]>
git.saurik.com Git - apple/xnu.git/blob - EXTERNAL_HEADERS/corecrypto/ccn.h
5 * Created on 11/16/2010
7 * Copyright (c) 2010,2011,2012,2013,2014,2015 Apple Inc. All rights reserved.
11 #ifndef _CORECRYPTO_CCN_H_
12 #define _CORECRYPTO_CCN_H_
14 #include <corecrypto/cc.h>
18 typedef uint8_t cc_byte
;
19 typedef size_t cc_size
;
21 #if CCN_UNIT_SIZE == 8
22 typedef uint64_t cc_unit
; // 64 bit unit
23 typedef int64_t cc_int
;
24 #define CCN_LOG2_BITS_PER_UNIT 6 // 2^6 = 64 bits
25 #define CC_UNIT_C(x) UINT64_C(x)
26 #if CCN_UINT128_SUPPORT_FOR_64BIT_ARCH
27 typedef unsigned cc_dunit
__attribute__ (( mode ( TI
))); // 128 bit double width unit
28 typedef signed cc_dint
__attribute__ (( mode ( TI
)));
30 typedef struct cc_dunit
{
31 uint64_t l
; //do not change the order of the variables. cc_dunit must be little endian
35 typedef struct cc_dint
{
41 #elif CCN_UNIT_SIZE == 4
42 typedef uint32_t cc_unit
; // 32 bit unit
43 typedef uint64_t cc_dunit
; // 64 bit double width unit
44 typedef int64_t cc_dint
;
45 typedef int32_t cc_int
;
46 #define CCN_LOG2_BITS_PER_UNIT 5 // 2^5 = 32 bits
47 #define CC_UNIT_C(x) UINT32_C(x)
49 #elif CCN_UNIT_SIZE == 2
50 typedef uint16_t cc_unit
; // 16 bit unit
51 typedef uint32_t cc_dunit
; // 32 bit double width unit
52 #define CCN_LOG2_BITS_PER_UNIT 4 // 2^4 = 16 bits
53 #define CC_UNIT_C(x) UINT16_C(x)
55 #elif CCN_UNIT_SIZE == 1
56 typedef uint8_t cc_unit
; // 8 bit unit
57 typedef uint16_t cc_dunit
; // 16 bit double width unit
58 #define CCN_LOG2_BITS_PER_UNIT 3 // 2^3 = 8 bits
59 #define CC_UNIT_C(x) UINT8_C(x)
62 #error invalid CCN_UNIT_SIZE
65 // All mp types have units in little endian unit order.
66 typedef cc_unit
* ccn_t
; // n unit long mp
67 typedef cc_unit
* ccnp1_t
; // n + 1 unit long mp
68 typedef cc_unit
* cc2n_t
; // 2 * n unit long mp
69 typedef cc_unit
* cc2np2_t
; // 2 * n + 2 unit long mp
70 typedef const cc_unit
* ccn_in_t
; // n unit long mp
71 typedef const cc_unit
* ccnp1_in_t
; // n + 1 unit long mp
72 typedef const cc_unit
* cc2n_in_t
; // 2 * n unit long mp
73 typedef const cc_unit
* cc2np2_in_t
; // 2 * n + 2 unit long mp
75 #define CCN_UNIT_BITS (sizeof(cc_unit) * 8)
76 #define CCN_UNIT_MASK ((cc_unit)~0)
79 cc_unit
* start
; // First cc_unit of the workspace
80 cc_unit
* end
; // address and beyond NOT TO BE TOUCHED
83 /* Conversions between n sizeof and bits */
85 /* Returns the sizeof a ccn vector of length _n_ units. */
86 #define ccn_sizeof_n(_n_) (sizeof(cc_unit) * (_n_))
88 /* Returns the count (n) of a ccn vector that can represent _bits_. */
89 #define ccn_nof(_bits_) (((_bits_) + CCN_UNIT_BITS - 1) >> CCN_LOG2_BITS_PER_UNIT)
91 /* Returns the sizeof a ccn vector that can represent _bits_. */
92 #define ccn_sizeof(_bits_) (ccn_sizeof_n(ccn_nof(_bits_)))
94 /* Returns the count (n) of a ccn vector that can represent _size_ bytes. */
95 #define ccn_nof_size(_size_) (((_size_) + CCN_UNIT_SIZE - 1) / CCN_UNIT_SIZE)
97 /* Return the max number of bits a ccn vector of _n_ units can hold. */
98 #define ccn_bitsof_n(_n_) ((_n_) * CCN_UNIT_BITS)
100 /* Return the max number of bits a ccn vector of _size_ bytes can hold. */
101 #define ccn_bitsof_size(_size_) ((_size_) * 8)
103 /* Return the size of a ccn of size bytes in bytes. */
104 #define ccn_sizeof_size(_size_) ccn_sizeof_n(ccn_nof_size(_size_))
106 /* Returns the value of bit _k_ of _ccn_, both are only evaluated once. */
107 #define ccn_bit(_ccn_, _k_) ({__typeof__ (_k_) __k = (_k_); \
108 1 & ((_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] >> (__k & (CCN_UNIT_BITS - 1)));})
110 /* Set the value of bit _k_ of _ccn_ to the value _v_ */
111 #define ccn_set_bit(_ccn_, _k_, _v_) ({__typeof__ (_k_) __k = (_k_); \
113 (_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] |= CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1)); \
115 (_ccn_)[ __k >> CCN_LOG2_BITS_PER_UNIT] &= ~(CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1))); \
118 /* Macros for making ccn constants. You must use list of CCN64_C() instances
119 separated by commas, with an optional smaller sized CCN32_C, CCN16_C, or
120 CCN8_C() instance at the end of the list, when making macros to declare
121 larger sized constants. */
122 #define CCN8_C(a0) CC_UNIT_C(0x##a0)
124 #if CCN_UNIT_SIZE >= 2
125 #define CCN16_C(a1,a0) CC_UNIT_C(0x##a1##a0)
126 #define ccn16_v(a0) (a0)
127 #elif CCN_UNIT_SIZE == 1
128 #define CCN16_C(a1,a0) CCN8_C(a0),CCN8_C(a1)
129 #define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
132 #if CCN_UNIT_SIZE >= 4
133 #define CCN32_C(a3,a2,a1,a0) CC_UNIT_C(0x##a3##a2##a1##a0)
134 #define ccn32_v(a0) (a0)
136 #define CCN32_C(a3,a2,a1,a0) CCN16_C(a1,a0),CCN16_C(a3,a2)
137 #define ccn32_v(a0) ccn16_v(a0 & UINT16_C(0xffff)),ccn16_v(a0 >> 16)
140 #if CCN_UNIT_SIZE == 8
141 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CC_UNIT_C(0x##a7##a6##a5##a4##a3##a2##a1##a0)
142 #define CCN40_C(a4,a3,a2,a1,a0) CC_UNIT_C(0x##a4##a3##a2##a1##a0)
143 #define ccn64_v(a0) (a0)
144 //#define ccn64_32(a1,a0) ((a1 << 32) | a0)
145 //#define ccn_uint64(a,i) (a[i])
147 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN32_C(a7,a6,a5,a4)
148 #define CCN40_C(a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN8_C(a4)
149 #define ccn64_v(a0) ccn32_v((uint64_t)a0 & UINT32_C(0xffffffff)),ccn32_v((uint64_t)a0 >> 32)
150 //#define ccn64_32(a1,a0) ccn32_v(a0),ccn32_v(a1)
151 //#define ccn_uint64(a,i) ((uint64_t)ccn_uint32(a, i << 1 + 1) << 32 | (uint64_t)ccn_uint32(a, i << 1))
154 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
155 64 bit units respectively. */
156 #if CCN_UNIT_SIZE == 8
157 /* #define ccn_uint16(a,i) ((i & 3) == 3 ? ((uint16_t)(a[i >> 2] >> 48)) : \
158 (i & 3) == 2 ? ((uint16_t)(a[i >> 2] >> 32) & UINT16_C(0xffff)) : \
159 (i & 3) == 1 ? ((uint16_t)(a[i >> 2] >> 16) & UINT16_C(0xffff)) : \
160 ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
162 //#define ccn_uint32(a,i) (i & 1 ? ((uint32_t)(a[i >> 1] >> 32)) : ((uint32_t)(a[i >> 1] & UINT32_C(0xffffffff))))
163 #elif CCN_UNIT_SIZE == 4
164 //#define ccn16_v(a0) (a0)
165 //#define ccn32_v(a0) (a0)
166 //#define ccn_uint16(a,i) (i & 1 ? ((uint16_t)(a[i >> 1] >> 16)) : ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
167 //#define ccn_uint32(a,i) (a[i])
168 #elif CCN_UNIT_SIZE == 2
169 //#define ccn16_v(a0) (a0)
170 //#define ccn32_v(a0,a1) (a1,a0)
171 //#define ccn_uint16(a,i) (a[i])
172 //#define ccn_uint32(a,i) (((uint32_t)a[i << 1 + 1]) << 16 | (uint32_t)a[i << 1]))
173 #elif CCN_UNIT_SIZE == 1
174 //#define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
175 //#define ccn_uint16(a,i) ((uint16_t)((a[i << 1 + 1] << 8) | a[i << 1]))
176 //#define ccn_uint32(a,i) ((uint32_t)ccn_uint16(a, i << 1 + 1) << 16 | (uint32_t)ccn_uint16(a, i << 1))
179 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
180 64 bit units respectively. */
181 #if CCN_UNIT_SIZE == 8
183 #define ccn64_32(a1,a0) (((const cc_unit)a1) << 32 | ((const cc_unit)a0))
184 #define ccn32_32(a0) a0
185 #if __LITTLE_ENDIAN__
186 #define ccn32_32_parse(p,i) (((const uint32_t *)p)[i])
188 #define ccn32_32_parse(p,i) (((const uint32_t *)p)[i^1])
190 #define ccn32_32_null 0
192 #define ccn64_64(a0) a0
193 #define ccn64_64_parse(p,i) p[i]
194 #define ccn64_64_null 0
196 #elif CCN_UNIT_SIZE == 4
198 #define ccn32_32(a0) a0
199 #define ccn32_32_parse(p,i) p[i]
200 #define ccn32_32_null 0
201 #define ccn64_32(a1,a0) ccn32_32(a0),ccn32_32(a1)
203 #define ccn64_64(a1,a0) a0,a1
204 #define ccn64_64_parse(p,i) p[1+(i<<1)],p[i<<1]
205 #define ccn64_64_null 0,0
207 #elif CCN_UNIT_SIZE == 2
209 #define ccn32_32(a1,a0) a0,a1
210 #define ccn32_32_parse(p,i) p[1+(i<<1)],p[i<<1]
211 #define ccn32_32_null 0,0
212 #define ccn64_32(a3,a2,a1,a0) ccn32_32(a1,a0),ccn32_32(a3,a2)
214 #define ccn64_64(a3,a2,a1,a0) a0,a1,a2,a3
215 #define ccn64_64_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
216 #define ccn64_64_null 0,0,0,0
218 #elif CCN_UNIT_SIZE == 1
220 #define ccn32_32(a3,a2,a1,a0) a0,a1,a2,a3
221 #define ccn32_32_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
222 #define ccn32_32_null 0,0,0,0
223 #define ccn64_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn32_32(a3,a2,a1,a0),ccn32_32(a7,a6,a5,a4)
225 #define ccn64_64(a7,a6,a5,a4,a3,a2,a1,a0) a0,a1,a2,a3,a4,a5,a6,a7
226 #define ccn64_64_parse(p,i) p[7+(i<<3)],p[6+(i<<3)],p[5+(i<<3)],p[4+(i<<3)],p[3+(i<<3)],p[2+(i<<3)],p[1+(i<<3)],p[i<<3]
227 #define ccn64_64_null 0,0,0,0,0,0,0,0
232 /* Macros to construct fixed size ccn arrays from 64 or 32 bit quantities. */
233 #define ccn192_64(a2,a1,a0) ccn64_64(a0),ccn64_64(a1),ccn64_64(a2)
234 #define ccn224_32(a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn32_32(a6)
235 #define ccn256_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6)
236 #define ccn384_32(a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6),ccn64_32(a9,a8),ccn64_32(a11,a10)
239 #define CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
240 CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0),\
241 CCN64_C(b7,b6,b5,b4,b3,b2,b1,b0),\
242 CCN64_C(c7,c6,c5,c4,c3,c2,c1,c0)
244 #define CCN200_C(d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
245 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
248 #define CCN224_C(d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
249 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
252 #define CCN232_C(d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
253 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
254 CCN40_C(d4,d3,d2,d1,d0)
256 #define CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
257 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
258 CCN64_C(d7,d6,d5,d4,d3,d2,d1,d0)
260 #define CCN264_C(e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
261 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
264 #define CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
265 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
266 CCN64_C(e7,e6,e5,e4,e3,e2,e1,e0),\
267 CCN64_C(f7,f6,f5,f4,f3,f2,f1,f0)
269 #define CCN392_C(g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
270 CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
273 #define CCN528_C(i1,i0,h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
274 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
275 CCN256_C(h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0),\
278 #define CCN192_N ccn_nof(192)
279 #define CCN224_N ccn_nof(224)
280 #define CCN256_N ccn_nof(256)
281 #define CCN384_N ccn_nof(384)
282 #define CCN512_N ccn_nof(512)
283 #define CCN521_N ccn_nof(521)
285 /* Return the number of used units after stripping leading 0 units. */
287 cc_size
ccn_n ( cc_size n
, const cc_unit
* s
);
289 /* s >> k -> r return bits shifted out of least significant word in bits [0, n>
290 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
291 the _multi version doesn't return the shifted bits, but does support multiple
294 cc_unit
ccn_shift_right ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, size_t k
);
296 void ccn_shift_right_multi ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, size_t k
);
298 /* s << k -> r return bits shifted out of most significant word in bits [0, n>
299 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
300 the _multi version doesn't return the shifted bits, but does support multiple
303 cc_unit
ccn_shift_left ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, size_t k
);
305 void ccn_shift_left_multi ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, size_t k
);
307 /* s == 0 -> return 0 | s > 0 -> return index (starting at 1) of most
308 significant bit that is 1.
309 { N bit } N = n * sizeof(cc_unit) * 8 */
311 size_t ccn_bitlen ( cc_size n
, const cc_unit
* s
);
313 /* Returns the number of bits which are zero before the first one bit
314 counting from least to most significant bit. */
316 size_t ccn_trailing_zeros ( cc_size n
, const cc_unit
* s
);
318 /* s == 0 -> return true | s != 0 -> return false
319 { N bit } N = n * sizeof(cc_unit) * 8 */
320 #define ccn_is_zero(_n_, _s_) (!ccn_n(_n_, _s_))
322 /* s == 1 -> return true | s != 1 -> return false
323 { N bit } N = n * sizeof(cc_unit) * 8 */
324 #define ccn_is_one(_n_, _s_) (ccn_n(_n_, _s_) == 1 && _s_[0] == 1)
326 #define ccn_is_zero_or_one(_n_, _s_) (((_n_)==0) || ((ccn_n(_n_, _s_) <= 1) && (_s_[0] <= 1)))
328 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
329 { N bit, N bit -> int } N = n * sizeof(cc_unit) * 8 */
330 CC_PURE
CC_NONNULL (( 2 , 3 ))
331 int ccn_cmp ( cc_size n
, const cc_unit
* s
, const cc_unit
* t
);
333 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
334 { N bit, M bit -> int } N = ns * sizeof(cc_unit) * 8 M = nt * sizeof(cc_unit) * 8 */
335 CC_INLINE
CC_NONNULL (( 2 , 4 ))
336 int ccn_cmpn ( cc_size ns
, const cc_unit
* s
,
337 cc_size nt
, const cc_unit
* t
) {
340 } else if ( ns
< nt
) {
343 return ccn_cmp ( ns
, s
, t
);
346 /* s - t -> r return 1 iff t > s
347 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
348 CC_NONNULL (( 2 , 3 , 4 ))
349 cc_unit
ccn_sub ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit
* t
);
351 /* |s - t| -> r return 1 iff t > s, 0 otherwise */
352 cc_unit
ccn_abs ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit
* t
);
354 /* s - v -> r return 1 iff v > s return 0 otherwise.
355 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
357 cc_unit
ccn_sub1 ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, cc_unit v
);
359 /* s - t -> r return 1 iff t > s
360 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
362 CC_NONNULL (( 2 , 3 , 5 ))
363 cc_unit
ccn_subn ( cc_size n
, cc_unit
* r
, const cc_unit
* s
,
364 cc_size nt
, const cc_unit
* t
) {
366 return ccn_sub1 ( n
- nt
, r
+ nt
, s
+ nt
, ccn_sub ( nt
, r
, s
, t
));
370 /* s + t -> r return carry if result doesn't fit in n bits.
371 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
372 CC_NONNULL (( 2 , 3 , 4 ))
373 cc_unit
ccn_add ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit
* t
);
375 /* s + v -> r return carry if result doesn't fit in n bits.
376 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
378 cc_unit
ccn_add1 ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, cc_unit v
);
380 /* s + t -> r return carry if result doesn't fit in n bits
381 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
383 CC_NONNULL (( 2 , 3 , 5 ))
384 cc_unit
ccn_addn ( cc_size n
, cc_unit
* r
, const cc_unit
* s
,
385 cc_size nt
, const cc_unit
* t
) {
387 return ccn_add1 ( n
- nt
, r
+ nt
, s
+ nt
, ccn_add ( nt
, r
, s
, t
));
391 CC_NONNULL (( 2 , 3 , 4 ))
392 void ccn_lcm ( cc_size n
, cc_unit
* r2n
, const cc_unit
* s
, const cc_unit
* t
);
395 /* s * t -> r_2n r_2n must not overlap with s nor t
396 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8
397 { N bit, N bit -> 2N bit } N = ccn_bitsof(n) */
398 CC_NONNULL (( 2 , 3 , 4 ))
399 void ccn_mul ( cc_size n
, cc_unit
* r_2n
, const cc_unit
* s
, const cc_unit
* t
);
401 /* s * t -> r_2n r_2n must not overlap with s nor t
402 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8
403 { N bit, N bit -> 2N bit } N = ccn_bitsof(n)
404 Provide a workspace for potential speedup */
405 CC_NONNULL (( 2 , 3 , 4 , 5 ))
406 void ccn_mul_ws ( cc_size count
, cc_unit
* r
, const cc_unit
* s
, const cc_unit
* t
, cc_ws_t ws
);
408 /* s[0..n) * v -> r[0..n)+return value
409 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
411 cc_unit
ccn_mul1 ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit v
);
413 /* s[0..n) * v + r[0..n) -> r[0..n)+return value
414 { N bit, sizeof(cc_unit) * 8 bit -> N + sizeof(cc_unit) * 8 bit } N = n * sizeof(cc_unit) * 8 */
416 cc_unit
ccn_addmul1 ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit v
);
420 {2 * n bit, n bit -> n bit } n = count * sizeof(cc_unit) * 8 */
421 CC_NONNULL (( 2 , 3 , 4 ))
422 void ccn_mod ( cc_size n
, cc_unit
* r
, const cc_unit
* a_2n
, const cc_unit
* d
);
426 N bit, N bit -> N bit */
427 CC_NONNULL (( 2 , 3 , 4 ))
428 void ccn_gcd ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit
* t
);
431 N bit, N bit -> O bit */
432 CC_NONNULL (( 2 , 4 , 6 ))
433 void ccn_gcdn ( cc_size rn
, cc_unit
* r
, cc_size sn
, const cc_unit
* s
, cc_size tn
, const cc_unit
* t
);
435 /* r = (data, len) treated as a big endian byte array, return -1 if data
436 doesn't fit in r, return 0 otherwise. */
438 int ccn_read_uint ( cc_size n
, cc_unit
* r
, size_t data_size
, const uint8_t * data
);
440 /* r = (data, len) treated as a big endian byte array, return -1 if data
441 doesn't fit in r, return 0 otherwise.
442 ccn_read_uint strips leading zeroes and doesn't care about sign. */
443 #define ccn_read_int(n, r, data_size, data) ccn_read_uint(n, r, data_size, data)
445 /* Return actual size in bytes needed to serialize s. */
447 size_t ccn_write_uint_size ( cc_size n
, const cc_unit
* s
);
449 /* Serialize s, to out.
450 First byte of byte stream is the m.s. byte of s,
451 regardless of the size of cc_unit.
453 No assumption is made about the alignment of out.
455 The out_size argument should be the value returned from ccn_write_uint_size,
456 and is also the exact number of bytes this function will write to out.
457 If out_size if less than the value returned by ccn_write_uint_size, only the
458 first out_size non-zero most significant octets of s will be written. */
460 void ccn_write_uint ( cc_size n
, const cc_unit
* s
, size_t out_size
, void * out
);
463 CC_INLINE
CC_NONNULL (( 2 , 4 ))
464 cc_size
ccn_write_uint_padded ( cc_size n
, const cc_unit
* s
, size_t out_size
, uint8_t * to
)
466 size_t bytesInKey
= ccn_write_uint_size ( n
, s
);
467 cc_size offset
= ( out_size
> bytesInKey
) ? out_size
- bytesInKey
: 0 ;
470 ccn_write_uint ( n
, s
, out_size
- offset
, to
+ offset
);
476 /* Return actual size in bytes needed to serialize s as int
477 (adding leading zero if high bit is set). */
479 size_t ccn_write_int_size ( cc_size n
, const cc_unit
* s
);
481 /* Serialize s, to out.
482 First byte of byte stream is the m.s. byte of s,
483 regardless of the size of cc_unit.
485 No assumption is made about the alignment of out.
487 The out_size argument should be the value returned from ccn_write_int_size,
488 and is also the exact number of bytes this function will write to out.
489 If out_size if less than the value returned by ccn_write_int_size, only the
490 first out_size non-zero most significant octets of s will be written. */
492 void ccn_write_int ( cc_size n
, const cc_unit
* s
, size_t out_size
, void * out
);
494 #if CCN_DEDICATED_SQR
497 { n bit -> 2 * n bit } */
499 void ccn_sqr ( cc_size n
, cc_unit
* r
, const cc_unit
* s
);
502 { n bit -> 2 * n bit } */
503 CC_NONNULL (( 2 , 3 , 4 ))
504 void ccn_sqr_ws ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, cc_ws_t ws
);
509 { n bit -> 2 * n bit } */
510 CC_INLINE
CC_NONNULL (( 2 , 3 ))
511 void ccn_sqr ( cc_size n
, cc_unit
* r
, const cc_unit
* s
) {
516 { n bit -> 2 * n bit } */
517 CC_INLINE
CC_NONNULL (( 2 , 3 , 4 ))
518 void ccn_sqr_ws ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, cc_ws_t ws
) {
519 ccn_mul_ws ( n
, r
, s
, s
, ws
);
525 { n bit -> n bit } */
527 void ccn_set ( cc_size n
, cc_unit
* r
, const cc_unit
* s
);
529 CC_INLINE CC_NONNULL2
530 void ccn_zero ( cc_size n
, cc_unit
* r
) {
531 cc_zero ( ccn_sizeof_n ( n
), r
);
534 CC_INLINE CC_NONNULL2
535 void ccn_clear ( cc_size n
, cc_unit
* r
) {
536 cc_clear ( ccn_sizeof_n ( n
), r
);
540 void ccn_zero_multi ( cc_size n
, cc_unit
* r
, ...);
542 CC_INLINE CC_NONNULL2
543 void ccn_seti ( cc_size n
, cc_unit
* r
, cc_unit v
) {
546 ccn_zero ( n
- 1 , r
+ 1 );
549 CC_INLINE
CC_NONNULL (( 2 , 4 ))
550 void ccn_setn ( cc_size n
, cc_unit
* r
, const cc_size s_size
, const cc_unit
* s
) {
551 /* FIXME: assert not available in kernel.
556 ccn_set ( s_size
, r
, s
);
557 ccn_zero ( n
- s_size
, r
+ s_size
);
560 #define CC_SWAP_HOST_BIG_64(x) \
561 ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
562 (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
563 (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
564 (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
565 (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
566 (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
567 (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
568 (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
569 #define CC_SWAP_HOST_BIG_32(x) \
570 ((((x) & 0xff000000) >> 24) | \
571 (((x) & 0x00ff0000) >> 8) | \
572 (((x) & 0x0000ff00) << 8) | \
573 (((x) & 0x000000ff) << 24))
574 #define CC_SWAP_HOST_BIG_16(x) \
575 ((((x) & 0xff00) >> 8) | \
576 (((x) & 0x00ff) << 8))
578 /* This should probably move if we move ccn_swap out of line. */
579 #if CCN_UNIT_SIZE == 8
580 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_64(x)
581 #elif CCN_UNIT_SIZE == 4
582 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_32(x)
583 #elif CCN_UNIT_SIZE == 2
584 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_16(x)
585 #elif CCN_UNIT_SIZE == 1
586 #define CC_UNIT_TO_BIG(x) (x)
588 #error unsupported CCN_UNIT_SIZE
591 /* Swap units in r in place from cc_unit vector byte order to big endian byte order (or back). */
592 CC_INLINE CC_NONNULL2
593 void ccn_swap ( cc_size n
, cc_unit
* r
) {
595 for ( e
= r
+ n
- 1 ; r
< e
; ++ r
, -- e
) {
596 cc_unit t
= CC_UNIT_TO_BIG (* r
);
597 * r
= CC_UNIT_TO_BIG (* e
);
601 * r
= CC_UNIT_TO_BIG (* r
);
604 CC_INLINE
CC_NONNULL (( 2 , 3 , 4 ))
605 void ccn_xor ( cc_size n
, cc_unit
* r
, const cc_unit
* s
, const cc_unit
* t
) {
613 void ccn_print ( cc_size n
, const cc_unit
* s
);
615 void ccn_lprint ( cc_size n
, const char * label
, const cc_unit
* s
);
617 /* Forward declaration so we don't depend on ccrng.h. */
621 CC_INLINE
CC_NONNULL (( 2 , 3 ))
622 int ccn_random ( cc_size n
, cc_unit
* r
, struct ccrng_state
* rng
) {
623 return ( RNG
)-> generate (( RNG
), ccn_sizeof_n ( n
), ( unsigned char *) r
);
626 #define ccn_random(_n_,_r_,_ccrng_ctx_) \
627 ccrng_generate(_ccrng_ctx_, ccn_sizeof_n(_n_), (unsigned char *)_r_)
630 /* Make a ccn of size ccn_nof(nbits) units with up to nbits sized random value. */
632 int ccn_random_bits ( cc_size nbits
, cc_unit
* r
, struct ccrng_state
* rng
);
635 @brief ccn_make_recip(cc_size nd, cc_unit *recip, const cc_unit *d) computes the reciprocal of d: recip = 2^2b/d where b=bitlen(d)
637 @param nd length of array d
638 @param recip returned reciprocal of size nd+1
639 @param d input number d
642 void ccn_make_recip ( cc_size nd
, cc_unit
* recip
, const cc_unit
* d
);
645 int ccn_div_euclid ( cc_size nq
, cc_unit
* q
, cc_size nr
, cc_unit
* r
, cc_size na
, const cc_unit
* a
, cc_size nd
, const cc_unit
* d
);
647 #define ccn_div(nq, q, na, a, nd, d) ccn_div_euclid(nq, q, 0, NULL, na, a, nd, d)
648 #define ccn_mod(nr, r, na, a, nd, d) ccn_div_euclid(0 , NULL, nr, r, na, a, nd, d)
651 @brief ccn_div_use_recip(nq, q, nr, r, na, a, nd, d) comutes q=a/d and r=a%d
652 @discussion q and rcan be NULL. Reads na from a and nd from d. Writes nq in q and nr in r. nq and nr must be large enough to accomodate results, otherwise error is retuned. Execution time depends on the size of a. Computation is perfomed on of fixedsize and the leadig zeros of a of q are are also used in the computation.
653 @param nq length of array q that hold the quotients. The maximum length of quotient is the actual length of dividend a
654 @param q returned quotient. If nq is larger than needed, it is filled with leading zeros. If it is smaller, error is returned. q can be set to NULL, if not needed.
655 @param nr length of array r that hold the remainder. The maximum length of remainder is the actual length of divisor d
656 @param r returned remainder. If nr is larger than needed, it is filled with leading zeros. Ifi is smaller error is returned. r can be set to NULL if not required.
657 @param na length of dividend. Dividend may have leading zeros.
658 @param a input Dividend
659 @param nd length of input divisor. Divisor may have leading zeros.
660 @param d input Divisor
661 @param recip_d The reciprocal of d, of length nd+1.
663 @return returns 0 if successful, negative of error.
665 CC_NONNULL (( 6 , 8 , 9 ))
666 int ccn_div_use_recip ( cc_size nq
, cc_unit
* q
, cc_size nr
, cc_unit
* r
, cc_size na
, const cc_unit
* a
, cc_size nd
, const cc_unit
* d
, const cc_unit
* recip_d
);
668 #endif /* _CORECRYPTO_CCN_H_ */