]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
f427ee49 | 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
0a7de745 | 31 | /* |
1c79356b A |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
0a7de745 | 35 | * |
1c79356b A |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
0a7de745 | 41 | * |
1c79356b A |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
0a7de745 | 45 | * |
1c79356b | 46 | * Carnegie Mellon requests users of this software to return to |
0a7de745 | 47 | * |
1c79356b A |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
0a7de745 | 52 | * |
1c79356b A |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/memory_object.c | |
60 | * Author: Michael Wayne Young | |
61 | * | |
62 | * External memory management interface control functions. | |
63 | */ | |
64 | ||
1c79356b A |
65 | /* |
66 | * Interface dependencies: | |
67 | */ | |
68 | ||
0a7de745 | 69 | #include <mach/std_types.h> /* For pointer_t */ |
1c79356b A |
70 | #include <mach/mach_types.h> |
71 | ||
0b4e3aa0 | 72 | #include <mach/mig.h> |
1c79356b A |
73 | #include <mach/kern_return.h> |
74 | #include <mach/memory_object.h> | |
75 | #include <mach/memory_object_default.h> | |
76 | #include <mach/memory_object_control_server.h> | |
0b4e3aa0 | 77 | #include <mach/host_priv_server.h> |
1c79356b A |
78 | #include <mach/boolean.h> |
79 | #include <mach/vm_prot.h> | |
80 | #include <mach/message.h> | |
81 | ||
1c79356b A |
82 | /* |
83 | * Implementation dependencies: | |
84 | */ | |
0a7de745 | 85 | #include <string.h> /* For memcpy() */ |
1c79356b | 86 | |
0b4e3aa0 | 87 | #include <kern/host.h> |
0a7de745 | 88 | #include <kern/thread.h> /* For current_thread() */ |
0b4e3aa0 A |
89 | #include <kern/ipc_mig.h> |
90 | #include <kern/misc_protos.h> | |
91 | ||
92 | #include <vm/vm_object.h> | |
93 | #include <vm/vm_fault.h> | |
1c79356b A |
94 | #include <vm/memory_object.h> |
95 | #include <vm/vm_page.h> | |
96 | #include <vm/vm_pageout.h> | |
0a7de745 A |
97 | #include <vm/pmap.h> /* For pmap_clear_modify */ |
98 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ | |
99 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |
100 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ | |
6d2010ae | 101 | #include <vm/vm_shared_region.h> |
1c79356b | 102 | |
1c79356b | 103 | #include <vm/vm_external.h> |
1c79356b | 104 | |
91447636 A |
105 | #include <vm/vm_protos.h> |
106 | ||
0a7de745 | 107 | memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
f427ee49 | 108 | LCK_MTX_EARLY_DECLARE(memory_manager_default_lock, &vm_object_lck_grp); |
1c79356b | 109 | |
1c79356b A |
110 | |
111 | /* | |
112 | * Routine: memory_object_should_return_page | |
113 | * | |
114 | * Description: | |
115 | * Determine whether the given page should be returned, | |
116 | * based on the page's state and on the given return policy. | |
117 | * | |
118 | * We should return the page if one of the following is true: | |
119 | * | |
120 | * 1. Page is dirty and should_return is not RETURN_NONE. | |
121 | * 2. Page is precious and should_return is RETURN_ALL. | |
122 | * 3. Should_return is RETURN_ANYTHING. | |
123 | * | |
d9a64523 | 124 | * As a side effect, m->vmp_dirty will be made consistent |
1c79356b A |
125 | * with pmap_is_modified(m), if should_return is not |
126 | * MEMORY_OBJECT_RETURN_NONE. | |
127 | */ | |
128 | ||
0a7de745 | 129 | #define memory_object_should_return_page(m, should_return) \ |
1c79356b | 130 | (should_return != MEMORY_OBJECT_RETURN_NONE && \ |
d9a64523 A |
131 | (((m)->vmp_dirty || ((m)->vmp_dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m)))) || \ |
132 | ((m)->vmp_precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \ | |
1c79356b A |
133 | (should_return) == MEMORY_OBJECT_RETURN_ANYTHING)) |
134 | ||
0a7de745 | 135 | typedef int memory_object_lock_result_t; |
1c79356b | 136 | |
0a7de745 A |
137 | #define MEMORY_OBJECT_LOCK_RESULT_DONE 0 |
138 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1 | |
139 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2 | |
140 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3 | |
1c79356b A |
141 | |
142 | memory_object_lock_result_t memory_object_lock_page( | |
0a7de745 A |
143 | vm_page_t m, |
144 | memory_object_return_t should_return, | |
145 | boolean_t should_flush, | |
146 | vm_prot_t prot); | |
1c79356b A |
147 | |
148 | /* | |
149 | * Routine: memory_object_lock_page | |
150 | * | |
151 | * Description: | |
152 | * Perform the appropriate lock operations on the | |
153 | * given page. See the description of | |
154 | * "memory_object_lock_request" for the meanings | |
155 | * of the arguments. | |
156 | * | |
157 | * Returns an indication that the operation | |
158 | * completed, blocked, or that the page must | |
159 | * be cleaned. | |
160 | */ | |
161 | memory_object_lock_result_t | |
162 | memory_object_lock_page( | |
0a7de745 A |
163 | vm_page_t m, |
164 | memory_object_return_t should_return, | |
165 | boolean_t should_flush, | |
166 | vm_prot_t prot) | |
1c79356b | 167 | { |
0a7de745 A |
168 | if (m->vmp_busy || m->vmp_cleaning) { |
169 | return MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK; | |
170 | } | |
b0d623f7 | 171 | |
0a7de745 | 172 | if (m->vmp_laundry) { |
316670eb | 173 | vm_pageout_steal_laundry(m, FALSE); |
0a7de745 | 174 | } |
6d2010ae | 175 | |
1c79356b A |
176 | /* |
177 | * Don't worry about pages for which the kernel | |
178 | * does not have any data. | |
179 | */ | |
d9a64523 A |
180 | if (m->vmp_absent || m->vmp_error || m->vmp_restart) { |
181 | if (m->vmp_error && should_flush && !VM_PAGE_WIRED(m)) { | |
6d2010ae A |
182 | /* |
183 | * dump the page, pager wants us to | |
184 | * clean it up and there is no | |
185 | * relevant data to return | |
186 | */ | |
0a7de745 | 187 | return MEMORY_OBJECT_LOCK_RESULT_MUST_FREE; |
765c9de3 | 188 | } |
0a7de745 | 189 | return MEMORY_OBJECT_LOCK_RESULT_DONE; |
765c9de3 | 190 | } |
d9a64523 | 191 | assert(!m->vmp_fictitious); |
1c79356b | 192 | |
b0d623f7 | 193 | if (VM_PAGE_WIRED(m)) { |
6d2010ae A |
194 | /* |
195 | * The page is wired... just clean or return the page if needed. | |
196 | * Wired pages don't get flushed or disconnected from the pmap. | |
197 | */ | |
0a7de745 A |
198 | if (memory_object_should_return_page(m, should_return)) { |
199 | return MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN; | |
200 | } | |
1c79356b | 201 | |
0a7de745 A |
202 | return MEMORY_OBJECT_LOCK_RESULT_DONE; |
203 | } | |
1c79356b | 204 | |
6d2010ae A |
205 | if (should_flush) { |
206 | /* | |
0a7de745 | 207 | * must do the pmap_disconnect before determining the |
6d2010ae A |
208 | * need to return the page... otherwise it's possible |
209 | * for the page to go from the clean to the dirty state | |
210 | * after we've made our decision | |
211 | */ | |
39037602 | 212 | if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) { |
316670eb A |
213 | SET_PAGE_DIRTY(m, FALSE); |
214 | } | |
6d2010ae A |
215 | } else { |
216 | /* | |
217 | * If we are decreasing permission, do it now; | |
218 | * let the fault handler take care of increases | |
219 | * (pmap_page_protect may not increase protection). | |
220 | */ | |
0a7de745 | 221 | if (prot != VM_PROT_NO_CHANGE) { |
39037602 | 222 | pmap_page_protect(VM_PAGE_GET_PHYS_PAGE(m), VM_PROT_ALL & ~prot); |
0a7de745 | 223 | } |
1c79356b | 224 | } |
1c79356b | 225 | /* |
6d2010ae | 226 | * Handle returning dirty or precious pages |
1c79356b | 227 | */ |
1c79356b | 228 | if (memory_object_should_return_page(m, should_return)) { |
1c79356b | 229 | /* |
6d2010ae A |
230 | * we use to do a pmap_disconnect here in support |
231 | * of memory_object_lock_request, but that routine | |
232 | * no longer requires this... in any event, in | |
233 | * our world, it would turn into a big noop since | |
234 | * we don't lock the page in any way and as soon | |
235 | * as we drop the object lock, the page can be | |
236 | * faulted back into an address space | |
237 | * | |
238 | * if (!should_flush) | |
39037602 | 239 | * pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
1c79356b | 240 | */ |
0a7de745 | 241 | return MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN; |
1c79356b A |
242 | } |
243 | ||
244 | /* | |
6d2010ae | 245 | * Handle flushing clean pages |
1c79356b | 246 | */ |
0a7de745 A |
247 | if (should_flush) { |
248 | return MEMORY_OBJECT_LOCK_RESULT_MUST_FREE; | |
249 | } | |
1c79356b | 250 | |
6d2010ae A |
251 | /* |
252 | * we use to deactivate clean pages at this point, | |
253 | * but we do not believe that an msync should change | |
254 | * the 'age' of a page in the cache... here is the | |
255 | * original comment and code concerning this... | |
256 | * | |
257 | * XXX Make clean but not flush a paging hint, | |
258 | * and deactivate the pages. This is a hack | |
259 | * because it overloads flush/clean with | |
260 | * implementation-dependent meaning. This only | |
261 | * happens to pages that are already clean. | |
262 | * | |
263 | * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE)) | |
264 | * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE); | |
265 | */ | |
1c79356b | 266 | |
0a7de745 | 267 | return MEMORY_OBJECT_LOCK_RESULT_DONE; |
1c79356b | 268 | } |
0b4e3aa0 | 269 | |
6d2010ae | 270 | |
1c79356b | 271 | |
1c79356b A |
272 | /* |
273 | * Routine: memory_object_lock_request [user interface] | |
274 | * | |
275 | * Description: | |
276 | * Control use of the data associated with the given | |
277 | * memory object. For each page in the given range, | |
278 | * perform the following operations, in order: | |
279 | * 1) restrict access to the page (disallow | |
280 | * forms specified by "prot"); | |
281 | * 2) return data to the manager (if "should_return" | |
282 | * is RETURN_DIRTY and the page is dirty, or | |
0a7de745 | 283 | * "should_return" is RETURN_ALL and the page |
1c79356b A |
284 | * is either dirty or precious); and, |
285 | * 3) flush the cached copy (if "should_flush" | |
286 | * is asserted). | |
287 | * The set of pages is defined by a starting offset | |
288 | * ("offset") and size ("size"). Only pages with the | |
289 | * same page alignment as the starting offset are | |
290 | * considered. | |
291 | * | |
292 | * A single acknowledgement is sent (to the "reply_to" | |
293 | * port) when these actions are complete. If successful, | |
294 | * the naked send right for reply_to is consumed. | |
295 | */ | |
296 | ||
297 | kern_return_t | |
298 | memory_object_lock_request( | |
0a7de745 A |
299 | memory_object_control_t control, |
300 | memory_object_offset_t offset, | |
301 | memory_object_size_t size, | |
302 | memory_object_offset_t * resid_offset, | |
303 | int * io_errno, | |
304 | memory_object_return_t should_return, | |
305 | int flags, | |
306 | vm_prot_t prot) | |
1c79356b | 307 | { |
0a7de745 | 308 | vm_object_t object; |
1c79356b | 309 | |
0a7de745 | 310 | /* |
1c79356b A |
311 | * Check for bogus arguments. |
312 | */ | |
0b4e3aa0 | 313 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
314 | if (object == VM_OBJECT_NULL) { |
315 | return KERN_INVALID_ARGUMENT; | |
316 | } | |
1c79356b | 317 | |
0a7de745 A |
318 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) { |
319 | return KERN_INVALID_ARGUMENT; | |
320 | } | |
1c79356b | 321 | |
55e303ae | 322 | size = round_page_64(size); |
1c79356b A |
323 | |
324 | /* | |
325 | * Lock the object, and acquire a paging reference to | |
0b4e3aa0 | 326 | * prevent the memory_object reference from being released. |
1c79356b | 327 | */ |
1c79356b A |
328 | vm_object_lock(object); |
329 | vm_object_paging_begin(object); | |
b0d623f7 A |
330 | |
331 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { | |
332 | if ((should_return != MEMORY_OBJECT_RETURN_NONE) || offset || object->copy) { | |
333 | flags &= ~MEMORY_OBJECT_DATA_FLUSH_ALL; | |
334 | flags |= MEMORY_OBJECT_DATA_FLUSH; | |
335 | } | |
336 | } | |
1c79356b A |
337 | offset -= object->paging_offset; |
338 | ||
0a7de745 | 339 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { |
b0d623f7 | 340 | vm_object_reap_pages(object, REAP_DATA_FLUSH); |
0a7de745 | 341 | } else { |
b0d623f7 | 342 | (void)vm_object_update(object, offset, size, resid_offset, |
0a7de745 A |
343 | io_errno, should_return, flags, prot); |
344 | } | |
1c79356b | 345 | |
1c79356b A |
346 | vm_object_paging_end(object); |
347 | vm_object_unlock(object); | |
1c79356b | 348 | |
0a7de745 | 349 | return KERN_SUCCESS; |
1c79356b A |
350 | } |
351 | ||
352 | /* | |
0b4e3aa0 A |
353 | * memory_object_release_name: [interface] |
354 | * | |
355 | * Enforces name semantic on memory_object reference count decrement | |
356 | * This routine should not be called unless the caller holds a name | |
357 | * reference gained through the memory_object_named_create or the | |
358 | * memory_object_rename call. | |
359 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
360 | * reference count is not 1. i.e. idle with the only remaining reference | |
361 | * being the name. | |
362 | * If the decision is made to proceed the name field flag is set to | |
363 | * false and the reference count is decremented. If the RESPECT_CACHE | |
0a7de745 | 364 | * flag is set and the reference count has gone to zero, the |
0b4e3aa0 A |
365 | * memory_object is checked to see if it is cacheable otherwise when |
366 | * the reference count is zero, it is simply terminated. | |
367 | */ | |
368 | ||
369 | kern_return_t | |
370 | memory_object_release_name( | |
0a7de745 A |
371 | memory_object_control_t control, |
372 | int flags) | |
0b4e3aa0 | 373 | { |
0a7de745 | 374 | vm_object_t object; |
0b4e3aa0 A |
375 | |
376 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
377 | if (object == VM_OBJECT_NULL) { |
378 | return KERN_INVALID_ARGUMENT; | |
379 | } | |
0b4e3aa0 A |
380 | |
381 | return vm_object_release_name(object, flags); | |
382 | } | |
383 | ||
384 | ||
385 | ||
386 | /* | |
387 | * Routine: memory_object_destroy [user interface] | |
388 | * Purpose: | |
389 | * Shut down a memory object, despite the | |
390 | * presence of address map (or other) references | |
391 | * to the vm_object. | |
392 | */ | |
393 | kern_return_t | |
394 | memory_object_destroy( | |
0a7de745 A |
395 | memory_object_control_t control, |
396 | kern_return_t reason) | |
0b4e3aa0 | 397 | { |
0a7de745 | 398 | vm_object_t object; |
0b4e3aa0 A |
399 | |
400 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
401 | if (object == VM_OBJECT_NULL) { |
402 | return KERN_INVALID_ARGUMENT; | |
403 | } | |
0b4e3aa0 | 404 | |
0a7de745 | 405 | return vm_object_destroy(object, reason); |
0b4e3aa0 A |
406 | } |
407 | ||
408 | /* | |
409 | * Routine: vm_object_sync | |
1c79356b A |
410 | * |
411 | * Kernel internal function to synch out pages in a given | |
412 | * range within an object to its memory manager. Much the | |
413 | * same as memory_object_lock_request but page protection | |
414 | * is not changed. | |
415 | * | |
416 | * If the should_flush and should_return flags are true pages | |
417 | * are flushed, that is dirty & precious pages are written to | |
418 | * the memory manager and then discarded. If should_return | |
419 | * is false, only precious pages are returned to the memory | |
420 | * manager. | |
421 | * | |
422 | * If should flush is false and should_return true, the memory | |
423 | * manager's copy of the pages is updated. If should_return | |
424 | * is also false, only the precious pages are updated. This | |
425 | * last option is of limited utility. | |
426 | * | |
427 | * Returns: | |
428 | * FALSE if no pages were returned to the pager | |
429 | * TRUE otherwise. | |
430 | */ | |
431 | ||
432 | boolean_t | |
0b4e3aa0 | 433 | vm_object_sync( |
0a7de745 A |
434 | vm_object_t object, |
435 | vm_object_offset_t offset, | |
436 | vm_object_size_t size, | |
437 | boolean_t should_flush, | |
438 | boolean_t should_return, | |
439 | boolean_t should_iosync) | |
1c79356b | 440 | { |
0a7de745 | 441 | boolean_t rv; |
91447636 | 442 | int flags; |
1c79356b | 443 | |
1c79356b A |
444 | /* |
445 | * Lock the object, and acquire a paging reference to | |
446 | * prevent the memory_object and control ports from | |
447 | * being destroyed. | |
448 | */ | |
449 | vm_object_lock(object); | |
450 | vm_object_paging_begin(object); | |
451 | ||
39236c6e | 452 | if (should_flush) { |
0a7de745 | 453 | flags = MEMORY_OBJECT_DATA_FLUSH; |
39236c6e A |
454 | /* |
455 | * This flush is from an msync(), not a truncate(), so the | |
456 | * contents of the file are not affected. | |
457 | * MEMORY_OBECT_DATA_NO_CHANGE lets vm_object_update() know | |
458 | * that the data is not changed and that there's no need to | |
459 | * push the old contents to a copy object. | |
460 | */ | |
461 | flags |= MEMORY_OBJECT_DATA_NO_CHANGE; | |
0a7de745 A |
462 | } else { |
463 | flags = 0; | |
464 | } | |
91447636 | 465 | |
0a7de745 A |
466 | if (should_iosync) { |
467 | flags |= MEMORY_OBJECT_IO_SYNC; | |
468 | } | |
91447636 A |
469 | |
470 | rv = vm_object_update(object, offset, (vm_object_size_t)size, NULL, NULL, | |
0a7de745 A |
471 | (should_return) ? |
472 | MEMORY_OBJECT_RETURN_ALL : | |
473 | MEMORY_OBJECT_RETURN_NONE, | |
474 | flags, | |
475 | VM_PROT_NO_CHANGE); | |
1c79356b A |
476 | |
477 | ||
478 | vm_object_paging_end(object); | |
479 | vm_object_unlock(object); | |
480 | return rv; | |
481 | } | |
482 | ||
91447636 A |
483 | |
484 | ||
6d2010ae | 485 | #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \ |
0a7de745 A |
486 | MACRO_BEGIN \ |
487 | \ | |
488 | int upl_flags; \ | |
489 | memory_object_t pager; \ | |
490 | \ | |
491 | if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \ | |
492 | vm_object_paging_begin(object); \ | |
493 | vm_object_unlock(object); \ | |
494 | \ | |
495 | if (iosync) \ | |
496 | upl_flags = UPL_MSYNC | UPL_IOSYNC; \ | |
497 | else \ | |
498 | upl_flags = UPL_MSYNC; \ | |
499 | \ | |
500 | (void) memory_object_data_return(pager, \ | |
501 | po, \ | |
502 | (memory_object_cluster_size_t)data_cnt, \ | |
6d2010ae A |
503 | ro, \ |
504 | ioerr, \ | |
0a7de745 A |
505 | FALSE, \ |
506 | FALSE, \ | |
507 | upl_flags); \ | |
508 | \ | |
509 | vm_object_lock(object); \ | |
510 | vm_object_paging_end(object); \ | |
511 | } \ | |
6d2010ae A |
512 | MACRO_END |
513 | ||
39037602 A |
514 | extern struct vnode * |
515 | vnode_pager_lookup_vnode(memory_object_t); | |
91447636 A |
516 | |
517 | static int | |
518 | vm_object_update_extent( | |
0a7de745 A |
519 | vm_object_t object, |
520 | vm_object_offset_t offset, | |
521 | vm_object_offset_t offset_end, | |
522 | vm_object_offset_t *offset_resid, | |
523 | int *io_errno, | |
524 | boolean_t should_flush, | |
525 | memory_object_return_t should_return, | |
526 | boolean_t should_iosync, | |
527 | vm_prot_t prot) | |
91447636 | 528 | { |
0a7de745 A |
529 | vm_page_t m; |
530 | int retval = 0; | |
531 | vm_object_offset_t paging_offset = 0; | |
532 | vm_object_offset_t next_offset = offset; | |
533 | memory_object_lock_result_t page_lock_result; | |
534 | memory_object_cluster_size_t data_cnt = 0; | |
f427ee49 A |
535 | struct vm_page_delayed_work dw_array; |
536 | struct vm_page_delayed_work *dwp, *dwp_start; | |
537 | bool dwp_finish_ctx = TRUE; | |
0a7de745 A |
538 | int dw_count; |
539 | int dw_limit; | |
540 | int dirty_count; | |
541 | ||
f427ee49 | 542 | dwp_start = dwp = NULL; |
0a7de745 | 543 | dw_count = 0; |
6d2010ae | 544 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
f427ee49 A |
545 | dwp_start = vm_page_delayed_work_get_ctx(); |
546 | if (dwp_start == NULL) { | |
547 | dwp_start = &dw_array; | |
548 | dw_limit = 1; | |
549 | dwp_finish_ctx = FALSE; | |
550 | } | |
551 | dwp = dwp_start; | |
552 | ||
4bd07ac2 | 553 | dirty_count = 0; |
91447636 A |
554 | |
555 | for (; | |
0a7de745 A |
556 | offset < offset_end && object->resident_page_count; |
557 | offset += PAGE_SIZE_64) { | |
558 | /* | |
b0d623f7 | 559 | * Limit the number of pages to be cleaned at once to a contiguous |
fe8ab488 | 560 | * run, or at most MAX_UPL_TRANSFER_BYTES |
91447636 | 561 | */ |
b0d623f7 | 562 | if (data_cnt) { |
fe8ab488 | 563 | if ((data_cnt >= MAX_UPL_TRANSFER_BYTES) || (next_offset != offset)) { |
6d2010ae | 564 | if (dw_count) { |
f427ee49 A |
565 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count); |
566 | dwp = dwp_start; | |
6d2010ae A |
567 | dw_count = 0; |
568 | } | |
569 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
0a7de745 | 570 | paging_offset, offset_resid, io_errno, should_iosync); |
b0d623f7 A |
571 | data_cnt = 0; |
572 | } | |
91447636 | 573 | } |
91447636 | 574 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
6d2010ae | 575 | dwp->dw_mask = 0; |
0a7de745 | 576 | |
6d2010ae A |
577 | page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot); |
578 | ||
579 | if (data_cnt && page_lock_result != MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN) { | |
580 | /* | |
581 | * End of a run of dirty/precious pages. | |
582 | */ | |
583 | if (dw_count) { | |
f427ee49 A |
584 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count); |
585 | dwp = dwp_start; | |
6d2010ae A |
586 | dw_count = 0; |
587 | } | |
588 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
0a7de745 | 589 | paging_offset, offset_resid, io_errno, should_iosync); |
6d2010ae A |
590 | /* |
591 | * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will | |
592 | * allow the state of page 'm' to change... we need to re-lookup | |
593 | * the current offset | |
594 | */ | |
595 | data_cnt = 0; | |
596 | continue; | |
597 | } | |
598 | ||
599 | switch (page_lock_result) { | |
6d2010ae A |
600 | case MEMORY_OBJECT_LOCK_RESULT_DONE: |
601 | break; | |
602 | ||
603 | case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE: | |
0a7de745 | 604 | if (m->vmp_dirty == TRUE) { |
4bd07ac2 | 605 | dirty_count++; |
0a7de745 | 606 | } |
6d2010ae A |
607 | dwp->dw_mask |= DW_vm_page_free; |
608 | break; | |
609 | ||
610 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK: | |
611 | PAGE_SLEEP(object, m, THREAD_UNINT); | |
612 | continue; | |
613 | ||
614 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN: | |
0a7de745 | 615 | if (data_cnt == 0) { |
6d2010ae | 616 | paging_offset = offset; |
0a7de745 | 617 | } |
6d2010ae A |
618 | |
619 | data_cnt += PAGE_SIZE; | |
620 | next_offset = offset + PAGE_SIZE_64; | |
621 | ||
6d2010ae A |
622 | /* |
623 | * wired pages shouldn't be flushed and | |
624 | * since they aren't on any queue, | |
625 | * no need to remove them | |
626 | */ | |
627 | if (!VM_PAGE_WIRED(m)) { | |
6d2010ae A |
628 | if (should_flush) { |
629 | /* | |
630 | * add additional state for the flush | |
631 | */ | |
d9a64523 | 632 | m->vmp_free_when_done = TRUE; |
6d2010ae A |
633 | } |
634 | /* | |
635 | * we use to remove the page from the queues at this | |
636 | * point, but we do not believe that an msync | |
637 | * should cause the 'age' of a page to be changed | |
638 | * | |
639 | * else | |
640 | * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE; | |
641 | */ | |
642 | } | |
643 | retval = 1; | |
644 | break; | |
645 | } | |
646 | if (dwp->dw_mask) { | |
647 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
648 | ||
649 | if (dw_count >= dw_limit) { | |
f427ee49 A |
650 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count); |
651 | dwp = dwp_start; | |
6d2010ae A |
652 | dw_count = 0; |
653 | } | |
91447636 A |
654 | } |
655 | break; | |
656 | } | |
657 | } | |
0a7de745 A |
658 | |
659 | if (object->pager) { | |
39037602 | 660 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_INVALIDATED, vnode_pager_lookup_vnode(object->pager)); |
0a7de745 | 661 | } |
91447636 A |
662 | /* |
663 | * We have completed the scan for applicable pages. | |
664 | * Clean any pages that have been saved. | |
665 | */ | |
0a7de745 | 666 | if (dw_count) { |
f427ee49 | 667 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count); |
0a7de745 | 668 | } |
6d2010ae | 669 | |
91447636 | 670 | if (data_cnt) { |
0a7de745 A |
671 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
672 | paging_offset, offset_resid, io_errno, should_iosync); | |
91447636 | 673 | } |
f427ee49 A |
674 | |
675 | if (dwp_start && dwp_finish_ctx) { | |
676 | vm_page_delayed_work_finish_ctx(dwp_start); | |
677 | dwp_start = dwp = NULL; | |
678 | } | |
679 | ||
0a7de745 | 680 | return retval; |
91447636 A |
681 | } |
682 | ||
683 | ||
684 | ||
1c79356b | 685 | /* |
0b4e3aa0 | 686 | * Routine: vm_object_update |
1c79356b | 687 | * Description: |
0b4e3aa0 | 688 | * Work function for m_o_lock_request(), vm_o_sync(). |
1c79356b A |
689 | * |
690 | * Called with object locked and paging ref taken. | |
691 | */ | |
692 | kern_return_t | |
0b4e3aa0 | 693 | vm_object_update( |
0a7de745 A |
694 | vm_object_t object, |
695 | vm_object_offset_t offset, | |
696 | vm_object_size_t size, | |
697 | vm_object_offset_t *resid_offset, | |
698 | int *io_errno, | |
699 | memory_object_return_t should_return, | |
700 | int flags, | |
701 | vm_prot_t protection) | |
1c79356b | 702 | { |
0a7de745 A |
703 | vm_object_t copy_object = VM_OBJECT_NULL; |
704 | boolean_t data_returned = FALSE; | |
705 | boolean_t update_cow; | |
706 | boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE; | |
707 | boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE; | |
708 | vm_fault_return_t result; | |
709 | int num_of_extents; | |
710 | int n; | |
711 | #define MAX_EXTENTS 8 | |
712 | #define EXTENT_SIZE (1024 * 1024 * 256) | |
713 | #define RESIDENT_LIMIT (1024 * 32) | |
91447636 | 714 | struct extent { |
0a7de745 A |
715 | vm_object_offset_t e_base; |
716 | vm_object_offset_t e_min; | |
717 | vm_object_offset_t e_max; | |
91447636 | 718 | } extents[MAX_EXTENTS]; |
1c79356b A |
719 | |
720 | /* | |
721 | * To avoid blocking while scanning for pages, save | |
722 | * dirty pages to be cleaned all at once. | |
723 | * | |
724 | * XXXO A similar strategy could be used to limit the | |
725 | * number of times that a scan must be restarted for | |
726 | * other reasons. Those pages that would require blocking | |
727 | * could be temporarily collected in another list, or | |
728 | * their offsets could be recorded in a small array. | |
729 | */ | |
730 | ||
731 | /* | |
732 | * XXX NOTE: May want to consider converting this to a page list | |
733 | * XXX vm_map_copy interface. Need to understand object | |
734 | * XXX coalescing implications before doing so. | |
735 | */ | |
736 | ||
0a7de745 A |
737 | update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH) |
738 | && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) && | |
739 | !(flags & MEMORY_OBJECT_DATA_PURGE))) | |
740 | || (flags & MEMORY_OBJECT_COPY_SYNC); | |
741 | ||
2d21ac55 | 742 | if (update_cow || (flags & (MEMORY_OBJECT_DATA_PURGE | MEMORY_OBJECT_DATA_SYNC))) { |
0a7de745 | 743 | int collisions = 0; |
2d21ac55 | 744 | |
0a7de745 A |
745 | while ((copy_object = object->copy) != VM_OBJECT_NULL) { |
746 | /* | |
2d21ac55 A |
747 | * need to do a try here since we're swimming upstream |
748 | * against the normal lock ordering... however, we need | |
749 | * to hold the object stable until we gain control of the | |
750 | * copy object so we have to be careful how we approach this | |
751 | */ | |
0a7de745 A |
752 | if (vm_object_lock_try(copy_object)) { |
753 | /* | |
754 | * we 'won' the lock on the copy object... | |
755 | * no need to hold the object lock any longer... | |
756 | * take a real reference on the copy object because | |
757 | * we're going to call vm_fault_page on it which may | |
758 | * under certain conditions drop the lock and the paging | |
759 | * reference we're about to take... the reference | |
760 | * will keep the copy object from going away if that happens | |
761 | */ | |
762 | vm_object_unlock(object); | |
763 | vm_object_reference_locked(copy_object); | |
764 | break; | |
2d21ac55 A |
765 | } |
766 | vm_object_unlock(object); | |
1c79356b | 767 | |
2d21ac55 A |
768 | collisions++; |
769 | mutex_pause(collisions); | |
770 | ||
771 | vm_object_lock(object); | |
772 | } | |
773 | } | |
774 | if ((copy_object != VM_OBJECT_NULL && update_cow) || (flags & MEMORY_OBJECT_DATA_SYNC)) { | |
f427ee49 A |
775 | vm_object_offset_t i; |
776 | vm_object_size_t copy_size; | |
777 | vm_object_offset_t copy_offset; | |
0a7de745 A |
778 | vm_prot_t prot; |
779 | vm_page_t page; | |
780 | vm_page_t top_page; | |
781 | kern_return_t error = 0; | |
d9a64523 | 782 | struct vm_object_fault_info fault_info = {}; |
2d21ac55 A |
783 | |
784 | if (copy_object != VM_OBJECT_NULL) { | |
0a7de745 | 785 | /* |
2d21ac55 A |
786 | * translate offset with respect to shadow's offset |
787 | */ | |
0a7de745 | 788 | copy_offset = (offset >= copy_object->vo_shadow_offset) ? |
f427ee49 | 789 | (offset - copy_object->vo_shadow_offset) : 0; |
2d21ac55 | 790 | |
0a7de745 A |
791 | if (copy_offset > copy_object->vo_size) { |
792 | copy_offset = copy_object->vo_size; | |
793 | } | |
2d21ac55 A |
794 | |
795 | /* | |
796 | * clip size with respect to shadow offset | |
797 | */ | |
6d2010ae | 798 | if (offset >= copy_object->vo_shadow_offset) { |
0a7de745 | 799 | copy_size = size; |
6d2010ae | 800 | } else if (size >= copy_object->vo_shadow_offset - offset) { |
f427ee49 | 801 | copy_size = (size - (copy_object->vo_shadow_offset - offset)); |
2d21ac55 | 802 | } else { |
0a7de745 | 803 | copy_size = 0; |
2d21ac55 | 804 | } |
0a7de745 | 805 | |
6d2010ae | 806 | if (copy_offset + copy_size > copy_object->vo_size) { |
0a7de745 A |
807 | if (copy_object->vo_size >= copy_offset) { |
808 | copy_size = copy_object->vo_size - copy_offset; | |
2d21ac55 | 809 | } else { |
0a7de745 | 810 | copy_size = 0; |
2d21ac55 A |
811 | } |
812 | } | |
0a7de745 | 813 | copy_size += copy_offset; |
1c79356b A |
814 | } else { |
815 | copy_object = object; | |
816 | ||
817 | copy_size = offset + size; | |
818 | copy_offset = offset; | |
819 | } | |
2d21ac55 A |
820 | fault_info.interruptible = THREAD_UNINT; |
821 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2d21ac55 A |
822 | fault_info.lo_offset = copy_offset; |
823 | fault_info.hi_offset = copy_size; | |
b0d623f7 | 824 | fault_info.stealth = TRUE; |
d9a64523 A |
825 | assert(fault_info.cs_bypass == FALSE); |
826 | assert(fault_info.pmap_cs_associated == FALSE); | |
1c79356b A |
827 | |
828 | vm_object_paging_begin(copy_object); | |
2d21ac55 A |
829 | |
830 | for (i = copy_offset; i < copy_size; i += PAGE_SIZE) { | |
0a7de745 | 831 | RETRY_COW_OF_LOCK_REQUEST: |
b0d623f7 A |
832 | fault_info.cluster_size = (vm_size_t) (copy_size - i); |
833 | assert(fault_info.cluster_size == copy_size - i); | |
2d21ac55 | 834 | |
0a7de745 | 835 | prot = VM_PROT_WRITE | VM_PROT_READ; |
39236c6e | 836 | page = VM_PAGE_NULL; |
0a7de745 A |
837 | result = vm_fault_page(copy_object, i, |
838 | VM_PROT_WRITE | VM_PROT_READ, | |
839 | FALSE, | |
840 | FALSE, /* page not looked up */ | |
841 | &prot, | |
842 | &page, | |
843 | &top_page, | |
844 | (int *)0, | |
845 | &error, | |
846 | FALSE, | |
847 | FALSE, &fault_info); | |
b0d623f7 A |
848 | |
849 | switch (result) { | |
1c79356b | 850 | case VM_FAULT_SUCCESS: |
2d21ac55 | 851 | if (top_page) { |
1c79356b | 852 | vm_fault_cleanup( |
39037602 | 853 | VM_PAGE_OBJECT(page), top_page); |
1c79356b A |
854 | vm_object_lock(copy_object); |
855 | vm_object_paging_begin(copy_object); | |
1c79356b | 856 | } |
0a7de745 | 857 | if ((!VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) { |
b0d623f7 | 858 | vm_page_lockspin_queues(); |
0a7de745 A |
859 | |
860 | if ((!VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) { | |
b0d623f7 | 861 | vm_page_deactivate(page); |
39037602 | 862 | } |
b0d623f7 A |
863 | vm_page_unlock_queues(); |
864 | } | |
2d21ac55 | 865 | PAGE_WAKEUP_DONE(page); |
1c79356b A |
866 | break; |
867 | case VM_FAULT_RETRY: | |
0a7de745 | 868 | prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
869 | vm_object_lock(copy_object); |
870 | vm_object_paging_begin(copy_object); | |
871 | goto RETRY_COW_OF_LOCK_REQUEST; | |
872 | case VM_FAULT_INTERRUPTED: | |
0a7de745 | 873 | prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
874 | vm_object_lock(copy_object); |
875 | vm_object_paging_begin(copy_object); | |
876 | goto RETRY_COW_OF_LOCK_REQUEST; | |
877 | case VM_FAULT_MEMORY_SHORTAGE: | |
878 | VM_PAGE_WAIT(); | |
0a7de745 | 879 | prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
880 | vm_object_lock(copy_object); |
881 | vm_object_paging_begin(copy_object); | |
882 | goto RETRY_COW_OF_LOCK_REQUEST; | |
b0d623f7 A |
883 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
884 | /* success but no VM page: fail */ | |
885 | vm_object_paging_end(copy_object); | |
886 | vm_object_unlock(copy_object); | |
f427ee49 | 887 | OS_FALLTHROUGH; |
1c79356b | 888 | case VM_FAULT_MEMORY_ERROR: |
0a7de745 A |
889 | if (object != copy_object) { |
890 | vm_object_deallocate(copy_object); | |
891 | } | |
1c79356b A |
892 | vm_object_lock(object); |
893 | goto BYPASS_COW_COPYIN; | |
b0d623f7 A |
894 | default: |
895 | panic("vm_object_update: unexpected error 0x%x" | |
0a7de745 | 896 | " from vm_fault_page()\n", result); |
1c79356b | 897 | } |
1c79356b A |
898 | } |
899 | vm_object_paging_end(copy_object); | |
2d21ac55 A |
900 | } |
901 | if ((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) { | |
0a7de745 | 902 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
1c79356b | 903 | vm_object_unlock(copy_object); |
0a7de745 | 904 | vm_object_deallocate(copy_object); |
1c79356b A |
905 | vm_object_lock(object); |
906 | } | |
2d21ac55 | 907 | return KERN_SUCCESS; |
1c79356b | 908 | } |
2d21ac55 | 909 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
0a7de745 | 910 | if ((flags & MEMORY_OBJECT_DATA_PURGE)) { |
39037602 | 911 | vm_object_lock_assert_exclusive(copy_object); |
0a7de745 | 912 | copy_object->shadow_severed = TRUE; |
2d21ac55 A |
913 | copy_object->shadowed = FALSE; |
914 | copy_object->shadow = NULL; | |
915 | /* | |
916 | * delete the ref the COW was holding on the target object | |
917 | */ | |
918 | vm_object_deallocate(object); | |
919 | } | |
920 | vm_object_unlock(copy_object); | |
0a7de745 | 921 | vm_object_deallocate(copy_object); |
2d21ac55 | 922 | vm_object_lock(object); |
1c79356b A |
923 | } |
924 | BYPASS_COW_COPYIN: | |
925 | ||
91447636 A |
926 | /* |
927 | * when we have a really large range to check relative | |
928 | * to the number of actual resident pages, we'd like | |
929 | * to use the resident page list to drive our checks | |
930 | * however, the object lock will get dropped while processing | |
931 | * the page which means the resident queue can change which | |
932 | * means we can't walk the queue as we process the pages | |
933 | * we also want to do the processing in offset order to allow | |
0a7de745 | 934 | * 'runs' of pages to be collected if we're being told to |
91447636 | 935 | * flush to disk... the resident page queue is NOT ordered. |
0a7de745 | 936 | * |
91447636 A |
937 | * a temporary solution (until we figure out how to deal with |
938 | * large address spaces more generically) is to pre-flight | |
939 | * the resident page queue (if it's small enough) and develop | |
940 | * a collection of extents (that encompass actual resident pages) | |
941 | * to visit. This will at least allow us to deal with some of the | |
942 | * more pathological cases in a more efficient manner. The current | |
943 | * worst case (a single resident page at the end of an extremely large | |
944 | * range) can take minutes to complete for ranges in the terrabyte | |
945 | * category... since this routine is called when truncating a file, | |
946 | * and we currently support files up to 16 Tbytes in size, this | |
947 | * is not a theoretical problem | |
948 | */ | |
1c79356b | 949 | |
0a7de745 A |
950 | if ((object->resident_page_count < RESIDENT_LIMIT) && |
951 | (atop_64(size) > (unsigned)(object->resident_page_count / (8 * MAX_EXTENTS)))) { | |
952 | vm_page_t next; | |
953 | vm_object_offset_t start; | |
954 | vm_object_offset_t end; | |
955 | vm_object_size_t e_mask; | |
91447636 | 956 | vm_page_t m; |
1c79356b | 957 | |
91447636 A |
958 | start = offset; |
959 | end = offset + size; | |
960 | num_of_extents = 0; | |
961 | e_mask = ~((vm_object_size_t)(EXTENT_SIZE - 1)); | |
1c79356b | 962 | |
39037602 | 963 | m = (vm_page_t) vm_page_queue_first(&object->memq); |
1c79356b | 964 | |
39037602 | 965 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) m)) { |
d9a64523 | 966 | next = (vm_page_t) vm_page_queue_next(&m->vmp_listq); |
1c79356b | 967 | |
d9a64523 | 968 | if ((m->vmp_offset >= start) && (m->vmp_offset < end)) { |
0a7de745 | 969 | /* |
91447636 A |
970 | * this is a page we're interested in |
971 | * try to fit it into a current extent | |
1c79356b | 972 | */ |
0a7de745 A |
973 | for (n = 0; n < num_of_extents; n++) { |
974 | if ((m->vmp_offset & e_mask) == extents[n].e_base) { | |
975 | /* | |
91447636 A |
976 | * use (PAGE_SIZE - 1) to determine the |
977 | * max offset so that we don't wrap if | |
978 | * we're at the last page of the space | |
979 | */ | |
0a7de745 A |
980 | if (m->vmp_offset < extents[n].e_min) { |
981 | extents[n].e_min = m->vmp_offset; | |
982 | } else if ((m->vmp_offset + (PAGE_SIZE - 1)) > extents[n].e_max) { | |
983 | extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1); | |
984 | } | |
985 | break; | |
91447636 A |
986 | } |
987 | } | |
988 | if (n == num_of_extents) { | |
0a7de745 | 989 | /* |
91447636 A |
990 | * didn't find a current extent that can encompass |
991 | * this page | |
992 | */ | |
0a7de745 A |
993 | if (n < MAX_EXTENTS) { |
994 | /* | |
995 | * if we still have room, | |
91447636 A |
996 | * create a new extent |
997 | */ | |
0a7de745 | 998 | extents[n].e_base = m->vmp_offset & e_mask; |
d9a64523 A |
999 | extents[n].e_min = m->vmp_offset; |
1000 | extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1); | |
91447636 A |
1001 | |
1002 | num_of_extents++; | |
1003 | } else { | |
1004 | /* | |
1005 | * no room to create a new extent... | |
1006 | * fall back to a single extent based | |
0a7de745 | 1007 | * on the min and max page offsets |
91447636 A |
1008 | * we find in the range we're interested in... |
1009 | * first, look through the extent list and | |
1010 | * develop the overall min and max for the | |
1011 | * pages we've looked at up to this point | |
0a7de745 A |
1012 | */ |
1013 | for (n = 1; n < num_of_extents; n++) { | |
1014 | if (extents[n].e_min < extents[0].e_min) { | |
1015 | extents[0].e_min = extents[n].e_min; | |
1016 | } | |
1017 | if (extents[n].e_max > extents[0].e_max) { | |
1018 | extents[0].e_max = extents[n].e_max; | |
1019 | } | |
91447636 A |
1020 | } |
1021 | /* | |
1022 | * now setup to run through the remaining pages | |
1023 | * to determine the overall min and max | |
1024 | * offset for the specified range | |
1025 | */ | |
1026 | extents[0].e_base = 0; | |
1027 | e_mask = 0; | |
1028 | num_of_extents = 1; | |
1029 | ||
1030 | /* | |
1031 | * by continuing, we'll reprocess the | |
1032 | * page that forced us to abandon trying | |
1033 | * to develop multiple extents | |
1034 | */ | |
1035 | continue; | |
1036 | } | |
1037 | } | |
1c79356b | 1038 | } |
91447636 | 1039 | m = next; |
1c79356b | 1040 | } |
91447636 | 1041 | } else { |
0a7de745 | 1042 | extents[0].e_min = offset; |
91447636 | 1043 | extents[0].e_max = offset + (size - 1); |
1c79356b | 1044 | |
91447636 A |
1045 | num_of_extents = 1; |
1046 | } | |
1047 | for (n = 0; n < num_of_extents; n++) { | |
0a7de745 A |
1048 | if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno, |
1049 | should_flush, should_return, should_iosync, protection)) { | |
1050 | data_returned = TRUE; | |
1051 | } | |
1c79356b | 1052 | } |
0a7de745 | 1053 | return data_returned; |
1c79356b A |
1054 | } |
1055 | ||
91447636 | 1056 | |
0b4e3aa0 A |
1057 | static kern_return_t |
1058 | vm_object_set_attributes_common( | |
0a7de745 A |
1059 | vm_object_t object, |
1060 | boolean_t may_cache, | |
5ba3f43e | 1061 | memory_object_copy_strategy_t copy_strategy) |
1c79356b | 1062 | { |
0a7de745 | 1063 | boolean_t object_became_ready; |
1c79356b | 1064 | |
0a7de745 A |
1065 | if (object == VM_OBJECT_NULL) { |
1066 | return KERN_INVALID_ARGUMENT; | |
1067 | } | |
1c79356b A |
1068 | |
1069 | /* | |
1070 | * Verify the attributes of importance | |
1071 | */ | |
1072 | ||
0a7de745 A |
1073 | switch (copy_strategy) { |
1074 | case MEMORY_OBJECT_COPY_NONE: | |
1075 | case MEMORY_OBJECT_COPY_DELAY: | |
1076 | break; | |
1077 | default: | |
1078 | return KERN_INVALID_ARGUMENT; | |
1c79356b A |
1079 | } |
1080 | ||
0a7de745 | 1081 | if (may_cache) { |
1c79356b | 1082 | may_cache = TRUE; |
0a7de745 | 1083 | } |
1c79356b A |
1084 | |
1085 | vm_object_lock(object); | |
1086 | ||
1087 | /* | |
1088 | * Copy the attributes | |
1089 | */ | |
1090 | assert(!object->internal); | |
1091 | object_became_ready = !object->pager_ready; | |
1092 | object->copy_strategy = copy_strategy; | |
1093 | object->can_persist = may_cache; | |
1c79356b A |
1094 | |
1095 | /* | |
1096 | * Wake up anyone waiting for the ready attribute | |
1097 | * to become asserted. | |
1098 | */ | |
1099 | ||
1100 | if (object_became_ready) { | |
1101 | object->pager_ready = TRUE; | |
1102 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1103 | } | |
1104 | ||
1105 | vm_object_unlock(object); | |
1106 | ||
0a7de745 | 1107 | return KERN_SUCCESS; |
1c79356b A |
1108 | } |
1109 | ||
5ba3f43e A |
1110 | |
1111 | kern_return_t | |
1112 | memory_object_synchronize_completed( | |
0a7de745 A |
1113 | __unused memory_object_control_t control, |
1114 | __unused memory_object_offset_t offset, | |
1115 | __unused memory_object_size_t length) | |
5ba3f43e | 1116 | { |
0a7de745 A |
1117 | panic("memory_object_synchronize_completed no longer supported\n"); |
1118 | return KERN_FAILURE; | |
5ba3f43e A |
1119 | } |
1120 | ||
1121 | ||
1c79356b A |
1122 | /* |
1123 | * Set the memory object attribute as provided. | |
1124 | * | |
0a7de745 | 1125 | * XXX This routine cannot be completed until the vm_msync, clean |
1c79356b | 1126 | * in place, and cluster work is completed. See ifdef notyet |
0b4e3aa0 | 1127 | * below and note that vm_object_set_attributes_common() |
1c79356b A |
1128 | * may have to be expanded. |
1129 | */ | |
1130 | kern_return_t | |
1131 | memory_object_change_attributes( | |
0a7de745 A |
1132 | memory_object_control_t control, |
1133 | memory_object_flavor_t flavor, | |
1134 | memory_object_info_t attributes, | |
1135 | mach_msg_type_number_t count) | |
1c79356b | 1136 | { |
0a7de745 A |
1137 | vm_object_t object; |
1138 | kern_return_t result = KERN_SUCCESS; | |
1139 | boolean_t may_cache; | |
1140 | boolean_t invalidate; | |
1141 | memory_object_copy_strategy_t copy_strategy; | |
1c79356b | 1142 | |
0b4e3aa0 | 1143 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
1144 | if (object == VM_OBJECT_NULL) { |
1145 | return KERN_INVALID_ARGUMENT; | |
1146 | } | |
1c79356b A |
1147 | |
1148 | vm_object_lock(object); | |
0b4e3aa0 | 1149 | |
1c79356b A |
1150 | may_cache = object->can_persist; |
1151 | copy_strategy = object->copy_strategy; | |
1c79356b A |
1152 | #if notyet |
1153 | invalidate = object->invalidate; | |
1154 | #endif | |
0a7de745 | 1155 | vm_object_unlock(object); |
1c79356b A |
1156 | |
1157 | switch (flavor) { | |
0a7de745 A |
1158 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: |
1159 | { | |
1160 | old_memory_object_behave_info_t behave; | |
1c79356b | 1161 | |
0a7de745 A |
1162 | if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
1163 | result = KERN_INVALID_ARGUMENT; | |
1164 | break; | |
1165 | } | |
1c79356b | 1166 | |
0a7de745 | 1167 | behave = (old_memory_object_behave_info_t) attributes; |
1c79356b | 1168 | |
1c79356b A |
1169 | invalidate = behave->invalidate; |
1170 | copy_strategy = behave->copy_strategy; | |
1171 | ||
1172 | break; | |
0a7de745 | 1173 | } |
1c79356b | 1174 | |
0a7de745 A |
1175 | case MEMORY_OBJECT_BEHAVIOR_INFO: |
1176 | { | |
1177 | memory_object_behave_info_t behave; | |
1c79356b | 1178 | |
0a7de745 A |
1179 | if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
1180 | result = KERN_INVALID_ARGUMENT; | |
1181 | break; | |
1182 | } | |
1c79356b | 1183 | |
0a7de745 | 1184 | behave = (memory_object_behave_info_t) attributes; |
1c79356b | 1185 | |
1c79356b A |
1186 | invalidate = behave->invalidate; |
1187 | copy_strategy = behave->copy_strategy; | |
1c79356b | 1188 | break; |
0a7de745 | 1189 | } |
1c79356b | 1190 | |
0a7de745 A |
1191 | case MEMORY_OBJECT_PERFORMANCE_INFO: |
1192 | { | |
1193 | memory_object_perf_info_t perf; | |
1c79356b | 1194 | |
0a7de745 A |
1195 | if (count != MEMORY_OBJECT_PERF_INFO_COUNT) { |
1196 | result = KERN_INVALID_ARGUMENT; | |
1197 | break; | |
1198 | } | |
1c79356b | 1199 | |
0a7de745 | 1200 | perf = (memory_object_perf_info_t) attributes; |
1c79356b A |
1201 | |
1202 | may_cache = perf->may_cache; | |
1c79356b A |
1203 | |
1204 | break; | |
0a7de745 | 1205 | } |
1c79356b | 1206 | |
0a7de745 A |
1207 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: |
1208 | { | |
1209 | old_memory_object_attr_info_t attr; | |
1c79356b | 1210 | |
0a7de745 A |
1211 | if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1212 | result = KERN_INVALID_ARGUMENT; | |
1213 | break; | |
1214 | } | |
1c79356b A |
1215 | |
1216 | attr = (old_memory_object_attr_info_t) attributes; | |
1217 | ||
0a7de745 A |
1218 | may_cache = attr->may_cache; |
1219 | copy_strategy = attr->copy_strategy; | |
1c79356b A |
1220 | |
1221 | break; | |
0a7de745 | 1222 | } |
1c79356b | 1223 | |
0a7de745 A |
1224 | case MEMORY_OBJECT_ATTRIBUTE_INFO: |
1225 | { | |
1226 | memory_object_attr_info_t attr; | |
1c79356b | 1227 | |
0a7de745 A |
1228 | if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1229 | result = KERN_INVALID_ARGUMENT; | |
1230 | break; | |
1231 | } | |
1c79356b A |
1232 | |
1233 | attr = (memory_object_attr_info_t) attributes; | |
1234 | ||
1235 | copy_strategy = attr->copy_strategy; | |
0a7de745 | 1236 | may_cache = attr->may_cache_object; |
1c79356b A |
1237 | |
1238 | break; | |
0a7de745 | 1239 | } |
1c79356b | 1240 | |
0a7de745 | 1241 | default: |
1c79356b A |
1242 | result = KERN_INVALID_ARGUMENT; |
1243 | break; | |
1244 | } | |
1245 | ||
0a7de745 A |
1246 | if (result != KERN_SUCCESS) { |
1247 | return result; | |
1248 | } | |
1c79356b A |
1249 | |
1250 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) { | |
1251 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
1c79356b A |
1252 | } |
1253 | ||
1254 | /* | |
1c79356b A |
1255 | * XXX may_cache may become a tri-valued variable to handle |
1256 | * XXX uncache if not in use. | |
1257 | */ | |
0a7de745 A |
1258 | return vm_object_set_attributes_common(object, |
1259 | may_cache, | |
1260 | copy_strategy); | |
1c79356b A |
1261 | } |
1262 | ||
1263 | kern_return_t | |
1264 | memory_object_get_attributes( | |
0a7de745 A |
1265 | memory_object_control_t control, |
1266 | memory_object_flavor_t flavor, | |
1267 | memory_object_info_t attributes, /* pointer to OUT array */ | |
1268 | mach_msg_type_number_t *count) /* IN/OUT */ | |
1c79356b | 1269 | { |
0a7de745 A |
1270 | kern_return_t ret = KERN_SUCCESS; |
1271 | vm_object_t object; | |
1c79356b | 1272 | |
0b4e3aa0 | 1273 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
1274 | if (object == VM_OBJECT_NULL) { |
1275 | return KERN_INVALID_ARGUMENT; | |
1276 | } | |
1c79356b | 1277 | |
0a7de745 | 1278 | vm_object_lock(object); |
1c79356b A |
1279 | |
1280 | switch (flavor) { | |
0a7de745 A |
1281 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: |
1282 | { | |
1283 | old_memory_object_behave_info_t behave; | |
1c79356b A |
1284 | |
1285 | if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1286 | ret = KERN_INVALID_ARGUMENT; | |
1287 | break; | |
1288 | } | |
1289 | ||
1290 | behave = (old_memory_object_behave_info_t) attributes; | |
1291 | behave->copy_strategy = object->copy_strategy; | |
5ba3f43e | 1292 | behave->temporary = FALSE; |
0a7de745 A |
1293 | #if notyet /* remove when vm_msync complies and clean in place fini */ |
1294 | behave->invalidate = object->invalidate; | |
1c79356b A |
1295 | #else |
1296 | behave->invalidate = FALSE; | |
1297 | #endif | |
1298 | ||
1299 | *count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1300 | break; | |
0a7de745 | 1301 | } |
1c79356b | 1302 | |
0a7de745 A |
1303 | case MEMORY_OBJECT_BEHAVIOR_INFO: |
1304 | { | |
1305 | memory_object_behave_info_t behave; | |
1c79356b A |
1306 | |
1307 | if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
0a7de745 A |
1308 | ret = KERN_INVALID_ARGUMENT; |
1309 | break; | |
1310 | } | |
1c79356b | 1311 | |
0a7de745 A |
1312 | behave = (memory_object_behave_info_t) attributes; |
1313 | behave->copy_strategy = object->copy_strategy; | |
5ba3f43e | 1314 | behave->temporary = FALSE; |
0a7de745 A |
1315 | #if notyet /* remove when vm_msync complies and clean in place fini */ |
1316 | behave->invalidate = object->invalidate; | |
1c79356b A |
1317 | #else |
1318 | behave->invalidate = FALSE; | |
1319 | #endif | |
5ba3f43e | 1320 | behave->advisory_pageout = FALSE; |
39236c6e | 1321 | behave->silent_overwrite = FALSE; |
0a7de745 | 1322 | *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT; |
1c79356b | 1323 | break; |
0a7de745 | 1324 | } |
1c79356b | 1325 | |
0a7de745 A |
1326 | case MEMORY_OBJECT_PERFORMANCE_INFO: |
1327 | { | |
1328 | memory_object_perf_info_t perf; | |
1c79356b A |
1329 | |
1330 | if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1331 | ret = KERN_INVALID_ARGUMENT; | |
1332 | break; | |
1333 | } | |
1334 | ||
1335 | perf = (memory_object_perf_info_t) attributes; | |
2d21ac55 | 1336 | perf->cluster_size = PAGE_SIZE; |
1c79356b A |
1337 | perf->may_cache = object->can_persist; |
1338 | ||
1339 | *count = MEMORY_OBJECT_PERF_INFO_COUNT; | |
1340 | break; | |
0a7de745 | 1341 | } |
1c79356b | 1342 | |
0a7de745 A |
1343 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: |
1344 | { | |
1345 | old_memory_object_attr_info_t attr; | |
1c79356b | 1346 | |
0a7de745 A |
1347 | if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1348 | ret = KERN_INVALID_ARGUMENT; | |
1349 | break; | |
1350 | } | |
1c79356b | 1351 | |
0a7de745 A |
1352 | attr = (old_memory_object_attr_info_t) attributes; |
1353 | attr->may_cache = object->can_persist; | |
1354 | attr->copy_strategy = object->copy_strategy; | |
1c79356b | 1355 | |
0a7de745 A |
1356 | *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT; |
1357 | break; | |
1358 | } | |
1c79356b | 1359 | |
0a7de745 A |
1360 | case MEMORY_OBJECT_ATTRIBUTE_INFO: |
1361 | { | |
1362 | memory_object_attr_info_t attr; | |
1c79356b | 1363 | |
0a7de745 A |
1364 | if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1365 | ret = KERN_INVALID_ARGUMENT; | |
1366 | break; | |
1367 | } | |
1c79356b | 1368 | |
0a7de745 A |
1369 | attr = (memory_object_attr_info_t) attributes; |
1370 | attr->copy_strategy = object->copy_strategy; | |
2d21ac55 | 1371 | attr->cluster_size = PAGE_SIZE; |
0a7de745 | 1372 | attr->may_cache_object = object->can_persist; |
5ba3f43e | 1373 | attr->temporary = FALSE; |
1c79356b | 1374 | |
0a7de745 A |
1375 | *count = MEMORY_OBJECT_ATTR_INFO_COUNT; |
1376 | break; | |
1377 | } | |
1c79356b | 1378 | |
0a7de745 | 1379 | default: |
1c79356b A |
1380 | ret = KERN_INVALID_ARGUMENT; |
1381 | break; | |
1382 | } | |
1383 | ||
0a7de745 | 1384 | vm_object_unlock(object); |
1c79356b | 1385 | |
0a7de745 | 1386 | return ret; |
1c79356b A |
1387 | } |
1388 | ||
1c79356b | 1389 | |
55e303ae A |
1390 | kern_return_t |
1391 | memory_object_iopl_request( | |
0a7de745 A |
1392 | ipc_port_t port, |
1393 | memory_object_offset_t offset, | |
1394 | upl_size_t *upl_size, | |
1395 | upl_t *upl_ptr, | |
1396 | upl_page_info_array_t user_page_list, | |
1397 | unsigned int *page_list_count, | |
1398 | upl_control_flags_t *flags, | |
1399 | vm_tag_t tag) | |
55e303ae | 1400 | { |
0a7de745 A |
1401 | vm_object_t object; |
1402 | kern_return_t ret; | |
1403 | upl_control_flags_t caller_flags; | |
55e303ae A |
1404 | |
1405 | caller_flags = *flags; | |
1406 | ||
91447636 A |
1407 | if (caller_flags & ~UPL_VALID_FLAGS) { |
1408 | /* | |
1409 | * For forward compatibility's sake, | |
1410 | * reject any unknown flag. | |
1411 | */ | |
1412 | return KERN_INVALID_VALUE; | |
1413 | } | |
1414 | ||
55e303ae | 1415 | if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
0a7de745 | 1416 | vm_named_entry_t named_entry; |
55e303ae | 1417 | |
ea3f0419 | 1418 | named_entry = (vm_named_entry_t) ip_get_kobject(port); |
55e303ae | 1419 | /* a few checks to make sure user is obeying rules */ |
0a7de745 A |
1420 | if (*upl_size == 0) { |
1421 | if (offset >= named_entry->size) { | |
1422 | return KERN_INVALID_RIGHT; | |
1423 | } | |
b0d623f7 | 1424 | *upl_size = (upl_size_t)(named_entry->size - offset); |
0a7de745 | 1425 | if (*upl_size != named_entry->size - offset) { |
b0d623f7 | 1426 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1427 | } |
55e303ae | 1428 | } |
0a7de745 A |
1429 | if (caller_flags & UPL_COPYOUT_FROM) { |
1430 | if ((named_entry->protection & VM_PROT_READ) | |
1431 | != VM_PROT_READ) { | |
1432 | return KERN_INVALID_RIGHT; | |
55e303ae A |
1433 | } |
1434 | } else { | |
0a7de745 A |
1435 | if ((named_entry->protection & |
1436 | (VM_PROT_READ | VM_PROT_WRITE)) | |
1437 | != (VM_PROT_READ | VM_PROT_WRITE)) { | |
1438 | return KERN_INVALID_RIGHT; | |
55e303ae A |
1439 | } |
1440 | } | |
0a7de745 A |
1441 | if (named_entry->size < (offset + *upl_size)) { |
1442 | return KERN_INVALID_ARGUMENT; | |
1443 | } | |
55e303ae A |
1444 | |
1445 | /* the callers parameter offset is defined to be the */ | |
1446 | /* offset from beginning of named entry offset in object */ | |
1447 | offset = offset + named_entry->offset; | |
f427ee49 | 1448 | offset += named_entry->data_offset; |
55e303ae | 1449 | |
39236c6e | 1450 | if (named_entry->is_sub_map || |
0a7de745 | 1451 | named_entry->is_copy) { |
39236c6e | 1452 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1453 | } |
f427ee49 A |
1454 | if (!named_entry->is_object) { |
1455 | return KERN_INVALID_ARGUMENT; | |
1456 | } | |
0a7de745 | 1457 | |
55e303ae A |
1458 | named_entry_lock(named_entry); |
1459 | ||
f427ee49 A |
1460 | object = vm_named_entry_to_vm_object(named_entry); |
1461 | assert(object != VM_OBJECT_NULL); | |
5ba3f43e A |
1462 | vm_object_reference(object); |
1463 | named_entry_unlock(named_entry); | |
0c530ab8 | 1464 | } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) { |
0a7de745 | 1465 | memory_object_control_t control; |
0c530ab8 | 1466 | control = (memory_object_control_t) port; |
0a7de745 A |
1467 | if (control == NULL) { |
1468 | return KERN_INVALID_ARGUMENT; | |
1469 | } | |
55e303ae | 1470 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
1471 | if (object == VM_OBJECT_NULL) { |
1472 | return KERN_INVALID_ARGUMENT; | |
1473 | } | |
55e303ae | 1474 | vm_object_reference(object); |
0c530ab8 A |
1475 | } else { |
1476 | return KERN_INVALID_ARGUMENT; | |
55e303ae | 1477 | } |
0a7de745 A |
1478 | if (object == VM_OBJECT_NULL) { |
1479 | return KERN_INVALID_ARGUMENT; | |
1480 | } | |
55e303ae A |
1481 | |
1482 | if (!object->private) { | |
55e303ae A |
1483 | if (object->phys_contiguous) { |
1484 | *flags = UPL_PHYS_CONTIG; | |
1485 | } else { | |
1486 | *flags = 0; | |
1487 | } | |
1488 | } else { | |
1489 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; | |
1490 | } | |
1491 | ||
1492 | ret = vm_object_iopl_request(object, | |
0a7de745 A |
1493 | offset, |
1494 | *upl_size, | |
1495 | upl_ptr, | |
1496 | user_page_list, | |
1497 | page_list_count, | |
1498 | caller_flags, | |
1499 | tag); | |
55e303ae A |
1500 | vm_object_deallocate(object); |
1501 | return ret; | |
1502 | } | |
1503 | ||
0a7de745 | 1504 | /* |
0b4e3aa0 A |
1505 | * Routine: memory_object_upl_request [interface] |
1506 | * Purpose: | |
1507 | * Cause the population of a portion of a vm_object. | |
1508 | * Depending on the nature of the request, the pages | |
1509 | * returned may be contain valid data or be uninitialized. | |
1510 | * | |
1511 | */ | |
1c79356b | 1512 | |
0b4e3aa0 A |
1513 | kern_return_t |
1514 | memory_object_upl_request( | |
0a7de745 A |
1515 | memory_object_control_t control, |
1516 | memory_object_offset_t offset, | |
1517 | upl_size_t size, | |
1518 | upl_t *upl_ptr, | |
1519 | upl_page_info_array_t user_page_list, | |
1520 | unsigned int *page_list_count, | |
1521 | int cntrl_flags, | |
1522 | int tag) | |
0b4e3aa0 | 1523 | { |
0a7de745 | 1524 | vm_object_t object; |
f427ee49 A |
1525 | vm_tag_t vmtag = (vm_tag_t)tag; |
1526 | assert(vmtag == tag); | |
0b4e3aa0 A |
1527 | |
1528 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1529 | if (object == VM_OBJECT_NULL) { |
1530 | return KERN_TERMINATED; | |
1531 | } | |
0b4e3aa0 A |
1532 | |
1533 | return vm_object_upl_request(object, | |
0a7de745 A |
1534 | offset, |
1535 | size, | |
1536 | upl_ptr, | |
1537 | user_page_list, | |
1538 | page_list_count, | |
1539 | (upl_control_flags_t)(unsigned int) cntrl_flags, | |
f427ee49 | 1540 | vmtag); |
0b4e3aa0 A |
1541 | } |
1542 | ||
0a7de745 | 1543 | /* |
0b4e3aa0 A |
1544 | * Routine: memory_object_super_upl_request [interface] |
1545 | * Purpose: | |
1546 | * Cause the population of a portion of a vm_object | |
1547 | * in much the same way as memory_object_upl_request. | |
1548 | * Depending on the nature of the request, the pages | |
1549 | * returned may be contain valid data or be uninitialized. | |
1550 | * However, the region may be expanded up to the super | |
1551 | * cluster size provided. | |
1c79356b | 1552 | */ |
0b4e3aa0 | 1553 | |
1c79356b | 1554 | kern_return_t |
0b4e3aa0 A |
1555 | memory_object_super_upl_request( |
1556 | memory_object_control_t control, | |
0a7de745 A |
1557 | memory_object_offset_t offset, |
1558 | upl_size_t size, | |
1559 | upl_size_t super_cluster, | |
1560 | upl_t *upl, | |
1561 | upl_page_info_t *user_page_list, | |
1562 | unsigned int *page_list_count, | |
1563 | int cntrl_flags, | |
1564 | int tag) | |
1c79356b | 1565 | { |
0a7de745 | 1566 | vm_object_t object; |
f427ee49 A |
1567 | vm_tag_t vmtag = (vm_tag_t)tag; |
1568 | assert(vmtag == tag); | |
0b4e3aa0 A |
1569 | |
1570 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1571 | if (object == VM_OBJECT_NULL) { |
1572 | return KERN_INVALID_ARGUMENT; | |
1573 | } | |
0b4e3aa0 A |
1574 | |
1575 | return vm_object_super_upl_request(object, | |
0a7de745 A |
1576 | offset, |
1577 | size, | |
1578 | super_cluster, | |
1579 | upl, | |
1580 | user_page_list, | |
1581 | page_list_count, | |
1582 | (upl_control_flags_t)(unsigned int) cntrl_flags, | |
f427ee49 | 1583 | vmtag); |
1c79356b A |
1584 | } |
1585 | ||
2d21ac55 | 1586 | kern_return_t |
d9a64523 | 1587 | memory_object_cluster_size( |
0a7de745 A |
1588 | memory_object_control_t control, |
1589 | memory_object_offset_t *start, | |
1590 | vm_size_t *length, | |
1591 | uint32_t *io_streaming, | |
d9a64523 | 1592 | memory_object_fault_info_t mo_fault_info) |
2d21ac55 | 1593 | { |
0a7de745 A |
1594 | vm_object_t object; |
1595 | vm_object_fault_info_t fault_info; | |
2d21ac55 A |
1596 | |
1597 | object = memory_object_control_to_vm_object(control); | |
1598 | ||
0a7de745 | 1599 | if (object == VM_OBJECT_NULL || object->paging_offset > *start) { |
d9a64523 | 1600 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1601 | } |
2d21ac55 A |
1602 | |
1603 | *start -= object->paging_offset; | |
1604 | ||
d9a64523 A |
1605 | fault_info = (vm_object_fault_info_t)(uintptr_t) mo_fault_info; |
1606 | vm_object_cluster_size(object, | |
0a7de745 A |
1607 | (vm_object_offset_t *)start, |
1608 | length, | |
1609 | fault_info, | |
1610 | io_streaming); | |
2d21ac55 A |
1611 | |
1612 | *start += object->paging_offset; | |
1613 | ||
d9a64523 | 1614 | return KERN_SUCCESS; |
2d21ac55 A |
1615 | } |
1616 | ||
1617 | ||
1c79356b | 1618 | /* |
0b4e3aa0 | 1619 | * Routine: host_default_memory_manager [interface] |
1c79356b A |
1620 | * Purpose: |
1621 | * set/get the default memory manager port and default cluster | |
1622 | * size. | |
1623 | * | |
1624 | * If successful, consumes the supplied naked send right. | |
1625 | */ | |
1626 | kern_return_t | |
1627 | host_default_memory_manager( | |
0a7de745 A |
1628 | host_priv_t host_priv, |
1629 | memory_object_default_t *default_manager, | |
2d21ac55 | 1630 | __unused memory_object_cluster_size_t cluster_size) |
1c79356b | 1631 | { |
0b4e3aa0 A |
1632 | memory_object_default_t current_manager; |
1633 | memory_object_default_t new_manager; | |
1634 | memory_object_default_t returned_manager; | |
2d21ac55 | 1635 | kern_return_t result = KERN_SUCCESS; |
1c79356b | 1636 | |
0a7de745 A |
1637 | if (host_priv == HOST_PRIV_NULL) { |
1638 | return KERN_INVALID_HOST; | |
1639 | } | |
1c79356b A |
1640 | |
1641 | assert(host_priv == &realhost); | |
1642 | ||
1643 | new_manager = *default_manager; | |
b0d623f7 | 1644 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1645 | current_manager = memory_manager_default; |
2d21ac55 | 1646 | returned_manager = MEMORY_OBJECT_DEFAULT_NULL; |
1c79356b | 1647 | |
0b4e3aa0 | 1648 | if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
1c79356b A |
1649 | /* |
1650 | * Retrieve the current value. | |
1651 | */ | |
0b4e3aa0 | 1652 | returned_manager = current_manager; |
2d21ac55 | 1653 | memory_object_default_reference(returned_manager); |
1c79356b | 1654 | } else { |
3e170ce0 A |
1655 | /* |
1656 | * Only allow the kernel to change the value. | |
1657 | */ | |
1658 | extern task_t kernel_task; | |
1659 | if (current_task() != kernel_task) { | |
1660 | result = KERN_NO_ACCESS; | |
1661 | goto out; | |
1662 | } | |
2d21ac55 A |
1663 | |
1664 | /* | |
1665 | * If this is the first non-null manager, start | |
1666 | * up the internal pager support. | |
1667 | */ | |
1668 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
1669 | result = vm_pageout_internal_start(); | |
0a7de745 | 1670 | if (result != KERN_SUCCESS) { |
2d21ac55 | 1671 | goto out; |
0a7de745 | 1672 | } |
2d21ac55 A |
1673 | } |
1674 | ||
1c79356b A |
1675 | /* |
1676 | * Retrieve the current value, | |
1677 | * and replace it with the supplied value. | |
0b4e3aa0 A |
1678 | * We return the old reference to the caller |
1679 | * but we have to take a reference on the new | |
1680 | * one. | |
1c79356b | 1681 | */ |
1c79356b A |
1682 | returned_manager = current_manager; |
1683 | memory_manager_default = new_manager; | |
0b4e3aa0 A |
1684 | memory_object_default_reference(new_manager); |
1685 | ||
1c79356b A |
1686 | /* |
1687 | * In case anyone's been waiting for a memory | |
1688 | * manager to be established, wake them up. | |
1689 | */ | |
1690 | ||
1691 | thread_wakeup((event_t) &memory_manager_default); | |
b0d623f7 A |
1692 | |
1693 | /* | |
1694 | * Now that we have a default pager for anonymous memory, | |
1695 | * reactivate all the throttled pages (i.e. dirty pages with | |
1696 | * no pager). | |
1697 | */ | |
0a7de745 | 1698 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
b0d623f7 A |
1699 | vm_page_reactivate_all_throttled(); |
1700 | } | |
1c79356b | 1701 | } |
0a7de745 | 1702 | out: |
b0d623f7 | 1703 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1704 | |
1705 | *default_manager = returned_manager; | |
0a7de745 | 1706 | return result; |
1c79356b A |
1707 | } |
1708 | ||
1709 | /* | |
1710 | * Routine: memory_manager_default_reference | |
1711 | * Purpose: | |
1712 | * Returns a naked send right for the default | |
1713 | * memory manager. The returned right is always | |
1714 | * valid (not IP_NULL or IP_DEAD). | |
1715 | */ | |
1716 | ||
0b4e3aa0 | 1717 | __private_extern__ memory_object_default_t |
2d21ac55 | 1718 | memory_manager_default_reference(void) |
1c79356b | 1719 | { |
0b4e3aa0 | 1720 | memory_object_default_t current_manager; |
1c79356b | 1721 | |
b0d623f7 | 1722 | lck_mtx_lock(&memory_manager_default_lock); |
0b4e3aa0 A |
1723 | current_manager = memory_manager_default; |
1724 | while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
9bccf70c A |
1725 | wait_result_t res; |
1726 | ||
b0d623f7 | 1727 | res = lck_mtx_sleep(&memory_manager_default_lock, |
0a7de745 A |
1728 | LCK_SLEEP_DEFAULT, |
1729 | (event_t) &memory_manager_default, | |
1730 | THREAD_UNINT); | |
9bccf70c | 1731 | assert(res == THREAD_AWAKENED); |
0b4e3aa0 | 1732 | current_manager = memory_manager_default; |
1c79356b | 1733 | } |
0b4e3aa0 | 1734 | memory_object_default_reference(current_manager); |
b0d623f7 | 1735 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1736 | |
1737 | return current_manager; | |
1738 | } | |
1739 | ||
1c79356b A |
1740 | /* |
1741 | * Routine: memory_manager_default_check | |
1742 | * | |
1743 | * Purpose: | |
1744 | * Check whether a default memory manager has been set | |
1745 | * up yet, or not. Returns KERN_SUCCESS if dmm exists, | |
1746 | * and KERN_FAILURE if dmm does not exist. | |
1747 | * | |
1748 | * If there is no default memory manager, log an error, | |
1749 | * but only the first time. | |
1750 | * | |
1751 | */ | |
0b4e3aa0 | 1752 | __private_extern__ kern_return_t |
1c79356b A |
1753 | memory_manager_default_check(void) |
1754 | { | |
0b4e3aa0 | 1755 | memory_object_default_t current; |
1c79356b | 1756 | |
b0d623f7 | 1757 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1758 | current = memory_manager_default; |
0b4e3aa0 | 1759 | if (current == MEMORY_OBJECT_DEFAULT_NULL) { |
0a7de745 A |
1760 | static boolean_t logged; /* initialized to 0 */ |
1761 | boolean_t complain = !logged; | |
1c79356b | 1762 | logged = TRUE; |
b0d623f7 | 1763 | lck_mtx_unlock(&memory_manager_default_lock); |
0a7de745 | 1764 | if (complain) { |
1c79356b | 1765 | printf("Warning: No default memory manager\n"); |
0a7de745 A |
1766 | } |
1767 | return KERN_FAILURE; | |
1c79356b | 1768 | } else { |
b0d623f7 | 1769 | lck_mtx_unlock(&memory_manager_default_lock); |
0a7de745 | 1770 | return KERN_SUCCESS; |
1c79356b A |
1771 | } |
1772 | } | |
1773 | ||
1c79356b A |
1774 | /* Allow manipulation of individual page state. This is actually part of */ |
1775 | /* the UPL regimen but takes place on the object rather than on a UPL */ | |
1776 | ||
1777 | kern_return_t | |
1778 | memory_object_page_op( | |
0a7de745 A |
1779 | memory_object_control_t control, |
1780 | memory_object_offset_t offset, | |
1781 | int ops, | |
1782 | ppnum_t *phys_entry, | |
1783 | int *flags) | |
1c79356b | 1784 | { |
0a7de745 | 1785 | vm_object_t object; |
0b4e3aa0 A |
1786 | |
1787 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1788 | if (object == VM_OBJECT_NULL) { |
1789 | return KERN_INVALID_ARGUMENT; | |
1790 | } | |
1c79356b | 1791 | |
0c530ab8 | 1792 | return vm_object_page_op(object, offset, ops, phys_entry, flags); |
1c79356b A |
1793 | } |
1794 | ||
55e303ae | 1795 | /* |
0a7de745 A |
1796 | * memory_object_range_op offers performance enhancement over |
1797 | * memory_object_page_op for page_op functions which do not require page | |
1798 | * level state to be returned from the call. Page_op was created to provide | |
1799 | * a low-cost alternative to page manipulation via UPLs when only a single | |
1800 | * page was involved. The range_op call establishes the ability in the _op | |
55e303ae A |
1801 | * family of functions to work on multiple pages where the lack of page level |
1802 | * state handling allows the caller to avoid the overhead of the upl structures. | |
1803 | */ | |
1804 | ||
1805 | kern_return_t | |
1806 | memory_object_range_op( | |
0a7de745 A |
1807 | memory_object_control_t control, |
1808 | memory_object_offset_t offset_beg, | |
1809 | memory_object_offset_t offset_end, | |
55e303ae A |
1810 | int ops, |
1811 | int *range) | |
1812 | { | |
0a7de745 | 1813 | vm_object_t object; |
55e303ae A |
1814 | |
1815 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1816 | if (object == VM_OBJECT_NULL) { |
1817 | return KERN_INVALID_ARGUMENT; | |
1818 | } | |
55e303ae | 1819 | |
0c530ab8 | 1820 | return vm_object_range_op(object, |
0a7de745 A |
1821 | offset_beg, |
1822 | offset_end, | |
1823 | ops, | |
1824 | (uint32_t *) range); | |
55e303ae A |
1825 | } |
1826 | ||
91447636 | 1827 | |
6d2010ae A |
1828 | void |
1829 | memory_object_mark_used( | |
0a7de745 | 1830 | memory_object_control_t control) |
6d2010ae | 1831 | { |
0a7de745 | 1832 | vm_object_t object; |
6d2010ae | 1833 | |
0a7de745 | 1834 | if (control == NULL) { |
6d2010ae | 1835 | return; |
0a7de745 | 1836 | } |
6d2010ae A |
1837 | |
1838 | object = memory_object_control_to_vm_object(control); | |
1839 | ||
0a7de745 | 1840 | if (object != VM_OBJECT_NULL) { |
6d2010ae | 1841 | vm_object_cache_remove(object); |
0a7de745 | 1842 | } |
6d2010ae A |
1843 | } |
1844 | ||
1845 | ||
1846 | void | |
1847 | memory_object_mark_unused( | |
0a7de745 A |
1848 | memory_object_control_t control, |
1849 | __unused boolean_t rage) | |
6d2010ae | 1850 | { |
0a7de745 | 1851 | vm_object_t object; |
6d2010ae | 1852 | |
0a7de745 | 1853 | if (control == NULL) { |
6d2010ae | 1854 | return; |
0a7de745 | 1855 | } |
6d2010ae A |
1856 | |
1857 | object = memory_object_control_to_vm_object(control); | |
1858 | ||
0a7de745 | 1859 | if (object != VM_OBJECT_NULL) { |
6d2010ae | 1860 | vm_object_cache_add(object); |
0a7de745 | 1861 | } |
6d2010ae A |
1862 | } |
1863 | ||
fe8ab488 A |
1864 | void |
1865 | memory_object_mark_io_tracking( | |
1866 | memory_object_control_t control) | |
1867 | { | |
1868 | vm_object_t object; | |
1869 | ||
0a7de745 | 1870 | if (control == NULL) { |
fe8ab488 | 1871 | return; |
0a7de745 | 1872 | } |
fe8ab488 A |
1873 | object = memory_object_control_to_vm_object(control); |
1874 | ||
1875 | if (object != VM_OBJECT_NULL) { | |
1876 | vm_object_lock(object); | |
1877 | object->io_tracking = TRUE; | |
1878 | vm_object_unlock(object); | |
1879 | } | |
1880 | } | |
6d2010ae | 1881 | |
cb323159 A |
1882 | void |
1883 | memory_object_mark_trusted( | |
1884 | memory_object_control_t control) | |
1885 | { | |
1886 | vm_object_t object; | |
1887 | ||
1888 | if (control == NULL) { | |
1889 | return; | |
1890 | } | |
1891 | object = memory_object_control_to_vm_object(control); | |
1892 | ||
1893 | if (object != VM_OBJECT_NULL) { | |
1894 | vm_object_lock(object); | |
1895 | object->pager_trusted = TRUE; | |
1896 | vm_object_unlock(object); | |
1897 | } | |
1898 | } | |
1899 | ||
39037602 A |
1900 | #if CONFIG_SECLUDED_MEMORY |
1901 | void | |
1902 | memory_object_mark_eligible_for_secluded( | |
1903 | memory_object_control_t control, | |
0a7de745 | 1904 | boolean_t eligible_for_secluded) |
39037602 A |
1905 | { |
1906 | vm_object_t object; | |
1907 | ||
0a7de745 | 1908 | if (control == NULL) { |
39037602 | 1909 | return; |
0a7de745 | 1910 | } |
39037602 A |
1911 | object = memory_object_control_to_vm_object(control); |
1912 | ||
1913 | if (object == VM_OBJECT_NULL) { | |
1914 | return; | |
1915 | } | |
1916 | ||
1917 | vm_object_lock(object); | |
1918 | if (eligible_for_secluded && | |
1919 | secluded_for_filecache && /* global boot-arg */ | |
1920 | !object->eligible_for_secluded) { | |
1921 | object->eligible_for_secluded = TRUE; | |
1922 | vm_page_secluded.eligible_for_secluded += object->resident_page_count; | |
1923 | } else if (!eligible_for_secluded && | |
0a7de745 | 1924 | object->eligible_for_secluded) { |
39037602 A |
1925 | object->eligible_for_secluded = FALSE; |
1926 | vm_page_secluded.eligible_for_secluded -= object->resident_page_count; | |
1927 | if (object->resident_page_count) { | |
1928 | /* XXX FBDP TODO: flush pages from secluded queue? */ | |
1929 | // printf("FBDP TODO: flush %d pages from %p from secluded queue\n", object->resident_page_count, object); | |
1930 | } | |
1931 | } | |
1932 | vm_object_unlock(object); | |
1933 | } | |
1934 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
1935 | ||
91447636 A |
1936 | kern_return_t |
1937 | memory_object_pages_resident( | |
0a7de745 A |
1938 | memory_object_control_t control, |
1939 | boolean_t * has_pages_resident) | |
91447636 | 1940 | { |
0a7de745 | 1941 | vm_object_t object; |
91447636 A |
1942 | |
1943 | *has_pages_resident = FALSE; | |
1944 | ||
1945 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1946 | if (object == VM_OBJECT_NULL) { |
1947 | return KERN_INVALID_ARGUMENT; | |
1948 | } | |
91447636 | 1949 | |
0a7de745 | 1950 | if (object->resident_page_count) { |
91447636 | 1951 | *has_pages_resident = TRUE; |
0a7de745 A |
1952 | } |
1953 | ||
1954 | return KERN_SUCCESS; | |
91447636 A |
1955 | } |
1956 | ||
2d21ac55 A |
1957 | kern_return_t |
1958 | memory_object_signed( | |
0a7de745 A |
1959 | memory_object_control_t control, |
1960 | boolean_t is_signed) | |
2d21ac55 | 1961 | { |
0a7de745 | 1962 | vm_object_t object; |
2d21ac55 A |
1963 | |
1964 | object = memory_object_control_to_vm_object(control); | |
0a7de745 | 1965 | if (object == VM_OBJECT_NULL) { |
2d21ac55 | 1966 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1967 | } |
2d21ac55 A |
1968 | |
1969 | vm_object_lock(object); | |
1970 | object->code_signed = is_signed; | |
1971 | vm_object_unlock(object); | |
1972 | ||
1973 | return KERN_SUCCESS; | |
1974 | } | |
91447636 | 1975 | |
39236c6e A |
1976 | boolean_t |
1977 | memory_object_is_signed( | |
0a7de745 | 1978 | memory_object_control_t control) |
39236c6e | 1979 | { |
0a7de745 A |
1980 | boolean_t is_signed; |
1981 | vm_object_t object; | |
39236c6e A |
1982 | |
1983 | object = memory_object_control_to_vm_object(control); | |
0a7de745 | 1984 | if (object == VM_OBJECT_NULL) { |
39236c6e | 1985 | return FALSE; |
0a7de745 | 1986 | } |
39236c6e A |
1987 | |
1988 | vm_object_lock_shared(object); | |
1989 | is_signed = object->code_signed; | |
1990 | vm_object_unlock(object); | |
1991 | ||
1992 | return is_signed; | |
1993 | } | |
1994 | ||
6d2010ae | 1995 | boolean_t |
d9a64523 | 1996 | memory_object_is_shared_cache( |
0a7de745 | 1997 | memory_object_control_t control) |
6d2010ae | 1998 | { |
0a7de745 | 1999 | vm_object_t object = VM_OBJECT_NULL; |
6d2010ae A |
2000 | |
2001 | object = memory_object_control_to_vm_object(control); | |
0a7de745 | 2002 | if (object == VM_OBJECT_NULL) { |
6d2010ae | 2003 | return FALSE; |
0a7de745 | 2004 | } |
6d2010ae | 2005 | |
d9a64523 | 2006 | return object->object_is_shared_cache; |
6d2010ae A |
2007 | } |
2008 | ||
f427ee49 A |
2009 | static ZONE_DECLARE(mem_obj_control_zone, "mem_obj_control", |
2010 | sizeof(struct memory_object_control), ZC_NOENCRYPT); | |
0b4e3aa0 A |
2011 | |
2012 | __private_extern__ memory_object_control_t | |
2013 | memory_object_control_allocate( | |
0a7de745 A |
2014 | vm_object_t object) |
2015 | { | |
0b4e3aa0 A |
2016 | memory_object_control_t control; |
2017 | ||
2018 | control = (memory_object_control_t)zalloc(mem_obj_control_zone); | |
0c530ab8 A |
2019 | if (control != MEMORY_OBJECT_CONTROL_NULL) { |
2020 | control->moc_object = object; | |
2021 | control->moc_ikot = IKOT_MEM_OBJ_CONTROL; /* fake ip_kotype */ | |
2022 | } | |
0a7de745 | 2023 | return control; |
0b4e3aa0 A |
2024 | } |
2025 | ||
2026 | __private_extern__ void | |
2027 | memory_object_control_collapse( | |
0a7de745 A |
2028 | memory_object_control_t control, |
2029 | vm_object_t object) | |
2030 | { | |
0c530ab8 | 2031 | assert((control->moc_object != VM_OBJECT_NULL) && |
0a7de745 | 2032 | (control->moc_object != object)); |
0c530ab8 | 2033 | control->moc_object = object; |
0b4e3aa0 A |
2034 | } |
2035 | ||
2036 | __private_extern__ vm_object_t | |
2037 | memory_object_control_to_vm_object( | |
0a7de745 | 2038 | memory_object_control_t control) |
0b4e3aa0 | 2039 | { |
0c530ab8 | 2040 | if (control == MEMORY_OBJECT_CONTROL_NULL || |
0a7de745 | 2041 | control->moc_ikot != IKOT_MEM_OBJ_CONTROL) { |
0b4e3aa0 | 2042 | return VM_OBJECT_NULL; |
0a7de745 | 2043 | } |
0b4e3aa0 | 2044 | |
0a7de745 | 2045 | return control->moc_object; |
0b4e3aa0 A |
2046 | } |
2047 | ||
5ba3f43e A |
2048 | __private_extern__ vm_object_t |
2049 | memory_object_to_vm_object( | |
2050 | memory_object_t mem_obj) | |
2051 | { | |
2052 | memory_object_control_t mo_control; | |
2053 | ||
2054 | if (mem_obj == MEMORY_OBJECT_NULL) { | |
2055 | return VM_OBJECT_NULL; | |
2056 | } | |
2057 | mo_control = mem_obj->mo_control; | |
2058 | if (mo_control == NULL) { | |
2059 | return VM_OBJECT_NULL; | |
2060 | } | |
2061 | return memory_object_control_to_vm_object(mo_control); | |
2062 | } | |
2063 | ||
0b4e3aa0 A |
2064 | memory_object_control_t |
2065 | convert_port_to_mo_control( | |
0a7de745 | 2066 | __unused mach_port_t port) |
0b4e3aa0 A |
2067 | { |
2068 | return MEMORY_OBJECT_CONTROL_NULL; | |
2069 | } | |
2070 | ||
2071 | ||
2072 | mach_port_t | |
2073 | convert_mo_control_to_port( | |
0a7de745 | 2074 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2075 | { |
2076 | return MACH_PORT_NULL; | |
2077 | } | |
2078 | ||
2079 | void | |
2080 | memory_object_control_reference( | |
0a7de745 | 2081 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2082 | { |
2083 | return; | |
2084 | } | |
2085 | ||
2086 | /* | |
2087 | * We only every issue one of these references, so kill it | |
2088 | * when that gets released (should switch the real reference | |
2089 | * counting in true port-less EMMI). | |
2090 | */ | |
2091 | void | |
2092 | memory_object_control_deallocate( | |
0a7de745 | 2093 | memory_object_control_t control) |
0b4e3aa0 | 2094 | { |
91447636 | 2095 | zfree(mem_obj_control_zone, control); |
0b4e3aa0 A |
2096 | } |
2097 | ||
2098 | void | |
2099 | memory_object_control_disable( | |
0a7de745 | 2100 | memory_object_control_t control) |
0b4e3aa0 | 2101 | { |
0c530ab8 A |
2102 | assert(control->moc_object != VM_OBJECT_NULL); |
2103 | control->moc_object = VM_OBJECT_NULL; | |
0b4e3aa0 A |
2104 | } |
2105 | ||
2106 | void | |
2107 | memory_object_default_reference( | |
2108 | memory_object_default_t dmm) | |
2109 | { | |
2110 | ipc_port_make_send(dmm); | |
2111 | } | |
2112 | ||
2113 | void | |
2114 | memory_object_default_deallocate( | |
2115 | memory_object_default_t dmm) | |
2116 | { | |
2117 | ipc_port_release_send(dmm); | |
2118 | } | |
2119 | ||
2120 | memory_object_t | |
2121 | convert_port_to_memory_object( | |
0a7de745 | 2122 | __unused mach_port_t port) |
0b4e3aa0 | 2123 | { |
0a7de745 | 2124 | return MEMORY_OBJECT_NULL; |
0b4e3aa0 A |
2125 | } |
2126 | ||
2127 | ||
2128 | mach_port_t | |
2129 | convert_memory_object_to_port( | |
0a7de745 | 2130 | __unused memory_object_t object) |
0b4e3aa0 | 2131 | { |
0a7de745 | 2132 | return MACH_PORT_NULL; |
0b4e3aa0 A |
2133 | } |
2134 | ||
0b4e3aa0 A |
2135 | |
2136 | /* Routine memory_object_reference */ | |
0a7de745 A |
2137 | void |
2138 | memory_object_reference( | |
0b4e3aa0 A |
2139 | memory_object_t memory_object) |
2140 | { | |
0c530ab8 A |
2141 | (memory_object->mo_pager_ops->memory_object_reference)( |
2142 | memory_object); | |
0b4e3aa0 A |
2143 | } |
2144 | ||
2145 | /* Routine memory_object_deallocate */ | |
0a7de745 A |
2146 | void |
2147 | memory_object_deallocate( | |
0b4e3aa0 A |
2148 | memory_object_t memory_object) |
2149 | { | |
0c530ab8 | 2150 | (memory_object->mo_pager_ops->memory_object_deallocate)( |
0a7de745 | 2151 | memory_object); |
0b4e3aa0 A |
2152 | } |
2153 | ||
2154 | ||
2155 | /* Routine memory_object_init */ | |
0a7de745 A |
2156 | kern_return_t |
2157 | memory_object_init | |
0b4e3aa0 A |
2158 | ( |
2159 | memory_object_t memory_object, | |
2160 | memory_object_control_t memory_control, | |
91447636 | 2161 | memory_object_cluster_size_t memory_object_page_size |
0b4e3aa0 A |
2162 | ) |
2163 | { | |
0c530ab8 A |
2164 | return (memory_object->mo_pager_ops->memory_object_init)( |
2165 | memory_object, | |
2166 | memory_control, | |
2167 | memory_object_page_size); | |
0b4e3aa0 A |
2168 | } |
2169 | ||
2170 | /* Routine memory_object_terminate */ | |
0a7de745 A |
2171 | kern_return_t |
2172 | memory_object_terminate | |
0b4e3aa0 A |
2173 | ( |
2174 | memory_object_t memory_object | |
2175 | ) | |
2176 | { | |
0c530ab8 A |
2177 | return (memory_object->mo_pager_ops->memory_object_terminate)( |
2178 | memory_object); | |
0b4e3aa0 A |
2179 | } |
2180 | ||
2181 | /* Routine memory_object_data_request */ | |
0a7de745 A |
2182 | kern_return_t |
2183 | memory_object_data_request | |
0b4e3aa0 A |
2184 | ( |
2185 | memory_object_t memory_object, | |
2186 | memory_object_offset_t offset, | |
91447636 | 2187 | memory_object_cluster_size_t length, |
2d21ac55 A |
2188 | vm_prot_t desired_access, |
2189 | memory_object_fault_info_t fault_info | |
0b4e3aa0 A |
2190 | ) |
2191 | { | |
0c530ab8 A |
2192 | return (memory_object->mo_pager_ops->memory_object_data_request)( |
2193 | memory_object, | |
0a7de745 | 2194 | offset, |
0c530ab8 | 2195 | length, |
2d21ac55 A |
2196 | desired_access, |
2197 | fault_info); | |
0b4e3aa0 A |
2198 | } |
2199 | ||
2200 | /* Routine memory_object_data_return */ | |
0a7de745 A |
2201 | kern_return_t |
2202 | memory_object_data_return | |
0b4e3aa0 A |
2203 | ( |
2204 | memory_object_t memory_object, | |
2205 | memory_object_offset_t offset, | |
b0d623f7 | 2206 | memory_object_cluster_size_t size, |
91447636 | 2207 | memory_object_offset_t *resid_offset, |
0a7de745 | 2208 | int *io_error, |
0b4e3aa0 | 2209 | boolean_t dirty, |
91447636 | 2210 | boolean_t kernel_copy, |
0a7de745 | 2211 | int upl_flags |
0b4e3aa0 A |
2212 | ) |
2213 | { | |
0c530ab8 A |
2214 | return (memory_object->mo_pager_ops->memory_object_data_return)( |
2215 | memory_object, | |
2216 | offset, | |
2217 | size, | |
2218 | resid_offset, | |
2219 | io_error, | |
2220 | dirty, | |
2221 | kernel_copy, | |
2222 | upl_flags); | |
0b4e3aa0 A |
2223 | } |
2224 | ||
2225 | /* Routine memory_object_data_initialize */ | |
0a7de745 A |
2226 | kern_return_t |
2227 | memory_object_data_initialize | |
0b4e3aa0 A |
2228 | ( |
2229 | memory_object_t memory_object, | |
2230 | memory_object_offset_t offset, | |
b0d623f7 | 2231 | memory_object_cluster_size_t size |
0b4e3aa0 A |
2232 | ) |
2233 | { | |
0c530ab8 A |
2234 | return (memory_object->mo_pager_ops->memory_object_data_initialize)( |
2235 | memory_object, | |
2236 | offset, | |
2237 | size); | |
0b4e3aa0 A |
2238 | } |
2239 | ||
2240 | /* Routine memory_object_data_unlock */ | |
0a7de745 A |
2241 | kern_return_t |
2242 | memory_object_data_unlock | |
0b4e3aa0 A |
2243 | ( |
2244 | memory_object_t memory_object, | |
2245 | memory_object_offset_t offset, | |
b0d623f7 | 2246 | memory_object_size_t size, |
0b4e3aa0 A |
2247 | vm_prot_t desired_access |
2248 | ) | |
2249 | { | |
0c530ab8 A |
2250 | return (memory_object->mo_pager_ops->memory_object_data_unlock)( |
2251 | memory_object, | |
2252 | offset, | |
2253 | size, | |
2254 | desired_access); | |
0b4e3aa0 A |
2255 | } |
2256 | ||
2257 | /* Routine memory_object_synchronize */ | |
0a7de745 A |
2258 | kern_return_t |
2259 | memory_object_synchronize | |
0b4e3aa0 A |
2260 | ( |
2261 | memory_object_t memory_object, | |
2262 | memory_object_offset_t offset, | |
b0d623f7 | 2263 | memory_object_size_t size, |
0b4e3aa0 A |
2264 | vm_sync_t sync_flags |
2265 | ) | |
2266 | { | |
0a7de745 | 2267 | panic("memory_object_syncrhonize no longer supported\n"); |
5ba3f43e | 2268 | |
0c530ab8 A |
2269 | return (memory_object->mo_pager_ops->memory_object_synchronize)( |
2270 | memory_object, | |
2271 | offset, | |
2272 | size, | |
2273 | sync_flags); | |
0b4e3aa0 A |
2274 | } |
2275 | ||
593a1d5f A |
2276 | |
2277 | /* | |
2278 | * memory_object_map() is called by VM (in vm_map_enter() and its variants) | |
2279 | * each time a "named" VM object gets mapped directly or indirectly | |
2280 | * (copy-on-write mapping). A "named" VM object has an extra reference held | |
0a7de745 | 2281 | * by the pager to keep it alive until the pager decides that the |
593a1d5f A |
2282 | * memory object (and its VM object) can be reclaimed. |
2283 | * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all | |
2284 | * the mappings of that memory object have been removed. | |
2285 | * | |
2286 | * For a given VM object, calls to memory_object_map() and memory_object_unmap() | |
2287 | * are serialized (through object->mapping_in_progress), to ensure that the | |
2288 | * pager gets a consistent view of the mapping status of the memory object. | |
2289 | * | |
2290 | * This allows the pager to keep track of how many times a memory object | |
2291 | * has been mapped and with which protections, to decide when it can be | |
2292 | * reclaimed. | |
2293 | */ | |
2294 | ||
2295 | /* Routine memory_object_map */ | |
0a7de745 A |
2296 | kern_return_t |
2297 | memory_object_map | |
593a1d5f A |
2298 | ( |
2299 | memory_object_t memory_object, | |
2300 | vm_prot_t prot | |
2301 | ) | |
2302 | { | |
2303 | return (memory_object->mo_pager_ops->memory_object_map)( | |
2304 | memory_object, | |
2305 | prot); | |
2306 | } | |
2307 | ||
2308 | /* Routine memory_object_last_unmap */ | |
0a7de745 A |
2309 | kern_return_t |
2310 | memory_object_last_unmap | |
0b4e3aa0 A |
2311 | ( |
2312 | memory_object_t memory_object | |
2313 | ) | |
2314 | { | |
593a1d5f | 2315 | return (memory_object->mo_pager_ops->memory_object_last_unmap)( |
0c530ab8 | 2316 | memory_object); |
0b4e3aa0 A |
2317 | } |
2318 | ||
6d2010ae | 2319 | /* Routine memory_object_data_reclaim */ |
0a7de745 A |
2320 | kern_return_t |
2321 | memory_object_data_reclaim | |
6d2010ae A |
2322 | ( |
2323 | memory_object_t memory_object, | |
0a7de745 | 2324 | boolean_t reclaim_backing_store |
6d2010ae A |
2325 | ) |
2326 | { | |
0a7de745 | 2327 | if (memory_object->mo_pager_ops->memory_object_data_reclaim == NULL) { |
6d2010ae | 2328 | return KERN_NOT_SUPPORTED; |
0a7de745 | 2329 | } |
6d2010ae A |
2330 | return (memory_object->mo_pager_ops->memory_object_data_reclaim)( |
2331 | memory_object, | |
2332 | reclaim_backing_store); | |
2333 | } | |
2334 | ||
a991bd8d A |
2335 | boolean_t |
2336 | memory_object_backing_object | |
2337 | ( | |
2338 | memory_object_t memory_object, | |
2339 | memory_object_offset_t offset, | |
2340 | vm_object_t *backing_object, | |
2341 | vm_object_offset_t *backing_offset) | |
2342 | { | |
2343 | if (memory_object->mo_pager_ops->memory_object_backing_object == NULL) { | |
2344 | return FALSE; | |
2345 | } | |
2346 | return (memory_object->mo_pager_ops->memory_object_backing_object)( | |
2347 | memory_object, | |
2348 | offset, | |
2349 | backing_object, | |
2350 | backing_offset); | |
2351 | } | |
2352 | ||
91447636 A |
2353 | upl_t |
2354 | convert_port_to_upl( | |
0a7de745 | 2355 | ipc_port_t port) |
91447636 A |
2356 | { |
2357 | upl_t upl; | |
2358 | ||
2359 | ip_lock(port); | |
2360 | if (!ip_active(port) || (ip_kotype(port) != IKOT_UPL)) { | |
0a7de745 A |
2361 | ip_unlock(port); |
2362 | return (upl_t)NULL; | |
91447636 | 2363 | } |
ea3f0419 | 2364 | upl = (upl_t) ip_get_kobject(port); |
91447636 A |
2365 | ip_unlock(port); |
2366 | upl_lock(upl); | |
0a7de745 | 2367 | upl->ref_count += 1; |
91447636 A |
2368 | upl_unlock(upl); |
2369 | return upl; | |
2370 | } | |
2371 | ||
2372 | mach_port_t | |
2373 | convert_upl_to_port( | |
0a7de745 | 2374 | __unused upl_t upl) |
91447636 A |
2375 | { |
2376 | return MACH_PORT_NULL; | |
2377 | } | |
2378 | ||
2379 | __private_extern__ void | |
2380 | upl_no_senders( | |
0a7de745 A |
2381 | __unused ipc_port_t port, |
2382 | __unused mach_port_mscount_t mscount) | |
91447636 A |
2383 | { |
2384 | return; | |
2385 | } |