURE_AES);
287 setif(bits, kHasF16C, cpuid_features() &
288 CPUID_FEATURE_F16C);
289 setif(bits, kHasRDRAND, cpuid_features() &
290 CPUID_FEATURE_RDRAND);
291 setif(bits, kHasFMA, cpuid_features() &
292 CPUID_FEATURE_FMA);
293
294 setif(bits, kHasBMI1, cpuid_leaf7_features() &
295 CPUID_LEAF7_FEATURE_BMI1);
296 setif(bits, kHasBMI2, cpuid_leaf7_features() &
297 CPUID_LEAF7_FEATURE_BMI2);
298 setif(bits, kHasRTM, cpuid_leaf7_features() &
299 CPUID_LEAF7_FEATURE_RTM);
300 setif(bits, kHasHLE, cpuid_leaf7_features() &
301 CPUID_LEAF7_FEATURE_HLE);
302 setif(bits, kHasAVX2_0, cpuid_leaf7_features() &
303 CPUID_LEAF7_FEATURE_AVX2);
304 setif(bits, kHasRDSEED, cpuid_features() &
305 CPUID_LEAF7_FEATURE_RDSEED);
306 setif(bits, kHasADX, cpuid_features() &
307 CPUID_LEAF7_FEATURE_ADX);
308
309 setif(bits, kHasMPX, cpuid_leaf7_features() &
310 CPUID_LEAF7_FEATURE_MPX);
311 setif(bits, kHasSGX, cpuid_leaf7_features() &
312 CPUID_LEAF7_FEATURE_SGX);
313 uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE);
314 setif(bits, kHasENFSTRG, (misc_enable & 1ULL) &&
315 (cpuid_leaf7_features() &
316 CPUID_LEAF7_FEATURE_ERMS));
317
318 _cpu_capabilities = bits; // set kernel version for use by drivers etc
319 }
320
321 /* initialize the approx_time_supported flag and set the approx time to 0.
322 * Called during initial commpage population.
323 */
324 static void
325 commpage_mach_approximate_time_init(void)
326 {
327 char *cp = commPagePtr32;
328 uint8_t supported;
329
330 #ifdef CONFIG_MACH_APPROXIMATE_TIME
331 supported = 1;
332 #else
333 supported = 0;
334 #endif
335 if ( cp ) {
336 cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_BASE_ADDRESS);
337 *(boolean_t *)cp = supported;
338 }
339
340 cp = commPagePtr64;
341 if ( cp ) {
342 cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_START_ADDRESS);
343 *(boolean_t *)cp = supported;
344 }
345 commpage_update_mach_approximate_time(0);
346 }
347
348 static void
349 commpage_mach_continuous_time_init(void)
350 {
351 commpage_update_mach_continuous_time(0);
352 }
353
354 static void
355 commpage_boottime_init(void)
356 {
357 clock_sec_t secs;
358 clock_usec_t microsecs;
359 clock_get_boottime_microtime(&secs, &microsecs);
360 commpage_update_boottime(secs * USEC_PER_SEC + microsecs);
361 }
362
363 uint64_t
364 _get_cpu_capabilities(void)
365 {
366 return _cpu_capabilities;
367 }
368
369 /* Copy data into commpage. */
370
371 static void
372 commpage_stuff(
373 commpage_address_t address,
374 const void *source,
375 int length )
376 {
377 void *dest = commpage_addr_of(address);
378
379 if (address < next)
380 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
381
382 bcopy(source,dest,length);
383
384 next = address + length;
385 }
386
387 /* Copy a routine into comm page if it matches running machine.
388 */
389 static void
390 commpage_stuff_routine(
391 commpage_descriptor *rd )
392 {
393 commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
394 }
395
396 /* Fill in the 32- or 64-bit commpage. Called once for each.
397 */
398
399 static void
400 commpage_populate_one(
401 vm_map_t submap, // commpage32_map or compage64_map
402 char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
403 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
404 commpage_address_t base_offset, // will become commPageBaseOffset
405 commpage_time_data** time_data, // &time_data32 or &time_data64
406 const char* signature, // "commpage 32-bit" or "commpage 64-bit"
407 vm_prot_t uperm)
408 {
409 uint8_t c1;
410 uint16_t c2;
411 int c4;
412 uint64_t c8;
413 uint32_t cfamily;
414 short version = _COMM_PAGE_THIS_VERSION;
415
416 next = 0;
417 commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm );
418 *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
419 commPageBaseOffset = base_offset;
420
421 *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
422
423 /* Stuff in the constants. We move things into the comm page in strictly
424 * ascending order, so we can check for overlap and panic if so.
425 * Note: the 32-bit cpu_capabilities vector is retained in addition to
426 * the expanded 64-bit vector.
427 */
428 commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature)));
429 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64,&_cpu_capabilities,sizeof(_cpu_capabilities));
430 commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
431 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(uint32_t));
432
433 c2 = 32; // default
434 if (_cpu_capabilities & kCache64)
435 c2 = 64;
436 else if (_cpu_capabilities & kCache128)
437 c2 = 128;
438 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
439
440 c4 = MP_SPIN_TRIES;
441 commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
442
443 /* machine_info valid after ml_get_max_cpus() */
444 c1 = machine_info.physical_cpu_max;
445 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
446 c1 = machine_info.logical_cpu_max;
447 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
448
449 c8 = ml_cpu_cache_size(0);
450 commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
451
452 cfamily = cpuid_info()->cpuid_cpufamily;
453 commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
454
455 if (next > _COMM_PAGE_END)
456 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
457
458 }
459
460
461 /* Fill in commpages: called once, during kernel initialization, from the
462 * startup thread before user-mode code is running.
463 *
464 * See the top of this file for a list of what you have to do to add
465 * a new routine to the commpage.
466 */
467
468 void
469 commpage_populate( void )
470 {
471 commpage_init_cpu_capabilities();
472
473 commpage_populate_one( commpage32_map,
474 &commPagePtr32,
475 _COMM_PAGE32_AREA_USED,
476 _COMM_PAGE32_BASE_ADDRESS,
477 &time_data32,
478 "commpage 32-bit",
479 VM_PROT_READ);
480 #ifndef __LP64__
481 pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
482 _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
483 #endif
484 time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
485
486 if (_cpu_capabilities & k64Bit) {
487 commpage_populate_one( commpage64_map,
488 &commPagePtr64,
489 _COMM_PAGE64_AREA_USED,
490 _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
491 &time_data64,
492 "commpage 64-bit",
493 VM_PROT_READ);
494 #ifndef __LP64__
495 pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
496 _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
497 #endif
498 }
499
500 simple_lock_init(&commpage_active_cpus_lock, 0);
501
502 commpage_update_active_cpus();
503 commpage_mach_approximate_time_init();
504 commpage_mach_continuous_time_init();
505 commpage_boottime_init();
506 rtc_nanotime_init_commpage();
507 commpage_update_kdebug_state();
508 #if CONFIG_ATM
509 commpage_update_atm_diagnostic_config(atm_get_diagnostic_config());
510 #endif
511 }
512
513 /* Fill in the common routines during kernel initialization.
514 * This is called before user-mode code is running.
515 */
516 void commpage_text_populate( void ){
517 commpage_descriptor **rd;
518
519 next = 0;
520 commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
521 commPageTextPtr32 = commPagePtr;
522
523 char *cptr = commPagePtr;
524 int i=0;
525 for(; i< _COMM_PAGE_TEXT_AREA_USED; i++){
526 cptr[i]=0xCC;
527 }
528
529 commPageBaseOffset = _COMM_PAGE_TEXT_START;
530 for (rd = commpage_32_routines; *rd != NULL; rd++) {
531 commpage_stuff_routine(*rd);
532 }
533
534 #ifndef __LP64__
535 pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START,
536 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
537 #endif
538
539 if (_cpu_capabilities & k64Bit) {
540 next = 0;
541 commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
542 commPageTextPtr64 = commPagePtr;
543
544 cptr=commPagePtr;
545 for(i=0; i<_COMM_PAGE_TEXT_AREA_USED; i++){
546 cptr[i]=0xCC;
547 }
548
549 for (rd = commpage_64_routines; *rd !=NULL; rd++) {
550 commpage_stuff_routine(*rd);
551 }
552
553 #ifndef __LP64__
554 pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START,
555 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
556 #endif
557 }
558
559 if (next > _COMM_PAGE_TEXT_END)
560 panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr);
561
562 }
563
564 /* Update commpage nanotime information.
565 *
566 * This routine must be serialized by some external means, ie a lock.
567 */
568
569 void
570 commpage_set_nanotime(
571 uint64_t tsc_base,
572 uint64_t ns_base,
573 uint32_t scale,
574 uint32_t shift )
575 {
576 commpage_time_data *p32 = time_data32;
577 commpage_time_data *p64 = time_data64;
578 static uint32_t generation = 0;
579 uint32_t next_gen;
580
581 if (p32 == NULL) /* have commpages been allocated yet? */
582 return;
583
584 if ( generation != p32->nt_generation )
585 panic("nanotime trouble 1"); /* possibly not serialized */
586 if ( ns_base < p32->nt_ns_base )
587 panic("nanotime trouble 2");
588 if ((shift != 0) && ((_cpu_capabilities & kSlow)==0) )
589 panic("nanotime trouble 3");
590
591 next_gen = ++generation;
592 if (next_gen == 0)
593 next_gen = ++generation;
594
595 p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
596 p64->nt_generation = 0;
597
598 p32->nt_tsc_base = tsc_base;
599 p64->nt_tsc_base = tsc_base;
600
601 p32->nt_ns_base = ns_base;
602 p64->nt_ns_base = ns_base;
603
604 p32->nt_scale = scale;
605 p64->nt_scale = scale;
606
607 p32->nt_shift = shift;
608 p64->nt_shift = shift;
609
610 p32->nt_generation = next_gen; /* mark data as valid */
611 p64->nt_generation = next_gen;
612 }
613
614
615 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
616
617 void
618 commpage_disable_timestamp( void )
619 {
620 time_data32->gtod_generation = 0;
621 time_data64->gtod_generation = 0;
622 }
623
624
625 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
626 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
627 * between the two environments.
628 *
629 * This routine must be serializeed by some external means, ie a lock.
630 */
631
632 void
633 commpage_set_timestamp(
634 uint64_t abstime,
635 uint64_t secs )
636 {
637 commpage_time_data *p32 = time_data32;
638 commpage_time_data *p64 = time_data64;
639 static uint32_t generation = 0;
640 uint32_t next_gen;
641
642 next_gen = ++generation;
643 if (next_gen == 0)
644 next_gen = ++generation;
645
646 p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
647 p64->gtod_generation = 0;
648
649 p32->gtod_ns_base = abstime;
650 p64->gtod_ns_base = abstime;
651
652 p32->gtod_sec_base = secs;
653 p64->gtod_sec_base = secs;
654
655 p32->gtod_generation = next_gen; /* mark data as valid */
656 p64->gtod_generation = next_gen;
657 }
658
659
660 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
661
662 void
663 commpage_set_memory_pressure(
664 unsigned int pressure )
665 {
666 char *cp;
667 uint32_t *ip;
668
669 cp = commPagePtr32;
670 if ( cp ) {
671 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
672 ip = (uint32_t*) (void *) cp;
673 *ip = (uint32_t) pressure;
674 }
675
676 cp = commPagePtr64;
677 if ( cp ) {
678 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
679 ip = (uint32_t*) (void *) cp;
680 *ip = (uint32_t) pressure;
681 }
682
683 }
684
685
686 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
687
688 void
689 commpage_set_spin_count(
690 unsigned int count )
691 {
692 char *cp;
693 uint32_t *ip;
694
695 if (count == 0) /* we test for 0 after decrement, not before */
696 count = 1;
697
698 cp = commPagePtr32;
699 if ( cp ) {
700 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
701 ip = (uint32_t*) (void *) cp;
702 *ip = (uint32_t) count;
703 }
704
705 cp = commPagePtr64;
706 if ( cp ) {
707 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
708 ip = (uint32_t*) (void *) cp;
709 *ip = (uint32_t) count;
710 }
711
712 }
713
714 /* Updated every time a logical CPU goes offline/online */
715 void
716 commpage_update_active_cpus(void)
717 {
718 char *cp;
719 volatile uint8_t *ip;
720
721 /* At least 32-bit commpage must be initialized */
722 if (!commPagePtr32)
723 return;
724
725 simple_lock(&commpage_active_cpus_lock);
726
727 cp = commPagePtr32;
728 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
729 ip = (volatile uint8_t*) cp;
730 *ip = (uint8_t) processor_avail_count;
731
732 cp = commPagePtr64;
733 if ( cp ) {
734 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
735 ip = (volatile uint8_t*) cp;
736 *ip = (uint8_t) processor_avail_count;
737 }
738
739 simple_unlock(&commpage_active_cpus_lock);
740 }
741
742 /*
743 * Update the commpage with current kdebug state. This currently has bits for
744 * global trace state, and typefilter enablement. It is likely additional state
745 * will be tracked in the future.
746 *
747 * INVARIANT: This value will always be 0 if global tracing is disabled. This
748 * allows simple guard tests of "if (*_COMM_PAGE_KDEBUG_ENABLE) { ... }"
749 */
750 void
751 commpage_update_kdebug_state(void)
752 {
753 volatile uint32_t *saved_data_ptr;
754 char *cp;
755
756 cp = commPagePtr32;
757 if (cp) {
758 cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_BASE_ADDRESS);
759 saved_data_ptr = (volatile uint32_t *)cp;
760 *saved_data_ptr = kdebug_commpage_state();
761 }
762
763 cp = commPagePtr64;
764 if (cp) {
765 cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_START_ADDRESS);
766 saved_data_ptr = (volatile uint32_t *)cp;
767 *saved_data_ptr = kdebug_commpage_state();
768 }
769 }
770
771 /* Ditto for atm_diagnostic_config */
772 void
773 commpage_update_atm_diagnostic_config(uint32_t diagnostic_config)
774 {
775 volatile uint32_t *saved_data_ptr;
776 char *cp;
777
778 cp = commPagePtr32;
779 if (cp) {
780 cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_BASE_ADDRESS);
781 saved_data_ptr = (volatile uint32_t *)cp;
782 *saved_data_ptr = diagnostic_config;
783 }
784
785 cp = commPagePtr64;
786 if ( cp ) {
787 cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_START_ADDRESS);
788 saved_data_ptr = (volatile uint32_t *)cp;
789 *saved_data_ptr = diagnostic_config;
790 }
791 }
792
793 /*
794 * update the commpage data for last known value of mach_absolute_time()
795 */
796
797 void
798 commpage_update_mach_approximate_time(uint64_t abstime)
799 {
800 #ifdef CONFIG_MACH_APPROXIMATE_TIME
801 uint64_t saved_data;
802 char *cp;
803
804 cp = commPagePtr32;
805 if ( cp ) {
806 cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_BASE_ADDRESS);
807 saved_data = *(uint64_t *)cp;
808 if (saved_data < abstime) {
809 /* ignoring the success/fail return value assuming that
810 * if the value has been updated since we last read it,
811 * "someone" has a newer timestamp than us and ours is
812 * now invalid. */
813 OSCompareAndSwap64(saved_data, abstime, (uint64_t *)cp);
814 }
815 }
816 cp = commPagePtr64;
817 if ( cp ) {
818 cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_START_ADDRESS);
819 saved_data = *(uint64_t *)cp;
820 if (saved_data < abstime) {
821 /* ignoring the success/fail return value assuming that
822 * if the value has been updated since we last read it,
823 * "someone" has a newer timestamp than us and ours is
824 * now invalid. */
825 OSCompareAndSwap64(saved_data, abstime, (uint64_t *)cp);
826 }
827 }
828 #else
829 #pragma unused (abstime)
830 #endif
831 }
832
833 void
834 commpage_update_mach_continuous_time(uint64_t sleeptime)
835 {
836 char *cp;
837 cp = commPagePtr32;
838 if (cp) {
839 cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS);
840 *(uint64_t *)cp = sleeptime;
841 }
842
843 cp = commPagePtr64;
844 if (cp) {
845 cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS);
846 *(uint64_t *)cp = sleeptime;
847 }
848 }
849
850 void
851 commpage_update_boottime(uint64_t boottime)
852 {
853 char *cp;
854 cp = commPagePtr32;
855 if (cp) {
856 cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS);
857 *(uint64_t *)cp = boottime;
858 }
859
860 cp = commPagePtr64;
861 if (cp) {
862 cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS);
863 *(uint64_t *)cp = boottime;
864 }
865 }
866
867
868 extern user32_addr_t commpage_text32_location;
869 extern user64_addr_t commpage_text64_location;
870
871 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
872
873 uint32_t
874 commpage_is_in_pfz32(uint32_t addr32)
875 {
876 if ( (addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET))
877 && (addr32 < (commpage_text32_location+_COMM_TEXT_PFZ_END_OFFSET))) {
878 return 1;
879 }
880 else
881 return 0;
882 }
883
884 uint32_t
885 commpage_is_in_pfz64(addr64_t addr64)
886 {
887 if ( (addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET))
888 && (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) {
889 return 1;
890 }
891 else
892 return 0;
893 }
894