]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_kern.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * Kernel memory management. | |
64 | */ | |
65 | ||
1c79356b A |
66 | #include <mach/kern_return.h> |
67 | #include <mach/vm_param.h> | |
68 | #include <kern/assert.h> | |
69 | #include <kern/lock.h> | |
70 | #include <kern/thread.h> | |
71 | #include <vm/vm_kern.h> | |
72 | #include <vm/vm_map.h> | |
73 | #include <vm/vm_object.h> | |
74 | #include <vm/vm_page.h> | |
75 | #include <vm/vm_pageout.h> | |
76 | #include <kern/misc_protos.h> | |
77 | #include <vm/cpm.h> | |
78 | ||
79 | #include <string.h> | |
2d21ac55 A |
80 | |
81 | #include <libkern/OSDebug.h> | |
82 | #include <sys/kdebug.h> | |
83 | ||
1c79356b A |
84 | /* |
85 | * Variables exported by this module. | |
86 | */ | |
87 | ||
88 | vm_map_t kernel_map; | |
89 | vm_map_t kernel_pageable_map; | |
90 | ||
2d21ac55 A |
91 | extern boolean_t vm_kernel_ready; |
92 | ||
1c79356b A |
93 | /* |
94 | * Forward declarations for internal functions. | |
95 | */ | |
96 | extern kern_return_t kmem_alloc_pages( | |
97 | register vm_object_t object, | |
98 | register vm_object_offset_t offset, | |
91447636 | 99 | register vm_object_size_t size); |
1c79356b A |
100 | |
101 | extern void kmem_remap_pages( | |
102 | register vm_object_t object, | |
103 | register vm_object_offset_t offset, | |
104 | register vm_offset_t start, | |
105 | register vm_offset_t end, | |
106 | vm_prot_t protection); | |
107 | ||
108 | kern_return_t | |
109 | kmem_alloc_contig( | |
91447636 A |
110 | vm_map_t map, |
111 | vm_offset_t *addrp, | |
112 | vm_size_t size, | |
113 | vm_offset_t mask, | |
2d21ac55 | 114 | ppnum_t max_pnum, |
b0d623f7 | 115 | ppnum_t pnum_mask, |
91447636 | 116 | int flags) |
1c79356b A |
117 | { |
118 | vm_object_t object; | |
1c79356b | 119 | vm_object_offset_t offset; |
91447636 A |
120 | vm_map_offset_t map_addr; |
121 | vm_map_offset_t map_mask; | |
122 | vm_map_size_t map_size, i; | |
1c79356b | 123 | vm_map_entry_t entry; |
91447636 A |
124 | vm_page_t m, pages; |
125 | kern_return_t kr; | |
1c79356b | 126 | |
b0d623f7 | 127 | if (map == VM_MAP_NULL || (flags & ~(KMA_KOBJECT | KMA_LOMEM | KMA_NOPAGEWAIT))) |
1c79356b A |
128 | return KERN_INVALID_ARGUMENT; |
129 | ||
130 | if (size == 0) { | |
131 | *addrp = 0; | |
132 | return KERN_INVALID_ARGUMENT; | |
133 | } | |
134 | ||
91447636 A |
135 | map_size = vm_map_round_page(size); |
136 | map_mask = (vm_map_offset_t)mask; | |
1c79356b | 137 | |
91447636 A |
138 | /* |
139 | * Allocate a new object (if necessary) and the reference we | |
140 | * will be donating to the map entry. We must do this before | |
141 | * locking the map, or risk deadlock with the default pager. | |
142 | */ | |
143 | if ((flags & KMA_KOBJECT) != 0) { | |
144 | object = kernel_object; | |
145 | vm_object_reference(object); | |
1c79356b | 146 | } else { |
91447636 | 147 | object = vm_object_allocate(map_size); |
1c79356b A |
148 | } |
149 | ||
0c530ab8 | 150 | kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0, &entry); |
91447636 A |
151 | if (KERN_SUCCESS != kr) { |
152 | vm_object_deallocate(object); | |
1c79356b A |
153 | return kr; |
154 | } | |
155 | ||
91447636 A |
156 | entry->object.vm_object = object; |
157 | entry->offset = offset = (object == kernel_object) ? | |
b0d623f7 | 158 | map_addr : 0; |
91447636 A |
159 | |
160 | /* Take an extra object ref in case the map entry gets deleted */ | |
161 | vm_object_reference(object); | |
1c79356b A |
162 | vm_map_unlock(map); |
163 | ||
b0d623f7 | 164 | kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, pnum_mask, FALSE, flags); |
1c79356b A |
165 | |
166 | if (kr != KERN_SUCCESS) { | |
91447636 A |
167 | vm_map_remove(map, vm_map_trunc_page(map_addr), |
168 | vm_map_round_page(map_addr + map_size), 0); | |
169 | vm_object_deallocate(object); | |
1c79356b A |
170 | *addrp = 0; |
171 | return kr; | |
172 | } | |
173 | ||
174 | vm_object_lock(object); | |
91447636 | 175 | for (i = 0; i < map_size; i += PAGE_SIZE) { |
1c79356b A |
176 | m = pages; |
177 | pages = NEXT_PAGE(m); | |
0c530ab8 | 178 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
1c79356b A |
179 | m->busy = FALSE; |
180 | vm_page_insert(m, object, offset + i); | |
181 | } | |
182 | vm_object_unlock(object); | |
183 | ||
91447636 A |
184 | if ((kr = vm_map_wire(map, vm_map_trunc_page(map_addr), |
185 | vm_map_round_page(map_addr + map_size), VM_PROT_DEFAULT, FALSE)) | |
1c79356b A |
186 | != KERN_SUCCESS) { |
187 | if (object == kernel_object) { | |
188 | vm_object_lock(object); | |
91447636 | 189 | vm_object_page_remove(object, offset, offset + map_size); |
1c79356b A |
190 | vm_object_unlock(object); |
191 | } | |
91447636 A |
192 | vm_map_remove(map, vm_map_trunc_page(map_addr), |
193 | vm_map_round_page(map_addr + map_size), 0); | |
194 | vm_object_deallocate(object); | |
1c79356b A |
195 | return kr; |
196 | } | |
91447636 A |
197 | vm_object_deallocate(object); |
198 | ||
1c79356b | 199 | if (object == kernel_object) |
91447636 | 200 | vm_map_simplify(map, map_addr); |
1c79356b | 201 | |
b0d623f7 A |
202 | *addrp = (vm_offset_t) map_addr; |
203 | assert((vm_map_offset_t) *addrp == map_addr); | |
1c79356b A |
204 | return KERN_SUCCESS; |
205 | } | |
206 | ||
207 | /* | |
208 | * Master entry point for allocating kernel memory. | |
209 | * NOTE: this routine is _never_ interrupt safe. | |
210 | * | |
211 | * map : map to allocate into | |
212 | * addrp : pointer to start address of new memory | |
213 | * size : size of memory requested | |
214 | * flags : options | |
215 | * KMA_HERE *addrp is base address, else "anywhere" | |
216 | * KMA_NOPAGEWAIT don't wait for pages if unavailable | |
217 | * KMA_KOBJECT use kernel_object | |
0c530ab8 A |
218 | * KMA_LOMEM support for 32 bit devices in a 64 bit world |
219 | * if set and a lomemory pool is available | |
220 | * grab pages from it... this also implies | |
221 | * KMA_NOPAGEWAIT | |
1c79356b A |
222 | */ |
223 | ||
224 | kern_return_t | |
225 | kernel_memory_allocate( | |
226 | register vm_map_t map, | |
227 | register vm_offset_t *addrp, | |
228 | register vm_size_t size, | |
229 | register vm_offset_t mask, | |
230 | int flags) | |
231 | { | |
91447636 A |
232 | vm_object_t object; |
233 | vm_object_offset_t offset; | |
b0d623f7 | 234 | vm_object_offset_t pg_offset; |
1c79356b | 235 | vm_map_entry_t entry; |
2d21ac55 | 236 | vm_map_offset_t map_addr, fill_start; |
91447636 | 237 | vm_map_offset_t map_mask; |
2d21ac55 | 238 | vm_map_size_t map_size, fill_size; |
1c79356b | 239 | kern_return_t kr; |
2d21ac55 | 240 | vm_page_t mem; |
b0d623f7 A |
241 | vm_page_t guard_page_list = NULL; |
242 | vm_page_t wired_page_list = NULL; | |
243 | int guard_page_count = 0; | |
244 | int wired_page_count = 0; | |
245 | int i; | |
2d21ac55 A |
246 | int vm_alloc_flags; |
247 | ||
248 | if (! vm_kernel_ready) { | |
249 | panic("kernel_memory_allocate: VM is not ready"); | |
250 | } | |
1c79356b | 251 | |
91447636 A |
252 | if (size == 0) { |
253 | *addrp = 0; | |
254 | return KERN_INVALID_ARGUMENT; | |
1c79356b | 255 | } |
91447636 A |
256 | map_size = vm_map_round_page(size); |
257 | map_mask = (vm_map_offset_t) mask; | |
2d21ac55 A |
258 | vm_alloc_flags = 0; |
259 | ||
b0d623f7 A |
260 | |
261 | /* | |
262 | * limit the size of a single extent of wired memory | |
263 | * to try and limit the damage to the system if | |
264 | * too many pages get wired down | |
265 | */ | |
266 | if (map_size > (1 << 30)) { | |
267 | return KERN_RESOURCE_SHORTAGE; | |
268 | } | |
269 | ||
2d21ac55 A |
270 | /* |
271 | * Guard pages: | |
272 | * | |
273 | * Guard pages are implemented as ficticious pages. By placing guard pages | |
274 | * on either end of a stack, they can help detect cases where a thread walks | |
275 | * off either end of its stack. They are allocated and set up here and attempts | |
276 | * to access those pages are trapped in vm_fault_page(). | |
277 | * | |
278 | * The map_size we were passed may include extra space for | |
279 | * guard pages. If those were requested, then back it out of fill_size | |
280 | * since vm_map_find_space() takes just the actual size not including | |
281 | * guard pages. Similarly, fill_start indicates where the actual pages | |
282 | * will begin in the range. | |
283 | */ | |
284 | ||
285 | fill_start = 0; | |
286 | fill_size = map_size; | |
b0d623f7 | 287 | |
2d21ac55 A |
288 | if (flags & KMA_GUARD_FIRST) { |
289 | vm_alloc_flags |= VM_FLAGS_GUARD_BEFORE; | |
290 | fill_start += PAGE_SIZE_64; | |
291 | fill_size -= PAGE_SIZE_64; | |
292 | if (map_size < fill_start + fill_size) { | |
293 | /* no space for a guard page */ | |
294 | *addrp = 0; | |
295 | return KERN_INVALID_ARGUMENT; | |
296 | } | |
b0d623f7 | 297 | guard_page_count++; |
2d21ac55 A |
298 | } |
299 | if (flags & KMA_GUARD_LAST) { | |
300 | vm_alloc_flags |= VM_FLAGS_GUARD_AFTER; | |
301 | fill_size -= PAGE_SIZE_64; | |
302 | if (map_size <= fill_start + fill_size) { | |
303 | /* no space for a guard page */ | |
304 | *addrp = 0; | |
305 | return KERN_INVALID_ARGUMENT; | |
306 | } | |
b0d623f7 A |
307 | guard_page_count++; |
308 | } | |
309 | wired_page_count = (int) (fill_size / PAGE_SIZE_64); | |
310 | assert(wired_page_count * PAGE_SIZE_64 == fill_size); | |
311 | ||
312 | for (i = 0; i < guard_page_count; i++) { | |
313 | for (;;) { | |
314 | mem = vm_page_grab_guard(); | |
315 | ||
316 | if (mem != VM_PAGE_NULL) | |
317 | break; | |
318 | if (flags & KMA_NOPAGEWAIT) { | |
319 | kr = KERN_RESOURCE_SHORTAGE; | |
320 | goto out; | |
321 | } | |
322 | vm_page_more_fictitious(); | |
323 | } | |
324 | mem->pageq.next = (queue_entry_t)guard_page_list; | |
325 | guard_page_list = mem; | |
326 | } | |
327 | ||
328 | for (i = 0; i < wired_page_count; i++) { | |
329 | uint64_t unavailable; | |
330 | ||
331 | for (;;) { | |
332 | if (flags & KMA_LOMEM) | |
333 | mem = vm_page_grablo(); | |
334 | else | |
335 | mem = vm_page_grab(); | |
336 | ||
337 | if (mem != VM_PAGE_NULL) | |
338 | break; | |
339 | ||
340 | if (flags & KMA_NOPAGEWAIT) { | |
341 | kr = KERN_RESOURCE_SHORTAGE; | |
342 | goto out; | |
343 | } | |
0b4c1975 A |
344 | if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) { |
345 | kr = KERN_RESOURCE_SHORTAGE; | |
346 | goto out; | |
347 | } | |
b0d623f7 A |
348 | unavailable = (vm_page_wire_count + vm_page_free_target) * PAGE_SIZE; |
349 | ||
350 | if (unavailable > max_mem || map_size > (max_mem - unavailable)) { | |
351 | kr = KERN_RESOURCE_SHORTAGE; | |
352 | goto out; | |
353 | } | |
354 | VM_PAGE_WAIT(); | |
355 | } | |
356 | mem->pageq.next = (queue_entry_t)wired_page_list; | |
357 | wired_page_list = mem; | |
2d21ac55 | 358 | } |
91447636 A |
359 | |
360 | /* | |
361 | * Allocate a new object (if necessary). We must do this before | |
362 | * locking the map, or risk deadlock with the default pager. | |
363 | */ | |
364 | if ((flags & KMA_KOBJECT) != 0) { | |
1c79356b | 365 | object = kernel_object; |
91447636 A |
366 | vm_object_reference(object); |
367 | } else { | |
368 | object = vm_object_allocate(map_size); | |
1c79356b | 369 | } |
91447636 | 370 | |
2d21ac55 A |
371 | kr = vm_map_find_space(map, &map_addr, |
372 | fill_size, map_mask, | |
373 | vm_alloc_flags, &entry); | |
91447636 A |
374 | if (KERN_SUCCESS != kr) { |
375 | vm_object_deallocate(object); | |
b0d623f7 | 376 | goto out; |
1c79356b | 377 | } |
2d21ac55 | 378 | |
91447636 A |
379 | entry->object.vm_object = object; |
380 | entry->offset = offset = (object == kernel_object) ? | |
b0d623f7 | 381 | map_addr : 0; |
1c79356b | 382 | |
b0d623f7 A |
383 | entry->wired_count++; |
384 | ||
385 | if (flags & KMA_PERMANENT) | |
386 | entry->permanent = TRUE; | |
387 | ||
388 | if (object != kernel_object) | |
389 | vm_object_reference(object); | |
1c79356b A |
390 | |
391 | vm_object_lock(object); | |
b0d623f7 | 392 | vm_map_unlock(map); |
1c79356b | 393 | |
b0d623f7 A |
394 | pg_offset = 0; |
395 | ||
396 | if (fill_start) { | |
397 | if (guard_page_list == NULL) | |
398 | panic("kernel_memory_allocate: guard_page_list == NULL"); | |
399 | ||
400 | mem = guard_page_list; | |
401 | guard_page_list = (vm_page_t)mem->pageq.next; | |
402 | mem->pageq.next = NULL; | |
403 | ||
404 | vm_page_insert(mem, object, offset + pg_offset); | |
2d21ac55 | 405 | |
2d21ac55 | 406 | mem->busy = FALSE; |
b0d623f7 | 407 | pg_offset += PAGE_SIZE_64; |
2d21ac55 | 408 | } |
b0d623f7 A |
409 | for (pg_offset = fill_start; pg_offset < fill_start + fill_size; pg_offset += PAGE_SIZE_64) { |
410 | if (wired_page_list == NULL) | |
411 | panic("kernel_memory_allocate: wired_page_list == NULL"); | |
2d21ac55 | 412 | |
b0d623f7 A |
413 | mem = wired_page_list; |
414 | wired_page_list = (vm_page_t)mem->pageq.next; | |
415 | mem->pageq.next = NULL; | |
416 | mem->wire_count++; | |
2d21ac55 | 417 | |
b0d623f7 | 418 | vm_page_insert(mem, object, offset + pg_offset); |
0c530ab8 | 419 | |
1c79356b | 420 | mem->busy = FALSE; |
b0d623f7 A |
421 | mem->pmapped = TRUE; |
422 | mem->wpmapped = TRUE; | |
423 | ||
424 | PMAP_ENTER(kernel_pmap, map_addr + pg_offset, mem, | |
6d2010ae | 425 | VM_PROT_READ | VM_PROT_WRITE, 0, TRUE); |
0b4c1975 A |
426 | |
427 | if (flags & KMA_NOENCRYPT) { | |
428 | bzero(CAST_DOWN(void *, (map_addr + pg_offset)), PAGE_SIZE); | |
429 | ||
430 | pmap_set_noencrypt(mem->phys_page); | |
431 | } | |
1c79356b | 432 | } |
b0d623f7 A |
433 | if ((fill_start + fill_size) < map_size) { |
434 | if (guard_page_list == NULL) | |
435 | panic("kernel_memory_allocate: guard_page_list == NULL"); | |
1c79356b | 436 | |
b0d623f7 A |
437 | mem = guard_page_list; |
438 | guard_page_list = (vm_page_t)mem->pageq.next; | |
439 | mem->pageq.next = NULL; | |
440 | ||
441 | vm_page_insert(mem, object, offset + pg_offset); | |
2d21ac55 | 442 | |
2d21ac55 | 443 | mem->busy = FALSE; |
1c79356b | 444 | } |
b0d623f7 A |
445 | if (guard_page_list || wired_page_list) |
446 | panic("kernel_memory_allocate: non empty list\n"); | |
2d21ac55 | 447 | |
b0d623f7 A |
448 | vm_page_lockspin_queues(); |
449 | vm_page_wire_count += wired_page_count; | |
450 | vm_page_unlock_queues(); | |
2d21ac55 | 451 | |
b0d623f7 A |
452 | vm_object_unlock(object); |
453 | ||
454 | /* | |
455 | * now that the pages are wired, we no longer have to fear coalesce | |
456 | */ | |
1c79356b | 457 | if (object == kernel_object) |
91447636 | 458 | vm_map_simplify(map, map_addr); |
b0d623f7 A |
459 | else |
460 | vm_object_deallocate(object); | |
1c79356b A |
461 | |
462 | /* | |
463 | * Return the memory, not zeroed. | |
464 | */ | |
91447636 | 465 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b | 466 | return KERN_SUCCESS; |
2d21ac55 | 467 | |
b0d623f7 A |
468 | out: |
469 | if (guard_page_list) | |
470 | vm_page_free_list(guard_page_list, FALSE); | |
471 | ||
472 | if (wired_page_list) | |
473 | vm_page_free_list(wired_page_list, FALSE); | |
474 | ||
475 | return kr; | |
1c79356b A |
476 | } |
477 | ||
478 | /* | |
479 | * kmem_alloc: | |
480 | * | |
481 | * Allocate wired-down memory in the kernel's address map | |
482 | * or a submap. The memory is not zero-filled. | |
483 | */ | |
484 | ||
485 | kern_return_t | |
486 | kmem_alloc( | |
487 | vm_map_t map, | |
488 | vm_offset_t *addrp, | |
489 | vm_size_t size) | |
490 | { | |
2d21ac55 A |
491 | kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, 0); |
492 | TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp); | |
493 | return kr; | |
1c79356b A |
494 | } |
495 | ||
496 | /* | |
497 | * kmem_realloc: | |
498 | * | |
499 | * Reallocate wired-down memory in the kernel's address map | |
500 | * or a submap. Newly allocated pages are not zeroed. | |
501 | * This can only be used on regions allocated with kmem_alloc. | |
502 | * | |
503 | * If successful, the pages in the old region are mapped twice. | |
504 | * The old region is unchanged. Use kmem_free to get rid of it. | |
505 | */ | |
506 | kern_return_t | |
507 | kmem_realloc( | |
91447636 A |
508 | vm_map_t map, |
509 | vm_offset_t oldaddr, | |
510 | vm_size_t oldsize, | |
511 | vm_offset_t *newaddrp, | |
512 | vm_size_t newsize) | |
1c79356b | 513 | { |
91447636 A |
514 | vm_object_t object; |
515 | vm_object_offset_t offset; | |
516 | vm_map_offset_t oldmapmin; | |
517 | vm_map_offset_t oldmapmax; | |
518 | vm_map_offset_t newmapaddr; | |
519 | vm_map_size_t oldmapsize; | |
520 | vm_map_size_t newmapsize; | |
521 | vm_map_entry_t oldentry; | |
522 | vm_map_entry_t newentry; | |
523 | vm_page_t mem; | |
524 | kern_return_t kr; | |
1c79356b | 525 | |
91447636 A |
526 | oldmapmin = vm_map_trunc_page(oldaddr); |
527 | oldmapmax = vm_map_round_page(oldaddr + oldsize); | |
528 | oldmapsize = oldmapmax - oldmapmin; | |
529 | newmapsize = vm_map_round_page(newsize); | |
1c79356b | 530 | |
1c79356b A |
531 | |
532 | /* | |
533 | * Find the VM object backing the old region. | |
534 | */ | |
535 | ||
b4c24cb9 A |
536 | vm_map_lock(map); |
537 | ||
91447636 | 538 | if (!vm_map_lookup_entry(map, oldmapmin, &oldentry)) |
1c79356b A |
539 | panic("kmem_realloc"); |
540 | object = oldentry->object.vm_object; | |
541 | ||
542 | /* | |
543 | * Increase the size of the object and | |
544 | * fill in the new region. | |
545 | */ | |
546 | ||
547 | vm_object_reference(object); | |
b4c24cb9 A |
548 | /* by grabbing the object lock before unlocking the map */ |
549 | /* we guarantee that we will panic if more than one */ | |
550 | /* attempt is made to realloc a kmem_alloc'd area */ | |
1c79356b | 551 | vm_object_lock(object); |
b4c24cb9 | 552 | vm_map_unlock(map); |
6d2010ae | 553 | if (object->vo_size != oldmapsize) |
1c79356b | 554 | panic("kmem_realloc"); |
6d2010ae | 555 | object->vo_size = newmapsize; |
1c79356b A |
556 | vm_object_unlock(object); |
557 | ||
b4c24cb9 A |
558 | /* allocate the new pages while expanded portion of the */ |
559 | /* object is still not mapped */ | |
91447636 A |
560 | kmem_alloc_pages(object, vm_object_round_page(oldmapsize), |
561 | vm_object_round_page(newmapsize-oldmapsize)); | |
1c79356b A |
562 | |
563 | /* | |
b4c24cb9 | 564 | * Find space for the new region. |
1c79356b A |
565 | */ |
566 | ||
91447636 | 567 | kr = vm_map_find_space(map, &newmapaddr, newmapsize, |
0c530ab8 | 568 | (vm_map_offset_t) 0, 0, &newentry); |
b4c24cb9 A |
569 | if (kr != KERN_SUCCESS) { |
570 | vm_object_lock(object); | |
91447636 A |
571 | for(offset = oldmapsize; |
572 | offset < newmapsize; offset += PAGE_SIZE) { | |
b4c24cb9 | 573 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
b0d623f7 | 574 | VM_PAGE_FREE(mem); |
b4c24cb9 A |
575 | } |
576 | } | |
6d2010ae | 577 | object->vo_size = oldmapsize; |
b4c24cb9 A |
578 | vm_object_unlock(object); |
579 | vm_object_deallocate(object); | |
580 | return kr; | |
581 | } | |
582 | newentry->object.vm_object = object; | |
583 | newentry->offset = 0; | |
584 | assert (newentry->wired_count == 0); | |
585 | ||
586 | ||
587 | /* add an extra reference in case we have someone doing an */ | |
588 | /* unexpected deallocate */ | |
589 | vm_object_reference(object); | |
1c79356b A |
590 | vm_map_unlock(map); |
591 | ||
91447636 A |
592 | kr = vm_map_wire(map, newmapaddr, newmapaddr + newmapsize, VM_PROT_DEFAULT, FALSE); |
593 | if (KERN_SUCCESS != kr) { | |
594 | vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, 0); | |
b4c24cb9 | 595 | vm_object_lock(object); |
91447636 | 596 | for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) { |
b4c24cb9 | 597 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
b0d623f7 | 598 | VM_PAGE_FREE(mem); |
b4c24cb9 A |
599 | } |
600 | } | |
6d2010ae | 601 | object->vo_size = oldmapsize; |
b4c24cb9 A |
602 | vm_object_unlock(object); |
603 | vm_object_deallocate(object); | |
604 | return (kr); | |
605 | } | |
606 | vm_object_deallocate(object); | |
1c79356b | 607 | |
91447636 | 608 | *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr); |
1c79356b A |
609 | return KERN_SUCCESS; |
610 | } | |
611 | ||
612 | /* | |
b0d623f7 | 613 | * kmem_alloc_kobject: |
1c79356b A |
614 | * |
615 | * Allocate wired-down memory in the kernel's address map | |
616 | * or a submap. The memory is not zero-filled. | |
617 | * | |
618 | * The memory is allocated in the kernel_object. | |
619 | * It may not be copied with vm_map_copy, and | |
620 | * it may not be reallocated with kmem_realloc. | |
621 | */ | |
622 | ||
623 | kern_return_t | |
b0d623f7 | 624 | kmem_alloc_kobject( |
1c79356b A |
625 | vm_map_t map, |
626 | vm_offset_t *addrp, | |
627 | vm_size_t size) | |
628 | { | |
629 | return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT); | |
630 | } | |
631 | ||
632 | /* | |
633 | * kmem_alloc_aligned: | |
634 | * | |
b0d623f7 | 635 | * Like kmem_alloc_kobject, except that the memory is aligned. |
1c79356b A |
636 | * The size should be a power-of-2. |
637 | */ | |
638 | ||
639 | kern_return_t | |
640 | kmem_alloc_aligned( | |
641 | vm_map_t map, | |
642 | vm_offset_t *addrp, | |
643 | vm_size_t size) | |
644 | { | |
645 | if ((size & (size - 1)) != 0) | |
646 | panic("kmem_alloc_aligned: size not aligned"); | |
647 | return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT); | |
648 | } | |
649 | ||
650 | /* | |
651 | * kmem_alloc_pageable: | |
652 | * | |
653 | * Allocate pageable memory in the kernel's address map. | |
654 | */ | |
655 | ||
656 | kern_return_t | |
657 | kmem_alloc_pageable( | |
658 | vm_map_t map, | |
659 | vm_offset_t *addrp, | |
660 | vm_size_t size) | |
661 | { | |
91447636 A |
662 | vm_map_offset_t map_addr; |
663 | vm_map_size_t map_size; | |
1c79356b A |
664 | kern_return_t kr; |
665 | ||
666 | #ifndef normal | |
91447636 | 667 | map_addr = (vm_map_min(map)) + 0x1000; |
1c79356b | 668 | #else |
91447636 | 669 | map_addr = vm_map_min(map); |
1c79356b | 670 | #endif |
91447636 A |
671 | map_size = vm_map_round_page(size); |
672 | ||
673 | kr = vm_map_enter(map, &map_addr, map_size, | |
674 | (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE, | |
1c79356b A |
675 | VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE, |
676 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
91447636 | 677 | |
1c79356b A |
678 | if (kr != KERN_SUCCESS) |
679 | return kr; | |
680 | ||
91447636 | 681 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b A |
682 | return KERN_SUCCESS; |
683 | } | |
684 | ||
685 | /* | |
686 | * kmem_free: | |
687 | * | |
688 | * Release a region of kernel virtual memory allocated | |
b0d623f7 | 689 | * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable, |
1c79356b A |
690 | * and return the physical pages associated with that region. |
691 | */ | |
692 | ||
693 | void | |
694 | kmem_free( | |
695 | vm_map_t map, | |
696 | vm_offset_t addr, | |
697 | vm_size_t size) | |
698 | { | |
699 | kern_return_t kr; | |
700 | ||
b0d623f7 A |
701 | assert(addr >= VM_MIN_KERNEL_AND_KEXT_ADDRESS); |
702 | ||
2d21ac55 A |
703 | TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr); |
704 | ||
b0d623f7 A |
705 | if(size == 0) { |
706 | #if MACH_ASSERT | |
707 | printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n",map,(uint64_t)addr); | |
708 | #endif | |
709 | return; | |
710 | } | |
711 | ||
91447636 A |
712 | kr = vm_map_remove(map, vm_map_trunc_page(addr), |
713 | vm_map_round_page(addr + size), | |
55e303ae | 714 | VM_MAP_REMOVE_KUNWIRE); |
1c79356b A |
715 | if (kr != KERN_SUCCESS) |
716 | panic("kmem_free"); | |
717 | } | |
718 | ||
719 | /* | |
b4c24cb9 | 720 | * Allocate new pages in an object. |
1c79356b A |
721 | */ |
722 | ||
723 | kern_return_t | |
724 | kmem_alloc_pages( | |
725 | register vm_object_t object, | |
726 | register vm_object_offset_t offset, | |
91447636 | 727 | register vm_object_size_t size) |
1c79356b | 728 | { |
91447636 | 729 | vm_object_size_t alloc_size; |
1c79356b | 730 | |
91447636 | 731 | alloc_size = vm_object_round_page(size); |
b4c24cb9 | 732 | vm_object_lock(object); |
91447636 | 733 | while (alloc_size) { |
1c79356b A |
734 | register vm_page_t mem; |
735 | ||
1c79356b A |
736 | |
737 | /* | |
738 | * Allocate a page | |
739 | */ | |
91447636 A |
740 | while (VM_PAGE_NULL == |
741 | (mem = vm_page_alloc(object, offset))) { | |
1c79356b A |
742 | vm_object_unlock(object); |
743 | VM_PAGE_WAIT(); | |
744 | vm_object_lock(object); | |
745 | } | |
91447636 | 746 | mem->busy = FALSE; |
1c79356b | 747 | |
91447636 | 748 | alloc_size -= PAGE_SIZE; |
b4c24cb9 | 749 | offset += PAGE_SIZE; |
1c79356b | 750 | } |
b4c24cb9 | 751 | vm_object_unlock(object); |
1c79356b A |
752 | return KERN_SUCCESS; |
753 | } | |
754 | ||
755 | /* | |
756 | * Remap wired pages in an object into a new region. | |
757 | * The object is assumed to be mapped into the kernel map or | |
758 | * a submap. | |
759 | */ | |
760 | void | |
761 | kmem_remap_pages( | |
762 | register vm_object_t object, | |
763 | register vm_object_offset_t offset, | |
764 | register vm_offset_t start, | |
765 | register vm_offset_t end, | |
766 | vm_prot_t protection) | |
767 | { | |
91447636 A |
768 | |
769 | vm_map_offset_t map_start; | |
770 | vm_map_offset_t map_end; | |
771 | ||
1c79356b A |
772 | /* |
773 | * Mark the pmap region as not pageable. | |
774 | */ | |
91447636 A |
775 | map_start = vm_map_trunc_page(start); |
776 | map_end = vm_map_round_page(end); | |
1c79356b | 777 | |
91447636 A |
778 | pmap_pageable(kernel_pmap, map_start, map_end, FALSE); |
779 | ||
780 | while (map_start < map_end) { | |
1c79356b A |
781 | register vm_page_t mem; |
782 | ||
783 | vm_object_lock(object); | |
784 | ||
785 | /* | |
786 | * Find a page | |
787 | */ | |
788 | if ((mem = vm_page_lookup(object, offset)) == VM_PAGE_NULL) | |
789 | panic("kmem_remap_pages"); | |
790 | ||
791 | /* | |
792 | * Wire it down (again) | |
793 | */ | |
2d21ac55 | 794 | vm_page_lockspin_queues(); |
1c79356b A |
795 | vm_page_wire(mem); |
796 | vm_page_unlock_queues(); | |
797 | vm_object_unlock(object); | |
798 | ||
91447636 A |
799 | /* |
800 | * ENCRYPTED SWAP: | |
801 | * The page is supposed to be wired now, so it | |
802 | * shouldn't be encrypted at this point. It can | |
803 | * safely be entered in the page table. | |
804 | */ | |
805 | ASSERT_PAGE_DECRYPTED(mem); | |
806 | ||
1c79356b A |
807 | /* |
808 | * Enter it in the kernel pmap. The page isn't busy, | |
809 | * but this shouldn't be a problem because it is wired. | |
810 | */ | |
b0d623f7 A |
811 | |
812 | mem->pmapped = TRUE; | |
813 | mem->wpmapped = TRUE; | |
814 | ||
6d2010ae | 815 | PMAP_ENTER(kernel_pmap, map_start, mem, protection, 0, TRUE); |
1c79356b | 816 | |
91447636 | 817 | map_start += PAGE_SIZE; |
1c79356b A |
818 | offset += PAGE_SIZE; |
819 | } | |
820 | } | |
821 | ||
822 | /* | |
823 | * kmem_suballoc: | |
824 | * | |
825 | * Allocates a map to manage a subrange | |
826 | * of the kernel virtual address space. | |
827 | * | |
828 | * Arguments are as follows: | |
829 | * | |
830 | * parent Map to take range from | |
831 | * addr Address of start of range (IN/OUT) | |
832 | * size Size of range to find | |
833 | * pageable Can region be paged | |
834 | * anywhere Can region be located anywhere in map | |
835 | * new_map Pointer to new submap | |
836 | */ | |
837 | kern_return_t | |
838 | kmem_suballoc( | |
839 | vm_map_t parent, | |
840 | vm_offset_t *addr, | |
841 | vm_size_t size, | |
842 | boolean_t pageable, | |
91447636 | 843 | int flags, |
1c79356b A |
844 | vm_map_t *new_map) |
845 | { | |
91447636 A |
846 | vm_map_t map; |
847 | vm_map_offset_t map_addr; | |
848 | vm_map_size_t map_size; | |
849 | kern_return_t kr; | |
1c79356b | 850 | |
91447636 | 851 | map_size = vm_map_round_page(size); |
1c79356b A |
852 | |
853 | /* | |
854 | * Need reference on submap object because it is internal | |
855 | * to the vm_system. vm_object_enter will never be called | |
856 | * on it (usual source of reference for vm_map_enter). | |
857 | */ | |
858 | vm_object_reference(vm_submap_object); | |
859 | ||
91447636 A |
860 | map_addr = (flags & VM_FLAGS_ANYWHERE) ? |
861 | vm_map_min(parent) : vm_map_trunc_page(*addr); | |
862 | ||
863 | kr = vm_map_enter(parent, &map_addr, map_size, | |
864 | (vm_map_offset_t) 0, flags, | |
1c79356b A |
865 | vm_submap_object, (vm_object_offset_t) 0, FALSE, |
866 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
867 | if (kr != KERN_SUCCESS) { | |
868 | vm_object_deallocate(vm_submap_object); | |
869 | return (kr); | |
870 | } | |
871 | ||
872 | pmap_reference(vm_map_pmap(parent)); | |
91447636 | 873 | map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable); |
1c79356b A |
874 | if (map == VM_MAP_NULL) |
875 | panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */ | |
876 | ||
91447636 | 877 | kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE); |
1c79356b A |
878 | if (kr != KERN_SUCCESS) { |
879 | /* | |
880 | * See comment preceding vm_map_submap(). | |
881 | */ | |
91447636 | 882 | vm_map_remove(parent, map_addr, map_addr + map_size, VM_MAP_NO_FLAGS); |
1c79356b A |
883 | vm_map_deallocate(map); /* also removes ref to pmap */ |
884 | vm_object_deallocate(vm_submap_object); | |
885 | return (kr); | |
886 | } | |
91447636 | 887 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b A |
888 | *new_map = map; |
889 | return (KERN_SUCCESS); | |
890 | } | |
891 | ||
892 | /* | |
893 | * kmem_init: | |
894 | * | |
895 | * Initialize the kernel's virtual memory map, taking | |
896 | * into account all memory allocated up to this time. | |
897 | */ | |
898 | void | |
899 | kmem_init( | |
900 | vm_offset_t start, | |
901 | vm_offset_t end) | |
902 | { | |
91447636 A |
903 | vm_map_offset_t map_start; |
904 | vm_map_offset_t map_end; | |
905 | ||
906 | map_start = vm_map_trunc_page(start); | |
907 | map_end = vm_map_round_page(end); | |
908 | ||
6d2010ae | 909 | kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
0c530ab8 | 910 | map_end, FALSE); |
1c79356b A |
911 | /* |
912 | * Reserve virtual memory allocated up to this time. | |
913 | */ | |
6d2010ae | 914 | if (start != VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
91447636 | 915 | vm_map_offset_t map_addr; |
6d2010ae | 916 | kern_return_t kr; |
0c530ab8 | 917 | |
6d2010ae A |
918 | map_addr = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
919 | kr = vm_map_enter(kernel_map, | |
920 | &map_addr, | |
921 | (vm_map_size_t)(map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), | |
922 | (vm_map_offset_t) 0, | |
923 | VM_FLAGS_FIXED | VM_FLAGS_NO_PMAP_CHECK, | |
924 | VM_OBJECT_NULL, | |
925 | (vm_object_offset_t) 0, FALSE, | |
926 | VM_PROT_NONE, VM_PROT_NONE, | |
927 | VM_INHERIT_DEFAULT); | |
928 | ||
929 | if (kr != KERN_SUCCESS) { | |
930 | panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n", | |
931 | (uint64_t) start, (uint64_t) end, | |
932 | (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS, | |
933 | (uint64_t) (map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), | |
934 | kr); | |
935 | } | |
1c79356b | 936 | } |
6d2010ae | 937 | |
2d21ac55 A |
938 | /* |
939 | * Set the default global user wire limit which limits the amount of | |
b0d623f7 A |
940 | * memory that can be locked via mlock(). We set this to the total |
941 | * amount of memory that are potentially usable by a user app (max_mem) | |
942 | * minus a certain amount. This can be overridden via a sysctl. | |
2d21ac55 | 943 | */ |
b0d623f7 A |
944 | vm_global_no_user_wire_amount = MIN(max_mem*20/100, |
945 | VM_NOT_USER_WIREABLE); | |
946 | vm_global_user_wire_limit = max_mem - vm_global_no_user_wire_amount; | |
2d21ac55 | 947 | |
b0d623f7 A |
948 | /* the default per user limit is the same as the global limit */ |
949 | vm_user_wire_limit = vm_global_user_wire_limit; | |
1c79356b A |
950 | } |
951 | ||
1c79356b | 952 | |
1c79356b A |
953 | /* |
954 | * Routine: copyinmap | |
955 | * Purpose: | |
956 | * Like copyin, except that fromaddr is an address | |
957 | * in the specified VM map. This implementation | |
958 | * is incomplete; it handles the current user map | |
959 | * and the kernel map/submaps. | |
960 | */ | |
91447636 | 961 | kern_return_t |
1c79356b | 962 | copyinmap( |
91447636 A |
963 | vm_map_t map, |
964 | vm_map_offset_t fromaddr, | |
965 | void *todata, | |
966 | vm_size_t length) | |
1c79356b | 967 | { |
91447636 A |
968 | kern_return_t kr = KERN_SUCCESS; |
969 | vm_map_t oldmap; | |
970 | ||
971 | if (vm_map_pmap(map) == pmap_kernel()) | |
972 | { | |
1c79356b | 973 | /* assume a correct copy */ |
91447636 A |
974 | memcpy(todata, CAST_DOWN(void *, fromaddr), length); |
975 | } | |
976 | else if (current_map() == map) | |
977 | { | |
978 | if (copyin(fromaddr, todata, length) != 0) | |
979 | kr = KERN_INVALID_ADDRESS; | |
1c79356b | 980 | } |
91447636 A |
981 | else |
982 | { | |
983 | vm_map_reference(map); | |
984 | oldmap = vm_map_switch(map); | |
985 | if (copyin(fromaddr, todata, length) != 0) | |
986 | kr = KERN_INVALID_ADDRESS; | |
987 | vm_map_switch(oldmap); | |
988 | vm_map_deallocate(map); | |
989 | } | |
990 | return kr; | |
1c79356b A |
991 | } |
992 | ||
993 | /* | |
994 | * Routine: copyoutmap | |
995 | * Purpose: | |
996 | * Like copyout, except that toaddr is an address | |
997 | * in the specified VM map. This implementation | |
998 | * is incomplete; it handles the current user map | |
999 | * and the kernel map/submaps. | |
1000 | */ | |
91447636 | 1001 | kern_return_t |
1c79356b | 1002 | copyoutmap( |
91447636 A |
1003 | vm_map_t map, |
1004 | void *fromdata, | |
1005 | vm_map_address_t toaddr, | |
1006 | vm_size_t length) | |
1c79356b A |
1007 | { |
1008 | if (vm_map_pmap(map) == pmap_kernel()) { | |
1009 | /* assume a correct copy */ | |
91447636 A |
1010 | memcpy(CAST_DOWN(void *, toaddr), fromdata, length); |
1011 | return KERN_SUCCESS; | |
1c79356b A |
1012 | } |
1013 | ||
91447636 A |
1014 | if (current_map() != map) |
1015 | return KERN_NOT_SUPPORTED; | |
1016 | ||
1017 | if (copyout(fromdata, toaddr, length) != 0) | |
1018 | return KERN_INVALID_ADDRESS; | |
1c79356b | 1019 | |
91447636 | 1020 | return KERN_SUCCESS; |
1c79356b | 1021 | } |
9bccf70c A |
1022 | |
1023 | ||
1024 | kern_return_t | |
1025 | vm_conflict_check( | |
1026 | vm_map_t map, | |
91447636 A |
1027 | vm_map_offset_t off, |
1028 | vm_map_size_t len, | |
1029 | memory_object_t pager, | |
9bccf70c A |
1030 | vm_object_offset_t file_off) |
1031 | { | |
1032 | vm_map_entry_t entry; | |
1033 | vm_object_t obj; | |
1034 | vm_object_offset_t obj_off; | |
1035 | vm_map_t base_map; | |
91447636 A |
1036 | vm_map_offset_t base_offset; |
1037 | vm_map_offset_t original_offset; | |
9bccf70c | 1038 | kern_return_t kr; |
91447636 | 1039 | vm_map_size_t local_len; |
9bccf70c A |
1040 | |
1041 | base_map = map; | |
1042 | base_offset = off; | |
1043 | original_offset = off; | |
1044 | kr = KERN_SUCCESS; | |
1045 | vm_map_lock(map); | |
1046 | while(vm_map_lookup_entry(map, off, &entry)) { | |
1047 | local_len = len; | |
1048 | ||
1049 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
1050 | vm_map_unlock(map); | |
1051 | return KERN_SUCCESS; | |
1052 | } | |
1053 | if (entry->is_sub_map) { | |
1054 | vm_map_t old_map; | |
55e303ae | 1055 | |
9bccf70c A |
1056 | old_map = map; |
1057 | vm_map_lock(entry->object.sub_map); | |
1058 | map = entry->object.sub_map; | |
1059 | off = entry->offset + (off - entry->vme_start); | |
1060 | vm_map_unlock(old_map); | |
1061 | continue; | |
1062 | } | |
1063 | obj = entry->object.vm_object; | |
1064 | obj_off = (off - entry->vme_start) + entry->offset; | |
1065 | while(obj->shadow) { | |
6d2010ae | 1066 | obj_off += obj->vo_shadow_offset; |
9bccf70c A |
1067 | obj = obj->shadow; |
1068 | } | |
1069 | if((obj->pager_created) && (obj->pager == pager)) { | |
1070 | if(((obj->paging_offset) + obj_off) == file_off) { | |
1071 | if(off != base_offset) { | |
1072 | vm_map_unlock(map); | |
1073 | return KERN_FAILURE; | |
1074 | } | |
1075 | kr = KERN_ALREADY_WAITING; | |
55e303ae A |
1076 | } else { |
1077 | vm_object_offset_t obj_off_aligned; | |
1078 | vm_object_offset_t file_off_aligned; | |
1079 | ||
1080 | obj_off_aligned = obj_off & ~PAGE_MASK; | |
1081 | file_off_aligned = file_off & ~PAGE_MASK; | |
1082 | ||
1083 | if (file_off_aligned == (obj->paging_offset + obj_off_aligned)) { | |
1084 | /* | |
1085 | * the target map and the file offset start in the same page | |
1086 | * but are not identical... | |
1087 | */ | |
1088 | vm_map_unlock(map); | |
1089 | return KERN_FAILURE; | |
1090 | } | |
1091 | if ((file_off < (obj->paging_offset + obj_off_aligned)) && | |
1092 | ((file_off + len) > (obj->paging_offset + obj_off_aligned))) { | |
1093 | /* | |
1094 | * some portion of the tail of the I/O will fall | |
1095 | * within the encompass of the target map | |
1096 | */ | |
1097 | vm_map_unlock(map); | |
1098 | return KERN_FAILURE; | |
1099 | } | |
1100 | if ((file_off_aligned > (obj->paging_offset + obj_off)) && | |
1101 | (file_off_aligned < (obj->paging_offset + obj_off) + len)) { | |
1102 | /* | |
1103 | * the beginning page of the file offset falls within | |
1104 | * the target map's encompass | |
1105 | */ | |
1106 | vm_map_unlock(map); | |
1107 | return KERN_FAILURE; | |
1108 | } | |
9bccf70c A |
1109 | } |
1110 | } else if(kr != KERN_SUCCESS) { | |
55e303ae | 1111 | vm_map_unlock(map); |
9bccf70c A |
1112 | return KERN_FAILURE; |
1113 | } | |
1114 | ||
55e303ae | 1115 | if(len <= ((entry->vme_end - entry->vme_start) - |
9bccf70c A |
1116 | (off - entry->vme_start))) { |
1117 | vm_map_unlock(map); | |
1118 | return kr; | |
1119 | } else { | |
1120 | len -= (entry->vme_end - entry->vme_start) - | |
1121 | (off - entry->vme_start); | |
1122 | } | |
1123 | base_offset = base_offset + (local_len - len); | |
1124 | file_off = file_off + (local_len - len); | |
1125 | off = base_offset; | |
1126 | if(map != base_map) { | |
1127 | vm_map_unlock(map); | |
1128 | vm_map_lock(base_map); | |
1129 | map = base_map; | |
1130 | } | |
1131 | } | |
1132 | ||
1133 | vm_map_unlock(map); | |
1134 | return kr; | |
9bccf70c | 1135 | } |