2 * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Here's what to do if you want to add a new routine to the comm page:
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
45 * 4. Write the code in Libc to use the new routine.
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
66 #include <ipc/ipc_port.h>
68 #include <kern/page_decrypt.h>
69 #include <kern/processor.h>
71 #include <sys/kdebug.h>
74 #include <atm/atm_internal.h>
77 /* the lists of commpage routines are in commpage_asm.s */
78 extern commpage_descriptor
* commpage_32_routines
[];
79 extern commpage_descriptor
* commpage_64_routines
[];
81 extern vm_map_t commpage32_map
; // the shared submap, set up in vm init
82 extern vm_map_t commpage64_map
; // the shared submap, set up in vm init
83 extern vm_map_t commpage_text32_map
; // the shared submap, set up in vm init
84 extern vm_map_t commpage_text64_map
; // the shared submap, set up in vm init
87 char *commPagePtr32
= NULL
; // virtual addr in kernel map of 32-bit commpage
88 char *commPagePtr64
= NULL
; // ...and of 64-bit commpage
89 char *commPageTextPtr32
= NULL
; // virtual addr in kernel map of 32-bit commpage
90 char *commPageTextPtr64
= NULL
; // ...and of 64-bit commpage
92 uint64_t _cpu_capabilities
= 0; // define the capability vector
94 typedef uint32_t commpage_address_t
;
96 static commpage_address_t next
; // next available address in comm page
98 static char *commPagePtr
; // virtual addr in kernel map of commpage we are working on
99 static commpage_address_t commPageBaseOffset
; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
101 static commpage_time_data
*time_data32
= NULL
;
102 static commpage_time_data
*time_data64
= NULL
;
104 decl_simple_lock_data(static,commpage_active_cpus_lock
);
106 /* Allocate the commpage and add to the shared submap created by vm:
107 * 1. allocate a page in the kernel map (RW)
109 * 3. make a memory entry out of it
110 * 4. map that entry into the shared comm region map (R-only)
115 vm_map_t submap
, // commpage32_map or commpage_map64
116 size_t area_used
, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
119 vm_offset_t kernel_addr
= 0; // address of commpage in kernel map
120 vm_offset_t zero
= 0;
121 vm_size_t size
= area_used
; // size actually populated
122 vm_map_entry_t entry
;
127 panic("commpage submap is null");
129 if ((kr
= vm_map(kernel_map
,
133 VM_FLAGS_ANYWHERE
| VM_MAKE_TAG(VM_KERN_MEMORY_OSFMK
),
140 panic("cannot allocate commpage %d", kr
);
142 if ((kr
= vm_map_wire(kernel_map
,
144 kernel_addr
+area_used
,
145 VM_PROT_DEFAULT
|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_OSFMK
),
147 panic("cannot wire commpage: %d", kr
);
150 * Now that the object is created and wired into the kernel map, mark it so that no delay
151 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
152 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
153 * that would be a real disaster.
155 * JMM - What we really need is a way to create it like this in the first place.
157 if (!(kr
= vm_map_lookup_entry( kernel_map
, vm_map_trunc_page(kernel_addr
, VM_MAP_PAGE_MASK(kernel_map
)), &entry
) || entry
->is_sub_map
))
158 panic("cannot find commpage entry %d", kr
);
159 VME_OBJECT(entry
)->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
161 if ((kr
= mach_make_memory_entry( kernel_map
, // target map
163 kernel_addr
, // offset (address in kernel map)
164 uperm
, // protections as specified
165 &handle
, // this is the object handle we get
166 NULL
))) // parent_entry (what is this?)
167 panic("cannot make entry for commpage %d", kr
);
169 if ((kr
= vm_map_64( submap
, // target map (shared submap)
170 &zero
, // address (map into 1st page in submap)
173 VM_FLAGS_FIXED
, // flags (it must be 1st page in submap)
174 handle
, // port is the memory entry we just made
175 0, // offset (map 1st page in memory entry)
177 uperm
, // cur_protection (R-only in user map)
178 uperm
, // max_protection
179 VM_INHERIT_SHARE
))) // inheritance
180 panic("cannot map commpage %d", kr
);
182 ipc_port_release(handle
);
183 /* Make the kernel mapping non-executable. This cannot be done
184 * at the time of map entry creation as mach_make_memory_entry
185 * cannot handle disjoint permissions at this time.
187 kr
= vm_protect(kernel_map
, kernel_addr
, area_used
, FALSE
, VM_PROT_READ
| VM_PROT_WRITE
);
188 assert (kr
== KERN_SUCCESS
);
190 return (void*)(intptr_t)kernel_addr
; // return address in kernel map
193 /* Get address (in kernel map) of a commpage field. */
197 commpage_address_t addr_at_runtime
)
199 return (void*) ((uintptr_t)commPagePtr
+ (addr_at_runtime
- commPageBaseOffset
));
202 /* Determine number of CPUs on this system. We cannot rely on
203 * machine_info.max_cpus this early in the boot.
206 commpage_cpus( void )
210 cpus
= ml_get_max_cpus(); // NB: this call can block
213 panic("commpage cpus==0");
220 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
223 commpage_init_cpu_capabilities( void )
227 ml_cpu_info_t cpu_info
;
230 ml_cpu_get_info(&cpu_info
);
232 switch (cpu_info
.vector_unit
) {
243 bits
|= kHasSupplementalSSE3
;
259 switch (cpu_info
.cache_line_size
) {
272 cpus
= commpage_cpus(); // how many CPUs do we have
274 bits
|= (cpus
<< kNumCPUsShift
);
276 bits
|= kFastThreadLocalStorage
; // we use %gs for TLS
278 #define setif(_bits, _bit, _condition) \
279 if (_condition) _bits |= _bit
281 setif(bits
, kUP
, cpus
== 1);
282 setif(bits
, k64Bit
, cpu_mode_is64bit());
283 setif(bits
, kSlow
, tscFreq
<= SLOW_TSC_THRESHOLD
);
285 setif(bits
, kHasAES
, cpuid_features() &
287 setif(bits
, kHasF16C
, cpuid_features() &
289 setif(bits
, kHasRDRAND
, cpuid_features() &
290 CPUID_FEATURE_RDRAND
);
291 setif(bits
, kHasFMA
, cpuid_features() &
294 setif(bits
, kHasBMI1
, cpuid_leaf7_features() &
295 CPUID_LEAF7_FEATURE_BMI1
);
296 setif(bits
, kHasBMI2
, cpuid_leaf7_features() &
297 CPUID_LEAF7_FEATURE_BMI2
);
298 setif(bits
, kHasRTM
, cpuid_leaf7_features() &
299 CPUID_LEAF7_FEATURE_RTM
);
300 setif(bits
, kHasHLE
, cpuid_leaf7_features() &
301 CPUID_LEAF7_FEATURE_HLE
);
302 setif(bits
, kHasAVX2_0
, cpuid_leaf7_features() &
303 CPUID_LEAF7_FEATURE_AVX2
);
304 setif(bits
, kHasRDSEED
, cpuid_features() &
305 CPUID_LEAF7_FEATURE_RDSEED
);
306 setif(bits
, kHasADX
, cpuid_features() &
307 CPUID_LEAF7_FEATURE_ADX
);
309 setif(bits
, kHasMPX
, cpuid_leaf7_features() &
310 CPUID_LEAF7_FEATURE_MPX
);
311 setif(bits
, kHasSGX
, cpuid_leaf7_features() &
312 CPUID_LEAF7_FEATURE_SGX
);
313 uint64_t misc_enable
= rdmsr64(MSR_IA32_MISC_ENABLE
);
314 setif(bits
, kHasENFSTRG
, (misc_enable
& 1ULL) &&
315 (cpuid_leaf7_features() &
316 CPUID_LEAF7_FEATURE_ERMS
));
318 _cpu_capabilities
= bits
; // set kernel version for use by drivers etc
321 /* initialize the approx_time_supported flag and set the approx time to 0.
322 * Called during initial commpage population.
325 commpage_mach_approximate_time_init(void)
327 char *cp
= commPagePtr32
;
330 #ifdef CONFIG_MACH_APPROXIMATE_TIME
336 cp
+= (_COMM_PAGE_APPROX_TIME_SUPPORTED
- _COMM_PAGE32_BASE_ADDRESS
);
337 *(boolean_t
*)cp
= supported
;
342 cp
+= (_COMM_PAGE_APPROX_TIME_SUPPORTED
- _COMM_PAGE32_START_ADDRESS
);
343 *(boolean_t
*)cp
= supported
;
345 commpage_update_mach_approximate_time(0);
349 commpage_mach_continuous_time_init(void)
351 commpage_update_mach_continuous_time(0);
355 commpage_boottime_init(void)
358 clock_usec_t microsecs
;
359 clock_get_boottime_microtime(&secs
, µsecs
);
360 commpage_update_boottime(secs
* USEC_PER_SEC
+ microsecs
);
364 _get_cpu_capabilities(void)
366 return _cpu_capabilities
;
369 /* Copy data into commpage. */
373 commpage_address_t address
,
377 void *dest
= commpage_addr_of(address
);
380 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest
, address
, next
);
382 bcopy(source
,dest
,length
);
384 next
= address
+ length
;
387 /* Copy a routine into comm page if it matches running machine.
390 commpage_stuff_routine(
391 commpage_descriptor
*rd
)
393 commpage_stuff(rd
->commpage_address
,rd
->code_address
,rd
->code_length
);
396 /* Fill in the 32- or 64-bit commpage. Called once for each.
400 commpage_populate_one(
401 vm_map_t submap
, // commpage32_map or compage64_map
402 char ** kernAddressPtr
, // &commPagePtr32 or &commPagePtr64
403 size_t area_used
, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
404 commpage_address_t base_offset
, // will become commPageBaseOffset
405 commpage_time_data
** time_data
, // &time_data32 or &time_data64
406 const char* signature
, // "commpage 32-bit" or "commpage 64-bit"
414 short version
= _COMM_PAGE_THIS_VERSION
;
417 commPagePtr
= (char *)commpage_allocate( submap
, (vm_size_t
) area_used
, uperm
);
418 *kernAddressPtr
= commPagePtr
; // save address either in commPagePtr32 or 64
419 commPageBaseOffset
= base_offset
;
421 *time_data
= commpage_addr_of( _COMM_PAGE_TIME_DATA_START
);
423 /* Stuff in the constants. We move things into the comm page in strictly
424 * ascending order, so we can check for overlap and panic if so.
425 * Note: the 32-bit cpu_capabilities vector is retained in addition to
426 * the expanded 64-bit vector.
428 commpage_stuff(_COMM_PAGE_SIGNATURE
,signature
,(int)MIN(_COMM_PAGE_SIGNATURELEN
, strlen(signature
)));
429 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64
,&_cpu_capabilities
,sizeof(_cpu_capabilities
));
430 commpage_stuff(_COMM_PAGE_VERSION
,&version
,sizeof(short));
431 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES
,&_cpu_capabilities
,sizeof(uint32_t));
434 if (_cpu_capabilities
& kCache64
)
436 else if (_cpu_capabilities
& kCache128
)
438 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE
,&c2
,2);
441 commpage_stuff(_COMM_PAGE_SPIN_COUNT
,&c4
,4);
443 /* machine_info valid after ml_get_max_cpus() */
444 c1
= machine_info
.physical_cpu_max
;
445 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS
,&c1
,1);
446 c1
= machine_info
.logical_cpu_max
;
447 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS
,&c1
,1);
449 c8
= ml_cpu_cache_size(0);
450 commpage_stuff(_COMM_PAGE_MEMORY_SIZE
, &c8
, 8);
452 cfamily
= cpuid_info()->cpuid_cpufamily
;
453 commpage_stuff(_COMM_PAGE_CPUFAMILY
, &cfamily
, 4);
455 if (next
> _COMM_PAGE_END
)
456 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next
, commPagePtr
);
461 /* Fill in commpages: called once, during kernel initialization, from the
462 * startup thread before user-mode code is running.
464 * See the top of this file for a list of what you have to do to add
465 * a new routine to the commpage.
469 commpage_populate( void )
471 commpage_init_cpu_capabilities();
473 commpage_populate_one( commpage32_map
,
475 _COMM_PAGE32_AREA_USED
,
476 _COMM_PAGE32_BASE_ADDRESS
,
481 pmap_commpage32_init((vm_offset_t
) commPagePtr32
, _COMM_PAGE32_BASE_ADDRESS
,
482 _COMM_PAGE32_AREA_USED
/INTEL_PGBYTES
);
484 time_data64
= time_data32
; /* if no 64-bit commpage, point to 32-bit */
486 if (_cpu_capabilities
& k64Bit
) {
487 commpage_populate_one( commpage64_map
,
489 _COMM_PAGE64_AREA_USED
,
490 _COMM_PAGE32_START_ADDRESS
, /* commpage address are relative to 32-bit commpage placement */
495 pmap_commpage64_init((vm_offset_t
) commPagePtr64
, _COMM_PAGE64_BASE_ADDRESS
,
496 _COMM_PAGE64_AREA_USED
/INTEL_PGBYTES
);
500 simple_lock_init(&commpage_active_cpus_lock
, 0);
502 commpage_update_active_cpus();
503 commpage_mach_approximate_time_init();
504 commpage_mach_continuous_time_init();
505 commpage_boottime_init();
506 rtc_nanotime_init_commpage();
507 commpage_update_kdebug_state();
509 commpage_update_atm_diagnostic_config(atm_get_diagnostic_config());
513 /* Fill in the common routines during kernel initialization.
514 * This is called before user-mode code is running.
516 void commpage_text_populate( void ){
517 commpage_descriptor
**rd
;
520 commPagePtr
= (char *) commpage_allocate(commpage_text32_map
, (vm_size_t
) _COMM_PAGE_TEXT_AREA_USED
, VM_PROT_READ
| VM_PROT_EXECUTE
);
521 commPageTextPtr32
= commPagePtr
;
523 char *cptr
= commPagePtr
;
525 for(; i
< _COMM_PAGE_TEXT_AREA_USED
; i
++){
529 commPageBaseOffset
= _COMM_PAGE_TEXT_START
;
530 for (rd
= commpage_32_routines
; *rd
!= NULL
; rd
++) {
531 commpage_stuff_routine(*rd
);
535 pmap_commpage32_init((vm_offset_t
) commPageTextPtr32
, _COMM_PAGE_TEXT_START
,
536 _COMM_PAGE_TEXT_AREA_USED
/INTEL_PGBYTES
);
539 if (_cpu_capabilities
& k64Bit
) {
541 commPagePtr
= (char *) commpage_allocate(commpage_text64_map
, (vm_size_t
) _COMM_PAGE_TEXT_AREA_USED
, VM_PROT_READ
| VM_PROT_EXECUTE
);
542 commPageTextPtr64
= commPagePtr
;
545 for(i
=0; i
<_COMM_PAGE_TEXT_AREA_USED
; i
++){
549 for (rd
= commpage_64_routines
; *rd
!=NULL
; rd
++) {
550 commpage_stuff_routine(*rd
);
554 pmap_commpage64_init((vm_offset_t
) commPageTextPtr64
, _COMM_PAGE_TEXT_START
,
555 _COMM_PAGE_TEXT_AREA_USED
/INTEL_PGBYTES
);
559 if (next
> _COMM_PAGE_TEXT_END
)
560 panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next
, commPagePtr
);
564 /* Update commpage nanotime information.
566 * This routine must be serialized by some external means, ie a lock.
570 commpage_set_nanotime(
576 commpage_time_data
*p32
= time_data32
;
577 commpage_time_data
*p64
= time_data64
;
578 static uint32_t generation
= 0;
581 if (p32
== NULL
) /* have commpages been allocated yet? */
584 if ( generation
!= p32
->nt_generation
)
585 panic("nanotime trouble 1"); /* possibly not serialized */
586 if ( ns_base
< p32
->nt_ns_base
)
587 panic("nanotime trouble 2");
588 if ((shift
!= 0) && ((_cpu_capabilities
& kSlow
)==0) )
589 panic("nanotime trouble 3");
591 next_gen
= ++generation
;
593 next_gen
= ++generation
;
595 p32
->nt_generation
= 0; /* mark invalid, so commpage won't try to use it */
596 p64
->nt_generation
= 0;
598 p32
->nt_tsc_base
= tsc_base
;
599 p64
->nt_tsc_base
= tsc_base
;
601 p32
->nt_ns_base
= ns_base
;
602 p64
->nt_ns_base
= ns_base
;
604 p32
->nt_scale
= scale
;
605 p64
->nt_scale
= scale
;
607 p32
->nt_shift
= shift
;
608 p64
->nt_shift
= shift
;
610 p32
->nt_generation
= next_gen
; /* mark data as valid */
611 p64
->nt_generation
= next_gen
;
615 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
618 commpage_disable_timestamp( void )
620 time_data32
->gtod_generation
= 0;
621 time_data64
->gtod_generation
= 0;
625 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
626 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
627 * between the two environments.
629 * This routine must be serializeed by some external means, ie a lock.
633 commpage_set_timestamp(
637 commpage_time_data
*p32
= time_data32
;
638 commpage_time_data
*p64
= time_data64
;
639 static uint32_t generation
= 0;
642 next_gen
= ++generation
;
644 next_gen
= ++generation
;
646 p32
->gtod_generation
= 0; /* mark invalid, so commpage won't try to use it */
647 p64
->gtod_generation
= 0;
649 p32
->gtod_ns_base
= abstime
;
650 p64
->gtod_ns_base
= abstime
;
652 p32
->gtod_sec_base
= secs
;
653 p64
->gtod_sec_base
= secs
;
655 p32
->gtod_generation
= next_gen
; /* mark data as valid */
656 p64
->gtod_generation
= next_gen
;
660 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
663 commpage_set_memory_pressure(
664 unsigned int pressure
)
671 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_BASE_ADDRESS
);
672 ip
= (uint32_t*) (void *) cp
;
673 *ip
= (uint32_t) pressure
;
678 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_START_ADDRESS
);
679 ip
= (uint32_t*) (void *) cp
;
680 *ip
= (uint32_t) pressure
;
686 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
689 commpage_set_spin_count(
695 if (count
== 0) /* we test for 0 after decrement, not before */
700 cp
+= (_COMM_PAGE_SPIN_COUNT
- _COMM_PAGE32_BASE_ADDRESS
);
701 ip
= (uint32_t*) (void *) cp
;
702 *ip
= (uint32_t) count
;
707 cp
+= (_COMM_PAGE_SPIN_COUNT
- _COMM_PAGE32_START_ADDRESS
);
708 ip
= (uint32_t*) (void *) cp
;
709 *ip
= (uint32_t) count
;
714 /* Updated every time a logical CPU goes offline/online */
716 commpage_update_active_cpus(void)
719 volatile uint8_t *ip
;
721 /* At least 32-bit commpage must be initialized */
725 simple_lock(&commpage_active_cpus_lock
);
728 cp
+= (_COMM_PAGE_ACTIVE_CPUS
- _COMM_PAGE32_BASE_ADDRESS
);
729 ip
= (volatile uint8_t*) cp
;
730 *ip
= (uint8_t) processor_avail_count
;
734 cp
+= (_COMM_PAGE_ACTIVE_CPUS
- _COMM_PAGE32_START_ADDRESS
);
735 ip
= (volatile uint8_t*) cp
;
736 *ip
= (uint8_t) processor_avail_count
;
739 simple_unlock(&commpage_active_cpus_lock
);
743 * Update the commpage with current kdebug state. This currently has bits for
744 * global trace state, and typefilter enablement. It is likely additional state
745 * will be tracked in the future.
747 * INVARIANT: This value will always be 0 if global tracing is disabled. This
748 * allows simple guard tests of "if (*_COMM_PAGE_KDEBUG_ENABLE) { ... }"
751 commpage_update_kdebug_state(void)
753 volatile uint32_t *saved_data_ptr
;
758 cp
+= (_COMM_PAGE_KDEBUG_ENABLE
- _COMM_PAGE32_BASE_ADDRESS
);
759 saved_data_ptr
= (volatile uint32_t *)cp
;
760 *saved_data_ptr
= kdebug_commpage_state();
765 cp
+= (_COMM_PAGE_KDEBUG_ENABLE
- _COMM_PAGE32_START_ADDRESS
);
766 saved_data_ptr
= (volatile uint32_t *)cp
;
767 *saved_data_ptr
= kdebug_commpage_state();
771 /* Ditto for atm_diagnostic_config */
773 commpage_update_atm_diagnostic_config(uint32_t diagnostic_config
)
775 volatile uint32_t *saved_data_ptr
;
780 cp
+= (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG
- _COMM_PAGE32_BASE_ADDRESS
);
781 saved_data_ptr
= (volatile uint32_t *)cp
;
782 *saved_data_ptr
= diagnostic_config
;
787 cp
+= (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG
- _COMM_PAGE32_START_ADDRESS
);
788 saved_data_ptr
= (volatile uint32_t *)cp
;
789 *saved_data_ptr
= diagnostic_config
;
794 * update the commpage data for last known value of mach_absolute_time()
798 commpage_update_mach_approximate_time(uint64_t abstime
)
800 #ifdef CONFIG_MACH_APPROXIMATE_TIME
806 cp
+= (_COMM_PAGE_APPROX_TIME
- _COMM_PAGE32_BASE_ADDRESS
);
807 saved_data
= *(uint64_t *)cp
;
808 if (saved_data
< abstime
) {
809 /* ignoring the success/fail return value assuming that
810 * if the value has been updated since we last read it,
811 * "someone" has a newer timestamp than us and ours is
813 OSCompareAndSwap64(saved_data
, abstime
, (uint64_t *)cp
);
818 cp
+= (_COMM_PAGE_APPROX_TIME
- _COMM_PAGE32_START_ADDRESS
);
819 saved_data
= *(uint64_t *)cp
;
820 if (saved_data
< abstime
) {
821 /* ignoring the success/fail return value assuming that
822 * if the value has been updated since we last read it,
823 * "someone" has a newer timestamp than us and ours is
825 OSCompareAndSwap64(saved_data
, abstime
, (uint64_t *)cp
);
829 #pragma unused (abstime)
834 commpage_update_mach_continuous_time(uint64_t sleeptime
)
839 cp
+= (_COMM_PAGE_CONT_TIMEBASE
- _COMM_PAGE32_START_ADDRESS
);
840 *(uint64_t *)cp
= sleeptime
;
845 cp
+= (_COMM_PAGE_CONT_TIMEBASE
- _COMM_PAGE32_START_ADDRESS
);
846 *(uint64_t *)cp
= sleeptime
;
851 commpage_update_boottime(uint64_t boottime
)
856 cp
+= (_COMM_PAGE_BOOTTIME_USEC
- _COMM_PAGE32_START_ADDRESS
);
857 *(uint64_t *)cp
= boottime
;
862 cp
+= (_COMM_PAGE_BOOTTIME_USEC
- _COMM_PAGE32_START_ADDRESS
);
863 *(uint64_t *)cp
= boottime
;
868 extern user32_addr_t commpage_text32_location
;
869 extern user64_addr_t commpage_text64_location
;
871 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
874 commpage_is_in_pfz32(uint32_t addr32
)
876 if ( (addr32
>= (commpage_text32_location
+ _COMM_TEXT_PFZ_START_OFFSET
))
877 && (addr32
< (commpage_text32_location
+_COMM_TEXT_PFZ_END_OFFSET
))) {
885 commpage_is_in_pfz64(addr64_t addr64
)
887 if ( (addr64
>= (commpage_text64_location
+ _COMM_TEXT_PFZ_START_OFFSET
))
888 && (addr64
< (commpage_text64_location
+ _COMM_TEXT_PFZ_END_OFFSET
))) {